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Abstract Articular chondral lesions are major risk factors for
the development of osteoarthritis (OA). Multiple adult
cellbased approaches have been attempted to restore hyaline
cartilage and prevent progressive degeneration; however, the
formation of permanent cartilage has not yet been achieved. A
scalable source of cartilage progenitors may have far-reaching
potential to advance joint cartilage therapy as well as disease
modeling and would be expected to facilitate the discovery of
novel therapeutics to stimulate cartilage regeneration or pre-
vent degeneration. Because of their unlimited proliferative
capacity and pluripotency, human pluripotent stem cells have
become an attractive therapeutic option as a source for consis-
tently uniform cells with high chondrogenic capacity. This
review focuses on the recent progress using development-
based paradigms to control the differentiation of human plu-
ripotent stem cells to an articular chondrocyte fate. We high-
light recent findings that demonstrate the promise for using
pluripotent stem cell-based replacement for hyaline cartilage
repair.
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Abbreviations
ACAN Aggrecan
ACI Autologous chondrocyte implantation
bFGF Basic fibroblast growth factor
BMP Bone morphogenetic protein
BMPR1B Bone morphogenetic protein receptor 1 beta
BMSC Bone marrow-derived MSCs
ESC Embryonic stem cells
GDF Growth and differentiation factor
iPSC Induced pluripotent stem cells
ISCT International Society for Cellular Therapy
LIF Leukemia inhibitory factor
MSCs Mesenchymal stem cells
OA Osteoarthritis
PDGF Platelet-derived growth factor
PSC Pluripotent stem cells
TGF Transforming growth factor
VEGF Vascular endothelial growth factor

Introduction

Osteoarthritis (OA) is a common and debilitating joint disease
for which primary risk factors are traumatic joint injury or
mechanical disruption of joint tissues. There is currently no
cure for OA. Although the true prevalence of articular
chondral lesions in the general public is unknown, approxi-
mately 60 % of patients undergoing knee arthroscopy have
evidence of cartilage lesions [1, 2]. The natural history of
articular cartilage lesions is poorly understood, as the means
for evaluating these lesions (MRI, arthroscopy) are not com-
monly used for surveillance due to cost implications. A pre-
vailing notion is that chondral lesions increase in size and
predispose patients to developing OA. Supporting this idea
is evidence that articular cartilage has limited regenerative
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capacity, is poorly vascularized, and has a small cell-to-matrix
volume and a very low mitotic rate [3]. Treatment options for
OA patients such as total joint arthroplasty provide excellent
outcomes by ameliorating pain and improving function.
However, many patients sustain cartilage injuries when they
are young and are not good candidates for these procedures as
they would outlive their implant and would require multiple
revision surgeries [2, 4–6]. Currently, the prevalence of pa-
tients living in the USA with a total hip or total knee
arthroplasty is estimated to be 7.2 million, which is higher
than the prevalence of stroke (6.8 million) and heart failure
(5.1 million) and approaches that of myocardial infarction (7.6
million) [7]. Thus, OA is an important public health issue, and
there remains an urgent and growing need to develop regen-
erative techniques for articular cartilage to treat symptomatic
patients and potentially circumvent the onset of OA among
individuals predisposed to developing OA.

Multiple strategies have been attempted for joint cartilage
surface restoration, with the goal of improving joint function
and delaying or preventing degeneration. However, regenera-
tion of hyaline cartilage has not been achieved. Introduced by
Brittberg et al. in 1994, implantation of in vitro expanded
autologous human articular chondrocytes (hACs) is a widely
used surgical procedure to treat focal chondral lesions in the
knee joint [8]. Autologous chondrocyte implantation (ACI)
involves extraction of a small cartilage biopsy from a non-
load-bearing site within the affected knee joint and in vitro
expansion of the isolated chondrocytes using Bgood
manufacturing practice^ (GMP) laboratory procedures, which
is then followed by implantation of these cells to the defect site
in a second surgical procedure [8]. The repair tissue is often
fibrocartilaginous, with little hyaline cartilage restoration [9,
10]. Fibrocartilage generally deteriorates over time because of
its inferior structural and mechanical properties, which in-
creases the likelihood of OA and the need for further surgical
intervention.

