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Abstract

Cellular senescence (CS) is increasingly implicated in the etiology of age-related diseases. While CS can facilitate physiological
processes such as tissue repair and wound healing, senescent cells also contribute to pathophysiological processes involving
macromolecular damage and metabolic dysregulation that characterize multiple morbid and prevalent diseases, including
Alzheimer’s disease, osteoarthritis, atherosclerotic vascular disease, diabetes mellitus, and idiopathic pulmonary fibrosis (IPF).
Preclinical studies targeting senescent cells and the senescence-associated secretory phenotype (SASP) with “senotherapeutics”
have demonstrated improvement in age-related morbidity associated with these disease states. Despite promising results from
these preclinical trials, few human clinical trials have been conducted. A first-in-human, open-label, pilot study of the senolytic
combination of dasatinib and quercetin (DQ) in patients with IPF showed improved physical function and mobility. In this
review, we will discuss our current understanding of cellular senescence, its role in age-associated diseases, with a specific focus

on IPF, and potential for senotherapeutics in the treatment of fibrotic lung diseases.
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Cellular Senescence

Age-associated diseases (AADs) such as Alzheimer’s disease,
osteoarthritis, diabetes mellitus, and atherosclerosis will con-
tinue to become increasingly prevalent in our aging popula-
tion. One of the increasingly recognized drivers for AADs is
cellular senescence (CS), defined as stress-induced, non-
reversible cell cycle arrest, which depletes regenerative capa-
bility and is associated with release of pro-inflammatory me-
diators. Indeed, markers of CS are associated with mortality
and increase with normal aging or prematurely in pathologic
states [1]. The complex molecular biology of senescence has
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been thoroughly reviewed elsewhere [2]. Briefly, senescent
cells (SC) are characterized by growth arrest, expression of
anti-proliferative molecules (e.g., pl6INK4a), and activation
of damage sensing signaling pathways (e.g., p38MAPK and
NF-kB). The growth arrest of formerly replicative cells often
results from a persistent DNA damage response (DDR) or
stress signaling and is effected by sustained activation of the
pl6INK4a-RB and/or p53 pathways [3]. While senescent
cells have exited the cell cycle, they remain metabolically
active and produce a heterogeneous array of signaling mole-
cules including proinflammatory cytokines, chemokines,
growth factors, and proteases, termed the senescence-
associated secretory phenotype (SASP) [4-6].

Conceptually, CS is a mechanism to counteract malignant
transformation; over time, cells inevitably accumulate irrepa-
rable damage and, in response, may either undergo apoptosis
or senescence to prevent the growth of damaged cells. These
damaged but viable SC are required in processes including
wound healing, embryogenesis, and tumor suppression by
inducing immune clearance of potentially oncogenic cells [3,
7]. However, the generation and maintenance of senescent
cells by activation of pro-survival pathways may outpace
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immune clearance, which creates self-expanding reservoirs of
senescent cells and can ultimately lead to clinical disease.

The most commonly cited inducers of senescence are well
established in cellular aging (e.g., DNA damage, proteotoxic
stress, oxidative stress, mitochondrial dysfunction) [1, 8—10].
For example, telomeres are repetitive sequences of DNA that
insulate the ends of chromosomes from damage. With repeat-
ed mitosis, telomeres are incompletely replicated, and thus
shorten until reaching the theoretical Hayflick limit, where
the loss of telomeric protective function results in p53- or
p16-RB-mediated replicative senescence [11]. Shortened telo-
meres predispose cells to DNA damage. [12] Similarly,
genotoxic agents (i.e., bleomycin) and ionizing radiation re-
sult in DNA damage. Regardless of the mechanism of activa-
tion, the DNA damage response (DDR) pathway is a major
driver of cellular senescence [13]. Indeed, senescent cells have
persistent evidence of DNA damage—segments with chroma-
tin alterations reinforcing senescence (DNA-SCARs), which
regulate cell cycle arrest and SASP [14].

