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Abstract
Let A denote the cylinderR×S1 or the bandR× I , where I stands for the closed inter-
val. We consider 2-moderate immersions of closed curves (“doodles”) and compact
surfaces (“blobs”) in A, up to cobordisms that also are 2-moderate immersions in
A× [0, 1] of surfaces and solids. By definition, the 2-moderate immersions of curves
and surfaces do not have tangencies of order ≥ 3 to the fibers of the obvious projec-
tions A → S1, A × [0, 1] → S1 × [0, 1] or A → I , A × [0, 1] → I × [0, 1]. These
bordisms come in different flavors: in particular, we consider one flavor based on
regular embeddings of doodles and blobs in A. We compute the bordisms of regular
embeddings and construct many invariants that distinguish between the bordisms of
immersions and embeddings. In the case of oriented doodles on A = R× I , our com-
putations of 2-moderate immersion bordismsOCimm

moderate≤2(A) are near complete: we
show that they can be described by an exact sequence of abelian groups

0 → K → OCimm
moderate≤2(A)

/
OCemb

moderate≤2(A)
Iρ−→ Z× Z → 0,

where OCemb
moderate≤2(A) ≈ Z × Z, the epimorphism Iρ counts different types of

crossings of immersed doodles, and the kernel K contains the group (Z)∞ whose
generators are described explicitly.

Keywords Curves · surfaces · immersions · cobordisms · crossing invariants

1 Introduction

This paper illustrates the richness of traversing vector flows (see Definition 2.3) on
surfaces with boundary. It also provides tools for constructing such flows (see Fig. 2).
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Somemulti-dimensional versions of these ideas and constructions can be found in [14,
15], and [16]. However, the case of, so-called, 2-moderate one- and two-dimensional
embeddings and immersions against the background of a fixed 1-dimensional foliation
on a target surface A has its unique and pleasing features. One of which is the drastic
simplification of the combinatorial considerations that characterize our treatment in
[14, 15], and [17] of similar multi-dimensional immersions.

Propositions 1.1 and 1.2 below illustrate the flavor of some of our results.
Consider the vector spaceR3

xyz with coordinates x, y, z and the obvious projections
Pz : R3

xyz → R
2
xy and pz : R2

xz → R
1
x . Let C ⊂ R

2
xz be a smooth simple curve, the

boundary of a compact domainD ⊂ R
2
xz , such that pz : C → R

1
x has only singularities

that are quadratic (folds). We say that C is positively (negatively) concave if the
function x : D → R has more local maxima (minima) than minima (maxima) (see
Fig. 5(b)).

Proposition 1.1 Let C ⊂ R
2
xz be a simple smooth curve such that the projection pz :

C → R
1
x has only quadratic folding singularities and C is positively (negatively)

concave.
Then, any smooth compact surface S ⊂ R

3
xyz ∩ {y ≥ 0} that bounds C must have

at least cubic singularities (cusps) under the map Pz : S → R
2
xy . ♦

Proposition 1.1 is implied directly by Theorem 2.2. The key feature here is the
interplay between the curve C, surface S, and the simple 1-dimensional foliation in
R
3
xyz whose leaves are the fibers of the projection Pz .

A different, but related, phenomenon is exemplified by the next proposition, which
follows from the proof of Theorem 3.1.

Proposition 1.2 Consider the immersed curve C in R2
xz shown in Fig. 9, (a).

Then, any compact immersed surface S ⊂ R
3
xyz ∩ {y ≥ 0}, that bounds C must

have two triple-intersection points at least. ♦
Although doodles on surfaces have been a well-traveled destination [4, 5], doodles

against the background of a given foliation on a compact surface are not. The same
can be said about submersions α : X → A of compact surfaces X on the cylinders
or strips A, equipped with a product foliation F(v̂). This simple product foliation is
responsible for the term “ruled” in the title of the paper.

Our general inspiration comes from the pioneering works of V. I. Arnold [1–3], and
V. A. Vassiliev [19, 20].

The main problem we are dealing here is to classify such submersions α : X → A
(up to a kind of cobordism), while controlling the tangency patterns of the boundary
∂X , or rather of the curves α(∂X) to the foliation F(v̂). As a byproduct, we getting
some computable bordism-like relation among traversing vector fields on compact
surfaces with boundary.

Thus, we consider two target spaces, the cylinderR×S1 and and the stripR×[0, 1].
Someof the constructionswillwork for the cylinder, and some for the strip; for both,we
use the samenotation “A”. The space A is equippedwith a traversing (seeDefinition 2.3
and [9, 10]) vector field v̂ and the 1-dimensional oriented foliation F(v̂) it generates.

123
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Fig. 1 Diagram (a) shows doodles—an immersion β : C → A of 3 loops C in the surface A = R× [0, 1].
Diagram (b) shows blobs—an immersion α : X → A of two disks X in A. The self-intersections of the
curves β(C) and of α(∂X) and the points of tangency of β(C) and of α(∂X) to the vertical foliationF(v̂) on
A are marked. Thanks to the presence of figure “∞”, β does not extend to an immersion α of any compact
surface X into A

Its leaves are of the form {R × θ}θ , where θ belongs either to the circle S1 or to the
interval I = [0, 1].

We draw some “doodles” (finite collections of loops) on A (as in Fig. 1, diagram
(a)) and pay close attention to the way they intersect the leaves of the foliation F(v̂),
especially to the way they are tangent to the leaves. These interactions of doodles
with the leaves are combinatorial in nature. We will impose some a priori restrictions
(called “2-moderate”) on these combinatorial patterns and will classify the doodles
that respect the restrictions.

In the paper, we will also consider doodles that are the images of boundaries of
compact surfaces X , immersed in A (as shown in Fig. 1(b)). The images of X in A
form overlapping “blobs”.

Our main results about doodles and blobs on a ruled page (A, F(v̂)) are contained
in Theorems 2.1–2.2 and Theorems 3.1–3.4. Perhaps, some new invariants of doodles
and blobs that lead to these theorems will have an independent life.

Let us set the stage for these results in a more formal way. Let X be a compact
surface with boundary and v a traversing vector field (see Definition 2.3) on X . As a
function of a point x ∈ X , the v-trajectory γx ⊂ X through x exhibits a discontinuous
behavior in the vicinity of any “concave” point (see Definition 2.2) of the boundary
[9]. In order to get around this fundamental difficulty, we “envelop” the pair (X , v)

into a pair (X̂ , v̂), where an ambient compact surface X̂ ⊃ X with a traversing vector
field v̂, is such that:

(1) ∂ X̂ is convex (see Definition 2.2) with respect to the v̂-flow on X̂ ,
(2) v̂|X = v.
Without lost of generality, the reader may think of X̂ as residing in the cylinder

R × S1 or in the strip R × [0, 1] and the vector field v̂ as being the unit vector field,
tangent to the leaves of the product foliation F(v̂).

Not any pair (X , v) admits such convex envelop (see Lemma 2.1). However, when
available, the convex envelop (X̂ , v̂) simplifies the analysis of (X , v) greatly.

In this context, our goal is to study convex envelops (and their generalizations,
the so called, quasi-envelops, shown in Fig. 2) together with the doodles or blobs
they contain, up to some natural equivalence relations that we call in [14, 15] “qua-
sitopies”, a crossover between bordisms and pseudoisotopies of immersions. When
A = R × [0, 1], the quasitopy (bordism) equivalence classes can be organized into
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groups. In [14], we compute these algebraic structures for an a priori prescribed set
of combinatorial tangency patterns of “n-dimensional doodles” to product-like 1-
dimensional foliations. For (n+1)-dimensional traversing convexly enveloped flows,
this goal is achieved in full generality in [15]. However, the case of quasi-enveloped
traversing flows is far from being settled. Although in two dimensions these structures
are relatively primitive, as this paper illustrates, they are not completely trivial ether.

Recall that in the study of manifolds and fibrations the universal classifying spaces
like Grassmanians play a pivotal role. In the category of convex envelops, the role of
universal objects (of “the new Grassmanians”) is played by various spaces of smooth
functions f : R → R whose zeros (considered with their multiplicities) are modeled
after the real divisors of real polynomials. The topology of these functional spaces
with constrained zero divisors is interesting on its own right (see [16, 17], where it
is described in detail). One particular kind of these functional spaces, called spaces
of smooth functions/polynomials with k-moderate singularities, has been introduced
and studied in depth by V. I. Arnold [1, 2] and V. A. Vassiliev [19, 20]. In [16, 17], we
compute the homology of similar functional spaces, based on real polynomials in one
variable, in terms of appropriate universal combinatorics. This is reminiscent to the
role played by the Schubert calculus in depicting the characteristic classes of classical
Grassmanians.

Recall that, for boundary generic 2-dimensional traversing flows (see Defini-
tion 2.1), no tangencies of orders ≥ 3 to the boundary may occur [10]. In light of
what has been outlined above, we should anticipate a link between boundary generic
flows on surfaces and the spaces of smooth functions f : R → R (or even real
polynomials) that have no zeros of multiplicities ≥ 3. This connection and its gener-
alizations are validated in [14, 15].

Let F denote the space of smooths functions f : R → R that are identically
1 outside of a compact interval (the interval may depend on a particular function).
The space F is considered in the C∞-topology. Let F<k be its subspace, formed
by functions that have zeros only of the multiplicities less than k. Arnold calls such
functions “functions with k-moderate singularities”. The property of a function to
have k-moderate zeros is an open property in the C∞-topology; that is, the spaceF<k

is open in F .
For k = 2, the combinatorial patterns ω of zero divisors of such functions are finite

sequences of natural numbers, build of 1’s and 2’s only, as well as the empty sequence.
A fundamental theorem of Vassiliev ([19], Corollary on page 81 and The First and

Second Main Theorems on pages 78–79) identifies the weak homotopy types of the
spacesF<k (for all k ≥ 4) and their integral homology types (for all k ≥ 3) as	Sk−1,
the space of loops on a (k − 1)-sphere! In particular, the integral homology of the
space F≤2 =def F<3 is isomorphic to the homology of the loop space 	S2.

Arnold proved that the fundamental group π1(F≤2) ≈ Z ([1]), the result that we
will use on a number of occasions. Thus, H1(F≤2;Z) ≈ Z as well.

Therefore, for a 2-dimensional convex quasi-envelop α : (X , v) ⊂ (A, v̂) with
no tangencies of α(∂X) to the oriented foliation F(v̂) of order ≥ 3, this fact allows
to define a characteristic class J ∗α ∈ H1(A, ∂�A;Z) ≈ Z of α. Here, ∂�A = ∅ for
A = R× S1, and ∂�A = R× ∂([0, 1]) for A = R× [0, 1].
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Let d be an even positive integer. We will employ the subspaces F≤2
d ⊂ F≤2,

formed by functions whose “degree”—the sum of multiplicities of all its zeros—is
even and does not exceed d.