Adult mesenchymal stem cells, commonly isolated from
bone marrow, have been extensively examined as an alterna-
tive to either autologous or allogeneic chondrocytes for regen-
eration of articular cartilage. These cells offer advantages of
ease of harvest using minimally invasive procedures, low im-
munogenicity, high proliferative indices, and an intrinsic
chondrogenic capacity that can be exploited to yield vast
quantities of chondroprogenitors to repair cartilage defects
[11]. However, chondrogenic differentiation in bone
marrow-derived MSCs (BMSCs) follows an endochondral
pathway, yielding transient cartilage expressing markers of
hypertrophy, mineralization, and catabolic enzymes detrimen-
tal to maintenance of permanent cartilage [12–16]. Donor-to-
donor variability, as well as age-dependent decline in replica-
tive and differentiation capacity, may also contribute to vari-
able clinical outcomes when using adult mesenchymal stem
cell (MSC) for cartilage repair [17, 18]. Over the past decade,

accumulating evidence also supports the presence of a resident
stem/progenitor cell populationwithin intact articular cartilage
with the potential to respond to injury and to repair small
lesions [19–26]. However, the means through which the ex-
pansion and differentiation of these cells can be effectively
controlled to promote endogenous tissue repair remains
unknown.

The Induced Pluripotent Stem Cell Revolution

Embryonic stem cells (ESCs) provide the unprecedented
means to study mechanisms of human lineage commitment
and cell specification; however, obvious ethical issues and a
lack of patient specificity impede their clinical utility.
Yamanaka’s Nobel prize winning discovery that pluripotency
can be induced in virtually any somatic cell through the tran-
sient ectopic expression of four reprogramming factors
(Oct3/4, Klf4, Sox2, Myc; Nanog and Lin28 can replace c-
Myc and Klf4) [27–29] has transformative potential for per-
sonalized regenerative medicine and disease modeling. These
induced pluripotent stem cells (iPSCs) offer an ethically un-
encumbered source of patient-specific cells, which display
hallmark features of ESCs, including expression of canonical
pluripotency markers (OCT4, SSEA-4, NANOG, TRA-1-60,
TRA-I-80). iPSCs also provide unlimited self-renewal and the
ability to form derivatives of each of the three germ layers.
Viral transduction has been the approach traditionally used to
introduce the reprogramming factors, though this earlier ap-
proach may hinder their clinical use in patients. However,
recent advances in reprogramming now offer safe and efficient
transgene-free reprogramming techniques using synthetic
messenger RNA, microRNA, proteins, and supplementation
with small molecule compounds [30–33].

Unlike human primary cells, specialized cell types can be
generated from highly renewable sources of iPSCs. Thus, cell
reprogramming provides the unique ability to model diverse
human diseases and to perform large-scale small molecule and
drug screening using cells from panels of human patients
representing the spectrum of a particular disease and drug
response [34]. For instance, a drug screen using a library of
human iPSC-derived cardiomyocytes indicated that healthy
and diseased individuals exhibit different susceptibilities to
cardiotoxic drugs [35]. Such studies have tremendous value
as human disease-specific iPSC-derived cells may provide
more accurate prediction of adverse drug responses as com-
pared to standard clinical assays. Moreover, animal models
often lack human disease relevance; thus, the use of human
iPSCs may better capture the complexity of disease patho-
physiology [34]. Applications of iPSCs and ESCs in high-
throughput small molecule screening have also led to the iden-
tification of novel molecules that promote differentiation to
specific lineages, including cardiomyocytes and insulin-
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producing pancreatic b cells [36–38], as well as the identifi-
cation of molecules that inhibit pluripotency [39]. These dis-
coveries are critical for developing effective cell replacement
strategies, as well as for the selective removal of undifferenti-
ated cells prior to in vivo transplantation of iPSC-derived spe-
cialized cell types. Indeed, a major step toward the realizing
the regenerative potential of iPSCs came in 2014 with a
pioneering clinical study in Japan, where a patient suffering
from age-related macular degeneration received the first
iPSC-derived transplant. Progress toward the use of human
iPSCs in (i) cartilage disease modeling, (ii) the discovery of
new drugs that promote cartilage formation or prevent carti-
lage degeneration, and (iii) cartilage regenerative therapy is
predicated upon the derivation of homogeneous articular-like
chondrocytes which exhibit functional and genomic integrity.
Knowledge gleaned from the developmental biology of artic-
ular cartilage has been applied to establish the molecular sig-
naling and culture conditions to promote differentiation of
human ESCs and iPSCs toward the chondrogenic lineage
[40•, 41••, 42•, 43–50]. Indeed, human iPSCs may provide
an unparalleled source of progenitors to model articular devel-
opment, since the bona fide cartilage progenitors present only
early in development are otherwise inaccessible [40•]. Below,
we highlight recent findings that demonstrate the promise for
using pluripotent stem cell (PSC)-based replacement for hya-
line cartilage repair.