Just as CS participates in multiple biological processes,
intracellular signaling with reactive oxygen species (ROS) is
a fundamental cellular function [15]. However, when ROS
generation becomes excessive, oxidative stress (OS) results
in a wide array of cellular damage. [16] Chronic OS plays a
central role in the pathogenesis of CS through p53/p21<™"
WAEL activation [17]. Mitochondrial dysfunction is an impor-
tant generator of ROS and has been implicated in CS genera-
tion [18]. Moreover, a positive feedback loop involving mito-
chondrial dysfunction and OS can accelerate intracellular met-
abolic derangements, such as ATP depletion and calcium dys-
regulation [19].

The primary upstream cell cycle regulators that cause are
p21WAFVEPL 4nd p16™K4A which act through activation of
the retinoblastoma (Rb) protein family to inhibit
transactivation of E2F, resulting in cell cycle arrest. CS is also
characterized by activation of canonical pro-survival path-
ways—EFNB1/3, PI3K6, BCL-x, and HSP-90 [20]. SASP
protein production is largely regulated by mTOR activation
[21]. In models of IPF, the SASP is pro-inflammatory and pro-
fibrotic and includes cytokines such as TGF-f3, IL-6, and
MMP-12.[22, 23] While none of these is specific for CS, they
all have a central role in pathogenesis.

SASPs vary widely among cell types but prominently
feature pro-inflammatory cytokines that initiate immune
clearance. However, over time, the imbalance of pro-
survival pathways outpaces immune clearance, resulting
in self-expanding reservoirs of senescent cells, which
can ultimately lead to clinical disease Thus, chronic in-
flammation and CS are closely related processes [5]. IL-6
and IL-8 are robustly associated with SASPs and
established inducers of the innate immune system, which
plays a critical role in both malignant and senescent cell
clearances [24] (Figure 1).
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Senescence in Disease

As per the foregoing, CS plays physiological roles and is
needed for tissue homeostasis; however, CS also represents
a stress response triggered by insults associated with aging
including genomic instability, telomere attrition, and other
mechanisms [6]. The seminal study by Baker et al. first dem-
onstrated a pathogenic role of CS by utilizing a transgenic
mouse model to eliminate senescent cells by ablating
pl6™¥44 [25]. An expanding body of preclinical and
ex vivo studies has demonstrated a clear pathogenic role of
CS in perpetuating organ dysfunction.

As previously mentioned, CS contributes to AADs and
phenotypes including development of gray hair, loss of mus-
cle mass, increases in adiposity, reduced neurogenesis, and
increased tissue fibrosis [3]. The evidence linking senescence
to these diverse pathologies includes accumulation of senes-
cence markers in tissues with advancing age supporting an
increased SC burden with advancing age. Indeed, the aging
cellular phenotype prominently features altered extra-cellular
matrix deposition, faltering stem cells, and senescent endothe-
lial cells [26-28]. The far-reaching effects of a relatively small
senescent reservoir are analogous to paraneoplastic syn-
dromes. Moreover, if the development of SC occurs in partic-
ularly important fraction of cells in a given tissue, then the loss
of function of those tissue cells could have an outsized effect
on tissue integrity and function.

In contrast to disease in youth, AADs occur due to dys-
function of tissues changed by aging processes, which is ex-
pedited by CS. Increased senescence burden diminishes tissue
resilience through cell cycle arrest as well as through SASP-
induced stem cell and parenchymal cell dysfunction. As SC
burden progressively increases, an additional wave of SC is
generated, increasing SC burden further and further amplify
AAD development and progression. This type of positive
feedback process explains why disease vulnerability and inci-
dence increase with age. For example, increased SC burden in
adipose tissue drives diabetes mellitus, and aging endothelial
cells drive atherosclerosis [3].