2 Convex Quasi-envelops of Traversing Flows on Surfaces and Spaces
of Smooth Functions with 2-Moderate Singularities

Let us start with a number of definitions that have their origins in [9–13] and introduce
different kinds of vector fields. Unfortunately, the list of definitions is long.

Let v be a smooth vector field on a compact connected surface X with boundary,
such that v �= 0 along the boundary ∂X . Following [18], we consider the closed locus
∂+1 X(v) ⊂ ∂X , where the field points inside of X or is tangent to ∂X , and the closed
locus ∂−1 X(v) ⊂ ∂X , where v points outside of X or is tangent to ∂X . The intersection

∂2X(v) =def ∂+1 X(v) ∩ ∂+1 X(v)

is the locus where v is tangent to the boundary ∂X .
Points z ∈ ∂2X(v) come in two flavors: by definition, z ∈ ∂+2 X(v)when v(z) points

inside of the locus ∂+1 X(v), otherwise z ∈ ∂−2 X(v).

Definition 2.1 A vector field v on a compact surface X is boundary generic if:

• v|∂X �= 0,
• v|∂X , viewed as a section of the normal 1-dimensional (quotient) bundle
n1 =def T (X)|∂X

/
T (∂X), is transversal to its zero section at the points of the

locus ∂2X(v). ♦
In particular, for a boundary generic v, the loci ∂±1 X(v) are finite unions of closed
intervals and circles, residing in ∂X ; the loci ∂±2 X(v) are finite unions of points,
residing in ∂1X .

Each trajectory γ of a traversing vector field v must reach the boundary both in
positive and negative times: otherwise γ is not homeomorphic to a closed interval.

Definition 2.2 A boundary generic vector field v is boundary convex if ∂+2 X(v) = ∅.
A boundary generic v is boundary concave if ∂−2 X(v) = ∅. ♦
Definition 2.3 A non-vanishing vector field v on a compact surface X is traversing if
all its trajectories are closed segments or singletons.1

Equivalently, v is traversing if there exists a Lyapunov function f : X → R such
that d f (v) > 0 [9]. ♦
Definition 2.4 A traversing vector field v on a compact surface X is called traversally
generic, if the following properties hold:

(1) if a trajectory γ is tangent to the boundary ∂X , then the tangency is simple,
(2) no v-trajectory γ contains more then one simple point of tangency to ∂X . ♦

1 It easy to see that the ends of these segments, as well as the singletons, must reside in the boundary ∂X .
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Fig. 2 A convex quasi-envelop
α : X → A of a 2-moderately
generic (actually, even
traversally generic) vector field
α†(∂u) on a compact surface X ,
the torus from which an open
smooth disk is removed (the top
diagram), and on a compact
surface X , the closed surface of
genus 2 from which an open
smooth disk is removed (the
bottom diagram). In both
examples, the cardinality of the
fibers of the map
θ ◦ α : ∂X → T (v̂) does not
exceed 6

Definition 2.5 Let v̂ be the standard traversing vector field on the surface A (a strip or
a cylinder), tangent to the fibers of the projections R× [0, 1] → [0, 1] or R× S1 →
S1. Let C be a closed 1-dimensional manifold (a finite collection of several circles).
Consider an immersion β : C → A.

We say that such β is 2-moderately generic relatively to v̂ if no v̂-trajectory γ̂ has
order of tangency ≥ 3 to β(C). Here the order of tangency is understood as the sum
of tangency orders of local branches of β(C) that pass through a given point of γ̂ . ♦

By standard techniques of the singularity theory, we can perturb any given immer-
sion β : C → A so that β(C) will have only transversal self-intersections and will
become boundary generic, and thus, 2-moderately generic.

In fact, any orientable connected surface X with boundary admits an immersion
α : X → A (or in the plane R2) (see Fig. 2). We will use this fact to pull-back to X
the standard traversing vector field v̂ on A.

Definition 2.6 Consider an immersion α : X → A of a given compact (orientable)
surface X into the surface A, equippedwith the standard vector field v̂ and the foliation
F(v̂) it generates.

• Given a transversing vector field v on X , we call an immersion α a convex quasi-
envelop of (X , v) if v = α†(v̂), the pull-back of v̂ under α.

• Such α is called 2-moderately generic relative to v̂, if the restriction α|∂X is
2-moderately generic with respect to v̂ in the sense of Definition 2.5.

♦
The next definition is a special case of Definition 2.6.

Definition 2.7 Let α : X → A be a regular embedding of a given compact surface X
into the surface A, carrying the standard vector field v̂. We denote by v the pull-back
α†(v̂) of v̂ under α.

We say that the pair (A, v̂) is a convex envelop of (X , v). If α|∂X is 2-moderately
generic, we call α a 2-moderately generic convex envelop. ♦
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As the next lemma testifies, the existence of a convex envelop puts significant
restrictions on the topology of orientable surfaces X : such X are disks with holes or
unions of such.

Lemma 2.1 If a compact connected surface X with boundary has a pair of loopswhose
transversal intersection is a singleton, then no traversal flow on X admits a convex
envelop. In other words, if a connected surface X with boundary has a handle, then
no traversal flow on X can be convexly enveloped.

Proof By [12], Theorem 1.2, the space X̂ of a convex envelop is either a disk or
an annulus, both surfaces residing in the plane. No two loops in the plane intersect
transversally at a singleton. Thus, for surfaces with a handle, no convex envelops exist.

��
To incorporate surfaces with handles into our constructions, in Definition 2.6, we

introduce the less restrictive notion of a convex quasi-envelop.

Now, we would like to explore closely a nice connection between:
(1) immersions α : (X , v) → (A, v̂) of a compact surface X in the surface A, such

that v = α†(v̂) and α(∂X) is 2-moderately generic with respect to v̂, and

(2) loops in the functional spaces F≤2.
Let α(∂X)× denote the finite set of self-intersections of the curves forming the

image α(∂X). Let α(∂X)◦ denote the set α(∂X) \ α(∂X)×.
With the pattern α(∂X) ⊂ A, we associate an auxiliary smooth function zα : A →

R, defined by the following properties:

z−1
α (0) = α(∂X), (2.1)

• 0 is the regular value of zα at the points of α(∂X)◦,
• in the vicinity of each transversal crossing point a ∈ α(∂X)×, there exist locally
defined smooth functions x1, x2 : A → R such that: 0 is their regular value,
{x−1

1 (0)} and {x−1
2 (0)} define the two local intersecting branches of α(∂X), and

zα = x1 · x2 locally.
• zα approaches 1 at infinity in A = R× S1 or in A = R× [0, 1].
The sign of zα changes to the opposite, as a path in A crosses an arc from α(∂X)◦

transversally, thus providing a “checker board” coloring of the domains in A \α(∂X).
The properties in (2.1) do not determine a unique function zα , but any such function
will serve equally well in the forthcoming constructions.

Given a smooth traversing vector field v on a compact surface X , we denote by
T (v) the space of v-trajectories. For a boundary generic and traversing v, the space
T (v) is a finite graph; for a traversally generic v, the space T (v) is a finite graph
whose vertexes are only of valency 3 and 1 [12]. For the standard vector field v̂ on A,
the trajectory space T (v̂) is either a circle S1, or an interval [0, 1].

Let u : A → R be the obvious projection on the first (“vertical”) factor. In particular,
du(v̂) > 0 and u(γ̂ ) = R for all v̂–trajectories γ̂ in A. Then, with the help of zα and
u, we get a map Jzα : T (v̂) → F≤2 whose source, the trajectory space T (v̂), is either
a circle or a closed interval. The image of Jzα belongs to the space of smooth functions
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f : R → R such that the set { f ≤ 0} is compact in R, f has no zeros of multiplicity
≥ 3, and limu→±∞ f (u) = 1. We define the map Jzα by the formula

Jzα ([γ̂ ]) = (zα|γ̂ ) ◦ (u|γ̂ )−1, (2.2)

where γ̂ stands for a v̂-trajectory in A, and [γ̂ ] for the corresponding point in the
trajectory space T (v̂). If A is the strip, T (v̂) = [0, 1]. The two ends of the interval
are mapped by Jzα to the convex subspace F+ of F that is formed by strictly positive
smooth functions. Therefore, we get a map of pairs

Jzα : ([0, 1], ∂[0, 1]) → (F≤2, F+).

The constant point-function 1 is a deformation retract of F+. Thus, homotopically,
Jzα can be regarded as a based loop

Jzα : (S1, pt) → (F≤2, F+) ∼ (F≤2, 1).

For a fixed α, the homotopy class [Jα] of the map Jzα does not depend on the choice
of the auxiliary function zα , subject to the four properties in (2.1). Indeed, consider
the α∗-image α∗(ν) of the outer normal vector field ν to the boundary ∂X in X . At the
points a ∈ α(∂X)×, we get two vectors v1(a), v2(a) ∈ α∗(ν), one for each branch of
α(X).

Let Lw denote the directional derivative in the direction of a vector w. If zα and z′α
are any two functions that satisfy all the properties from the list (2.1), we getLv̂zα > 0
and Lv̂z

′
α > 0 at each point of α(∂X)◦. Therefore, we get Lv̂{τ zα + (1 − τ)z′α} >

0, where τ ∈ [0, 1], at each point of α(∂X)◦. At the same time, for i = 1, 2, at
each transversal crossing a ∈ α(∂X)×, we have Lv̂xi > 0, and Lv̂x

′
i > 0. Hence,

Lv̂{τ xi + (1− τ)x ′i } > 0. The rest of properties from (2.1) are obviously “convex” .
Therefore, the space of functions zα that satisfy (2.1) is convex and, thus, con-

tractible, which implies that the homotopy class [Jα] does not depend on the choice
of zα .

As a result, for A = R × S1, any moderately generic convex quasi-envelop α :
X → A, produces a homotopy class [Jα] ∈ [S1,F≤2]. For A = R × [0, 1], any
moderately generic convex quasi-envelop α : X → A, produces a homotopy class
[Jα] ∈ [(S1, pt), (F≤2, 1)].

Note that these homotopy classes do not depend on the orientation of the surface
X .

We pick a generator κ ∈ π1(F≤2, 1) ≈ Z (see [2] and Fig. 5(a) or (b), for realistic
portraits of κ). For A = R×[0, 1], we define an integer Jα by the formula Jα ·κ = [Jα].

The isomorphism π1(F≤2, 1) ≈ Z follows from [2]. A slight modification of
Arnold’s arguments leads to Theorem 2.1 below. The main difference between our
constructions and the ones from [2] is that Arnold is concerned with immersions of
1-dimensional oriented “doodles” in A, while we deal also with immersions of “blobs”
(compact orientable surfaces) in A (compare diagrams (a) and (b) in Fig. 1).
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Wedenote by v̂• the vector field (v̂, 0)on the solid A×[0, 1] andbyπ : A×[0, 1] →
[0, 1] the obvious projection.

We have seen how a 2-moderately generic immersion α : X → A produces a
homotopy class in [S1, F≤2] or in [(D1, ∂D1), (F≤2, 1)].

