Skip to main content

Advertisement

Log in

Tumor Promoting Inflammation

  • Published:
Current Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

In this review, the role of inflammation on tumorigenesis with the scope of its tumor-promoting role as an enabling characteristic of cancer will be discussed along with promising therapeutical strategies that target inflammatory microenvironment of tumors.

Recent Findings

The hallmarks of cancer conceptualized by Hanahan and Weinberg in 2000 structured our understanding of the common features of cancer better, yet new emerging hallmarks and enabling characteristics are being considered within this concept in recent years. Tumor-promoting inflammation is one of these characteristics that opened a new era in cancer therapy with promising results. Recent studies revealed that targeting inflammation directly or as an adjuvant therapy is a clinically significant approach to increase the efficiency of cancer treatments.

Summary

The presence of inflammatory cells in tumor development and the influence of inflammation on several cellular mechanism such as cell proliferation, invasion, and metastasis make this feature an important mediator between several hallmarks of cancer as well as a promising therapeutical target.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Bray F, Laversanne M, Weiderpass E, Soerjomataram I. The ever-increasing importance of cancer as a leading cause of premature death worldwide. Cancer. 2021. https://doi.org/10.1002/cncr.33587.

    Article  PubMed  Google Scholar 

  2. Tran KB, Lang JJ, Compton K, Xu R, Acheson AR, Henrikson HJ, et al. The global burden of cancer attributable to risk factors, 2010–19: a systematic analysis for the Global Burden of Disease Study 2019. Lancet. 2022. https://doi.org/10.1016/S0140-6736(22)01438-6.

  3. Ni J, Miller M, Stojanovic A, Garbi N, Cerwenka A. Sustained effector function of IL-12/15/18–preactivated NK cells against established tumors. J Exp Med. 2012. https://doi.org/10.1084/jem.20120944.

    Article  PubMed  PubMed Central  Google Scholar 

  4. • Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022. https://doi.org/10.1158/2159-8290.CD-21-1059In this review, new emerging hallmarks and enabling characteristics of cancer were proposed and the most recent information about the “hallmarks of cancer” phenomenon are discussed. This paper was integral to the current study.

  5. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  PubMed  Google Scholar 

  6. Zhao H, Wu L, Yan G, Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Signal Transduct Target Ther. 2021. https://doi.org/10.1038/s41392-021-00658-5.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet. 2001. https://doi.org/10.1016/S0140-6736(00)04046-0.

    Article  PubMed  Google Scholar 

  8. Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008. https://doi.org/10.1038/nature07205.

    Article  PubMed  Google Scholar 

  9. Hibino S, Kawazoe T, Kasahara H, Itoh S, Ishimoto T, Sakata-Yanagimoto M, et al. Inflammation-induced tumorigenesis and metastasis. Int J Mol Sci. 2021. https://doi.org/10.3390/ijms22115421.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Shchors K, Shchors E, Rostker F, Lawlor ER, Brown-Swigart L, Evan GI. The Myc-dependent angiogenic switch in tumors is mediated by interleukin 1β. Genes Dev. 2006. https://doi.org/10.1101/gad.1455706.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Sparmann A, Bar-Sagi D. Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell. 2004. https://doi.org/10.1016/j.ccr.2004.09.028.

    Article  PubMed  Google Scholar 

  12. Borrello MG, Alberti L, Fischer A, Degl’Innocenti D, Ferrario C, Gariboldi M, et al. Induction of a proinflammatory program in normal human thyrocytes by the RET/PTC1 oncogene. Proc Natl Acad Sci USA. 2005. https://doi.org/10.1073/pnas.0503039102.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Guerra C, Schuhmacher AJ, Cañamero M, Grippo PJ, Verdaguer L, Pérez-Gallego L, et al. Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell. 2007. https://doi.org/10.1016/j.ccr.2007.01.012.

    Article  PubMed  Google Scholar 

  14. Camus M, Tosolini M, Mlecnik B, Pages F, Kirilovsky A, Berger A, et al. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res. 2009. https://doi.org/10.1158/0008-5472.CAN-08-2654.

    Article  PubMed  Google Scholar 

  15. Schumacher K, Haensch W, Röefzaad C, Schlag PM. Prognostic significance of activated CD8+ T cell infiltrations within esophageal carcinomas. Cancer Res. 2001;61(10):3932–6.

    CAS  PubMed  Google Scholar 

  16. Zhang L, Conejo-Garcia JR, Katsaros D, Gimotty PA, Massobrio M, Regnani G, et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003. https://doi.org/10.1056/NEJMoa020177.

    Article  PubMed  Google Scholar 

  17. Pagès F, Berger A, Camus M, Sanchez-Cabo F, Costes A, Molidor R, et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005. https://doi.org/10.1056/NEJMoa051424.

