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Abstract Bone and cartilage regeneration is an important
part of tissue regeneration where bioinspired materials
have a great impact. The review provides an overview
of the biology of bone and cartilage regeneration, the cells
used, as well as the materials and systems used in the
field, closed by a section of interesting cofactors and ster-
ilization methods. First, an overview of the biology of
bone and cartilage regeneration is presented in combina-
tion with the corresponding cells most often used in bone
regeneration as well as important factors involved in bone
and cartilage regeneration. In the second section, some
fundamental aspects of bone and cartilage will be briefly
introduced. In the third section, new developments in
bioinspired materials will be highlighted, ordered by the
class of material: bioglass, hydroxyapatite, and natural

and synthetic polymers. In the fourth section, new con-
cepts for material modification are introduced: the use of
nanotechnology, supplementing factors, and the impact of
sterilization.
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Introduction

Skeletal tissue consists of craniofacial, mandible, cartilage,
ligament/tendons, and most predominately bone. In this re-
view, some of the new findings concerning the use of
bioinspired materials in cartilage and bone regeneration will
be reviewed, with emphasis to bone regeneration.

The review briefly summarizes bone and cartilage re-
generation and reviews new developments in bioinspired
materials for regenerative medicine. After a short intro-
duction of the cells applicable for bone and cartilage re-
generation, the tissues cartilage and bone are introduced.
The next section focuses on new material developments in
tissue regeneration. These materials span a wide range
from bioglass to natural and synthetic polymers. Due its
dominant role, a major emphasis will be on bioglass.
Bioglass is a calcium silica glass which contains sodium
and phosphate [1]. Hydroxyapatite is often used as scaf-
fold material or as supplement in other scaffold materials
[2] for bone and cartilage regeneration.

Several cells are applicable in both bone regeneration and
cartilage regeneration (for details, see Table 1). The most im-
portant cells are mesenchymal stem cells (MSCs) [16]. As
alternative, dental pulp stem cells, which can also differentiate
into osteoblasts and chondrocytes, are considered as potential
candidates [6, 5, 17•] (Table 1).
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Beside these cell lines, several cell lines are only
useable for bone regeneration. The most often used cell
line in this context is osteoblast-like cells (osteosarcoma
cell line) MG-63; some more cell lines are also men-
tioned in Table 1.

The most important cells for cartilage repair are MSC and
chondrocytes. The mesenchymal stem cells can have different
origins like bone, adipose, synovial, or, more seldom, perios-
teum, trabecular bone, and umbilical cord blood [18]. Quite
often, articular chondrocytes are used, an interesting alterna-
tive are nasal chondrocytes [19•]. Cartilage progenitor cells
could also be a possible cell source [20•, 21], as well as
chondrosarcoma cell line SW-1353 [22]. An overview over
different cells useable for cartilage repair was recently
reviewed [23•].

Recent advancements in tissue engineering mimic the com-
plexity of biological tissues by applying cell co-cultures as
more biorelevant systems. Some co-cultures are examined
for example in order to reduce the amount of chondrocytes
needed by co-culturing them with MSC; a culture of 1:1
chondrocytes to MSCs showed positive results [24].
Chondrocytes were co-cultured with adipose-derived mesen-
chymal stem cells allowing to reduce the damage of
chondrocytes by oxidative stress; the co-cultured cells were
less susceptible towards 200 μM hydrogen peroxide and
expressed more collagen-II-α [25].

Some factors important for the differentiation towards the
osteogenic or chondrogenic cell type and factors specific for
the right cell type are shown in Table 2 and in the cited liter-
ature (Table 2).

The differentiation of MSCs towards osteoblasts is mainly
regulated by the genes RunX and Osterix (OTX). The follow-
ing bone-related genes are expressed: alkaline-phosphatase
(ALP), bone sialoprotein (BSP), type 1 collagen (Col1), osteo-
pontin (OPN), osteonectin (SPARC), and osteocalcin (OCN)
[13].

In case of chondrogenic differentiation, SOX9 triggers the
expression of aggrecan and collagen type II, which are impor-
tant for differentiation [27••].