On the other hand, generic (oriented) loops in β : S1 → F≤2 have an interpretation
as finite collections C of smooth embedded closed curves (embedded “doodles”) in
the surface A. These curves have no tangency to the v̂-trajectories γ̂ of order that
exceeds two. In particular, any inflectionsof the curveswith respect to the γ̂ -trajectories
are forbidden. Furthermore, a generic homotopy between the maps β : S1 → F≤2

corresponds to some cobordism like relation between the corresponding plane curves
C. The cobordism also avoids the forbidden tangencies of orders ≥ 3 to the standard
foliation F(v̂•) on A × [0, 1].

To define this cobordism, let us spell out more accurately the 2-moderate genericity
requirements on the collections of doodles in A:

β : C → A (2.3)

• is a smooth immersion of a finite collection of (oriented) circles,
• no intersections of β(C) of multiplicities ≥ 3 are permitted,
• the order of tangency between each branch of β(C) and each v̂-trajectory γ̂ does
not exceed 2.

• if a branch of β(C) is quadratically tangent to a v̂-trajectory at a point x , then no
other branch contains x . ♦

Definition 2.8 Given two immersions β0 : C0 → A and β1 : C1 → A as in (2.3), we
say that they are (orientably) 2-moderately cobordant, if there is a compact (oriented)
surface S and a smooth immersion B : S → A × [0, 1] such that:

(1) ∂S = C0
∐−C1,

(2) B|C0 ∐C1 = β0
∐

β1,
(3) the immersion B| : S → A × [0, 1] is 2-to-1 at most,
(4) if two local branches of B(S) intersect at a point z = a × {t}, then each of them

is transversal to the trajectory γ̂ × {t} through z,
(5) every v̂•-trajectory γ̂ × {t} ⊂ A × [0, 1] is tangent to each local branch of the

surface B(S) with the order of tangency that does not exceed 2,2

(6) the map S
B|−→ A × [0, 1] → [0, 1] is a Morse function with the regular values

{0} and {1}, ♦
We introduce the bordism set Cimm

moderate≤2(A) of immersions β : C → A with 2-
moderate tangencies to the foliation F(v̂). It is possible to verify that this cobordism
between immersions is an equivalence relation (see [14, 15]).

Replacing “immersions” with “regular embeddings” in Definition 2.8, we get a
modified notion of bordisms of (oriented) doodles. We denote the set of such bor-
disms by Cemb

moderate≤2(A). Depending on whether we consider the loops, forming C,

2 In particular, the cubic tangencies are forbidden.
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oriented or not, we get oriented versions OCimm
moderate≤2(A) and OCemb

moderate≤2(A) of

the bordisms Cimm
moderate≤2(A) and Cemb

moderate≤2(A).
In the next definition, all surfaces and 3-folds that admit submersions in A or in

A × [0, 1] automatically must be orientable, but not necessarily oriented.

Definition 2.9 Given two (oriented) submersions α0 : X0 → A and α1 : X1 → A
with α0|∂X0 and α1|∂X1 as in (2.3), we say that they are 2-moderately cobordant,
if there is a compact (oriented) 3-fold W with corners ∂X0

∐
∂X1 and a submersion

B : W → A × [0, 1] such that:

(1) ∂W = X0 ∪ −X1 ∪ δW , where δW =def ∂W\int(X0
∐

X1),

(2) B|X0
∐

X1 = α0
∐

α1,

(3) B| : δW → A × [0, 1] has at most double self-intersections,

(4) if two local branches of B(δW ) intersect at a point z = a×{t} ∈ A× [0, 1], then
each of them is transversal to the trajectory γ̂ × {t} through z,

(5) every v̂•-trajectory γ̂ × {t} ⊂ A × [0, 1] is tangent to each local branch of the
surface B(δW ) with the order of tangency ≤ 2,

(6) the map δW
B|−→ A× [0, 1] → [0, 1] is a Morse function with the regular values

{0} and {1}. ♦
Thus, we can talk about the bordism set Bimm

moderate≤2(A) or OBimm
moderate≤2(A) of

immersions/embeddings α : X → A with 2-moderate tangencies to the foliation
F(v̂). It is possible to verify that this cobordism between immersions is an equivalence
relation (see [15]).

If in Definition 2.9 we replace all the “immersions” with the “regular embeddings”
and drop vacuous constraints (2) and (3) of the definition, we will get a similar version
of (oriented) bordisms of regular embeddings. We denote them by Bemb

moderate≤2(A)

and OBemb
moderate≤2(A).

Note that, if in Definition 2.9 we drop all the constraints related to how the bound-
ary of embedded blobs and of the solid embedded cobordisms interact with the
v̂-trajectories in A and with the v̂•-trajectories in A × [0, 1], then the correspond-
ing bordism groups Bemb(A) and OBemb(A) of A are trivial. Indeed, by pushing
(oriented) blobs α : X ↪→ A inside A× [0, 1], while keeping their boundaries α(∂X)

fixed in A×{0}, we create a (oriented) solid that delivers the cobordism between α(X)

and the empty blob.
The following obvious maps are available:

A : Bemb
moderate≤2(A) −→ Bimm

moderate≤2(A),

A : OBemb
moderate≤2(A) −→ OBimm

moderate≤2(A), (2.4)

A : Cemb
moderate≤2(A) −→ Cimm

moderate≤2(A),

A : OCemb
moderate≤2(A) −→ OCimm

moderate≤2(A). (2.5)

Also, taking the boundaries of (oriented) blobs, we get the obvious maps:

B∂ : Bimm
moderate≤2(A) −→ Cimm

moderate≤2(A),
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B∂ : OBimm
moderate≤2(A) −→ OCimm

moderate≤2(A), (2.6)

B∂ : Bemb
moderate≤2(A) −→ Cemb

moderate≤2(A),

B∂ : OBemb
moderate≤2(A) −→ OCemb

moderate≤2(A). (2.7)

The maps B∂ in (2.7) are bijections (see Theorem 2.1 and [14, 15]).
Let us add one mild requirement to the list of the six properties in Definition 2.9:

• All the double intersections of B| : δW → A × [0, 1] are transversal. (2.8)

Combining the six properties from Definition 2.9 with the property in (2.8), we
could, at the first glance, get a more rigid notion of cobordisms of immersions. Let us
denote them temporarily by B×imm

moderate≤2(A).
Thus, we have the obvious map

A× : B×imm
moderate≤2(A) → Bimm

moderate≤2(A).

A× : OB×imm
moderate≤2(A) → OBimm

moderate≤2(A).

By the general position argument, we may isotope an immersion B via immersions so
that all its self-intersections become transversal. Therefore, the mapsA× are actually
bijections [14].

In fact, the sets Bimm
moderate≤2(A), Bemb

moderate≤2(A) and OBimm
moderate≤2(A),

OBemb
moderate≤2(A) have a group structure. The group operation � takes a pair of

2-moderate submersions, α1 : X1 → A and α2 : X2 → A, to a new 2-moderate
submersion α1�α2 : X1

∐
X2 → A by placing the image of α2 in R × S1 or in

R×[0, 1] above the image of α1 (see Fig. 5(c) and (d)). At the first glance, the opera-
tion � seems to be non-commutative. At least for A = R× [0, 1], this first impression
is wrong: by an appropriate isotopy, one can switch the vertical order of α1(X1) and
α2(X2) without violating the requirements that all the immersions are 2-moderate.

Note that the cardinality of the fibers of the map θ ◦ (α1�α2) is less than or equal
to the sum of cardinalities of the fibers of θ ◦ α1 and of θ ◦ α2, where θ : A → T (v̂)

is the obvious map.
In the case of A = R× [0, 1], another commutative group structure is available in

the sets Bimm/emb
moderate≤2(A) and OBimm/emb

moderate≤2(A) (note that, for more general than the
2-moderate combinatorial constraints on the tangency patterns, similar groups may
not be commutative [15]). It is induced by the operation

� : Bimm/emb
moderate≤2(A) × Bimm/emb

moderate≤2(A) → Bimm/emb
moderate≤2(A)

� : OBimm/emb
moderate≤2(A) ×OBimm/emb

moderate≤2(A) → OBimm/emb
moderate≤2(A)

that places the image of α2 to the right of the image of α1 along the segment [0, 1];
that is, α1(X1) is placed in the strip R× (0, 0.5), while α2(X2) is placed in the strip
R× (0.5, 1) (see Fig. 2, lower diagram).
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The zero element in Bimm/emb
moderate≤2(A) or in OBimm/emb

moderate≤2(A) is represented by the
empty surface X , and the minus of an immersion α : X → A by a composition of α

with a flip of A with respect to the trajectory R× {0.5}.
In contrast with the operation �, the cardinality of the fibers of the map θ ◦ (α1�α2)

is less or equal to the maximum of cardinalities of the fibers of θ ◦ α1 and of θ ◦ α2.
Due of this good feature of the operation �, we choose to study its generalizations in
[14, 15].

Lemma 2.2 For A = R × [0, 1], the operation � in Bimm
moderate≤2(A) or in

OBimm
moderate≤2(A) and in Bemb

moderate≤2(A) or in OBemb
moderate≤2(A) is commutative.

Proof By a parallel transport in A of the images α1(X1) ⊂ R×(0, 0.5) and α2(X2) ⊂
R × (0.5, 1), we can switch their order along [0, 1]. This can be done by sliding up
α2(X2) so that it will reside in (q,+∞) × (0.5, 1), then by sliding down α1(X1) so
that it will reside in (−∞,−q) × (0.5, 1). Here q is a positive number that exceeds
the vertical size of both images. Then we slide horizontally the new α2(X2) and
place it (q,+∞) × (0, 0.5). Similarly, we slide horizontally the new α1(X1) and
place it (q,+∞)× (0.5, 1). Finally, we slide down α1(X1) and slide up α2(X2), thus
completing the exchange.

Thanks to the nature of all these slides (parallel shifts), the maximal order of tan-
gency of the v̂-trajectories to themoving imagesα1(∂X1) andα2(∂X2) does not exceed
2.

Note that the maximal cardinality of the fibers of the projection α1(∂X1)
∐

α2(∂X2) → [0, 1] did increase in the exchange process. ��
Let F=2 ⊂ F≤2 denote the discriminant hypersurface in the space F≤2, formed

by the functions from F≤2 with at least one zero of multiplicity 2.

The following proposition is similar to Theorem from [2]; however, our notion
of cobordism of embedded blobs is different from the Arnold’s more combinatorial
notion of the cobordism of embedded doodles with no vertical inflection points.

Theorem 2.1 • For A = R × [0, 1], the construction {α � Jzα } in (2.2), where
the immersion α| : ∂X → A has only 2-moderate tangencies to the foliation F(v̂),
delivers a group homomorphism

J imm : Bimm
moderate≤2(A) → π1(F≤2, 1) ≈ Z,

where the group addition in Bimm
moderate≤2(A) is the operation �.