Development-Based Strategies to Recapitulate
Chondrogenesis in Human Pluripotent Stem Cells

Chondrogenesis during embryogenesis is a tightly regulated
process involving the recruitment and migration of mesenchy-
mal cells, condensation of progenitors to form compact nod-
ules, commitment of the primordial mesenchymal cells to the
chondrocyte lineage, and differentiation to proliferating
prechondrocytes [51, 52]. Growth factors are critical for reg-
ulating the discrete stages of the chondrogenic differentiation
program. For instance, fibroblast growth factor (FGF2) signal-
ing plays a key role in the development of mesenchymal pro-
genitors, while BMP4 has been shown to mediate mesoderm
specification and instruct the uncommitted progenitors to the
chondrogenic lineage [53]. Following commitment of chon-
drogenesis, the cells undergo differentiation via the endochon-
dral ossification pathway that leads to the formation of bone or
are differentiated toward the articular cartilage fate. Based on
cell lineage tracking experiments in developmental model sys-
tems, articular chondrocytes, as well as other components of
the synovial joint, are known to arise from a specialized pop-
ulation of condensed mesenchymal progenitors known as in-
terzone cells [54]. Signaling through the transforming growth
factor (TGF) β pathway is required for the initial formation of
joint interzone cells and the maintenance of phenotypic

interzone markers such as Noggin, Wnt9a, and growth and
differentiation factor-5 (Gdf5) [55]. Downstream intracellular
signaling from BMPs and TGFβ exerts their chondrogenic
effects on progenitor cells through distinct gene regulatory
pathways, such as regulation of SOX and RUNX family of
transcription factors. Articular chondrocytes do not undergo
hypertrophy and maturation, as seen in growth plate
chondrocytes. It is well established that TGFβ inhibits chon-
drocyte maturation, whereas BMP signaling exerts positive
effects on chondrocyte maturation. Thus, the sequential or
concurrent activation of TGFβ and BMP pathways has been
used as a strategy to promote chondrogenesis in various adult
and pluripotent stem cells.

Several studies have identified themolecular signature of the
primitive human mesodermal progenitor populations
from human PSCs, and this knowledge has facilitated the de-
velopment of more efficient strategies to promote chondrogenic
differentiation. Earlier studies by Evseenko and colleagues
identified the CD326-CD56+ population as the earliest
multipotent mesoderm-committed progenitor population that
arises from day 3.5 differentiated human ESCs during the pro-
cess of epithelial-to-mesenchymal transition mediated by re-
combinant Activin A, BMP4, VEGF, and FGF2 [56]. In vitro
functional assays demonstrated the full potential of this popu-
lation, giving rise to all mesodermal lineages including
chondrocytes. Additional studies have revealed that precise
stage-specific modulation of multiple signaling pathways
downstream of the early mesendoderm population can recapit-
ulate the human developmental chondrogenic program in ESCs
and iPSCs [40•, 41••, 42•, 46, 57••, 58]. Oldershaw et al. de-
vised a three-step, chemically defined and serum-free protocol
for directed differentiation of human ESCs through a transient
primitive streak/mesendoderm stage, followed by controlled
differentiation to a multipotent mesoderm, and subsequent dif-
ferentiation of the mesoderm intermediates to chondrocytic
cells within three-dimensional aggregates [42•]. Requiring tem-
poral supplementation of seven different growth factors
(Activin A, bFGF, WNT3a, BMP4, NEUROTROPHIN-4
(NT4), FOLLISTATIN, growth and differentiation factor-5
(GDF)), this approach has been used by multiple groups for
efficient production of differentiated chondrocytes from inde-
pendent lines of human embryonic stem cells (hESCs) and
iPSCs [40•, 41••, 42•, 46, 57••, 58]. Lee et al. further optimized
this approach to achieve improved survival and chondrogenic
differentiation of human iPSCs, which showed enrichment of
SOX9+CD140+CD44+ chondrocytes expressing phenotypic
markers of articular chondrocytes (i.e., WNT9a, SOTDC1,
COL2A1, ACAN), while lacking expression of markers of hy-
pertrophic chondrocytes (COL10A1) and fibrocartilage
(COL1A1) [58]. Transplantation of these iPSC-derived
chondrocytes into immunodeficient mice was found to main-
tain a stable cartilage phenotype without evidence of tumorige-
nicity after 4 weeks [58]. A comprehensive transcriptional
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profiling of the intermediate populations during differentiation
toward chondrocyte maturation provided new mechanistic in-
sights into how the SOX9 regulatory network operates in the
early mesodermal and mature chondrocyte fates [58]. Using
iPSC lines generated by episomal reprogramming, Yamashita
et al. devised a similar but simplified approach based on the
initial mesendodermal differentiation in response to WNT3a
and Activin A [42•] but followed this with differentiation to
the chondrocytic lineage by temporal exposure of suspension
cultures to ascorbic acid, BMP2, TGFβ1, and GDF5 [59••].
The use of a chondrocyte-specific COL11a2-eGFP reporter
and gene expression analyses confirmed that this approach gen-
erated a highly purified population of lubricin/PRG4 express-
ing articular-like chondrocytes, which lacked the expression of
type X collagen [59••].