Components of Skeletal Tissue

Cartilage

Cartilage consists of four different zones: superficial, transi-
tional, middle (radial), and calcified cartilage zone. They dif-
fer in cell density, collagen, and proteoglycan amount [28, 29,
30]. The constituting collagen is mainly collagen II (90–
95 %), but also some other collagen types, e.g., collagen VI,
IX, X, and XI, are found [29].

In the superficial zone, the amount of collagen is
high and the chondrocytes are flattened; additionally,
there is less proteoglycan compared with other zones
[29]. In the transitional zone, the chondrocytes have a
spheroidal shape, the cell density is lower, and the col-
lagen fibers are randomly aligned [28, 29]. The cells in
the middle zone are round and have high synthetic ac-
tivity, and the collagen fibers are perpendicularly
aligned towards the joint surface [29]. In the calcified
zone, the chondrocytes are smaller and some have little
metabolic activity [29]. Collagen II fibers are present in
all zones of cartilage, in the calcified zone additionally
collagen X [30]. A schematic of the cartilage structure
can be seen in Fig. 1.

An overview about cell therapies in cartilage regeneration
can be found in current reviews [31, 32].

Bone

Bone is a complicated structure reviewed in several reviews
[33, 34•, 35]. On the macroscale, one can distinguish two
types of bone: cortical (compact) bone and trabecular (cancel-
lous, spongy) bone. Cancellous bone is metabolically more
active than cortical bone and is remodeled more often [33].
There two kinds of cortical bone, woven and lamellar bone,
which are distinguished in the way the collagen fibers are
arranged. In the woven bone, no organization of the collagen
fibers can be visualized [33]. As woven bone is formed quite
rapidly, it is formed first after fracture and is then remodeled

Table 1 Cells useable for
cartilage and bone regeneration
and cells useable for bone
regeneration

Abbreviation Name or description Application Literature

MSC Mesenchymal stem cells Cartilage [3]

MSC Mesenchymal stem cells Bone [4]

DPSC Dental pulp stem cells Cartilage [5]

DPSC Dental pulp stem cells Bone [6]

MG63 Human osteosarcoma cell line Bone [7–9]

Saos-2 Human osteosarcoma cell line Bone [10]

MC3T3-E1 Murine (mouse)-derived osteoblast cell Bone [11–13]

7F2 Mouse osteoblast cell Bone [14]

UMR-106 Rat osteoblast cell Bone [15]
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into lamellar bone [34•, 36]. In lamellar bone, the mineralized
collagen fibers are ordered in lamellae which contain ordered
and disordered material with embedded canaliculi [34•]. For
more information about the structure of bone, e.g., lamellar
bone, the reader is referred to recent reviews [34•, 35].

Bone consists of organic phases, minerals, and water. The
organic phasesmainly consist of collagen I (90%), some other
types of collagen, and 10 % non-collagenous proteins [35].
The minerals are carbonated hydroxyapatite which assembles
within the gap of the collagen fibrils. They have a plate-like
structure with some tens of nanometers in length but only 1–
2 nm in height [34•, 37].

The fracture toughness differs with the type of bone and the
age of the person; typically, 3–10MPa are found [35, 37]. The
elastic modulus from bone spans from 15 to 25 GPa [37].

Structures for Tissue Engineering

Bioglass

Bioglass is an often used glass ceramic in bone regeneration.
The most important bioglass is 45S5, which has the composi-
tion 45 % SiO2, 24.5 % Na2O, 24.5 % CaO, and 6 % P2O5.
This composition is close to a ternary eutectic phase and hence
easily meltable. Bioglass was invented by L. Hench [1]. The
amount of the different compounds is important for biocom-
patibility; compositions withmore than 60% SiO2 are bioinert
[1].