• The same construction produces a group isomorphism

J emb : Bemb
moderate≤2(A) ≈ π1(F≤2, 1) ≈ Z.

The inverse map (J emb)−1 is delivered by the correspondence

K : {
τ : ([0, 1], ∂[0, 1]) → (F≤2, 1)

} ⇒
⋃

θ∈[0,1]

(
τ(θ)−1((−∞, 0])), θ

) ⊂ R
1 × [0, 1],
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where τ is a continuous path in F≤2, transversal to the discriminant hypersurface
F=2.

• For A = R× S1, the construction {α � Jzα }, where an embedding α : X → A
has only 2-moderate tangencies, delivers a 1-to-1 map

J emb : Bemb
moderate≤2(A) ≈ [S1, F≤2].

The inverse map (J emb)−1 is induced by the correspondence

K : {
τ : S1 → F≤2} ⇒

⋃

θ∈S1

(
τ(θ)−1((−∞, 0])), θ

) ⊂ R
1 × S1.

Proof The validation of this theorem is inspired by the graphic calculus in [2] that
converts homotopies of loops in the functional space F≤2 into cobordisms (surgeries)
of doodles in A with 2-moderate tangencies to the foliation F(v̂). With the help of
this calculus, the isomorphism π1(F≤2, 1) ≈ Z is established [2]. In the present
case, the loops are images of boundaries of oriented compact surfaces under their
immersions/embeddings in A. Fig. 6 shows our modification of this graphic calculus
in action. A generator of π1(F≤2, 1) ≈ Z is depicted in Fig. 5(b).

If two 2-moderate immersions, α0 : X0 → A and α1 : X1 → A, are cobordant with
the help of a 2-moderate immersion B : W → A×[0, 1] as inDefinition 2.9, extending
the function zα0

∐
zα1 : A×({0}∐{1}) → R to a smooth function Z : A×[0, 1] → R

with similar properties delivers a homotopy between the loops Jzα0 and Jzα1 (see (2.2))
in F≤2.

On the other hand, if a path τ : ([0, 1], ∂[0, 1]) → (F≤2, 1) is transversal to the
discriminant hypersurface F=2 ⊂ F≤2, then the locus

K (τ ) =def

⋃

θ∈[0,1]

(
τ(θ)−1(0), θ

) ⊂ R
1 × [0, 1]

is a smooth embedded curve in A (see [16], Lemma 3.4, for validation of this claim
and its generalizations). Since the set f −1((−∞, 0])) is compact for any f ∈ F≤2,
the curve K (τ ) is the boundary of a compact surface

X(τ ) =def

⋃

θ∈[0,1]

(
τ(θ)−1((−∞, 0])), θ

) ⊂ A.

Similar arguments hold for a homotopy

B : ([0, 1], ∂[0, 1]) × [0, 1] → (F≤2, 1)

between two such maps τ0 and τ1, where B is transversal to F=2. The 3-fold

W (B) =def

⋃

θ∈[0,1], t∈[0,1]

(
B(θ)−1((−∞, 0])), θ, t

) ⊂ A × [0, 1]
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delivers the cobordism (as in Definition 2.9) between X(τ0) and X(τ1). Therefore,

J emb : Bemb
moderate≤2(A) ≈ π1(F≤2, 1)

is a bijection (actually, a group isomorphism with respect to the operation �).
This fact has a curious implication for the mapA from (2.6): since the map J imm :

Bimm
moderate≤2(A) → π1(F≤2, 1) is available, we can compose it with the inverse of the

bijection J emb to get a surjective map

RJ : Bimm
moderate≤2(A) → Bemb

moderate≤2(A) ≈ Z, (2.9)

which serves as the right inverse of themap (homomorphism)A; that is,RJ ◦A = id.
In fact, for A = R× [0, 1], RJ is a group epimorphism.

The case A = R × S1 is similar, but the operation � is not available. Instead, the
operation � is available, but its commutativity is in question. ��

We orient the surface A so that the the θ -coordinate, corresponding to the trajectory
space T (v̂) = [0, 1] or S1, is the first, and the u-coordinate, corresponding to the
multiplier R, is the second. With this counterclockwise orientation of A being fixed,
any immersion α : X → A induces an orientation of the surface X , thus choosing
orientations of each component of ∂X . However, this induced orientation, may differ
from the original orientation of X , an ingredient in the definition ofOBimm

moderate≤2(A)!
Given an immersion α : (X , v) ⊂ (A, v̂) such that α(∂X) has the properties as in

(2.3), we attach a new α-dependent polarity to each “concave” point a ∈ ∂+2 X(v):
by definition, the polarity of a is “⊕” if α∗(νa), where νa is the inner normal to ∂X
at a, points in the direction of the coordinate θ . Otherwise, the new polarity of a is
defined to be “�” (see Fig. 5). Equivalently, a is of polarity “⊕” if crossing the critical
value θ(a) in the positive direction increases the cardinality of the fiber of the map
θ : α(∂X) → T (v̂) in the vicinity of a.

As a result, the loci {∂+j X(v)} j and {∂−j X(v)} j acquire the additional polarities ⊕
and �; all together, four flavors for the tangencies of α(∂X) to F(v̂) are available:
{(+,⊕), (+,�), (−,⊕), (−,�)}. These flavors are independent of the orientations
of X .

When dealing with oriented 2-moderate blobs and doodles, it will be useful to
introduce still another polarity (orientation) of tangency points, which will be denoted
“↑” and “↓”. Each point a ∈ ∂+2 X(v) has polarity “↑” if the vector field v̂(a) is
consistent with the orientation of α(∂X) at a. Otherwise, the polarity of a is “↓”.
Similar definition is applied to the points of the locus ∂−2 X(v). As a result, each point
of the locus ∂2X(v), with the help of α, acquires the following eight flavors:

{(+,⊕,↑), (+,�,↑), (−,⊕,↑), (−,�,↑), (+,⊕,↓), (+,�,↓), (−,⊕,↓), (−,�,↓)}.

Four of these eight flavors will play an essential role:

{
(+,⊕,↑), (+,�,↓)︸ ︷︷ ︸

clockwise

, (+,⊕,↓), (+,�,↑)︸ ︷︷ ︸
counterclockwise

}
, (2.10)
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the first pair occurring in the blobs oriented clockwise, the second pair in the blobs
oriented counterclockwise.

Thus, with any embedded oriented surface α : X ↪→ A, we associate two integers

Kα = def#{∂+,⊕,↓
2 X(v̂)} − #{∂+,�,↑

2 X(v̂)},
Lα = def#{∂+,⊕,↑

2 X(v̂)} − #{∂+,�,↓
2 X(v̂)} (2.11)

that correspond to the blobs that are oriented counterclockwise and clockwise, respec-
tively.

We introduce also an integer

Jα = def#{∂+,⊕
2 X(v̂)} − #{∂+,�

2 X(v̂)}
(in the oriented case, Jα = Kα + Lα). (2.12)

As the next theorem testifies, this number plays a role as a bordism invariant of immer-
sions of non-oriented blobs and as a tool for characterizing elements of the fundamental
group π1(F≤2, 1).

Theorem 2.2 Let A = R× [0, 1].
• Any regular embedding α : (X , v) → (A, v̂) with only 2-moderate tangencies of

α(∂X) toF(v̂)produces amap Jzα as inTheorem 2.1. Its homotopy class [Jzα ] = Jα ·κ ,
where κ denotes a generator of π1(F≤2, 1) ≈ Z (shown in Fig. 5(b)), and Jα ∈ Z.

The integer Jα can be computed by the formula (2.12).
• Any regular embedding α : (X , v) → (A, v̂) of an oriented surface X with only

2-moderate tangencies produces two maps

Kzα : ([0, 1], ∂[0, 1]) → (F≤2, 1) and Lzα : ([0, 1], ∂[0, 1]) → (F≤2, 1)

as in Theorem 2.1; the first map is generated by the counterclockwise oriented blobs,
and the second one by the clockwise oriented blobs. The homotopy classes of these
maps are: [Kzα ] = Kα · κ and [Lzα ] = Lα · κ .

The integers Kα and Lα can be computed by the formula (2.11).

• Moreover, Kα and Lα deliver an isomorphism

K × L : OBemb
moderate≤2(A)

≈−→ Z× Z. (2.13)

Proof Let d =def maxγ̂ #{γ̂ ∩α(∂X)} be the maximal cardinality of the intersections
of the v̂-trajectories γ̂ with the loop pattern α(∂X). Since X bounds ∂X , d must be
even.

We start with the case of non-oriented blobs.
For any 2-moderate immersionα : X → A, we pick an auxiliary function zα : A →

R, adjusted to α as in (2.1). By the previous arguments, this choice of zα produces the
relative loop Jzα : ([0, 1], ∂[0, 1]) → (F≤2

d , 1).
Consider the restriction Bδ =def B| : δW → A × [0, 1], followed by the obvious

projection φ : A × [0, 1] → [0, 1]. By an arbitrary C∞-small perturbation of B, we
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Fig. 3 Changing topology of slices B−1(A × {t}), as t crosses a critical value t� of the Morse function
f : δW → [0, 1]. Different shades correspond to different slices; each box is shown with 3 slices. In (a)
and (b), the portion of B(W ) over a small interval [t� − ε, t� + ε] is a pair of solid pants. In (c), (d), this
portion is a solid half-ball. In (e) and (f), it is the complements to such half-balls in the solid cube. The
figure does not show the complements to solid pants, depicted in (a) and (b). Note the “parabolic locus” (an
arc of which is dashed) in B(δW ), where the vector field v̂ is quadratically tangent to the surface B(δW )

may assume that the composition f =def φ ◦ Bδ is a Morse function. Since the space
F≤2 is open inF , compactly supported perturbations of smooth 2-moderate functions
or of their families remain 2-moderate. Therefore, we may assume that the cobordism
B is such that φ ◦ Bδ is a Morse function.

Since, by property (6) fromDefinition 2.9, B : W → A×[0, 1] is a submersion and

f : δW
Bδ−→ A×[0, 1] → [0, 1] is aMorse function, as t ranges in [0, 1], the topology

of a regular slice B−1(A × {t}) ⊂ W may change via a relative, elementary surgery
onlywhen t crosses a critical value t� of f . The topology of the slice B−1(A×{t})∩δW
changes via an elementary surgery inside δW as t crosses t�. Thus, there are four types
of local surgery, shown in Fig. 3: two types of solid pants that correspond to f -critical
points (x�, t�) ∈ B(δW ) of the Morse index 1 and two types of “indented” solids that
correspond to f -critical points (x�, t�) ∈ B(δW ) of indexes 0 and 2.

It is crucial for our arguments that the geometry of the elementary surgery blocks
W ⊂ A × [0, 1] is such that the surface δW ⊂ ∂W has no tangency to the v̂•-
trajectories of order 3 or higher (see the parabolic tangency curves with dashed arcs
from Fig. 3).