    Article  PubMed  Google Scholar 

  18. •• Friebel E, Kapolou K, Unger S, Núñez NG, Utz S, Rushing EJ, et al. Single-cell mapping of human brain cancer reveals tumor-specific instruction of tissue-invading leukocytes. Cell. 2020. https://doi.org/10.1016/j.cell.2020.04.055This study which presents the leukocyte landscape of brain tumors was assessed by using a single-cell profiling (CyTOF) and showed a clear distinction between gliomas and brain metastases, where tissue-invading leukocytes accumulated in brain metastases regions.

  19. Cassetta L, Pollard JW. Tumor-associated macrophages. Curr Biol. 2020. https://doi.org/10.1016/j.cub.2020.01.031.

    Article  PubMed  Google Scholar 

  20. Pan Y, Yu Y, Wang X, Zhang T. Tumor-associated macrophages in tumor immunity. Front Immunol. 2020. https://doi.org/10.3389/fimmu.2020.583084.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hung C-N, Chen M, DeArmond DT, Chiu CH-L, Limboy CA, Tan X, et al. AXL-initiated paracrine activation of pSTAT3 enhances mesenchymal and vasculogenic supportive features of tumor-associated macrophages. Cell Rep. 2023;42:113067. http://www.ncbi.nlm.nih.gov/pubmed/37659081.

  22. Deng Z, Shi F, Zhou Z, Sun F, Sun MH, Sun Q, et al. M1 macrophage mediated increased reactive oxygen species (ROS) influence wound healing via the MAPK signaling in vitro and in vivo. Toxicol Appl Pharmacol. 2019. https://doi.org/10.1016/j.taap.2019.01.022.

    Article  PubMed  Google Scholar 

  23. Perry CJ, Muñoz-Rojas AR, Meeth KM, Kellman LN, Amezquita RA, Thakral D, et al. Myeloid-targeted immunotherapies act in synergy to induce inflammation and antitumor immunity. J Exp Med. 2018. https://doi.org/10.1084/jem.20171435.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Hao S, Meng J, Zhang Y, Liu J, Nie X, Wu F, et al. Macrophage phenotypic mechanomodulation of enhancing bone regeneration by superparamagnetic scaffold upon magnetization. Biomaterials. 2017. https://doi.org/10.1016/j.biomaterials.2017.06.013.

    Article  PubMed  Google Scholar 

  25. Yin M, Li X, Tan S, Zhou HJ, Ji W, Bellone S, et al. Tumor-associated macrophages drive spheroid formation during early transcoelomic metastasis of ovarian cancer. J Clin Investig. 2016. https://doi.org/10.1172/JCI87252.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Sarode P, Schaefer MB, Grimminger F, Seeger W, Savai R. Macrophage and tumor cell cross-talk is fundamental for lung tumor progression: we need to talk. Front Oncol. 2020. https://doi.org/10.3389/fonc.2020.00324.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Su S, Liu Q, Chen J, Chen J, Chen F, He C, et al. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell. 2014. https://doi.org/10.1016/j.ccr.2014.03.021.

    Article  PubMed  Google Scholar 

  28. Verneau J, Sautés-Fridman C, Sun CM. Dendritic cells in the tumor microenvironment: prognostic and theranostic impact. Semin Immunol. 2020. https://doi.org/10.1016/j.smim.2020.101410.

    Article  PubMed  Google Scholar 

  29. Keirsse J, Van Damme H, Van Ginderachter JA, Laoui D. Exploiting tumor-associated dendritic cell heterogeneity for novel cancer therapies. J Leukoc Biol. 2017. https://doi.org/10.1189/jlb.4MR1116-466R.

    Article  PubMed  Google Scholar 

  30. Hsu Y-L, Huang M-S, Cheng D-E, Hung J-Y, Yang C-J, Chou S-H, et al. Lung tumor-associated dendritic cell-derived amphiregulin increased cancer progression. J Immunol. 2011. https://doi.org/10.4049/jimmunol.1100996.

    Article  PubMed  Google Scholar 

  31. Kuo CH, Chen KF, Chou SH, Huang YF, Wu CY, Cheng DE, et al. Lung tumor-associated dendritic cell-derived resistin promoted cancer progression by increasing wolf-hirschhorn syndrome candidate 1/twist pathway. Carcinogenesis. 2013. https://doi.org/10.1093/carcin/bgt281.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kan JY, Wu DC, Yu FJ, Wu CY, Ho YW, Chiu YJ, et al. Chemokine (C-C Motif) ligand 5 is involved in tumor-associated dendritic cell-mediated colon cancer progression through non-coding RNA MALAT-1. J Cell Physiol. 2015. https://doi.org/10.1002/jcp.24918.

    Article  PubMed  Google Scholar 

  33. Kuo PL, Huang MS, Cheng DE, Hung JY, Yang CJ, Chou SH. Lung cancer-derived galectin-1 enhances tumorigenic potentiation of tumor-associated dendritic cells by expressing heparin-binding EGF-like growth factor. J Biol Chem. 2012. https://doi.org/10.1074/jbc.M111.321190.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Zitti B, Bryceson YT. Natural killer cells in inflammation and autoimmunity. Cytokine Growth Factor Rev. 2018. https://doi.org/10.1016/j.cytogfr.2018.08.001.