Normally, high temperature is needed to produce bioglass
by sintering. Some attempts to produce bioglass at room tem-
perature were made, for example, by using calf thymus DNA

Table 2 Factors in skeletal
regeneration [13, 16, 26, 27••] Abbreviation Name Kind Stage

Runx2 Runt-related transcription factor 2 Osteogenic Osteogenic differentiation

OTX Osterix Osteogenic Osteogenic differentiation

ALP Alkaline phosphatase Osteogenic Bone matrix formation

COL1 Type 1 collagen Osteogenic Bone matrix formation

BSP Bone sialoprotein Osteogenic Bone matrix formation

OPN Osteopontin Osteogenic Bone matrix formation

OCN Osteonectin Osteogenic Bone matrix formation

SPARC Osteocalcin Osteogenic Bone matrix formation

SOX9 SRY-box containing gene 9 Chondrogenic Early-stage chondrogenesis

GAG Glycosaminoglycan Chondrogenic Chondrogenesis

COL2 Type II collagen Chondrogenic Maturation of cartilage

COlX Collagen X Chondrogenic Maturation of cartilage

Aggrecan Chondrogenic Maturation of cartilage

COMP Cartilage oligomeric matrix protein Chondrogenic Maturation of cartilage

Fig. 1 Schematic representation of the different cartilage zones. The
superficial zone consists of two layers, one acellular sheet of mainly
collagen, beneath a layer where the chondrocyte lay flattened parallel to
the articular surface [29]. In this zone, collagen prevails and only a low
amount of proteoglycan is found [29]. In the transitional zone, the cell
density is lower, while the amount of proteoglycan is higher; the collagen

fibers are randomly aligned [28]. The middle (radial) zone is marked by
the lowest amount of cells, which are oriented perpendicular to the surface
and have high metabolic activity [28, 29]. The radial zone and calcified
zone are separated from the radial zone by the tidemark, a basophilic line
[29]. In the calcified zone, the chondrocytes are smaller and produce not
only collagen II but also collagen X [28, 29]
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as a template, which was used successfully to produce
bioglass at an ambient condition and tested with osteosarcoma
cells [38].

Bioglass has been included into other matrices like poly-
caprolactone, chitosan, polyvinyl alcohol/chitosan collagen
hybrids, and hydroxyapatite [10, 11, 15, 39]. The addition of
bioglass led to better mechanical properties and normally bet-
ter biocompatibility of the scaffolds. Bioglass, bioglass-hy-
droxyapatite, and mineral trioxide aggregate were compared
towards their biocompatibility to Saos-2 cells, with the result
that hydroxyapatite-bioglass was most biocompatible [10].

Different ions were added to bioglass to enhance biological
properties, like strontium [11], fluoride [40], strontium
hexaferrite [41], boron [42, 43], zinc [44, 45] and europium
[46], gallium [47•, 48], titanium [49, 50], copper [50, 51•],
manganese [52•], and silver [52•]. An overview over the dif-
ferent elements in the body, their function, and their applica-
tion in bioactive glass is provided in the review of G. Kaur
[53•].

Fluoride was reported to facilitate the formation of apatite
with higher crystallinity at pH below 6, as long as the fluoride
content is not too high [40]. Strontium hexaferrite nanoparti-
cles were added to generate a material for hyperthermia treat-
ment of bone cancer, but the biocompatibility is reduced by
the addition of strontium hexaferrite [41]. Boron as dopant
showed enhanced vascularization [42]. 45S5 bioglass doped
with 2 % B2O3 was tested in vivo with the vasculature of the
chorioallantoic membrane of an embryonic quail, and stimu-
lated angiogenesis could be shown [43]. Doping bioglass with
5 % zinc leads to apatite formation in simulated body fluid
(SBF); in case of doping with 10 % zinc calcite is produced
[45]. Europium was introduced to produce luminescent
bioglasses with an intended application in drug delivery. The
physicochemical properties and cell viability were tested as
well for this system. The cell compatibility of the europium
bioglass was shown to be dependent on the europium concen-
tration [46]. Including 4 % of titanium into bioglass supports
cell viability and apatite formation but decreases cell adhesion
[49]. Copper and titania have an impact towards the thermal
properties of the bioactive glasses, copper decreases the
glass transition and crystallization temperature, whereas
titanium increases them [50]. Manganese retards the pre-
cipitation of hydroxyapatite (HA) but has no cytotoxic
effects, and it enhances expression of ALP and bone
morphogenetic proteins (BMP) [52•]. Silver and titani-
um lead to a decrease of the melting temperature; to-
wards the glass transition temperature, silver has no ef-
fect [54].