Although the most common histologic markers of SC bur-
den are SA-[3-galactosidase (SA-3-gal) and lipofuscin accu-
mulation, assessing the SC burden in vivo is challenging be-
cause there are currently no robust clinical markers for CS [3].
A clinically useful marker of SC is clearly needed to guide
future trials of senotherapeutics. Epigenetic investigations are
promising [29]. Further characterization of gene expression
via integration of genomic data and epigenetic markers of lung
biopsies may provide a translatable assessment of CS burden
[2]. In preclinical bleomycin models, growth and differentia-
tion factor 15 (GDF15; TGF-3 family member) is the most
upregulated secreted protein [12]. Moreover, GDF15 levels
are elevated in ILD patients prior to radiographic changes
and are inversely associated with DLCO, FVC, and survival
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Figure 1 Cellular senescence and idiopathic pulmonary fibrosis: pathways and therapeutic approaches

[30, 31]. Together, the foregoing suggests GDF15 or other
aging biomarkers may allow for risk stratification of progres-
sive ILDs [32, 33].

Senomorphics and Senolytics

After extensive laboratory investigations, significant progress
in preclinical studies is strongly supportive of potential clini-
cal benefits for therapeutic treatment of SC (senotherapeutics).
The diversity of SASPs has necessitated the use of bioinfor-
matic experiments to characterize the underlying molecular
networks and discern possible drug targets. There are
established pro-survival regulators that are central in the cel-
lular networks of senescent preadipocytes (the most abundant
SC type), including ephrins, PI3K, BCL-2, and HSP-90 [20].
These have formed the basis for numerous senotherapeutics
(Table 1).

Two approaches to senotherapy have been proposed:
senescent-selective apoptosis (senolytic) and SASP suppres-
sion (senomorphic). Senolytic drugs inhibit anti-apoptotic
pathways and thus restore selective clearance of SC [20, 63].
Senolytics alleviate multiple chronic disease and physical dys-
function in mouse models of a wide arrange of diseases but are
difficult to develop due to off-target effects on physiologic
survival pathways [3]. Thus, numerous in vitro studies have
been required to screen for possible off-target effects. From a
clinical perspective, a benefit for senolytics is the efficacy of
intermittent treatment, which reduces senescent reservoirs and
mitigates adverse effects that occur with continued treatment.

Senomorphic medications, such as the mTOR antagonist
rapamycin, abrogate the SASP and reduce the proliferation
of senescent reservoirs. Such agents are likely to be used as
continuous therapy to allow for physiologic CS but attenuate
pathogenic CS. Senomorphic agents are undergoing clinical
trials as age-modulating agents and for some AADs including
Alzheimer’s disease [64]. Combination therapy consisting of
senolytic induction treatment with subsequent senomorphic
maintenance treatment has been proposed by our group.

The first two and best-characterized senolytics are
dasatinib and quercetin (DQ). They have proven in vitro syn-
ergism and preclinical health span improvement [34, 35, 65].
Quercetin is a plant-based polyphenol flavonoid that has anti-
oxidant properties and has been shown to induce autophagy
through proteasome activation in vitro. In fibroblasts from
mouse models, quercetin restored Fas-L- and TNF-mediated
apoptosis [66]. Dasatinib is an orally available tyrosine kinase
inhibitor (TKI), originally developed to target SRC and ABL
kinases [67], and is a second-line treatment for chronic mye-
loid leukemia (CML) [68].

Idiopathic Pulmonary Fibrosis:
Pathophysiology

Idiopathic pulmonary fibrosis (IPF) is a classic AAD and
devastating interstitial lung disease (ILD) characterized by
restricted ventilation and compromised gas exchange
leading to progressive dyspnea, impaired quality of life,
and ultimately death [69—71]. The pathophysiology of IPF
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is largely extrapolated from preclinical models of pulmo-
nary fibrosis and ex vivo cell culture of lung epithelial
cells. There are several hypothesized mechanisms for
IPF, including chronic micro-aspiration, viral infection,
and environmental exposures [72]. The most common
mouse model for IPF employs intra-tracheal bleomycin
to induce fibrosis and has elucidated numerous molecular
mechanisms [73, 74]. There is mounting evidence that
cellular senescence significantly contributes to chronic
matrix remodeling and fibrosis and may be central to
IPF pathophysiology [13, 22, 75, 76].