    Article  PubMed  Google Scholar 

  35. Bi Q, Wu JY, Qiu XM, Zhang JD, Sun ZJ, Wang W. Tumor-associated inflammation: the tumor-promoting immunity in the early stages of tumorigenesis. J Immunol Res. 2022. https://doi.org/10.1155/2022/3128933.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Speiser DE, Chijioke O, Schaeuble K, Münz C. CD4+ T cells in cancer. Nat Cancer. 2023. https://doi.org/10.1038/s43018-023-00521-2.

    Article  PubMed  Google Scholar 

  37. Hu W, Wang ZM, Feng Y, Schizas M, Hoyos BE, van der Veeken J, et al. Regulatory T cells function in established systemic inflammation and reverse fatal autoimmunity. Nat Immunol. 2021. https://doi.org/10.1038/s41590-021-01001-4.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Togashi Y, Shitara K, Nishikawa H. Regulatory T cells in cancer immunosuppression — implications for anticancer therapy. Nat Rev Clin Oncol. 2019. https://doi.org/10.1038/s41571.

    Article  PubMed  Google Scholar 

  39. Ostroumov D, Fekete-Drimusz N, Saborowski M, Kühnel F, Woller N. CD4 and CD8 T lymphocyte interplay in controlling tumor growth. Cell Mol Life Sci. 2018. https://doi.org/10.1007/s00018-017-2686-7.

    Article  PubMed  Google Scholar 

  40. Budhu A, Forgues M, Ye QH, Jia HL, He P, Zanetti KA, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 2006. https://doi.org/10.1016/j.ccr.2006.06.016.

    Article  PubMed  Google Scholar 

  41. Maby P, Tougeron D, Hamieh M, Mlecnik B, Kora H, Bindea G, et al. Correlation between density of CD8+ T-cell infiltrate in microsatellite unstable colorectal cancers and frameshift mutations: a rationale for personalized immunotherapy. Cancer Res. 2015. https://doi.org/10.1158/0008-5472.CAN-14-3051.

    Article  PubMed  Google Scholar 

  42. Roberts SJ, Ng BY, Filler RB, Lewis J, Glusac EJ, Hayday AC, et al. Characterizing tumor-promoting T cells in chemically induced cutaneous carcinogenesis. Proc Natl Acad Sci USA. 2007. https://doi.org/10.1073/pnas.0604982104.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ogura K, Sato-Matsushita M, Yamamoto S, Hori T, Sasahara M, Iwakura Y, et al. NK cells control tumor-promoting function of neutrophils in mice. Cancer Immunol Res. 2018. https://doi.org/10.1158/2326-6066.CIR-17-0204.

    Article  PubMed  Google Scholar 

  44. Køstner AH, Nielsen PS, Georgsen JB, Parner ET, Nielsen MB, Kersten C, et al. Systemic inflammation associates with a myeloid inflamed tumor microenvironment in primary resected colon cancer—may cold tumors simply be too hot? Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.716342.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Galon J, Bruni D. Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov. 2019. https://doi.org/10.1038/s41573-018-0007-y.

    Article  PubMed  Google Scholar 

  46. Ni JJ, Zhang ZZ, Ge MJ, Chen JY, Zhuo W. Immune-based combination therapy to convert immunologically cold tumors into hot tumors: an update and new insights. Acta Pharmacol Sin. 2023. https://doi.org/10.1038/s41401-022-00953-z.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Marchesi F, Monti P, Leone BE, Zerbi A, Vecchi A, Piemonti L, et al. Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4. Cancer Res. 2004. https://doi.org/10.1158/0008-5472.CAN-04-1343.

    Article  PubMed  Google Scholar 

  48. Burger JA, Kipps TJ. CXCR4: a key receptor in the crosstalk between tumor cells and their microenvironment. Blood. 2006. https://doi.org/10.1182/blood-2005-08-3182.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Koong AC, Denko NC, Hudson KM, Schindler C, Swiersz L, Koch C, et al. Candidate genes for the hypoxic tumor phenotype. Cancer Res. 2000;60(4):883–7.

    CAS  PubMed  Google Scholar 

  50. Sun X, Qu Q, Lao Y, Zhang M, Yin X, Zhu H, et al. Tumor suppressor HIC1 is synergistically compromised by cancer-associated fibroblasts and tumor cells through the IL-6/pSTAT3 axis in breast cancer. BMC Cancer. 2019. https://doi.org/10.1186/s12885-019-6333-6.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Heichler C, Scheibe K, Schmied A, Geppert CI, Schmid B, Wirtz S, et al. STAT3 activation through IL-6/IL-11 in cancer-associated fibroblasts promotes colorectal tumour development and correlates with poor prognosis. Gut. 2020. https://doi.org/10.1136/gutjnl-2019-319200.

