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Abstract
Purpose of review Ten years ago the first plant-based vaccine
was licensed (DowAgrosciences). It was only 20 years after
the first report of a recombinant protein obtained through plant
transformation technology. Back then, this vaccine was per-
ceived as the first of an unlimited list of innovative products of
a flourishing platform. Unexpectedly, since then, no other vet-
erinary product based on plant molecular pharming (PMP) has
reached the market. This review will reflect a trans-
disciplinary view of the status and challenges that the

molecular farming platform faces to become a strategic solu-
tion for the agroindustrial sector of developing countries.
Recent findings Plant-based veterinary vaccines (PBVV)
have the potential to give answers to several challenges that
animal health presents today. The urgent need to improve
livestock productivity, especially in low and middle-income
countries (LMIC), and the current concern about the emer-
gence of antimicrobial resistance associated with animal pro-
duction, demands new products such as inexpensive vaccines
and therapeutics. Based on the translational research scheme,
certain barriers that could have limited the development into
products of many results obtained in the last 15 years were
identified.
Summary Unquestionably, the development of innovation in
LMIC is a key element in the feasibility of the platform. The
emergence of PPP between multiple stakeholders as a strategy
to overcome the existing disconnection between academia and
industry, could enable the conversion of leading vaccine can-
didates from the stage of proof of concept into prototypes for
industry, and thereby foster ‘productization’ in the field of
veterinary vaccines.
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Introduction

The livestock sector worldwide is facing great challenges.
There are more than 1 billion head of cattle in the world.
The main livestock producers worldwide are India, Brazil,
and China, with populations ranging from 100 to approxi-
mately 300 million heads; followed by the United States,
European Union and Argentina [1]. Drivers such as popula-
tion growth, urbanization, and most importantly, increasing
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income have resulted in a rapid rise in demand for livestock
products in LMIC. On the contrary in developed countries, the
demand is stagnating, heavily moderated by socio-cultural
factors related to human health concerns and environmental
sustainability [2, 3].

In LMIC, livestock contributes more than 33 % to agricul-
tural GDP (gross domestic product), and is one of the fastest
growing agricultural sub-sectors [4]. Its importance as a major
contributor to food and nutritional security, and as a livelihood
source for nearly 1 billion inhabitants, prevents one to under-
estimate its role in attaining theMillenniumDeveloping Goals
(MDG) [5].

In order to cope with the rapidly increasingly demand the
livestock sector needs to adapt fast. The lack of available new
land prohibits a ‘horizontal’ expansion of existing modes of
production, and forces the sector into rapid technological
changes to increase resource efficiency and higher output
per animal [3]. Innovation in animal health, through biotech-
nological applications, has been widely report to have a great-
er potential to achieve such increase in productive efficiency
than other technologies [6]. Within those, vaccines have prov-
en to be one on the most cost-effective strategies to be pursued
[7].

After the molecular biology breakthrough in the late 1970s,
the concept of subunit vaccine arose as a safe and highly
characterized option that would target immune response to-
ward specific epitopes. Since then huge advances have been
made which were translated into products for human and vet-
erinary health [7, 8]. In 1986, the first recombinant protein
obtained through plant transformation technology was report-
ed [9]. After that the use of transgenic plants for the produc-
tion of antigens was repeatedly described as a biotechnologi-
cal strategy with several advantages in comparison to other
conventional production systems [10, 11]. Particularly, for
those niches with scares resources, like veterinary industry
or neglected diseases in developing countries [12•, 13, 14].

Ten years ago the first plant-based veterinary vaccine
(PBVV) was licensed (Dow Agrosciences). Back then, this
vaccine was perceived as the first of an unlimited list of inno-
vative products of a flourishing platform. Unexpectedly, since
then no other veterinary product based on molecular farming
has reached the market. Without entailing that a significant
decrease in basic research carried out in the discipline.

Recently, several reviews were published covering the
analysis of a wide spectrum of different factors that could be
involved in this delay in translation into products based in
PMP [15–17]. Based on these reports, the analysis of the
PMP timeline shows that the focus of concern shifted through
the years, proving the evolution of the platform. Initially the
focus was mainly on technical production issues, for later
implementation and adoption challenges gained prominence.
While, many of the technical difficulties marked once as lim-
itations, such as: length of time of upstream development, low

recombinant protein yields or weak immunogenicity related to
subunit vaccines, have been solved with different strategies [8,
12•], new challenges have arisen. Those associated mainly
with downstream economic feasibility, regulatory issues, and
social perceptions [18•, 19, 20•, 21].