Inflammation has long been postulated to be the incit-
ing factor in IPF patients [77]. Multiple studies have im-
plicated inflammatory derangements. There is evidence of
early alveolar macrophage activation and increased pro-
duction of IL-1, IL-6, IL-8, MCP-1, and TNF-« [78, 79].
This inflammatory milieu transitions to a chronic fibrotic
phase that is mediated by a SASP primarily of TGF-f3,
PDGF, and GM-CSF [22]. Despite these preliminary find-
ings, anti-inflammatory drugs such as corticosteroids have
not been effective in modifying disease progression but,
in fact, harmful [80]. This is likely because chronic in-
flammation has multiple positive feedback loops that re-
inforce immune activation and induce senescence, which
are accelerated based on patient risk factors.

There has been extensive investigation into the genet-
ic risk factors. Familial interstitial pneumonia (FIP) is an
inherited form of idiopathic interstitial pneumonia (IIP),
and studies of patients with FIP have provided some
insight regarding the role of genetic risk factors of pul-
monary fibrosis. Surfactant-related proteins were identi-
fied by genome-wide association studies (GWAS) and
account for ~30% of spontaneous IPF cases [§1-83].
Other GWAS of IPF identified mutations of
telomerase-associated genes in up to 25% of non-
familial IPF cases [13]. Short telomeres are histological-
ly associated with CS markers in IPF patients [29]. An
important observation in IPF is shortening of telomeres
in about 10% of IPF patients, which has implications for
clinical outcomes [84—86]. However, defects in telome-
rase pathways are not specific for IPF and have also been
associated with other ILDs and emphysema [87]. An
association of Toll interacting protein (TOLLIP) variants
with IPF susceptibility has also been described and as-
sociated with mortality [88]. TOLLIP negatively regu-
lates Toll-like receptor 3 (TLR3) activity, which is a
key step in immune activation. Taken together, these
findings support a role for inflammatory activation dur-
ing the pathogenesis of IPF but have not translated to
effective risk stratification of IPF patients without a fam-
ily history [89]. Genetic risk stratification has not been
widely adopted, but the implicated genes are compatible
with cellular senescence.

IPF Clinical Presentation, Diagnosis,
and Senescent Cell Burden

IPF presents with nonspecific symptoms of dyspnea and non-
productive cough. A thorough history and high-resolution
computed tomography (HRCT) of the chest are critical for
confirming the diagnosis of IPF. The radiologic hallmark of
IPF is a usual interstitial pneumonia (UIP) pattern, which in-
cludes subpleural and basilar predominant reticular opacities,
honeycombing, and traction bronchiectasis [90].
Histopathologic UIP pattern obtained by surgical lung biop-
sies includes patchy, paraseptal destructive fibrosis and fibro-
blastic foci without granulomas or inflammatory infiltrates
[90]. Bronchoalveolar lavage (BAL) cellular analysis is usu-
ally not helpful in confirming IPF diagnosis but may be sup-
portive of an alternative diagnosis (e.g., significant BAL lym-
phocytosis may suggest hypersensitivity pneumonitis) [91,
92]. Transbronchial lung biopsies (TBLB) are usually non-
diagnostic due to inadequate tissue sample size. However,
next-generation RNA sequencing of TBLB specimens has
potential to be a less invasive approach to confirm the pres-
ence of UIP histopathology. In two recent trials, genomic
classification (GC) of lung biopsies improved the ability to
differentiate IPF from other ILDs [93, 94]. Thus, GC may be
useful to identify patients with significant senescence burden
and benefit from senotherapeutics [95]. Transbronchial
cryobiopsy (TBCB) is a promising diagnostic procedure that
is less invasive than a surgical lung biopsy, but is only avail-
able at a few expert ILD centers and is not yet established as
standard of care. Twenty genetic variants have been associat-
ed with IPF by genome-wide association studies [30]. While
genotyping is not a routine diagnostic approach, the implicat-
ed genes may provide avenues for further investigation (e.g.,
DEPTOR, which inhibits mTOR signaling) and develop into a
risk assessment tool for possible IPF patients.