    Article  PubMed  Google Scholar 

  52. Lan T, Chen L, Wei X. Inflammatory cytokines in cancer: Comprehensive understanding and clinical progress in gene therapy. Cells. 2021. https://doi.org/10.3390/cells10010100.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018. https://doi.org/10.1038/nrclinonc.2018.8.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Zhang T, Ma C, Zhang Z, Zhang H, Hu H. NF-κB signaling in inflammation and cancer. MedComm (Beijing). 2021. https://doi.org/10.1002/mco2.104.

    Article  Google Scholar 

  55. Zhang T, Yang J, Sun Y, Song J, Gao D, Huang S, et al. Interleukin-6 and hypoxia synergistically promote EMT-mediated invasion in epithelial ovarian cancer via the IL-6/STAT3/HIF-1 α feedback loop. Anal Cell Pathol. 2023. https://doi.org/10.1155/2023/8334881.

    Article  Google Scholar 

  56. Cornwell AC, Tisdale AA, Venkat S, Maraszek KE, Alahmari AA, George A, et al. Lorazepam stimulates IL6 production and is associated with poor survival outcomes in pancreatic cancer. Clin Cancer Res. 2023;OF1–20. https://aacrjournals.org/clincancerres/article/doi/10.1158/1078-0432.CCR-23-0547/728435/Lorazepam-Stimulates-IL6-Production-and-Is.

  57. Laha D, Grant R, Mishra P, Nilubol N. The role of tumor necrosis factor in manipulating the immunological response of tumor microenvironment. Front Immunol. 2021. https://doi.org/10.3389/fimmu.2021.656908.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Chan FKM, Shisler J, Bixby JG, Felices M, Zheng L, Appel M, et al. A role for tumor necrosis factor receptor-2 and receptor-interacting protein in programmed necrosis and antiviral responses. J Biol Chem. 2003. https://doi.org/10.1074/jbc.M305633200.

    Article  PubMed  Google Scholar 

  59. Niture S, Dong X, Arthur E, Chimeh U, Niture SS, Zheng W, et al. Oncogenic role of tumor necrosis factor α-induced protein 8 (TNFAIP8). Cells. 2019. https://doi.org/10.3390/cells8010009.

    Article  Google Scholar 

  60. Poole EM, Lee IM, Ridker PM, Buring JE, Hankinson SE, Tworoger SS. A prospective study of circulating C-reactive protein, interleukin-6, and tumor necrosis factor α receptor 2 levels and risk of ovarian cancer. Am J Epidemiol. 2013. https://doi.org/10.1093/aje/kwt098.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Dobrzycka B, Terlikowski SJ, Garbowicz M, Nikliñska W, Bernaczyk PS, Nikliñski J, et al. Tumor necrosis factor-α and its receptors in epithelial ovarian cancer. Folia Histochem Cytobiol. 2009. https://doi.org/10.2478/v10042-008-0117-1.

    Article  PubMed  Google Scholar 

  62. Atretkhany KSN, Drutskaya MS, Nedospasov SA, Grivennikov SI, Kuprash DV. Chemokines, cytokines and exosomes help tumors to shape inflammatory microenvironment. Pharmacol Ther. 2016. https://doi.org/10.1016/j.pharmthera.2016.09.011.

    Article  PubMed  Google Scholar 

  63. Morgan A, Griffin M, Kameni L, Wan DC, Longaker MT, Norton JA. Medical biology of cancer-associated fibroblasts in pancreatic cancer. Biology (Basel). 2023. https://doi.org/10.3390/biology12081044.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Zhao Z, Li T, Sun L, Yuan Y, Zhu Y. Potential mechanisms of cancer-associated fibroblasts in therapeutic resistance. Biomed Pharmacothe. 2023;166:115425. https://linkinghub.elsevier.com/retrieve/pii/S0753332223012234.

  65. Sahai E, Astsaturov I, Cukierman E, DeNardo DG, Egeblad M, Evans RM, et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat Rev Cancer. 2020. https://doi.org/10.1038/s41568-019-0238-1.

    Article  PubMed  PubMed Central  Google Scholar 

  66. You D, Wang Y, Xu J, Yang R, Wang W, Wang X, et al. MiR-3529–3p from PDGF-BB-induced cancer-associated fibroblast-derived exosomes promotes the malignancy of oral squamous cell carcinoma. Discov Oncol. 2023;14:166. https://link.springer.com/10.1007/s12672-023-00753-9.

  67. Foster DS, Januszyk M, Delitto D, Yost KE, Griffin M, Guo J, et al. Multiomic analysis reveals conservation of cancer-associated fibroblast phenotypes across species and tissue of origin. Cancer Cell. 2022;40:1392–406.e7. https://linkinghub.elsevier.com/retrieve/pii/S1535610822004445.

  68. Kawasaki K, Noma K, Kato T, Ohara T, Tanabe S, Takeda Y, et al. PD-L1-expressing cancer-associated fibroblasts induce tumor immunosuppression and contribute to poor clinical outcome in esophageal cancer. Cancer Immunol Immunother. 2023. https://link.springer.com/10.1007/s00262-023-03531-2.