From the beginning, the interest in PMP has been related
with the potential low cost, safety, and easy scalability focus-
ing on therapeutic and preventive antibody-based products
and vaccines [22••, 23, 24]. Potential of PMP has been dem-
onstrated with the approval of the first made biologic:
glucocerebrosidase in 2012 produced in carrot cell culture
[25], the recently commercial launch of tobacco made human
collagen for wound treatments in Italy (www.collplant.com),
and several human vaccines, antibodies, and other biologics in
clinical trials [17]. Although veterinary vaccines were a
relevant target of PMP several constrains made them less
appealing for big-pharma sector and governmental authorities,
therefore limited resources were invested. Nevertheless, PMP
are now mature to brace the challenge of bringing PBVV to
the market. Furthermore, adoption of an innovative platform,
as plant-based vaccines, in LMIC present some particular fea-
tures that may require a deeper analysis to identify, efficiently,
the key points that would need to be overcome to make the
translation of this platform feasible.

The aim of the review is to present a trans-disciplinary view
of the status and challenges that the molecular farming plat-
form faces to become a strategic solution for the agroindustrial
sector of developing countries.

From Bench to Farm

Translational research (TR) has appeared recently as a highly
interdisciplinary field, the primary goal of which is to coalesce
assets of various natures within the individual pillars in order
to Btranslate^ findings in fundamental research into practice
and meaningful health outcomes [26]. Veterinary translational
research as any other subfield of TR, requires an approach that
considers the particular set of rules that govern livestock
health sector decision makers [27, 28]. Briefly, TR is broken
down into a different number of stages schemes. On the basis
of 2-stage-scheme, T1: represents the translation of basic re-
search results into efficacy products, while, T2: represents the
implementation of those potential into the target population.
And then, a third stage (T3) that can be distinguished as the
feed-back from the outcomes already implemented into the
population, as the new Bscenario^, plausible of improvement
through new research (Fig. 1).

T1: Technical Feasibility

Since the first developments in plant-based protein produc-
tion, safety, efficient post-transcriptional modification, scale
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up simplicity, and low cost associated, have been described as
the main advantages of this system in comparison to other
expression platforms. On one hand the variety of plant species
and transformation protocols evaluated in the last decades
allowed the generation of a deep understanding of the com-
plexity of plant expression mechanisms. On the other hand,
the widespread efforts could have led to the accomplishment
of a robust and mature platform that could have engaged the
biotech industry sooner. This situation has been partially tack-
led by the effort to consolidate the available knowledge in a
few technologies, leading to consolidated pipelines for indus-
trial production, each of those with specific advantages and
disadvantages [16, 17]. Recent advances achieved on expres-
sion strategies, product yields, and process development have
already been reviewed [29], and an updated comparison of
available expression technologies bolster the platform
strength [19]. Here we highlight the key strategies that seem
to have greater forecast for veterinary biological products in
LMIC.

The development of hybrid vectors that combine the ad-
vantages of gene transfer from Agrobacterium and the ability
of virus replicative RNA amplification allowed increased
yields (g/kg of biomass). There is currently a wide range of
vectors available, systems employing both, temporary or sta-
ble expression [30]. Currently, plastid transformation and
agroinfiltration technologies are seen as two more versatile
and time-saving options [31]. Although, many proteins
expressed in chloroplast associate with high yields (up to
70 % of total soluble protein), it lacks the capacity to glyco-
sylate proteins which makes it only suitable for a subset of
protein targets [32, 33].

Upstream costs of this platform are significantly advanta-
geous compared to others [12•]. Even though, many reports
agree that these are not enough to deliver economic feasibility
to the entire process, as in downstream phase resides up to
80 % of the total cost [18•]. To overcome this, alternative low

cost methodologies have been developed to complete the plat-
form, such as oleosins [34], hydrophobins [35], ZERA (gam-
ma zein derived sequence) [36], and elastin like polymers
(ELP) [37] technologies. Using these fusion-tags chromato-
graphic column steps are replaced by simple and amenable to
industrial-scale methods such as aqueous two-phase separa-
tion or cycles of phase transition and centrifugation [18•, 38].
Moreover, fusion to ELP enhances the expression of the re-
combinant proteins and improves antigen efficacy [37,
39–41], fusions to ZERA also provide a method to increase
antigen half-life in blood increasing its efficacy at low doses
(www.zipsolutions.es) [42, 43]. Oleosin oil bodies also work
as vaccine delivery systems [44]. Plant produced vaccines
could also be administered orally since encapsulation within
plant cell provides some protection reducing degradation in
the gastrointestinal tract [45, 46]. Plants have mucoadhesive
compounds that enhance intestinal uptake and secondary
metabolites could act as adjuvants [47]. Several vaccines
intended for oral administration are currently in different
phases of clinical evaluation such as against enterotoxigenic
E. coli, Vibrio cholerae, Norovirus, hepatitis B virus, rabies
virus produced in different plant species such as potatoes,
corn, lettuce, spinach or rice [17].