The key parameters for assessing IPF severity and progno-
sis are age, gender, forced vital capacity (FVC), and diffusing
capacity of lung for carbon monoxide (DLCO), which have
been incorporated into a scoring system to predict short-term
mortality [96]. A six-minute walk test (6MWT) is an objective
measurement of exercise tolerance and symptom severity.
Regular monitoring of pulmonary function is important to
identify disease progression and acute exacerbations (AE-
IPF), which are associated with acute to subacute clinical de-
terioration and new bilateral GGO superimposed on UIP
background on HRCT. AE-IPF becomes more common with
advanced disease and associated with poor prognosis. Unless
a reversible trigger is present, there does not exist a proven
safe and effective treatment. The unrelentingly predictable
course of IPF reinforces the importance of early palliative care
discussions.

Evaluating SC burden may mitigate the difficulties with
diagnosis and uncertainties in prognosis. In a small study of
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IPF patient lung biopsies, SA-3-gal, a specific SC marker,
was increased compared to patients with COPD or hypersen-
sitivity pneumonitis [29, 97]. We hypothesized that in patients
with different fibrotic lung diseases, a lung biopsy and stain-
ing for SA-3-gal may help identify subtypes that may be more
responsive to senolytic treatments. Specificity may be in-
creased with other preclinical markers such as p16 and p21,
but these have not yet been investigated in IPF patients.
Uncertainties that require further research include the most
appropriate SC biomarker, precise measurement of SC bur-
den, ideal SC assay compartment (e.g., BAL, lung biopsy,
blood, urine, skin, etc.), and ultimately impact of clinically
important patient outcomes.

Current Therapy of IPF

The majority of IPF therapy is supportive and includes sup-
plemental oxygen if needed, pulmonary rehabilitation, and
smoking cessation. Early referral for transplant evaluation is
critical, as bilateral lung transplant is the only known curative
treatment for IPF.

Numerous clinical trials have shown no benefit or harm in
IPF. Currently, pirfenidone and nintedanib are the only FDA-
approved medications for treatment of IPF. Both treatments
slow the progression of fibrosis in some patients with IPF but
do not halt or reverse progressive fibrosis. Early identification
of IPF is important for initiation of anti-fibrotic treatment as
patients with advanced IPF (FVC <50% or DLCO<35%) may
demonstrate less benefit than those with mild or moderate
disease [98].

Pirfenidone negatively regulates lung fibroblasts through
inhibition of transforming growth factor beta (TGF-[3) and
reduces extracellular matrix production. A meta-analysis of
multiple randomized controlled trials evaluating pirfenidone
demonstrated a benefit in progression-free survival, 6(MWT,
and subjective symptoms [99]. Nintedanib inhibits activation
of fibrogenic growth factors through blocking receptor-
associated tyrosine kinases (PDGF, FGF, and VEGF) [100].
In the INPULSIS-1 and INPULSIS-2 trials, nintedanib re-
duced the decline in FVC and increased time to first exacer-
bation [101]. In a meta-analysis, nintedanib also reduced the
risk of AE-IPF [102]. Nintedanib has also shown benefits with
advanced disease after the initial trials only included mild-to-
moderate disease [98, 103, 104]. Dose-dependent diarrhea is a
common adverse effect and can result in discontinuation of
treatment.

Senotherapeutics for IPF

Senomorphics have not been studied in human clinical trials
yet. However, senolytics have been successfully used in a

@ Springer

single open-label pilot study followed by a yet unpublished
small randomized controlled trial as detailed below. DQ
showed significant improvement in senescent burden, physi-
cal function, and pulmonary function in bleomycin-induced
fibrosis mouse models [22], as well as ex vivo senolysis of
alveolar epithelial cells and lung fibroblasts [105].