In 2013, Evessenko and colleagues were the first to char-
acterize the earliest stages of human chondrogenic develop-
ment from human embryonic distal limbs, and the developing
embryonic femoral bone epiphyses, by applying microarray
screening and immunophenotypic profiling of laser-captured
cells [40•]. Comprehensive transcriptional profiling and func-
tional assays led to the identification of unique combinations
of cell surface markers that can identify and differentiate be-
tween the earliest prechondrocytes (CD146low/negCD166low/
negCD73+CD44low), immature periarticular chondrocytes
(BMPR1B+LIFR+), and hypertrophic chondrocytes
(BMPR1BnegLIFRneg). Based on these results, it was then
possible to isolate primitive prechondrocytes and definitive
resting chondrocytes from differentiating PSC cultures.
Moreover, this study revealed that temporal modulation of
LIF, TGFβ, and BMP signaling pathways in iPSC-derived
cartilage progenitors could promote the development of im-
mature chondrocytes, while concurrently inhibiting chondro-
cyte hypertrophy and maturation. Subsequent work by the
Keller Laboratory has also provided critical insights into the
molecular landmarks and requisite signaling for controlled
specification of human ESCs to the articular chondrocyte ver-
sus hypertrophic chondrocyte fate [41••]. Sustained TGFβ3
signaling in human ESC-derived mesenchymal progenitors in
micromass was needed to specify a population expressing
hallmark markers of interzone cells (i.e., GDF5, WNT9A,
ERG, SOSTDC1, DCX) and subsequently of articular
chondrocytes (i.e., PRG4/lubricin, cartilage intermediate lay-
er protein 2/CILP2, COL2A1) [41••]. In contrast, treatment
with BMP4 promoted a hypertrophic chondrocyte fate, con-
firmed by high level of expression of hypertrophy genes in-
cluding alkaline phosphatase (ALP), COL10A1, and RUNX2,
as well as increased apoptosis indicative of an endochondral
pathway. Moreover, distinct differences in the quality of car-
tilage formed by the TGFβ- versus BMP4-treated cells were
observed following subcutaneous implantation of the two
populations in immune-deficient mice. Consistent with their
in vitro observations, 12-week grafts from BMP4-treated cells

were found to initiate endochondral ossification, whereas
TGFβ3-treated grafts maintained a proteoglycan- and type II
collagen-rich ECMwith expression of lubricin/PRG4, with no
evidence of chondrocyte hypertrophy or calcification. Thus,
there is a continued promise that this approach may be trans-
lated for generation of transplantable cells to regenerate dam-
aged hyaline cartilage.