Another limitation described for subunit vaccines is that
recombinant antigens are often poorly immunogenic [7]. To
increase antigen immune stimulatory activity several success-
ful and promising approaches have been used such as in plant
production of virus-like particles (VLPs) [48], targeting of
antigen to antigen presenting cells (APC) [49], fusion to mu-
cosal adjuvants such as cholera toxin B subunits or E. coli heat
labile enterotoxin B [50, 51] or Lumazine synthase from
Brucella spp. (BLS) [52, 53], and recently to the Toll-like
receptor (TLR) 5 agonist bacterial flagellin [54] a potent sys-
temic and mucosal adjuvant. Medicago Inc’s VLP technology
applied to the pandemic flu vaccine has completed human
clinical phase II and has obtained an emergency use

Fig. 1 Translational research
scheme for PBVV. T1-T2-T3:
critical translational stages from
basic discoveries to population
health impact. PMP Plant
molecular pharming, PBVV Plant
based veterinary vaccines, PPP
Public-private partnership, GLP/
GMP Good laboratory/
manufacturing practices, QbD
Quality by design
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authorization, while the quadrivalent seasonal influenza vac-
cines is currently in phase II [55]. One advantage of develop-
ing vaccines for veterinary health compared to human is that
the use of adjuvants is currently less restricted [56] given the
opportunity to develop novel vaccine formulations.

Another particular feature that was described as an advan-
tage of veterinary vaccines is that regulatory requirements are
less exigent than for human use [57]. This is the reason why
many research groups have already targeted the use of molec-
ular farming in this area.

T2: Technology Transference—Vaccine Implementation

By 2000 there was a lack of regulatory framework for plant-
based pharmaceuticals. Then, the first plant-based products to
reach the market were those that did not require clinical trials,
as enzymes or reagents [58]. The key importance of these
products was to demonstrate that molecular farming can be
economically viable [51]. Since then, intensive work has been
done to create solid regulatory recommendation with concern
to products manufacturing, safety determination, containment,
and reduction of environmental risk [59]. A recent report
based on a workshop sponsored by the Organization for
Economic Co-operation and Development (OECD) [20•],
provided of a guideline for developing business plans for
PBVV, making an excellent work reviewing in a comparative
and attainable way the regulatory framework for PBVV in
different countries. Although the level of strictness of those
regulations on transgenic plants may vary, in general, all of
them have the general goal to address safety concerns for the
public health (direct and indirect risk) and for the environment
[60]. In this scenario, PBVV seem to have greater potential of
production in containment, not only because of the shorter
regulatory path required, but also, as it has been proven that
the greater productivity achieved in control environmental
conditions, like greenhouses, outstrips the advantages of field
production [61]. Nowadays, the costs of building a GMP com-
pliant facility for growing plants are much lower than for a cell
fermentation facility of equivalent production capacity [22••].
Already, nine GMP-compliant plant factories for
biopharmaceuticals exist in the world [17], nevertheless none
of them are in LMIC countries.

Even though, as technological advances will continuously
keep appearing, new challenges in concern to regulatory
framework will breeze in.

Market Dynamic

Global market of veterinary vaccines (GVVM) is in its growth
phase. Estimations predict it would grow at a rate between 5.5
and 8.1 % CAGR (CAGR=compound annual growth rate)
and reach US$14,000Mn by 2026. The livestock animals

segment is expected to witness relatively impressive growth
during the forecast period mainly in LMIC [62].

Even though, local pharmaceutical companies seem reluc-
tant to invest in innovative technology without evidence of
utility. This fact could be, at least partially, due to another
hurdle to overcome by PBVV which is the asymmetry in
regulatory issues for approval of veterinary biological be-
tween countries. Experiences from LMIC clearly show that
it is not sufficient to rely on voluntary adherence to the min-
imum requirements of the World Organization for Animal
Health (OIE) or pharmacopoeia [63]. Independent and
secondary-level quality control testing employing test proce-
dures which have been standardized in the region by an inde-
pendent (preferably regional) institution are prerequisites for
minimizing the risk of poor-quality or potentially unsafe vac-
cines being widely used [64]. This could mean that in certain
contexts the lack of update effectiveness requirements would
threaten the ability of enhanced vaccines to prove superiority
compared to traditional products, hampering its competitive-
ness on the market [65•].