Based on these preclinical data on the emerging pathogenic
role of CS in IPF, we undertook a first-in-human, two-stage,
prospective, clinical trial of intermittent administration of DQ
(D, 100 mg/day; Q, 1250 mg/day, 3 days/week over 3 weeks)
in older adults with stable IPF [106]. First, an open-label study
(OL) was performed at two clinical sites followed by a single-
site double-blind randomized placebo-controlled trial (RCT;
ongoing). The primary endpoints demonstrated excellent ther-
apeutic feasibility (e.g., participant retention, planned assess-
ment completion rate, DQ adherence). Secondary endpoints
were safety, functional health status, and changes in SASP.
Although DQ was associated with greater mild-to-moderate
adverse events, it was generally well tolerated. Interestingly,
IPF patients treated with intermittent DQ showed significantly
improved physical function and mobility by 6MWT, 4-minute
gait speed, timed chair stands, and short physical performance
battery (SPPB). Functional and reported health measures were
unchanged. Although DQ effects on circulating SASP factors
were inconclusive, improved physical function correlated
with reduced SASP-related factors (23/48 markers, r > 0.50).
Analysis of our small completed RCT of DQ in IPF is
pending.

Although not done in IPF, Martyanov et al. tested dasatinib
alone (100mg daily for 6 months) in 31 patients with
scleroderma-associated ILD [107]. In scleroderma patients,
dasatinib treatment (without quercetin) manifested no signifi-
cant clinical efficacy. While scleroderma ILD has similarities
with IPF, it also has many divergent features reflecting differ-
ences in mechanistic pathways, immune dysregulation, and
fibroblast responses. As such, further prospective clinical tri-
als of the safety and efficacy of senotherapeutics (such as
senolytics DQ) are greatly needed in fibrotic lung diseases,
such as scleroderma-associated ILD and IPF.

Future Directions

Senotherapeutics, particularly DQ, are potentially important
therapeutic interventions for IPF and perhaps other fibrotic
ILDs that feature an initial inflammatory, followed by
fibroproliferative, phase such as viral pneumonia and acute
respiratory distress syndrome (ARDS). Could
senotherapeutics be used for pulmonary fibrosis in patients
with post-acute sequelaec of COVID-19 (PASC)? Elderly pa-
tients who require ICU care and mechanical ventilation appear
to be at the highest risk of developing PASC ILD, including
pulmonary fibrosis [108]. Considering the vast prevalence of
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COVID-19 worldwide, even a small proportion of PASC lung
fibrosis would have a tremendous deleterious impact on our
health-care system. While the prevalence of PASC pulmonary
fibrosis will become apparent with time, early data from such
patients suggest that 25-65% of recovered patients develop
fibrotic lung abnormalities at 3 months on HRCT [108, 109].
Currently, no proven options are available for their treatment
though anti-fibrotic agents are in clinical trials, albeit none
with DQ.

As another example, there are other pulmonary diseases
that feature interstitial fibrosis following an initial inflamma-
tory phase. Fibrotic/chronic hypersensitivity pneumonitis
(HP) is initiated by an antigen that results in a robust Tyl
predominant response, which may be visualized by GGOs
on HRCT or non-necrotizing granulomas on lung biopsy.
There are many clinical and pathogenetic parallels between
fibroproliferative HP and IPF, including an association with
advanced age, shortened telomeres, and lack of significant
improvement with anti-inflammatory treatments [110-113].
Interestingly, telomere shortening has been identified and is
prognostically significant in many ILDs. However, given the
disparate results with scleroderma-associated ILD, use of
senolytics in fibrotic HP should undergo a proof of concept
trial first [114, 115]. Indeed, there are many unanswered ques-
tions in the general fields of senescence and senotherapeutics
in fibrotic pulmonary diseases.

Abbreviations AE-IPF, Acute exacerbation of IPF; COPD, Chronic ob-
structive pulmonary disease; DLCO, Ditffusing capacity of lung for car-
bon monoxide; FVC, Forced vital capacity; HRCT, High-resolution com-
puted tomography; /LD, Interstitial lung disease; /PF, Idiopathic pulmo-
nary fibrosis; UIP, Usual interstitial pneumonia; NSIP, Nonspecific inter-
stitial pneumonia; 7BCB, Transbronchial cryobiopsy; TBLB,
Transbronchial lung biopsy; SPPB, Short physical performance battery;
6MWT, Six-minute walk test
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