Let us now describe an algorithm for the elementary moves (surgery) (see Fig. 6)
that reduces a given pattern X0 = J−1

zα ((−∞, 0]) ⊂ A to a pattern from the canonical
set of patterns {n · K }n∈Z (as in Fig. 5) by a cobordism B : W → A × [0, 1] as in
Definition 2.9, a cobordism which is a regular embedding.

By a small perturbation of α0, we may assume that no v̂-trajectory has a combi-
natorial tangency pattern ω with two or more 2’s. Then, we select the v̂-trajectories
γ̂1, . . . γ̂s that contain the tangency patterns ω = (1, . . . , 1, 2, 1, . . . , 1), where the
number of 1’s that precede 2 is odd (which implies that the unique quadratic tangency
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Fig. 4 Eliminating a pair of
dark-shaded “kidneys” with
their horns facing each other by
a surgery: the first surgery
transforms the kidneys in the
first slice into a ring in the
second slice, and then the
second surgery transforms the
ring into an empty slice

point on γ̂k resides in the interior of the set γ̂k ∩ α0(X0)). These trajectories corre-
spond exactly to the “concave” points of ∂+2 (α0(X), v̂). The trajectories are listed by
the order of their images [γ̂1], . . . [γ̂s] in the oriented trajectory space T (v̂). We notice
that such trajectories γ̂k come in two flavors: “⊕” and “�”, depending on the polarity
of the tangency of γ̂k to α0(∂X).

Then, for each adjacent pair γ̂k, γ̂k+1, we choose a v̂-trajectory γ̂ �
k in-between γ̂k

and γ̂k+1. Such γ̂ �
k is traversal toα0(X0) and its combinatorial typeω(γ̂ �

k ) is a sequence
of 1’s of a length 2q. The intersectionα0(X0)∩γ̂ �

k is a disjoint union of closed intervals
Ik,1, . . . , Ik,q . In the interior of each interval Ik, j we pick a point p�

k, j and will use it as
the critical point for a surgery in A× [0, 1] on the solid W0 = α0(X0)× [0, 0.5) (see
Fig. 3(a) and (b)). If the polarity of γ̂k is⊕, we perform a surgery onW0 as in Fig. 3(a),
if the polarity of γ̂k is �, we perform a surgery on W0 as in Fig. 3(b), by attaching
solid pants Z0 to W0. We denote by W1 the resulting solid W0 ∪ Z0 in A× [0, 1] and
by F1 : W1 → [0, 1] the obvious projection.

It is essential that, since F1 is a Morse function, the attached pants Z0 do not
violate property (5) from Definition 2.9. Note that each elementary surgery of type (a)
introduces a pair of new v̂•-tangent points to the slice ∂(F−1

1 (0.5)); fortunately, none
of new tangency pair is of the type ω = (1, . . . , 1, 2, 1, . . . , 1), where the number of
1’s that precede 2 is odd (i.e., the pair belongs to ∂−2 (F−1

1 (0.5))) .
Now, the preimage F−1

1 (0.5) consists of several connected componentsU1, . . .Us ,
each of which is a domain in A × {0.5} which contains at most a single trajectory of
the combinatorial type (. . . , 1, 2, 1, . . . ), where the number of 1’s that precede 2 is
odd and whose polarity is either ⊕ or �.

If a connected componentU is a ball with several holes, then applying the previous
1-surgery to a segment of trajectory inU that connects different connected components
of ∂U , we will convertU into a topological 2-ball without introducing new trajectories
of the combinatorial type (. . . , 1, 2, 1, . . . )with the number of 1s that precede 2 being
odd. Therefore, we may assume that all the connected components U are 2-balls.

Thus, we divide the balls U in three types: (i) U intersects with a single trajectory
of the polarity⊕, (ii)U intersects with a single trajectory of the polarity�, and (iii)U
does not intersect with trajectories of the combinatorial type (. . . , 1, 2, 1, . . . ), where
the number of 1’s that precede 2 is odd.

Next,we eliminate the type (iii) v̂•-convex 2-balls by a 3-surgery onW1 that amounts
to attaching a few 3-balls to the slice F−1

1 (0.5) as in Fig. 3(c). We denote by W2 the
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resulting solid in A×[0, 1], and by F2 : W2 → [0, 1] the obvious projection. We may
assume that the F2-image of W2 in [0, 1] resides in the interval [0, 0.7). Because the
balls of type (iii) are v̂•-convex, we may assume that δW2\δW1 avoids v̂•-tangencies
of order ≥ 3. In particular, property (5) from Definition 2.9 is respected by these
surgeries.

We are left now with balls U in F−1
2 (0.7) of types (i) and (ii) (so called, Arnold’s

“ kidneys”). Each pair of 2-balls of the distinct types (i) and (ii) can be eliminated
by an isotopy in A × {0.7} (which involves scaling and parallel shifts), followed by
a surgery as shown in Fig. 4. Indeed, if the horns of a pair of kidneys U and U ′ of
different polarities⊕ and� are facing each other, then by attaching two solid pants we
may surgery their union into a ring in a new slice. Then by attaching a relative handle
(D2+ × S1, D1 × S1) to A × {0} in A × [0, 1], we eliminate the ring. If the horns of
U and U ′ of different polarities are facing in opposite directions, then by an isotopy
in A (as in Lemma 2.2) we may switch their order along the T (v̂)-direction. The
switching will reduce the situation to the case when the horns face each other. Again,
this surgery will not introduce new points of the combinatorial types (. . . 121 . . . ),
where the number of 1’s that precede 2 is odd. Thus, we will be left with a disjoint
union of kidneys of the same polarity ⊕ or �.

Let α : D2 → A be the regular imbedding realizing a ⊕-polarized kidney. By
[1], under the map Jα , each kidney is mapped to a non-contractible loop �α in F≤2,
a generator of π1(F≤2, 1) ≈ Z. Therefore, no further simplifications among the
remaining kidneys are possible.

Thus, the difference between the numbers of kidneys of types (i) and (ii) is an
invariant of the bordism class, introduced in Definition 2.9. This difference equals
to the original difference #{∂+,⊕

2 X(v)} − #{∂+,�
2 X(v)} between the numbers of v̂-

trajectories with polarities ⊕ and � and was preserved under all the surgeries that
led to the final slice with the kidneys of the same polarity. Thus, the number Jα =
#{∂+,⊕

2 X(v)} − #{∂+,�
2 X(v)} did not change under all the surgeries above.

Now we are ready to investigate the 2-moderate bordisms OBemb
moderate≤2(A) of

embedded oriented blobs. Each connected blob can be oriented counterclockwise,
i.e., coherently with the fixed orientation of the ambient A, or clockwise, i.e., opposite
to the fixed orientation of A. We aim to show that the numbers Kα, Lα from (2.11)
define an isomorphism (2.13).

It is possible to attach embedded/immersed 1-handles in A only to similarly oriented
blobs: the “twisted 1-handles” cannot be immersed in A.

We notice (see Fig. 6, the lower diagram) that attaching a narrow 1-handle, whose
core is transversal to the field v̂, to similarly oriented blobs contributes a new pair of
points of the polarities (+,⊕,↓) and (+,�,↑) (the counterclockwise oriented blobs),
or a newpair of points of the polarities (+,⊕,↑) and (+,�,↓) (the clockwise oriented
blobs). Deleting a 1-handle contributes a new pair of points of the polarities (−,�,↑)

and (−,⊕,↓) (the counterclockwise oriented blobs), or (−,�,↓) and (−,⊕,↑) (the
clockwise oriented blobs); however, these changes affect only the convex loci ∂−2 (∼)

which play secondary roles. Thus, all these surgeries do not change the values Kα, Lα .
Similarly, adding or deleting a 2-ball D such that ∂+2 D(v̂) = ∅, does not affect the
values of Kα, Lα .
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Fig. 5 Two portraits of a generator κ ∈ π1(F≤2, p), where the base point p ∈ F≤2 is modeled after the
polynomial p(u) = u4−1 in diagram (a) and by p(u) = u4+1 in diagram (b). Diagrams (c) and (d) portray
2κ . In diagrams (a) and (c) that represent the case T (v̂) = S1, the left and the right edges of the rectangle
should be identified so that the shaded regions match. Note the polarity⊕ of the tangent v̂-trajectories with
the combinatorial pattern ω = (. . . 121 . . . ), where the number of 1’s that precede 2 is odd

Thus, we will treat the counterclockwise and clockwise oriented blobs separately,
recycling the our arguments in the non-oriented case. Each embedded connected blob
α(X0) is a disk or a disk with a number of holes. By deleting narrow 1-handles
from α(X0) as in Fig. 3, (a), or as in Fig. 6, we replace, via 2-moderate bordisms,
each counterclockwise/clockwise oriented blob with holes by a similarly oriented
topological 2-ball D0. In the process, we keep the original values Kα, Lα . The tangency
of ∂D0 to v̂ is still 2-moderate.

Now all the connected components of the new embedded surface Y ⊂ A are 2-balls.
As in the non-oriented case, by deleting 1-handles, each ball can be split into a number
of balls, each of which has a single point from ∂+2 (∼) at most. By a 2-surgery, we
delete the balls which are convex with respect to v̂ (i.e., they do not have singletons
from ∂+2 (∼)). Now we a left with the balls that have a single point of the polarity from
the list (2.10). Some of them are oriented counterclockwise, others clockwise.

Thus,

K × L : OBemb
moderate≤2(A) −→ Z× Z. (2.14)

is an epimorphism.
Assuming that Kα = 0 = Lα for some α, we see that this property allows to pair

all the counterclockwise/clockwise oriented kidneys so that each pair by 1-surgery
can be transformed into a ring and then eliminated as in Fig. 4. Therefore, K × L is a
monomorphism. ��

As in the case of non-oriented blobs, using formulas (2.11), we get a surjective
map

RK,L : OBimm
moderate≤2(A) → Z× Z ≈ OBemb

moderate≤2(A), (2.15)

which serves as the right inverse to the obvious homomorphism

OBemb
moderate≤2(A) → OBimm

moderate≤2(A).
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Fig. 6 The region α(X) in the
cylinder A = R× S1 is shaded,
the vector field v̂ is vertical.
Elementary cancellations, via
surgery in A, of a pair
tangencies of α(∂X) to v̂ of
opposite polarities ⊕,� (the
upper diagrams). Increasing the
local connectivity of the region
α(X) between two tangent
trajectories of opposite polarities
by a 1-surgery in A (the lower
diagram). This operation
introduces a new pair of points
of opposite polarities ⊕,�

Therefore, OBimm
moderate≤2(A) contains canonically Z× Z.

Remark 2.1. The number c+(v) =def #{∂+,⊕
2 (v)} + #{∂+,�

2 (v)} may be interpreted
as the complexity of the vector field v on X [12, 15]. We notice that

c+(v) ≥ |Jα| =def |#{∂+,⊕
2 (v)} − #{∂+,�

2 (v)}|.