  69. Grivennikov SI, Greten FR, Karin M. Immunity, inflammation, and cancer. Cell. 2010. https://doi.org/10.1016/j.cell.2010.01.025.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Brown JR, DuBois RN. COX-2: A molecular target for colorectal cancer prevention. J Clin Oncol. 2005. https://doi.org/10.1200/JCO.2005.09.051.

    Article  PubMed  Google Scholar 

  71. Stewart OA, Wu F, Chen Y. The role of gastric microbiota in gastric cancer. Gut Microbes. 2020. https://doi.org/10.1080/19490976.2020.1762520.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz Gastroenterol. 2019. https://doi.org/10.5114/pg.2018.80001.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Floch P, Mégraud F, Lehours P. Helicobacter pylori strains and gastric MALT lymphoma. Toxins (Basel). 2017. https://doi.org/10.3390/toxins9040132.

    Article  PubMed  Google Scholar 

  74. Demir AB, Benvenuto D, Karacicek B, Erac Y, Spoto S, Angeletti S, et al. Implications of possible HBV-driven regulation of gene expression in stem cell-like subpopulation of Huh-7 hepatocellular carcinoma cell line. J Pers Med. 2022. https://doi.org/10.3390/jpm12122065.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gailhouste L, Sudoh M, Qin XY, Watashi K, Wakita T, Ochiya T, et al. Epigenetic reprogramming promotes the antiviral action of IFNα in HBV-infected cells. Cell Death Discov. 2021. https://doi.org/10.1038/s41420-021-00515-y.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Hatano Y, Ideta T, Hirata A, Hatano K, Tomita H, Okada H, et al. Virus-driven carcinogenesis. Cancers (Basel). 2021. https://doi.org/10.3390/cancers13112625.

    Article  PubMed  Google Scholar 

  77. De Visser KE, Korets LV, Coussens LM. De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent. Cancer Cell. 2005. https://doi.org/10.1016/j.ccr.2005.04.014.

    Article  PubMed  Google Scholar 

  78. Nanki K, Fujii M, Shimokawa M, Matano M, Nishikori S, Date S, et al. Somatic inflammatory gene mutations in human ulcerative colitis epithelium. Nature. 2020. https://doi.org/10.1038/s41586-019-1844-5.

    Article  PubMed  Google Scholar 

  79. Fulop T, Larbi A, Pawelec G, Khalil A, Cohen AA, Hirokawa K, et al. Immunology of aging: the birth of inflammaging. Clin Rev Allergy Immunol. 2023. https://doi.org/10.1007/s12016-021-08899-6.

    Article  PubMed  Google Scholar 

  80. Zuo L, Prather ER, Stetskiv M, Garrison DE, Meade JR, Peace TI, et al. Inflammaging and oxidative stress in human diseases: from molecular mechanisms to novel treatments. Int J Mol Sci. 2019. https://doi.org/10.3390/ijms20184472.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Di Giosia P, Stamerra CA, Giorgini P, Jamialahamdi T, Butler AE, Sahebkar A. The role of nutrition in inflammaging. Ageing Res Rev. 2022. https://doi.org/10.1016/j.arr.2022.101596.

    Article  PubMed  Google Scholar 

  82. Yang ZH, Dang YQ, Ji G. Role of epigenetics in transformation of inflammation into colorectal cancer. World J Gastroenterol. 2019. https://doi.org/10.3748/wjg.v25.i23.2863.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Chatterjee D, Das P, Chakrabarti O. Mitochondrial epigenetics regulating inflammation in cancer and aging. Front Cell Dev Biol. 2022. https://doi.org/10.3389/fcell.2022.929708.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Chumanevich AA, Spicer M, Hofseth LJ, Hébert JR. Diet, inflammation, and cancer. Diet Inflamm Health. 2022. https://doi.org/10.1158/1055-9965.EPI-19-0250.

    Article  Google Scholar 

  85. Al Bander Z, Nitert MD, Mousa A, Naderpoor N. The gut microbiota and inflammation: an overview. Int J Environ Res Public Health. 2020. https://doi.org/10.3390/ijerph17207618.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Telle-Hansen VH, Holven KB, Ulven SM. Impact of a healthy dietary pattern on gut microbiota and systemic inflammation in humans. Nutrients. 2018. https://doi.org/10.3390/nu10111783.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sun J, Kato I. Gut microbiota, inflammation and colorectal cancer. Genes Dis. 2016. https://doi.org/10.1016/j.gendis.2016.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wellenstein MD, Coffelt SB, Duits DEM, van Miltenburg MH, Slagter M, de Rink I, et al. Loss of p53 triggers WNT-dependent systemic inflammation to drive breast cancer metastasis. Nature. 2019. https://doi.org/10.1038/s41586-019-1450-6.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Greten FR, Grivennikov SI. Inflammation and cancer: triggers, mechanisms, and consequences. Immunity. 2019. https://doi.org/10.1016/j.immuni.2019.06.025.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Liu Y, Cao X. The origin and function of tumor-associated macrophages. Cell Mol Immunol. 2015. https://doi.org/10.1038/cmi.2014.83.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gill JG, Piskounova E, Morrison SJ. Cancer, oxidative stress, and metastasis. Cold Spring Harb Symp Quant Biol. 2016. https://doi.org/10.1101/sqb.2016.81.030791.