Human Pluripotent Stem Cells Are a Source
of Multipotent Mesenchymal-Like Progenitors

Methods for specification and prospective isolation of
cartilage-committed progenitors from a heterogeneous popu-
lation of differentiating human PSCs are technically challeng-
ing, as they require temporal fine-tuning of multiple signaling
pathways. Thus, alternative approaches for generating scal-
able populations of multipotent cells with high chondrogenic
capacity have also been explored. Applying diverse method-
ologies, multiple groups have now shown that the epithelial-
to-mesenchymal transition step in differentiation of human
iPSCs and hESCs could be achieved by (a) differentiating
with or without an EB intermediate (EB) [43, 44, 60–65],
(b) enriching an intermediate hemangioblast population [66,
67], (c) adding a small molecule inhibitor of TGF signaling
[68], and (d) co-culturing with mesenchymal cell lines [69].
Collectively, these approaches have demonstrated that the loss
of pluripotency and acquisition of the characteristic MSC-like
morphology is associated with expression of MSC antigens
(positive for CD90, CD73, CD105, CD29, CD44, CD49,
CD166 and negative for CD34 and CD45), as well as the
capacity for multi-lineage differentiation in vitro and in vivo.
Chondrogenic differentiation within 3D cultures of PSC-
derived MSCs has been induced via singular and combined
treatment with growth factors, known to play important roles
in initiating embryonic mesenchymal condensations and car-
tilage nodule formation (i.e., TGFβ1, TGFβ3, BMP2, BMP4,
BMP6, and GDF5) [44, 46, 70–72]. However, few studies
have demonstrated controlled differentiation of human PSC-
derived MSCs to articular-like chondrocytes for cartilage de-
fect repair [61].

A key question in the field is whether there exists molecular
and functional equivalency between human iPSC-derived
MSCs and adult MSCs. To gain insight, Diederich et al. per-
formed side-by-side genomic and functional comparisons of
adult BMSCs and MSCs generated from human BMSC-
iPSCs. The study design used human donor-specific iPSCs
generated from BMSCs, as well as multiple methods to derive
MSCs from iPSCs to circumvent confounding effects attrib-
uted to donor variability or method of MSC derivation.
Comparative analyses revealed distinct transcriptomic as well
as functional differences between the two sources [73]. iPSC-
derived MSCs were generally less responsive to traditional
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BMSC chondrogenic differentiation protocols [73]. Although
functional outcomes in vivo were not available, the authors
speculated that compliance with criteria put forth by the
International Society for Cellular Therapy (ISCT) [74] may
not be sufficient to confirm derivation of bonafideMSCs from
iPSCs. In another comparative in vitro study using combina-
tions of TGFβ3, BMP, and PDGF to drive chondrogenic dif-
ferentiation, superior formation of hyaline-like cartilage tissue
was observed in human ESC-derived paraxial mesoderm-like
cells as compared to either adult MSCs or hESC-derived
MSC-like cells (the latter lacking mesendoderm identity)
[45]. These functional disparities in vitro may point to a need
for more sophisticated factor-based regimens to direct lineage-
specific hPSC differentiation or the need for alternative
methods to enrich the chondrogenic progenitors from hPSCs
[45, 73].

Others have postulated that human iPSCs bear an epigenet-
ic advantage over adult stem cells for large-scale generation of
chondrocytes that do not exhibit a propensity for hypertrophy.
While examining differences in chondrogenesis between
BMSC and human induced pluripotent cells (hiPSCs), Ko
and colleagues demonstrated greater expression of signature
chondrogenic markers (i.e., SOX9, COL2A1, ACAN) and low-
er levels of hypertrophic markers (i.e., COL10A1, RUNX2) in
chondro-induced iPSCs versus BMSC pellets [64].
Differences in the maturation status were attributed to epige-
netic disparities between the two cell sources at the level of
DNA methylation. Enhanced methylation of the COL10A1
gene promoter was also present in human iPSC-derived
chondrocytes compared with BMSCs, which corresponded
to reduced COL10A1 gene expression seen in human iPSC-
derived chondrocytes [64]. Whether the epigenetic disparities
among the cell sources may be used to predict a superior
regenerative potential or better quality cartilage in vivo re-
mains to be determined.