It is somewhat surprising that the invariant Jα = #{∂+,⊕
2 (v)} − #{∂+,�

2 (v)} reflects
more the local topology of the embedding α (or of the field v = α∗(v̂)) than the
global topology of the surface X : in fact, any integral value of Jα can be realized by a
traversally generic field v on a 2-ball Dwhich even admits a convex envelop! A portion
of the boundary ∂D looks like a snake with respect to the field v̂ of the envelop.

For any X , the effect of deforming a portion of the boundary ∂X ⊂ A into a snake
is equivalent to adding several spikes (an edge and a pair of a univalent and a trivalent
verticies) to the graph T (v), the space of v-trajectories. Evidently, these operations
do not affect H1(T (v);Z) ≈ H1(X;Z).

For example, for α as in Fig. 2, Jα = 0. If we subject α to an isotopy in A that
introduces a snake-like pattern of Fig. 5(a), then for the new immersionα′, the invariant
Jα

′ = 1.
In contrast, the number #{∂+,⊕

2 (v)} + #{∂+,�
2 (v)} has a topological significance

for X . If X is the compliment to k disjoint balls in a closed orientable surface with g
handles, then by [15], Lemma 1.1, #{∂+,⊕

2 (v)} + #{∂+,�
2 (v)} ≥ 4 g − 4+ 2k. ♦

3 Invariants that Distinguish Between Bordisms of Immersions and
Embeddings

Recall thatA× : B×imm
moderate≤2(A) → Bimm

moderate≤2(A) is a bijection. Therefore, without
lost of generality, we deal now with immersions under additional assumption (2.8):
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Fig. 7 Four configurations I, II, III, IV in the vicinity of a pointa ∈ Awhere twobranches ofα(∂X) intersect
transversally. The figure shows theα-images of neighborhoods in X of the two points b1, b2 ∈ α−1(a)∩∂X .
Note the position of the vector v̂(a) relative to the darkly shaded sector. The trajectory spaceT (v̂) is oriented

we require that their self-intersections are transversal. We adopt the notations from
Definition 2.9.

Consider an immersionα : X → Awith transversal self-intersections ofα(∂X) and
nomultiple self-intersections ofmore than two local branches.At each self-intersection
a ∈ α(∂X), there are exactly two points a′, a′′ ∈ ∂X such that α(a′) = α(a′′) = a.
Then we take two small neighborhoods D+(a′) and D+(a′′) of a′ and a′′, respectively,
both diffeomorphic to a half-disk. The linearizations of their α-images produces two
preferred half-spaces, Ha′ and Ha′′ , in the tangent space Ta A. Put Ka′,a′′ = Ha′ ∩Ha′′ .
We denote by K∨

a′,a′′ the image of Ka′,a′′ under the central symmetry in Ta A (see
Fig. 7).

Using the sectors Ka′,a′′ and K∨
a′,a′′ , we will divide the self-intersections {a} into

four types: type I occurs when the vector v̂(a) points in the interior of the sector
Ka′,a′′ , type III occurs when the vector v̂(a) points in the interior of the sector K∨

a′,a′′ ;
type II and type IV arise when v̂(a) points in the interior of the complimentary to
Ka′,a′′ ∪ K∨

a′,a′′ sectors. Type II corresponds to the case when the sector Ka′,a′′ is on
the right of the line γa , while type IV corresponds to the case when the sector Ka′,a′′
is on the left of the line γa . Note that the types II and IV are “crudely symmetric” with
respect to a reflection in A that has the v̂-trajectory through a as a line of symmetry
γa .

Consider a small disk D, centered on a crossing point a. We consider a diffeotopy
{�φ : A → A}φ whose final stage is the turn on a given angle φ� inside the concentric
disk D′ ⊂ D and the identity outside D. Note that using �φ as a dial at a, we
can change the type {I, II, III, IV} of �φ�(α(∂X)) at a at will. However, αφ� , the
composition of α with �φ� , is not 2-moderately cobordant to α: in the process, the
curves αφ(∂X)may develop inflection points (cubic tangencies) to the foliationF(v̂).
Moreover, the 2-moderate αφ�(∂X) may develop inside D new quadratic tangencies
toF(v̂). Thus, there is a subtle interplay between the count of crossings of a particular
type from {I, II, III, IV} and the invariants of the type Jα .

Let us find out which of these four types {I, II, III, IV} or their combinations are
invariant under non-oriented cobordisms of immersions with 2-moderate tangencies.

We start with a key observation that guides us in this section.
Given a cobordism-immersion B : W → A×[0, 1] between two immersions, α0 :

X0 → A × {0} and α1 : X1 → A × {1}, with transversal self-intersection of B(δW )

of multiplicity 2 at most, consider the curve � where the surface B(δW ) ⊂ A× [0, 1]
self-intersects transversally. Either � is:

(a) a simple segment in A× [0, 1] that connects a pair of crossings of α0(∂X0), or
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(b) a pair of crossings of α1(∂X1), or
(c) a pair of crossings, one of which belongs to α0(∂X0) and the other one to

α1(∂X1), or
(d) a simple loop in A × (0, 1).
The multiplicity of each intersection of � with a v̂•-trajectory γ̂ ⊂ A × [0, 1] is at

least 2, and, according toDefinition 2.9, cannot exceed 2. Therefore, each v̂•-trajectory
must be transversal to �: otherwise, the multiplicity of the intersection � ∩ γ̂ , where
γ̂ is tangent to �, exceeds 2.

For each point x ∈ �, the two �-localized branches, B(δW1) and B(δW2), of B(δW )

that intersect along � divide the tubular neighborhood U� of � into four chambers
SIx , S

II
x , SIIIx , SIVx , where each point from the interior of SIx has two α-preimages in the

vicinity of δW1 ∪ δW2 in W , each point from the interior of SIIIx has no α-preimages
in the vicinity of δW1 ∪ δW2 in W , and each point from the interior of SIIx ∪ SIVx has
one α-preimage in the vicinity of δW1 ∪ δW2 in W . Thanks to the transversality of
the vector field v̂• to the curve �, the vector field must point into the interior of one of
the chambers; i.e., v̂• is not tangent to the branches B(δW1) and B(δW2). In 3D, we
cannot distinguish between the chambers SIIx and SIVx without picking an orientation
of �. Thus, SIx , S

III
x , and SIIx ∪ SIVx are geometrically distinct.

Now, v̂• helps to define the three types of � (not to be confused with the four types
(a)-(d)): if v̂•(x) points into SIx or SIIIx , we say that the curve � is of types I or III,
respectively. Otherwise, � is of the “mixed type” II& IV.

In all cases (a)-(d), v̂• preserves the three chamber types I, III, II& IV along �. In
fact, the case (d), in which � is a loop, is irrelevant for what follows.

Let x ∪ y = ∂�. Crucially, in cases (a)-(b) the type SIIx turns into the type SIVy , and

SIVx turns into the type SIIy , while the types S
I
x and SIy , S

III
x and SIIIy are the same.

Therefore, in cases (a)-(b), we get the following possible combinations: SIx and SIy ,

or SIIx and SIVy , or SIIIx and SIIIy , or SIVx and SIIy . In the case (c), all the types at x and
y are the same.

Given an immersion α : X → A as in Definition 2.9, let us denote by
ρI(α), ρII(α), ρIII(α), ρIV(α) the number of crossings of α(∂X) of the types
I, II, III, IV, where the type of a crossing is determined by the configuration of the
sector, formed by the two intersecting domains, and the vector v̂ at the crossing.

For example, in Fig. 2, all the four crossings of α(∂X) are of the different types
I, II, III, IV; that is, ρI(α) = 1, ρII(α) = 1, ρIII(α) = 1, ρIV(α) = 1.

These pairings between different crossings of α0(∂X0) and α1(∂X1), which are
delivered by the curves {�}of types (a), (b), (c), lead directly to the following conclusion.
Lemma 3.1 If two 2-moderate immersions α0 : X0 → A and α1 : X1 → A are
cobordant in B×imm

moderate≤2(A) ≈ Bimm
moderate≤2(A), then

ρI(α0) ≡ ρI(α1) mod 2,

ρIII(α0) ≡ ρIII(α1) mod 2,

ρII(α0) − ρIV(α0) = ρII(α1) − ρIV(α1). (3.1)

♦
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Fig. 8 Basic immersions of two
disks in the surface A and the
intersection patterns
I, II, III, IV from Fig. 7 they
generate. As elements of
Bimm
moderate≤2(A), the immersion

on the left is minus the
corresponding immersion on the
right

Thus, we produced three numerical invariants that have a potential to distinguish
between the elements of the bordism Bimm

moderate≤2(A), modulo the ones that are in the

image of the map Bemb
moderate≤2(A) → Bimm

moderate≤2(A).

Proposition 3.1 For A = R × [0, 1], the invariants ρI(α), ρIII(α) ∈ Z2, ρII(α) −
ρIV(α) ∈ Z define a homomorphism

Iρ : Bimm
moderate≤2(A)/Bemb

moderate≤2(A) → Z2 × Z2 × Z

whose image is an abelian subgroup M ≈ Z2 × Z of index 2. The monomorphism
φ : M ↪→ Z2 × Z2 × Z is delivered by the diagonal map Z2 → Z2 × Z2 on Z2 and
φ(Z) = 2Z.

Proof The argument is based on the proof of Lemma 3.1 and on formulas (3.1).
Examining the types of crossings in the four diagrams from Fig. 8 that show the

four immersions α1, α2, α3, α4, we get:

ρI(α1) = 1, ρIII(α1) = 0, ρII(α1) − ρI V (α1) = 1,

ρI(α2) = 1, ρIII(α2) = 0, ρII(α2) − ρIV(α2) = −1,

ρI(α3) = 0, ρIII(α3) = 1, ρII(α3) − ρIV(α3) = 1,

ρI(α4) = 0, ρIII(α4) = 1, ρII(α4) − ρIV(α4) = −1. (3.2)

Note that in Bimm
moderate≤2(A), α2 = −α1 and α4 = −α3.

Also, forα : X → A fromFig. 2, where X is a toruswith a hole, we have ρI(α) = 1,
ρIII(α) = 1, and ρII(α4) − ρIV(α4) = 0.

Consider now just these three immersions: α1, α3, and α. By linear algebra, applied
to ρI(∼), ρIII(∼), and ρII(∼) − ρIV(∼) invariants of α1, α3, and α, the image of the
map

Iρ : Bimm
moderate≤2(A) → Z2 × Z2 × Z

is a subgroup of index 2 at most, which contains the Z-module M, spanned by the
triples (e, 0; 1), (0, e; 1), (e, e; 0), where 2e = 0.
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Lemma 3.2 No loop C in A = R×[0, 1] that bounds an immersed orientable surface
� has an odd self-intersection number.