To improve the mechanical properties of bioglass, several
coatings were used: nanocellulose [7], poly-DL-lactide [55],
poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) [56],
and polyvinyl alcohol (PVA) as well as microfibrillated cellu-
lose (MFC) [57]. The cells proliferate better on poly-DL-

lactide-coated bioglass than on pure bioglass [55]. Coating
with PHBV led to better mechanical properties and more con-
trolled release of vancomycin compared to direct loading of
the drug in the bioglass [56]. Bioglass scaffolds were pro-
duced from an ethanol-based slurry and coated with PVA or
PVA with MFC; the coating with PVA led to a fivefold in-
crease of compressive strength, and coatings with PVA/MFC
led to a tenfold increase of compressive strength [57]. Five
coatings of bioglass were compared concerning their influ-
ence on bioglass stiffness. Polycaprolactone and collagen
coatings increased the stiffness ultrasonically measured, while
neither alginate nor poly-L-lactide nor gelatine coating in-
creased the stiffness [58]. In another study, coatings of
bioglass were compared for their impact towards stiffness:
PHBV, gelatine, cross-linked gelatine, alginate, and cross-
linked alginate. The coatings led to higher stiffnesses of the
45S5 bioglass and which was further increased by cross-
linking the natural polymers [59]. Comparing the results of
the two studies indicates that 1-min immersion in an alginate
solution is too low to improve the stiffness [58], while two
times of 5-min soaking improves the stiffness [59]. The reason
that gelatine could improve the stiffness in the study [59], but
not in the other, could be the different solution temperature of
60 °C in the first [58] and 50 °C [59] in the second experiment,
or the concentration limit for gelatine in bioglass lies under
8 wt% [58], approximately around 5 % [59]. Thus, comparing
different weight percents of gelatine for coatings with different
solution temperatures would be important to be investigated in
the future.

Hydroxyapatite

HA is the main mineral component of bone. Hence, it can be
regarded as an appropriate matrix for bone regeneration [35].

It was shown that cell seeding of MSC in hydroxyapatite
scaffolds could not improve bone healing, compared to non-
cell-seeded hydroxyapatite scaffolds [60]. Hydroxyapatite
scaffolds with a pore size of 800 μm were synthesized by
selective laser sintering (SLS) in a two-step sintering ap-
proach; in SBF, a bone apatite-like layer was formed and the
cell compatibility was tested with MG63 osteoblast cells [61].
Composite scaffolds were formed with several polymers like
polyamide 66 (PA66) [62•], poly-caprolactone [63],
polylactide, collagen [64, 65], and chitosan [66] or with pro-
teins like amyloid [67].

In case of a PA66, a composite of 40 % HA/PA66
prepared with a shot size of 23–25 mm by injection
molding showed the best properties concerning pore
size (100–500μm) and good mechanical properties
[62•]. Scaffolds produced by fused deposition modeling
with a composition of PCL:HA (60:40) showed new
bone formation after 12 weeks in vivo; incorporation
of BMSCs increases bone healing [63]. The viability

80 Curr Mol Bio Rep (2015) 1:77–86



of MG63 osteoblast cells in collagen/HA composite
scaffolds was increased with increasing amount of HA;
for the investigated scaffolds, collagen:HA 30:70 was
the best weight ratio [65]. A chitosan/HA hybrid scaf-
fold with 10 wt% HA was produced by in situ hybrid-
ization and lyophilization; the mechanical properties
matched cancellous bone and the pore size of the chan-
nel pores was 150–650 μm. Adding RGD to the scaf-
fold led to better attachment of the MSCs and higher
ALP activity [66]. In some studies, modification of the HA
or the matrices was used to influence the structure of the scaf-
fold. Arginine incorporation facilitated the formation of ho-
mogenous nanoplate-like HAp in collagen or chitosan in a
bioinspired sol-gel process at 400 °C; samples without argi-
nine produced brushite or monite crystals [68•].