The introduction of any technological innovation into a
conservative industry is not a simple task. The traditional
veterinary vaccine industry is not an exception for that,
particularly, as it works generally with a narrower margin
than the human pharmaceutical industry [66]. The veteri-
nary vaccine market (VVM) is based on a very intuitive
principle: while livestock diseases can have both direct
and indirect costs [67], any intervention design to control
those diseases, must be cost effective [68]. This means
that to prove the feasibility of a new vaccine is not
enough to demonstrate its immunogenicity, but also to
generate enough complementary evidence of its cost ef-
fectiveness [69]. A recent report, that analyzed the valid-
ity of studies that assess the effectiveness of interventions
(EoI) concluded that, currently the internal and external
validity of veterinary EoI studies is limited compared to
human ones [65•]. This fact can significantly jeopardize
the chances of commercialization of a new vaccine based
on the uncertainty that often exists about the major bene-
fits associated with its adoption [70]. In economics, infor-
mation failure is described as an asymmetry in the infor-
mation between the participants in an economic exchange,
leading in most of the cases to a misallocation of scarce
resources, which results in an unbalance of demand and
supply in the market [71]. If the key stakeholders in-
volved in VVM do not receive the right information about
effectiveness of the new generation of vaccines, the prop-
er evidence-based demand for those products is not likely
to exist, and consequently, the industry will not have the
stimulus to adopt that kind of innovation. This scenario
would be even more significant, in many LMIC where
still a scarcity of update regulation in concern to biolog-
ical products for veterinary use exists [72]. An example of
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efforts to improve this situation, are the American
Commi t t e e o f Ve t e r i n a r y Med i c i n a l P roduc t s
(CAMEVET), which is a regional project with the aims
to facilitate the harmonization of standards, records, and
control of veterinary medicines among member countries,
or the OIE PVS Pathway, which is a global program for
the sustainable improvement of a country’s Veterinary
Services’ compliance with OIE standards.

As reported in many LMIC a clear uneven situation of
regulation between biological against infectious agents is in-
cluded in OIE list A and others which can have a dramatic
impact on livestock productive performance [73].
Notwithstanding there is limited research investigating the
motivators and barriers to vaccinating livestock. While no
compulsory vaccination strategy is applied, the decision of
vaccination lies with the farmer [74].

Moreover, a not-for-profit organization named
GALVMed, created Vetvac (http://www.vetvac.org) a
global database of commercially available livestock
vacc ines . In a s imi la r way, VIOLIN (Vacc ine
Invest igat ion and Online Informat ion Network)
(http://www.violinet.org) exists as a resource of research
data of commercial and clinical trials vaccines designed
by the University of Michigan [56]. Interestingly, an
analysis of these databases shows that most veterinary
vaccines are killed or inactive infectious agents with
very few examples of subunit vaccines, therefore there is
a need to develop safe and effective, easy to deliver, and
economically feasible livestock vaccines. This should be
seen as an opportunity by the research community and
innovative entrepreneurs of these countries, who should
collaborate to overcome this issue through synergic
efforts to produce and communicate compelling efficacy
results, creating the right market for innovative tools.
Moreover, enhancing markets for new vaccines could
create a virtuous cycle of incentives for vaccine research
funding [75].

Biotech Sector in Developing Countries/Innovation
in MLIC

Industry generally prefers tried and tested delivery plat-
forms for new vaccines as these can be more easily
aligned with established manufacturing capabilities and a
commercial target product profile (TPP). This alignment
leaves little room for innovative but yet not validated
vaccine technologies, to enter the product development
path. Even though, there is a clear tendency of different
stakeholders related to molecular farming to conceive
strategies to overcome this challenge.

In the past two decades, there has been an important
change in the global economic and scientific landscape.

Already in 2006, Korenblit described the concept of
BInnovative developing countries^ (IDC) [76]. A
S7significant number of biotechnological breakthroughs
are coming from developing countries like China and
India, which are seeking a competitive edge in the world
market. While many other IDC are making substantially
investment in biotech research infrastructures (FMI, stats).
The goal of build-up local scientific and technical exper-
tise is a common feature to all of them [77]. On one hand,
several national funding agencies in LMIC are making
significant efforts to generate prioritization guidelines
promoting knowledge translation, through encouraging
exchange between researchers and private sector and
decision-makers [78, 79]. On the other hand, there is a
need for creative approaches, Binnovative capacity^ [80],
to increase resources to consolidate regional scientific tal-
ent [81].