Epigenetic Regulation of Chondrogenic
Differentiation

Epigenetic mechanisms including DNAmethylation, chroma-
tin remodeling, and histone modifications serve a fundamental
role in the control of stem cell maintenance and differentia-
tion. The epigenomic landscape in human PSCs, their differ-
entiated progeny, and a broad range of adult cell types includ-
ing BMSC-derived chondrocytes have been systematically
determined, revealing developmental and tissue-specific reg-
ulation of lineage-control genes. It is anticipated that targeting
the epigenetic machinery may present new avenues to fine-
tune chondrocyte cell fate decisions in differentiating PSCS.
Histone posttranslational modifications (PTM) play a funda-
mental role in the control of gene expression by altering chro-
matin conformation and accessibility of the transcriptional

machinery [75, 76]. Combinations of PTMs such as acetyla-
tion (ac) and methylation (me) on lysine (K) residues in his-
tone H3 constitute an Bepigenetic code^ for transcriptional
activation or repression. Genome-wide mapping of the quan-
tified epigenetic changes during chondrogenic differentiation
in adult bone marrow-derived MSCs revealed that histone
PTMs constitute a primary mechanism for induction of carti-
lage lineage genes in differentiating mesenchymal progenitors
[77•, 78]. Several recent studies have also indicated that
targeting of chemically modifiable chromatin modifiers, such
as histone lysine demethylases (i.e., KDM4B, JMJD3, PHF2),
may provide new strategies to improve chondrogenesis and
control maintenance of the chondrocyte phenotype [79–83].
However, the epigenetic regulation of chondrogenesis in hu-
man PSCs remains largely unexplored. Thus, with emerging
knowledge of the epigenetic landmarks and critical modifiers
distinguishing the distinct stages of chondrogenic lineage pro-
gression, we may be better poised to limit the risk of tumori-
genicity, enhance chondrogenic capacity, and exert more pre-
cise control over the specification of articular-like
chondrocytes in human pluripotent stem cells.

Pluripotent Stem Cell-Mediated Repair of Articular
Cartilage Damage

Scaffold-cell complexes and scaffoldless approaches have been
used to assess the potential of human pluripotent stem cells in
engineered cartilage formation and cartilage defect repair [41••,
57••, 58, 59••, 61, 64, 84–86, 87•, 88]. Several recent studies
demonstrated the efficacy of human ESCs and iPSCs to mediate
the repair of cartilage defects in various animalmodels. Fibrin gel-
encapsulated hESC-derived chondroprogenitors generated via a
chemically defined and feeder-free culture system promoted the
repair of focal defects in rats with hyaline-like cartilage, without
evidence of tumor formation [85]. However, hESC-mediated car-
tilage repair was not equivalent to uninjured cartilage. TGFβ3-
mediated chondro-induced iPSCs implanted as pellets or within
alginate hydrogel promoted the restoration of the articular carti-
lage surface 12 weeks following implantation into osteochondral
defects in immunosuppressed rats [64]. In other studies, histolog-
ical analyses also indicated reduced proteoglycan content in the
iPSC-derived tissue when compared with adjacent host tissue
[64]. Yamashita et al. recently used scaffold-free, stage-
dependent chondrocyte particles derived from COL11A2-EGFP
iPSCs to evaluate their ability to repair osteochondral defects in
nude rats and minipigs [59••]. Cartilaginous particles differentiat-
ed from iPSC-derived mesendodermal cells treated with TGFβ,
GDF5, and BMP2 were transplanted into defects created in the
articular cartilage of SCID rats, without tumor formation or ec-
topic tissue formation. Immunohistochemical showed strong ex-
pression of type II collagen at 12weeks post-implantation, as well
as preservation of hyaline-like cartilage structure, and good
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integration between tissue formed by transplanted cells and rat
articular cartilage. The hiPSC-derived chondrocytes also showed
promise in filling defects in minipigs 4 weeks after implantation,
yet demonstration of long-lastingmechanically stable hyaline-like
cartilage using this approach will require further studies.

Although hyaline-like cartilage regeneration in vivo has
been demonstrated following orthotopic transplantation of
pluripotent stem cell-derived chondroprogenitor and
chondrocytes, without signs of tumor growth [57••, 59••,
64], the potential carry-over of undifferentiated and undefined
cell types remains a valid concern. Saito and colleagues re-
cently reported development of a large immature teratoma
16 weeks following transplantation of iPSC-derived
chondrocytes into a full-thickness cartilage defect in the mu-
rine knee joint [87•]. This corresponded to an incidence of
6.7 %. These findings emphasize the critical need for refined
and standardized methods to purify homogenous populations
of human pluripotent stem cell-derived chondrocytes, as well
as more thorough characterizations of the transplants over an
extended follow-up period, and removal of undifferentiated
cells prior to clinical use.