Natural Polymers

Natural polymers for bone or cartilage regeneration mainly
used are chitosan, collagen, hyaluronic acid (HAc), and silk.

Silk is biocompatible and degrades slowly. However, it
lacks osteoconductivity and has to be supplemented with
osteoinductive features [69].

Silk scaffolds, for example supplemented with HA [69],
showed enhanced biocompatibility and higher mechanical
strength. In the case of addition of silk/HA core/shell nanopar-
ticles, the best mechanical properties and biocompatibility were
found for scaffolds with 40 % of silk/HA core/shell nanoparti-
cles (NP); in the case of 60 % silk/HA core/shell NP, the me-
chanical properties decreased [69]. A tripolymer scaffold made
out of chitosan, collagen, and hyaluronic acid was prepared by
freeze-drying. The scaffolds showed good cell compatibility
with MG63 cells, and the best results were found for a scaffold
with a chitosan/collagen/hyaluronic acid ratio of 1:1:0.1 [70]. A
scaffoldmade of chitosan/alginate/hydroxyapatite (1.25:1.25:1)
was produced through in situ co-precipitation and was used as
carrier for BMP-2 and MSC [71]. Three hydrogels made of
natural biopolymers were compared towards their ability in
cartilage repair. To enable cross-linking, these biopolymers
were modified with methacrylate: gelatin methacrylate (Gel-
Ma), hyaluronic acid-methacrylate (HAc-MA), and alginate-
methacrylate (Al-MA). As control, bioinert polyethylene
dimethacrylate (PEG-MA) was used. Gel-MA hydrogels were
the only hydrogels of the tested hydrogels in which
chondrocytes proliferated, in addition the promoted the forma-
tion of cell-secreted and mechanically functional ECM, but the
cells were partly dedifferentiated [72••]. Addition of HAc-MA
to Gel-MA led to significantly enhanced chondrogenesis com-
pared to pure Gel-MA hydrogels; addition of chitosan-
methacrylate also enhanced chondrogenesis but to a smaller
extent [73•]. Addition of HAc-MA to Gel-MA also led to im-
proved mechanical strength and different patients responded
similarly to this component [74].

Synthetic Polymers

In the case of synthetic polymers, mostly hybrids are used,
because synthetic polymers lack functionalities for
biointeraction. Polycaprolactone scaffolds were produced
with a ternary temperature-induced phase separation (TIPS),
some additionally with porogen. The porosity of the scaffolds
produced without porogen was high, but the pore size was too
small for bone regeneration (20–50 µm). The use of a
porogen allowed the formation of bigger pores sufficient
for bone regeneration. Soaking in SBF led to apatite
deposition [75].

Poly-L-lactide scaffolds were supplemented with nanosized
hydroxyapatite (5 and 15 %), which improved cell compati-
bility towardsMG63 osteoblast cells and increased expression
of osteocalcin, which had a positive effect towards cell differ-
entiation [76]. A gelatin-apatite/polylactide-co-caprolactone
(GAp/PLCL) scaffold was prepared by a combination of co-
precipitation and solvent casting. The hydrophilicity and os-
teogenic differentiation of the cells was increased by incorpo-
ration of GAp. The best results were achieved with a nano-
composite GAp/PLCL 1:6 with 70 % apatite also providing
better mechanical properties than pure PLCL [77]. There are
two little shortcomings in this interesting study. Firstly, the
composition of the PLCL is not mentioned, which could affect
the properties of the polymer. Secondly, no degradation stud-
ies were provided. Recent degradation studies of our labora-
tory indicate that the molecular weight of poly-caprolactone-
DL-lactide (75/25) scaffold is massively reduced in the course
of 2 months combined with a substantial loss in mechanical
stability. This could indicate that PLCL degrades too fast in
order to serve as effective scaffold in bone regeneration. Thus,
degradation studies of the nanocomposites are needed.