    Article  PubMed  Google Scholar 

  92. Warsch W, Grundschober E, Berger A, Gille L, Cerny-Reiterer S, Tigan AS, et al. STAT5 triggers BCR-ABL1 mutation by mediating ROS production in chronic myeloid leukaemia. Oncotarget. 2012. https://doi.org/10.18632/oncotarget.806.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shang S, Ji X, Zhang L, Chen J, Li C, Shi R, et al. Macrophage ABHD5 suppresses NFκB-dependent matrix metalloproteinase expression and cancer metastasis. Cancer Res. 2019. https://doi.org/10.1158/0008-5472.CAN-19-1059.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Tchoghandjian A, Jennewein C, Eckhardt I, Rajalingam K, Fulda S. Identification of non-canonical NF-kB signaling as a critical mediator of smac mimetic-stimulated migration and invasion of glioblastoma cells. Cell Death Dis. 2013. https://doi.org/10.1038/cddis.2013.70.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Chung SS, Aroh C, Vadgama JV. Constitutive activation of STAT3 signaling regulates hTERT and promotes stem cell-like traits in human breast cancer cells. PLoS One. 2013. https://doi.org/10.1371/journal.pone.0083971.

    Article  PubMed  PubMed Central  Google Scholar 

  96. •• Xu Y, Ren W, Li Q, Duan C, Lin X, Bi Z, et al. LncRNA Uc003xsl.1-mediated activation of the NFkB/IL8 axis promotes progression of triple-negative breast cancer. Cancer Res. 2022; https://doi.org/10.1158/0008-5472.CAN-21-1446In this study, a long noncoding RNA was targeted to suppress NK-kB/IL8 in triple negative breast cancer and showed that it can be a promising therapy for the treatment of this cancer type. This paper was integral to the current study.

  97. Richmond CA, Rickner H, Shah MS, Ediger T, Deary L, Zhou F, et al. JAK/STAT-1 signaling is required for reserve intestinal stem cell activation during intestinal regeneration following acute inflammation. Stem Cell Rep. 2018. https://doi.org/10.1016/j.stemcr.2017.11.015.

    Article  Google Scholar 

  98. Zinatizadeh MR, Schock B, Chalbatani GM, Zarandi PK, Jalali SA, Miri SR. The nuclear factor kappa B (NF-kB) signaling in cancer development and immune diseases. Genes Dis. 2021. https://doi.org/10.1016/j.gendis.2020.06.005.

    Article  PubMed  Google Scholar 

  99. Johnson DE, O’Keefe RA, Grandis JR. Targeting the IL-6/JAK/STAT3 signalling axis in cancer. Nat Rev Clin Oncol. 2018. https://doi.org/10.1038/nrclinonc.2018.8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Bollrath J, Phesse TJ, von Burstin VA, Putoczki T, Bennecke M, Bateman T, et al. gp130-Mediated Stat3 activation in enterocytes regulates cell survival and cell-cycle progression during colitis-associated tumorigenesis. Cancer Cell. 2009. https://doi.org/10.1016/j.ccr.2009.01.002.

    Article  PubMed  Google Scholar 

  101. Nie Y, Huang H, Guo M, Chen J, Wu W, Li W, et al. Breast phyllodes tumors recruit and repolarize tumor-associated macrophages via secreting CCL5 to promote malignant progression, which Can Be inhibited by CCR5 inhibition therapy. Clin Cancer Res. 2019. https://doi.org/10.1158/1078-0432.CCR-18-3421.

    Article  PubMed  Google Scholar 

  102. Zhu C, Mustafa D, Zheng PP, Van Der Weiden M, Sacchetti A, Brandt M, et al. Activation of CECR1 in M2-like TAMs promotes paracrine stimulation-mediated glial tumor progression. Neuro Oncol. 2017. https://doi.org/10.1093/neuonc/now251.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Castellone MD, Teramoto H, Williams BO, Druey KM, Gutkind JS. Medicine: prostaglandin E2 promotes colon cancer cell growth through a Gs-axin-β-catenin signaling axis. Science. 2005. https://doi.org/10.1126/science.1116221.

    Article  PubMed  Google Scholar 

  104. Dufour M, Faes S, Dormond-Meuwly A, Demartines N, Dormond O. PGE2-induced colon cancer growth is mediated by mTORC1. Biochem Biophys Res Commun. 2014. https://doi.org/10.1016/j.bbrc.2014.08.032.