Proof Indeed, if an immersion α : � → A with α(∂�) = C exists, then the pull-back
vector field v = α†(v̂) �= 0. Thus, its index ind(v) = 0. Recall that deg(G), the
degree of the Gauss normal map G : α(∂�) → S1 can be calculated by the Hopf–
Gottlieb formula ([6, 8]): deg(G) = χ(�) − ind(v) = χ(�) = 1 − β1(�), where
the first Betti number β1(�) = 2g is even. On the other hand, by the Whiney formula
[21] deg(G) = μ + N+ − N−, where μ = ±1 and N+, N− count the positive and
negative crossings of C (this polarity of crossings is based on “global” considerations).
So, each “kink” of C adds±1 to deg(G). Odd number of self-crossings N++ N−, by
the Whiney formula, produces an even degree deg(G), which contradicts to the fact
that 1− β1(�) is an odd number. In fact, the minimal number of self-intersections an
orientable immersed surface of genus g with a circular boundary may have is 2g + 2
[7]. ��

Thus, by Lemma 3.2, none of the elements (e, 0, 0), (0, e, 0), (0, 0, 1) ∈ Z2×Z2×
Z resides in the image of Iρ. However, the elements (e, 0, 1), (0, e, 1), (0, 0, 2) ∈
Z2 × Z2 × Z do belong to the Iρ-image. Therefore, the Iρ-image is M =def
spanZ{(e, 0, 1), (0, e, 1), (0, 0, 2)} ≈ Z2 × Z.

Evidently, Bemb
moderate≤2(A) ≈ Z is in the kernel of Iρ. This completes the proof of

Proposition 3.1. ��
Note that oriented immersed doodles also generate patterns similar to the ones in

Fig. 7 at each intersection point a ∈ A. Indeed, let β : C → A be an immersion as
in (2.3). Consider the two local branches C′a and C′′a of β(C) at a that are transversal
and oriented. The pair of tangent vectors u′a and u′′a to C′a and to C′′a that are consistent
with the orientations, generate a particular sector in Ta A, the convex hull of u′a and
u′′a (see Fig. 9a).

By counting the four types of sectors in relation to v̂(x), which an ori-
ented immersion β generates at its crossings {a}, we get the new quantities
ρI(β), ρII(β), ρIII(β), ρIV(β). The sector’s number may be different by a permu-
tation of four elements from the darkly shaded sectors in Fig. 7.

Therefore, the similar kind of invariants ρI(β) − ρIII(β), ρII(β) − ρIV(β) ∈ Z are
available for the oriented doodles.

As in the case of blobs, these three quantities are invariants of the quotient
OCimm

moderate≤2(A)/OCemb
moderate≤2(A). The arguments that validate this claim are

exactly the same as the ones that led to Lemma 3.1 for blobs. Moreover, for
A = R × [0, 1], these invariants are additive with respect to the connected sums
� of oriented doodles.

Proposition 3.2 For any oriented doodle β : C → A, the invariants ρI(β) −
ρIII(β), ρII(β) − ρIV(β) ∈ Z define a surjective map

Iρ : OCimm
moderate≤2(A)/OCemb

moderate≤2(A) → Z× Z.

For A = R × [0, 1], the map Iρ is an epimorphism with respect to the group
operation �.
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Proof We recycle the list of ρ-invariants for the oriented boundaries of submersions
α1, α3, and α from the proof of Proposition 3.1 and add to them the ρ-invariants
of new doodles that do not bound immersions of surfaces. Differently oriented fig-
ures “∞”, placed in A horizontally with respect to the vector field v̂ by immersions
β+, β− : S1 → A, realize the values {ρI(β+) = 1, ρIII(β+) = 0, ρII(β+) −
ρIV(β+) = 0} and {ρI(β−) = 0, ρIII(β−) = 1, ρII(β−) − ρIV(β−) = 0}. Con-
sider another oriented doodle β̃ : S1 → A (not a boundary of an immersion) with
a single self-intersection whose image is a “loop within a loop”, symmetric with
respect to the v̂-trajectory through the self-intersection point. It realizes the values
ρI(β̃) = 0, ρIII(β̃) = 0, ρII(β̃) = 1, ρIV(β̃) = 0. Flipping the orientation of S1, we
realize the values ρI(β̄) = 0, ρIII(β̄) = 0, ρII(β̄) = 0, ρIV(β̄) = 1. Therefore, by
linear algebra, the map

Iρ : OCimm
moderate≤2(A)/OCemb

moderate≤2(A) → Z× Z.

is surjective. For A = R × [0, 1], the map Iρ is an epimorphism with respect to the
group operation �. ��

Let us introduce one useful operation/notation. Given an (oriented) immersion β :
C → A (doodles) and a non-negative number n, we denote byβ(n) the new immersion,
obtained by surrounding β(C) by n counterclockwise oriented nested simple loops. If
n is negative, β(n) denotes an immersion in which β(C) is surrounded by n clockwise
oriented nested simple loops. When talking about 2-moderate immersions, we assume
that the surrounding simple loops are 2-moderate aswell. Similarly, given an (oriented)
immersion α : X → A (blobs) and a non-negative n, α(n) denotes a submersion in
which α(X) is surrounded by n nested (counterclockwise oriented) embedded disks
whose boundaries are disjoint and 2-moderate. Again, for a negative n, we flip the
orientations of the disks.

Let us list a few simple properties of these operations.We skip their straightforward
validation.We consider all the immersions as elements of the appropriate (2-moderate)
bordism groups, so that the following identities are understood as taking place in these
groups:

β1(n) � β2(n) = (β1 � β2)(n),

(β(n))(m) = β(n + m); (3.3)

α1(n) � α2(n) = (α1 � α2)(n),

(α(n))(m) = α(n + m). (3.4)

We will use the operations �n : β � β(n) or �n : α � α(n), in combination
with the addition �, as main tools for generating new examples of immersions. In
particular, we will apply �n to the immersed 2-moderate figures “∞” and “8”, to get
families of immersions “∞(n)” and “8(n)” (see Fig. 9(a), which depicts the immersion
∞(2) �∞). We distinguish between “∞” and “8” by their position in relation to the
vector field v̂, so that “∞” stands for the crossing of type I, III, while “8” for the crossing
of type II, IV.
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Fig. 9 a Oriented doodles ∞(2) � ∞; the two crossings are of the types I and III. b Oriented blobs
∞−ribbon(2) �∞−ribbon; the four crossings on the left are of the types (III, II), (IV, III), (I, IV), (II, I),
and on the right of the types (III, IV), (IV, I), (I, II), (II, III). The vector field v̂ is vertical

We can improve the claim of Proposition 3.2 by analyzing algebraically and geo-
metrically the kernel of the epimorphism Iρ. With this goal in mind, we need to take
a short detour into combinatorics that mimics the geometric situation we are facing.

•Let� be a finite set of “colors”. In the near future,� = {I, II, III, IV} or� = {I, III}.
Consider a finite collection of smooth 2-moderately embedded oriented loops E

in A. We take a finite set of points Q in the complement to E (soon, Q will be the
singular sets �β of immersed doodles β(C)). In what follows, we consider the pairs
(Q, E) up to an ambient isotopy of A, or up to an ambient isotopy of A that preserves
the foliation F(v̂).

We divide Q in complementary groups Q1, . . . , Qs , each group being painted with
a different color from the pallet �. This coloring is a part of the Q-structure.

The elements of Q are considered in pairs. We impose some restrictions R on
the pairings of P : Q → Q, where P is a free involution. These restrictions are
expressed in terms of colors from the pallet �. Some of the restrictions will require
that the elements of a particular color may be paired only with other elements the
same color, in which case we assume that the cardinality |Qi | of the corresponding
Qi is even; other restrictions from R will pair elements of a particular color only
with elements of another color, in which case |Q j | = |Qk | for the corresponding sets
Q j , Qk .

We denote the set of such pairings (i.e., free involutions on Q), subject to the
restrictions from R, by ℘(Q,R).

• In one special case, we will pair elements of Q I with elements of Q III, elements
of Q II with elements of Q IV . Let us denote this special set of rules by R�.

Employing E , with each pairing P ∈ ℘(Q,R) we associate a function c(P) on
the set of ordered pairs {(q, P(q))}q∈Q with values in Z. The integer c(q, P) =def
c(P)(q, P(q)) counts the signed transversal intersections of an oriented path
γ (q, P(q)) ⊂ A, connecting q to P(q), with the union of oriented loops that form
the 1-cycle E . For homological reasons, c(q, P) does not depend on the choice of the
path γ (q, P(q)), provided A = R× [0, 1].
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Wemay view c(q, P) as the linking number of the pair (q, P(q)) with the cycle E .
Note that c(q, P) = −c(P(q), P).

This construction gives rise to a map

cE, P : Graph(P) → Z, (3.5)

where Graph(P) ⊂ Q × Q denotes the graph of the free involution P : Q → Q,
subject to theR-constraints.

For any R-admissible pairing P : Q → Q, we always can choose the connecting
paths {γ (q, P(q))}q∈Q so that they do not intersect each other and are transversal
to E . Without loss of generality, we may also assume that each path γ (q, P(q)) is
2-moderate.

Definition 3.1 • For a fix set of rulesR, we call the triple {Q, P, E) irreducible if there
exist a set of paths {γ (q, P(q))}q∈Q such that all the paths are disjoint and each path
γ (q, P(q)) has all its intersections with E of the same sign. By definition, if for some
q, the intersection γ (q, P(q)) ∩ E is empty, the collection

{
Q, P, E

}
is reducible.

•For afix set of rulesR, we call the collection
{
Q, P, E

}
primitive if it is irreducible

and each colored set Qi ⊂ Q consists of exactly two elements, when P(Qi ) = Qi ,
and of a single element when P(Qi ) = Q j for a Q j �= Qi . ♦

It is easy to see that, given two sets (Q1, P1, E1) and (Q2, P2, E2), their connected
sum� in A produces a new triple (Q1�Q2, P1� P2, E1�E2) by squeezing (Q1, E1)
in R × (0, 0.5) and (Q2, E2) in R × (0.5, 1) and applying the pairing P1

∐
P2 ∈ R

to Q1 � Q2.
For a fixed set of rulesR, the operation� turns the setD(R) of all triples

{
Q, P, E

}
,

being considered up to an ambient isotopy of A that preserves F(v̂), into an abelian
semi-group.

The associativity and commutativity of the operation � in D(R) can be validated
as in Lemma 2.2.

For a given triple (Q,R, E), consider the �1-norm ‖cE, P‖�1 of the discrete func-
tion cE, P : Graph(P) → Z in (3.5). It is independent of the choice of paths
{γ (q, P(q))}q∈Q . We introduce a non-negative integer by the formula

m(Q,R, E) =def min
P ∈ ℘(Q,R)

{
‖cE, P‖�1

}
. (3.6)

Evidently,

m(Q1 � Q2, R, E1 � E2) ≤ m(Q1, R, E1) + m(Q2, R, E2).

Thus, m(Q,R, E) resembles a semi-norm under the connected sum operation �.
However, in general, m

( �k
1 {Q, R, E}) �= k · m(Q,R, E). At the same time, for a

primitive {Q,R, E}, we have m( �k
1 {Q, R, E}) = k · m(Q,R, E).