Important Concepts

Nanotechnology

Integrating nanoparticles into the matrix system leads to al-
tered mechanical and biological properties. Different hydrogel
composites were compared concerning their mechanical prop-
erties and cell compatibilities using a lab-on-the-chip ap-
proach. The hydrogels were made of chitosan, with the
cross-linker genipin and different amounts of bioglass NP.
The MC3T3-E1 pre-osteoblasts preferred hydrogels with an
intermediate amount of BG-NP of 12.5 wt% to chitosan with
an E′ value of 240 kPa and tanδ of 0.1 [78•]. Bioglass doped
with 5 % zinc led to apatite formation in simulated bioglass; in
the case of 10 % zinc, calcite was formed [45].

The use of nanoparticles instead of microparticles allowed
to improve the biological properties. Hydroxyapatite aggre-
gates were compared with core/shell silk/HA nanoparticles

Curr Mol Bio Rep (2015) 1:77–86 81



in silk as scaffold material. The silk/HA nanoparticle system
showed better biocompatibility and mechanical strength com-
pared to the aggregates [69]. The cell compatibility of nano-
and microsized bioglass was compared by incorporating them
into a chitosan membrane by solvent casting. The nanosized
bioglass particles led to enhanced deposition of hydroxyapa-
tite compared to microsized bioglass particles [79]. Scaffolds
made of thermoplastic urethane/HA have better tensile prop-
erties if the hydroxyapatite is introduced as nanoparticles,
compared to the incorporation of microsized hydroxyapatite.
Concerning hMSC differentiation, the scaffolds with the best
results were made of soft thermoplastic urethane with
nanosized hydroxyapatite [80•].

The dispersion of in situ-fabricated dicalcium phosphate
anhydrate (DCPA) in an electrospun DCPA/PLA scaffold is
more homogeneously distributed than pre-synthesized DCPA
nanoparticles in DCPA/PLA scaffolds [81•].

Nanoparticles can introduce new properties into the matrix,
for example, magnetic particles which interact with the mag-
netic field allowing to facilitate bone healing [82•]. Hybrid
scaffolds of iron (Fe2+, Fe3+)-doped hydroxyapatite (FeHA)
with collagen were prepared utilizing a freeze-drying process.
The FeHA was produced at different temperatures. Scaffolds
with FeHA produced at 25 °C did not form hydroxyapatite;
instead, amorphous calcium phosphate was formed. Still, the
scaffolds had better cell compatibility than other scaffolds
produced at higher temperatures. Applying a 320-mT static
magnetic field (SMF) led to higher proliferation and an in-
crease of collagen I, RunX, and ALP in these cells [83•].
Scaffolds consisting of Fe3O4 NP, mesoporous bioglass, and
polycaprolactone (Fe3O4/MGB/PCL) were prepared by 3D
bioprinting. The proliferation and differentiation of these sys-
tems were improved by the incorporation of the Fe3O4 NP
[84]. Another promising system studied regarding its biocom-
patibility and ability to deliver clodronate consists of
hydroxyapatite-based nanomaterials combined with magnetic
iron oxides and multi-walled carbon nanotubes (MWCNT)
prepared by wet chemical precipitation under basic conditions
[85].

The use of carbon-based nanomaterials for bone regenera-
tion is an emerging field, which was reviewed in 2013 and
shows an interesting potential for future applications [86].

Supplements and Factors

Supplements and factors are interesting scaffold components
allowing to alter, affect, or enhance bone or cartilage healing.
Stigmastane-3-oxo-21-oic acid (SA), for example, a com-
pound from Lycopodium obscurum L. (ground pine), was
tested for its osteogenic potential. It could not enhance pre-
osteoblast differentiation but showed a positive effect towards
bone matrix mineralization [13]. Collagen matrices modified

to expose galactose moieties showed better cell proliferation
than pure collagen [87••].

To induce chondrogenesis of hMSCs, PLGA nanopar-
ticles loaded with SOX9 protein and Cbfa-1-targeting
siRNA were successfully applied [27••]. Collagen-
microbead scaffolds with PLGA microbeads loaded with
insulin can prolong survival and proliferation of
chondrocytes [88]. An additional method to enhance
chondrogenesis could be adding CCN2 (connective tis-
sue growth factor) which enhances both chondrocytic
differentiation and proliferation [89].