    Article  PubMed  Google Scholar 

  105. •• Crittenden S, Goepp M, Pollock J, Robb CT, Smyth DJ, Zhou Y, et al. Prostaglandin E2 promotes intestinal inflammation via inhibiting microbiota-dependent regulatory T cells. Sci Adv. 2021; https://doi.org/10.1126/sciadv.abd7954In this study, it was shown that protaglandin E2, which is a mediator of inflammation, disrupt the communication between regulatory T cells and microbiota, inducing intestinal inflammation, which can trigger tumor formation. This paper was integral to the current study.

  106. Ding Y, Zhuang S, Li Y, Yu X, Lu M, Ding N. Hypoxia-induced HIF1α dependent COX2 promotes ovarian cancer progress. J Bioenerg Biomembr. 2021. https://doi.org/10.1007/s10863-021-09900-9.

    Article  PubMed  Google Scholar 

  107. Cremoux PDE, Hamy AS, Lehmann-Che J, Scott V, Sigal B, Mathieu MC, et al. COX2/PTGS2 expression is predictive of response to neoadjuvant celecoxib in HER2-negative breast cancer patients. Anticancer Res. 2018. https://doi.org/10.21873/anticanres.12375.

    Article  PubMed  Google Scholar 

  108. Lin J, Hsiao PW, Chiu TH, Chao JI. Combination of cyclooxygenase-2 inhibitors and oxaliplatin increases the growth inhibition and death in human colon cancer cells. Biochem Pharmacol. 2005. https://doi.org/10.1016/j.bcp.2005.05.028.

    Article  PubMed  Google Scholar 

  109. Sun Y, Dai H, Chen S, Zhang Y, Wu T, Cao X, et al. Disruption of chromosomal architecture of cox2 locus sensitizes lung cancer cells to radiotherapy. Mol Ther. 2018. https://doi.org/10.1016/j.ymthe.2018.08.002.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Yang H, Zhang Q, Xu M, Wang L, Chen X, Feng Y, et al. CCL2-CCR2 axis recruits tumor associated macrophages to induce immune evasion through PD-1 signaling in esophageal carcinogenesis. Mol Cancer. 2020. https://doi.org/10.1186/s12943-020-01165-x.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Barkal AA, Weiskopf K, Kao KS, Gordon SR, Rosental B, Yiu YY, et al. Engagement of MHC class i by the inhibitory receptor LILRB1 suppresses macrophages and is a target of cancer immunotherapy article. Nat Immunol. 2018. https://doi.org/10.1038/s41590-017-0004-z.

    Article  PubMed  Google Scholar 

  112. Jaynes JM, Sable R, Ronzetti M, Bautista W, Knotts Z, Abisoye-Ogunniyan A, et al. Mannose receptor (CD206) activation in tumor-associated macrophages enhances adaptive and innate antitumor immune responses. Sci Transl Med. 2020. https://doi.org/10.1126/scitranslmed.aax6337.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Zhou Y, Fei M, Zhang G, Liang WC, Lin WY, Wu Y, et al. Blockade of the phagocytic receptor MerTK on tumor-associated macrophages enhances P2X7R-dependent STING activation by tumor-derived cGAMP. Immunity. 2020. https://doi.org/10.1016/j.immuni.2020.01.014.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Xu C, Ji X, Zhou Y, Cheng Y, Guo D, Li Q, et al. Slimming and reinvigorating tumor-associated dendritic cells with hierarchical lipid rewiring nanoparticles. Adv Mater. 2023. https://doi.org/10.1002/adma.202211415.

    Article  PubMed  Google Scholar 

  115. Salemme V, Centonze G, Cavallo F, Defilippi P, Conti L. The crosstalk between tumor cells and the immune microenvironment in breast cancer: implications for immunotherapy. Front Oncol. 2021. https://doi.org/10.3389/fonc.2021.610303.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Huang L, Yang Q, Chen H, Wang Z, Liu Q, Ai S. Tollip promotes hepatocellular carcinoma progression via PI3K/AKT pathway. Open Med (Poland). 2022. https://doi.org/10.1515/med-2022-0453.

    Article  Google Scholar 

  117. Zhang Y, Lee C, Geng S, Li L. Enhanced tumor immune surveillance through neutrophil reprogramming due to Tollip deficiency. JCI Insight. 2019. https://doi.org/10.1172/jci.insight.122939.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Begka C, Pattaroni C, Mooser C, Nancey S, McCoy KD, Velin D, et al. Toll-interacting protein regulates immune cell infiltration and promotes colitis-associated cancer. iScience. 2020. https://doi.org/10.1016/j.isci.2020.100891.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Jiang Y, Kong D, Miao X, Yu X, Wu Z, Liu H, et al. Anti-cytokine therapy and small molecule agents for the treatment of inflammatory bowel disease. Eur Cytokine Netw. 2021. https://doi.org/10.1684/ecn.2021.0472.