Transdifferentiation of adult cells has been explored as an al-
ternative approach to generate large quantities of chondrogenic
progenitors that do not carry risk of teratoma formation [89•]. It is
currently thought that transdifferentiation, or lineage conversion,
can occur without transition through a pluripotent state. This pos-
sibility would provide an additional level of safety; however, this
process has been called into question by several recent studies [90,
91]. Outani et al. determined that retroviral delivery of two
reprogramming factors (c-MYC, KLF4) and the master cartilage
regulatory SOX9 was sufficient for lineage reprogramming of
human dermal fibroblasts into proliferative induced chondrogenic
cells [89•]. Following transplantation of induced chondrogenic
cells into the subcutaneous spaces of nude mice, stable homoge-
nous hyaline-like cartilage tissue formation was observed at
3 months, without evidence of tumors [89•]. Moreover, the in-
duced chondrogenic cells formed cartilaginous tissue when im-
planted into articular cartilage defects in SCID rats and did not
respond to osteogenic conditions. To date, only viral methods
have been used to introduce the necessary reprogramming factors
for conversion of fibroblasts to chondrocytes. Further studies are
necessary to evaluate whether induced chondrogenic cells can be
generated through the use of non-viral, integration-free methods
and provide long-term in vivo hyaline cartilage repair.

There has been significant growth in the field of articular
cartilage regeneration through the use of animal models of
cartilage defects. However, some critical limitations remain.
A recent review article by Sakata et al. provides an excellent
summary of animal models of articular cartilage defects and
some key perspectives regarding the challenges in interpreting
these models [92]. Currently, there is no standardized outcome
assessment protocol for true articular cartilage regeneration. A
brief survey of the literature demonstrates that there are a

plurality of morphometric stains, immunohistochemical ap-
proaches, gene expression analysis targets, and histologic
grading scales utilized in the assessment of cartilage regener-
ation [93–96]. Unfortunately, there is significant variation in
the specific outcome measures that are assessed for any par-
ticular study. With such heterogeneity, direct comparisons of
the quality of repair tissue amongst multiple studies are highly
challenging. Clearly, in some scenarios, a unique assessment
may be needed to test a certain hypothesis. However, there is a
critical need in the field for a basic consensus protocol, indi-
cating which specific tests are absolutely required, for the
accurate assessment of cartilage regeneration and the direct
comparison with previous work.

Conclusions and Future Perspectives

Continued research on the instructive signaling cues and epi-
genetic mechanisms that control chondrogenic lineage com-
mitment and articular chondrocyte fate specification will
prove essential for advancing our fundamental knowledge of
cartilage development as well as regenerative applications of
the future. Many different strategies employing varying com-
binations of growth factors, progenitor-like populations, and
culture conditions are currently being investigated for the for-
mation of hyaline cartilage from human embryonic and in-
duced pluripotent stem cells. The Boptimal^ strategy for pro-
ducing articular-like chondrocytes that maintain functional
and genomic integrity in vivo and contribute to articular car-
tilage defect repair remains elusive and will require more com-
prehensive studies in vitro and in vivo. Despite the significant
progress made toward to the use of safer viral-free and non-
integrating reprogramming methods, concerns about the ge-
nome integrity of human iPSC-differentiated progeny and
their safety still persist. Thus, there remains a critical need to
apply more rigorous characterization of the differentiated cells
as well as the removal of contaminating undifferentiated and
undefined cells prior to in vivo transplantations. The idea that
iPSCs may be used as an Boff-the-shelf^ product for cartilage
repair will also require consideration of the time, effort, and
costly resources to fully reprogram patient-derived cells, per-
form critical quality control analyses, and generate the desired
cell type in high purity and sufficient quantity. Lineage
reprogramming into cartilage-specific progenitor cells may
provide a more efficient and reproducible approach and war-
rants further investigations.

Currently, there are no preclinical or clinical studies exam-
ining the potential for human iPSCs to repair cartilage. Indeed,
several laboratories have begun to establish human iPSCs as
platforms to model OA and to identify new targets for treating
OA. Perhaps, the most imminent translational application of
human iPSCs comes as a scalable source of patient- and
disease-specific cells for small molecule and drug screening
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platforms to identify novel disease-modifying drugs [97].
Cartilage progenitors and articular chondrocytes derived from
panels of patient-specific iPSCs may provide new opportuni-
ties for the discovery of molecules that stimulate chondrogen-
esis or drugs that prevent cartilage degeneration.
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