Sterilization

Sterilization is a key step for the final treatment of medical
devices, implants, and scaffolds. The physical and chemical
effects on the scaffold during the sterilization procedure can
have an impact towards cell compatibility and scaffold
structure.

Four sterilization techniques were compared towards
their effects on silk fibroin: steam autoclave, dry heat,
ethylene oxide, and immersion in disinfecting reagents.
The sterilization methods had no significant effect on
the viability of hMSCs, and all the methods were ap-
propriate. To preserve the mechanical properties, the
best method was autoclaving scaffolds in the dry state
[90]. Autoclaving of silk fibroin leads to structural
changes and thus to different degradation, while sterili-
zation with 70 % ethanol does not affect the structure
of silk fibroin [91]. UV radiation of silk fibroin mem-
branes was not sufficient to sterilize them [92].

The effects of different doses of γ-radiation were exam-
ined regarding their impact towards the mechanical proper-
ties of polyvinyl alcohol/polyvinyl pyrrolidone (PVA/
PVP): 50, 100, and 150 kGy. The best mechanical proper-
ties were found for hydrogels treated with γ-radiation of
100 kGy [93]. Gamma-irradiation of 50 kGy enhanced the
mechanical properties of nanohydroxyapatite/polyamide66
(nHA/PA66) scaffolds, while a higher dose decreased them
[94]. Sterilization did not have a great impact on the
enzymatic activity of grafted alkaline phosphatase on
bioglass or TiAl5V by using ethylene oxide and high-dose
γ-irradiation [95].

Autoclaving of an electrospun polycaprolactone (PCL)
membrane led to melting of the structure, and ethylene oxide
turned the membrane into a solid film. Thirty minutes of
soaking in 80 % was not enough to sterilize the membrane
which was demonstrated by pre-contaminating the membrane
with Bacillus atrophaeus as a biological indicator; EtOH was
not able to kill the bacteria sufficiently. As a new sterilization
method, 1000 ppm peracetic acid in 20 % EtOH was intro-
duced and could successfully sterilize the contaminated PCL
membrane without compromising the structure [96].
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Conclusion

In cartilage regeneration, the dedifferentiation of chondrocytes
and the differentiation of MSCs to chondrocytes are a chal-
lenging task. In order to cope with this problem, hybrid scaf-
folds which facilitate proliferation and differentiation of
chondrocytes can be useful [73•]. In addition, the use of fac-
tors like SOX9 [88••] or CCN2 shows great potential [89].
Further details of the problem of chondrocyte differentiation
were reviewed recently [97].

In the field of bioglass research, dopants allow to add new
properties to the material. The use of boron as dopant en-
hances vascularization [42] while strontium hexaferrite allows
to induce ferrimagnetic properties to treat bone cancer [41]. In
addition, the mechanical properties can be enhanced by pro-
ducing hybrid scaffolds, for example, with chitosan [39], or by
coating the bioglass, for example, with PHBV [56].

The use of nanoparticles instead of microsized particles can
further improve the biological properties [80•]. Nanoparticles
are used to introduce, for example, ferromagnetic properties to
allow the scaffold to be affected with a magnetic field which
can facilitate bone healing [83•].

The challenges associated with the sterilization methods
used for various materials differ substantially. For silk com-
posites, the selection of the sterilization method is not critical
due to its thermal stability; thus, nearly all methods are appro-
priate [98•]. In the case of most synthetic polymers, this is
quite different; autoclaving often leads to melting, and ethyl-
ene oxide can solidify an electrospun membrane. An alterna-
tive recently introduced could be the use of peracetic acid [96].

Concerning injectable hydrogels, it would be interesting to
know the internal structure of the injected hydrogel inside the
body for example to examine porosity and pore size. One way
to investigate these gels in vivo might be possibly by MRT,
which maybe combined with the use of contrast agents like
gadolinium.

Bioinspired materials have a great potential for cartilage
and bone regeneration, and future research will unveil power-
ful approaches for this important field in regenerative
medicine.
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