For example, the Brazilian biotech sector has made con-
siderable progress in recent years toward becoming truly
innovative. This sector comprises private enterprises as
well as government-controlled institutes [82], involving
the molecular farming consortium. In 2011, Bio-
Manguinhos/Fiocruz (www.bio.fiocruz.br) signed a
collaboration agreement with iBio, Inc. and Fraunhofer
USA Center for Molecular Biotechnology, to produce
cer ta in vacc ines based upon iBio ’s propr ie ta ry
technology. A recombinant yellow fever vaccine using
VLP technology by transient expression system in N.
benthamiana that has already been proved in animal
model would be the first product. Further in 2013, Bio-
Manguinhos entered into a supply and technology transfer
agreement with Protalix intended to transfer the capacity
and skills required for the Brazilian government to con-
struct i ts own manufacturing faci l i ty to produce
glucocerebrosidase using carrot cell culture. These two
cases show the strategic national plan that seeks to promote
the interaction between private and public sector [83, 84].
Another sign of innovation in the region it is the recent
approbation by SENASA (Argentina) of the first series of
VEDEVAX, a subunit vaccine based on insect cells against
BVDV [85]. Finally, two examples of public private part-
nership (PPP) like the Bharat Biotech center in India,
which focuses on bringing solutions to public health of
developing nations using novel technologies through
strong collaborative research (www.bharatbiotech.com),
that just recently, launched a live attenuated oral rotavirus
vaccine and plans to make the vaccine available for
US$1.00 per dose for public markets; and, the ILVAC in
Kenya [86] as a key milestone of PPP in animal health,
with the aim to develop vaccine-based solutions that re-
duce disease burdens on livestock in developing countries;
demonstrate the innovation development in LMIC is being
materialized.
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Conclusions

The impact of vaccines in livestock populations cannot be
overstated. Still veterinary vaccinology needs to deal with a
wide spectrum of challenges. These include the development
of cost effective strategies to prevent and control infectious
diseases, taking into account animal welfare and focusing on
decreasing production costs of animals used for food [87]. The
presence of several PBV in clinical trials phase II and III,
emphasizes that plant-produced targets have accomplished
successfully the progression along the regulatory path [15,
88]. Also, tremendous results in understanding the immuno-
logical mechanisms to increase the right type of immune re-
sponse have been done in the last few years, and can be in-
corporated to vaccine rational design. Indeed, quality by de-
sign (QbD) framework would facilitate the continuous incor-
poration of cutting edge technology generated by other disci-
plines to the vaccine pipeline [89]. As we discussed earlier the
reasonably high level of expertise in recombinant plant devel-
opment in many centers in LMIC, make PMP a technology
that is very well suited to be applied in PBVV in those coun-
tries [90].

The mentioned examples of collaborations highlight that it
seems to be the right momentum for the emergence of PPP
between multiple stakeholders as a strategy to overcome the
existing disconnection between academia and industry in
LMIC. The goal of these types of consortiums is to enable
conversion of leading vaccine candidates from the stage of
proof of concept into prototypes for industry, and thereby
foster ‘productization’ in the field of Veterinary Vaccines
and Diagnostics.

The Developing Countries Vaccine Manufacturers
Network (DCVMN) is a unique model of a public and private
international alliance [91, 92] that has achieved a significant
and continuous growth over the last 15 years, counting today
45members from 16 countries, not including any multination-
al company or subsidiary. Although, its first aim is to provide
a consistent and sustainable supply of quality vaccines at an
affordable price to developing countries, its members are also
striving to accelerate the production of innovative vaccines,
conceiving technology transfer and co-development as one of
the most effective ways to do it [91]. Successful examples,
like Meningococcal A vaccine co-development with PATH-
WHO and many others, demonstrated that these kinds of PPP
models are essential to foster innovation in LMIC. Clearly,
variables such as political will, long-term support, and policy
coherence would be essential factors to conceive the sustain-
able appropriation of this innovative platform by local indus-
try through the development of innovative capacity.

All above must be seen as inspiring elements to conceive
similar networks between stakeholders in the veterinary vac-
cine sector in the next decades, which are described as a chal-
lenging but also as an extremely promising scenario for

livestock production. PMP entrepreneurs should dive into
these strategies to create synergies to fill the right niches of
innovative products in veterinary health.
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