    Article  PubMed  Google Scholar 

  120. Maini RN, Taylor PC. Anti-cytokine therapy for rheumatoid arthritis. Annu Rev Med. 2000. https://doi.org/10.1146/annurev.med.51.1.207.

    Article  PubMed  Google Scholar 

  121. Thompson C, Davies R, Choy E. Anti cytokine therapy in chronic inflammatory arthritis. Cytokine. 2016. https://doi.org/10.1016/j.cyto.2016.07.015.

    Article  PubMed  Google Scholar 

  122. Heere-Ress E, Boehm J, Thallinger C, Hoeller C, Wacheck V, Birner P, et al. Thalidomide enhances the anti-tumor activity of standard chemotherapy in a human melanoma xenotransplatation model. J Invest Dermatol. 2005. https://doi.org/10.1111/j.0022-202X.2005.23830.x.

    Article  PubMed  Google Scholar 

  123. Skórka K, Bhattacharya N, Własiuk P, Kowal M, Mertens D, Dmoszyńska A, et al. Thalidomide regulation of NF-κB proteins limits tregs activity in chronic lymphocytic leukemia. Adv Clin Exp Med. 2014. https://doi.org/10.17219/acem/37018.

    Article  PubMed  Google Scholar 

  124. de Souza CM, de Carvalho LF, da Silva Vieira T, Araújo AC, Lopes MT, et al. Thalidomide attenuates mammary cancer associated-inflammation, angiogenesis and tumor growth in mice. Biomed Pharmacother. 2012. https://doi.org/10.1016/j.biopha.2012.04.005.

    Article  PubMed  Google Scholar 

  125. Politi PM. [Thalidomide. Clinical trials in cancer] Talidomida. Ensayos clinicos en cancer. Medicina. 2000;60(Suppl 2):61–5.

    PubMed  Google Scholar 

  126. Chulpanova DS, Kitaeva KV, Green AR, Rizvanov AA, Solovyeva VV. Molecular aspects and future perspectives of cytokine-based anti-cancer immunotherapy. Front Cell Dev Biol. 2020. https://doi.org/10.3389/fcell.2020.00402.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zhang J, Veeramachaneni N. Targeting interleukin-1β and inflammation in lung cancer. Biomark Res. 2022. https://doi.org/10.1186/s40364-021-00341-5.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Mortara L, Balza E, Bruno A, Poggi A, Orecchia P, Carnemolla B. Anti-cancer therapies employing IL-2 cytokine tumor targeting: contribution of innate, adaptive and immunosuppressive cells in the anti-tumor efficacy. Front Immunol. 2018. https://doi.org/10.3389/fimmu.2018.02905.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Vidal-Vanaclocha F, Fantuzzi G, Mendoza L, Fuentes AM, Anasagasti MJ, Martin J, et al. IL-18 regulates IL-1β-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proc Natl Acad Sci USA. 2000. https://doi.org/10.1073/pnas.97.2.734.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Balkwill F. Cancer and the chemokine network. Nat Rev Cancer. 2004. https://doi.org/10.1038/nrc1388.

    Article  PubMed  Google Scholar 

  131. Aldinucci D, Borghese C, Casagrande N. The ccl5/ccr5 axis in cancer progression. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12071765.

    Article  PubMed  Google Scholar 

  132. Kraus S, Kolman T, Yeung A, Deming D. Chemokine receptor antagonists: role in oncology. Curr Oncol Rep. 2021. https://doi.org/10.1007/s11912-021-01117-8.

    Article  PubMed  Google Scholar 

  133. Kakinuma T, Hwang ST. Chemokines, chemokine receptors, and cancer metastasis. J Leukoc Biol. 2006. https://doi.org/10.1189/jlb.1105633.

    Article  PubMed  Google Scholar 

  134. •• den Hollander LS, Béquignon OJM, Wang X, van Wezel K, Broekhuis J, Gorostiola González M, et al. Impact of cancer-associated mutations in CC chemokine receptor 2 on receptor function and antagonism. Biochem Pharmacol. 2023; https://doi.org/10.1016/j.bcp.2022.115399In this study, the mutations in chemokine receptor CCR2 were analyzed, which is of quite important for the design and subsequent effectiveness of the chemokine antagonists. This paper was integral to the current study.

  135. Nkandeu DS, Basson C, Joubert AM, Serem JC, Bipath P, Nyakudya T, et al. The involvement of a chemokine receptor antagonist CTCE-9908 and kynurenine metabolites in cancer development. Cell Biochem Funct. 2022. https://doi.org/10.1002/cbf.3731.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

A.B.D conceptualized the topic, reviewed the literature and wrote the manuscript. The author approved the final manuscript.

Corresponding author

Correspondence to Ayse Banu Demir.

Ethics declarations

Conflict of Interest

The author does not declare any conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, A.B. Tumor Promoting Inflammation. Curr Mol Bio Rep 9, 21–32 (2023). https://doi.org/10.1007/s40610-023-00153-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40610-023-00153-6

Keywords

Navigation