We denote byD0(R) the sub-semigroup ofD(R) consisting of the triples {Q,R, E}
with the property {m(Q,R, E) = 0} and consider the quotients D(R)

/
D0(R).
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Lemma 3.3 D(R)
/
D0(R) is an abelian group with respect to the operation �.

If R allows for pairings within each given color, then any non-zero element of the
group D(R)

/
D0(R) is of order 2.

Proof The only property of groups that needs a clarification is the existence of the
negation (minus element). Let τ : A → A be a mirror involution. For any triple
{Q, P, E}, we form the triple τ({Q, P̄, E}, where each pair (q, P(q)) is replaced in
τ({Q, P̄, E}) by the pair (τ (P(q)), τ (q)) so that τ(q) is given the color of P(q) and
τ(P(q)) is given the color of q. Consider the new triple {Q, P, E}�τ({Q, P̄, E}. Now
the pairing (q, τ (q)) is permissible. Since the orientations of τ(E) is opposite to the
orientations ofE , the path γq that connectsq and τ(q) has the propertyγq◦(E�τ(E)) =
0. Therefore, {Q, P, E} � τ({Q, P̄, E} ∈ D0(R). Hence, τ({Q, P, E}) is the negative
of {Q, P, E} in D(R)/D0(R). This validates the first claim.

Consider the triple {Q, P, E} � {Q, P, E} and a point q ∈ Q. Let γ (q, s) ⊂
R × [0, 0.4] be any smooth path that is transversal to E and connects q to a point s
whose R-coordinate is bigger than h, where the box [−h, h] × [0, 0.4] contains Q
and E . We think of the second copy of {Q, P, E} as being obtained by the 0.5-shift
Sh : R × [0, 0.5] → R × [0.5, 1] to the right. By the hypotheses about R, we may
pair q and Sh(q).

We can connect s to Sh(s) by a path ω that resides outside the box [−h, h]×[0, 1].
Then the path τ = γ (q, s) ∪ ω ∪ Sh(γ (q, s)) (where Sh(γ (q, s)) denotes the path
Sh(γ (q, s))with the reverse orientation) connects q to Sh(q) and has a pair of adjacent
intersections with E ∪ Sh(E) of opposite signs. Therefore, {Q, P, E} � {Q, P, E} ∈
D0(R), and thus {Q, P, E} is an element of order 2 in D(R)

/
D0(R). ��

Lemma 3.4 The correspondence {Q,R, E} � m({Q,R, E}) defines a norm-like map
m : D(R)

/
D0(R) → Z+ such that m(a � b) ≤ m(a) + m(b) and m(a) = 0 implies

a = 0, where a, b ∈ D(R)
/
D0(R).

Proof The verification of the claims is on the level of definitions. ��
• This ends the combinatorial detour. ♦
We are in position to return to bordisms of 2-moderate immersions of oriented

doodles and to state one of our main results.

Theorem 3.1 Let A = R× [0, 1] and R = {I ⇔ III, II ⇔ IV}.
• There is an exact sequence of abelian groups

0 → K → OCimm
moderate≤2(A)

/
OCemb

moderate≤2(A)
Iρ−→ Z× Z → 0,

where the homomorphism Iρ is given by the two integral invariants, ρ I(∼) − ρ III(∼)

and ρ II(∼) − ρ IV(∼).
•There exists amonomorphism� : D(R)/D0(R) ↪→ Kwhose imageG is spanned

over Z by the doodles {∞(n) � ∞} and {8(n) � 8}, where n ∈ Z, n �= 0. In fact,
G ≈ (Z)∞.

• OCemb
moderate≤2(A) ≈ Z× Z via an isomorphism as in (2.14).
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Fig. 10 Resolving crossings of
types I or III into the figures
“∞”, “∞” and a pair of arcs via
a 2-moderate cobordism (the
lower figure). In contrast,
resolving crossings of types II or
IV into the figures “8”, “8” and a
pair of arcs is impossible via a
2-moderate cobordism (the
upper figure)

Proof We start with a finite set of oriented loops C and their 2-moderately generic
(relatively to v̂) immersion β : C → A. At each point of self-intersection a ∈ β(C)

of types I and III, in the vicinity of the crossing, we perform a 2-moderate surgery
on β(C) whose result β† is shown in Fig. 10, lower diagram. The resulting oriented
curves contain small figures “∞a” and “∞a”, whose self-intersection resides at a.
The bar denotes the flip of the orientation of ∞a , determined by the orientations of
the two branches of β(C) at a. The type of the self-intersection of ∞a in relation to
v̂(a) is the same as the type of the original crossing of β(C) at a with values in {I, III};
so∞a occurs for type I, and∞a for type III crossings. The rest of the oriented curves
C′ are immersed in A by a map β ′ which has the crossings of the types {II, IV} only.
The immersions β and β† are 2-moderately cobordant.

By a 2-surgery on β(C′), we could replace the doodles C′ by embedded doodles C′′
union several figures “8a” for the crossings of types II and several figures “8a” for the
crossings of types IV. Let us denote by β‡ the resulting immersion. Crucially, such
a surgery, although being canonical, is not 2-moderate (see Fig. 10)! As a result, the
immersions β and β‡ fail to be 2-moderately cobordant. This fact complicates our
efforts.

In any case, via these canonical surgeries, we may replace any given immersion
β : C → A with the immersion β‡ which comprises the embedded doodles C′′ ⊂ A
disjoint union with a number of 2-moderately immersed figures “∞a”, “∞a”, and
“8a” , “8a”.

To summarize, for types I and III, we get the configurations “∞ ↑∨” and “∞ ↑∧”;
for types II and IV, we either keep the original configurations “× ↑<” and “× > ↑”
or, depending on the context, replace them with configurations “8 ↑<” and “8 > ↑”.
Here “↑” mimics the direction of the vector field v̂ in relation to the oriented figures
“∞ and “×” and the symbols “∨, ∧, <, >” indicate the preferred sector (determined
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Fig. 11 Resolving an oriented immersed doodle into several figures “∞” (type I), “∞” (type III), and number
of 2-moderate embedded loops. The figure illustrates the homomorphism resII,IV from (3.7). The vector
field v̂ is vertical

by the orientations of the two branches at the crossing a) in relation to v̂(a), i.e., in
relation to “↑”.

If the invariants ρI(β)− ρIII(β) ∈ Z, ρII(β)− ρIV(β) ∈ Z vanish, then we can pair
figures “8 ↑<” of type II with figures “8 > ↑” of type IV, figures“∞ ↑∨” of type I
with figures “∞ ↑∧” of type III.

Consider immersions in the kernel of Iρ that consist of several 2-moderate figures
∞,∞, 8, 8 disjoint union with 2-moderate embeddings. Thus, the number of figures
∞ is equal to the number of figures ∞, and the number of figures 8 is equal to the
number of figures 8. Let us denote by Ĝ the set of such immersions, being considered
up to the 2-moderate cobordisms. In particular, we focus on the subgroup G ⊂ K,
spanned over Z by the elements {∞(n) �∞} and {8(n) � 8}, where n ∈ Z, n �= 0.

First, we need to verify that these elements are non-trivial and distinct inK. More-
over, we will show that they are elements of infinite order in K.

Consider a 2-moderate immersion B : W → A × [0, 1] that delivers a cobordism
between an immersion β : C → A × {0} and some embedding β1 : C1 → A × {1}.
Then, the self-intersection curves {�} of B(W ) define a pairing {P : a � P(a)}a∈�β

consistent with the set of rules R = {I ⇔ III, II ⇔ IV}.
On the other hand, for β : C → A which represents an element of Ĝ, any pairing

{P : a � P(a)}a∈�β from R allows us to attach in A × [0, 1) 1-dimensional 2-
moderate cross-handles∞a× I and 8a× I (the immersed images in A×[0, 1) of the
handles S1a × I ) to each pair∞a

∐∞P(a) ⊂ A× {0} or 8a ∐
8P(a) ⊂ A× {0}. By a

general position argument, these 2-moderate handles are disjoint. The union of these
cross-handles with the embedded surface C1 × [0, 1] delivers an oriented cobordism

B :
∐

a

{S1a × I }
∐

{C1 × [0, 1]} → A × [0, 1]

between β and β1. It is important to attach the cross-handles with some care to satisfy
the requirement for B to have only 2-moderate tangencies to the v̂•-trajectories in
A × [0, 1].
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First, we need to avoid the intersections of the 1-dimensional singular cores of the
immersed surfaces B(

∐
a{S1a × I }) with the embedded surfaces B(C1 × [0, 1]) since

such intersections would contribute cubic tangencies at least to the v̂•-trajectories.
It turns out that there are new combinatorial obstructions to B being 2-moderate.

These new obstructions are described in the next lemma.

Lemma 3.5 Let A = R×[0, 1] and letR = {I ⇔ III, II ⇔ IV} orR = {I ⇔ III}. Let C
be a finite collection of oriented circles. Consider a 2-moderate immersion β : C → A
such that ρI(β) = ρIII(β) and ρII(β) = ρIV(β). We denote by �β its self-intersection
locus of β.

By replacing in β(C) each crossing with the figures “∞a”, “∞a” or “8a” or “8a”,
we get a new 2-moderate immersion β‡ that is a disjoint union of these figures with a
2-moderate embedding β ′′ : C′′ → A.

Then, β‡ is cobordant, via 2-moderate oriented immersions of surfaces, to an
embedding β1 if and only if m(�β,R, C′′) = 0 (see (3.6)), i.e., iff there exists a
pairing P ∈ ℘(�β,R) whose function cE, P : Graph(P) → Z is identically zero.

In the case R = {I ⇔ III}, β‡ is 2-moderately cobordant to the original β.

Proof We will prove the claim for R = {I ⇔ III, II ⇔ IV}; the arguments in the case
R = {I ⇔ III} are very similar and simpler. As the Fig. 10 testifies, for this choice of
R, β† is 2-moderately cobordant to the original β.

Let B : W → A × [0, 1] be a 2-moderate immersion that delivers the oriented
cobordism between the immersion β and some embedding β1. We have seen that the
self-intersection locus �B = ∐

� of B(W ) delivers a particular pairing PB : �β →
�β that is consistent with R.

We denote by I a closed interval. We replace the singular surface B(W ) with the
disjoint union of narrow 2-moderate cross-handles

{
B‡
a : S1a × I → A × [0, 1]}a∈�β/PB

whose images are ∞a × I , ∞a × I , and 8a × I , 8a × I , together with a number of
narrow 2-moderate cross-tori

{
B‡

κ : S1κ × S1 → A × (0, 1)
}
κ

(B‡
κ (S1κ × S1) are diffeomorphic to∞κ × S1 or to 8κ × S1), and a 2-moderate regular

embedding B ′′ : W ′′ ↪→ A × [0, 1] of an oriented surface W ′′. The trace of this
cobordism in A × {0} produces the curves

(
∐

a∈�I
β

∞a)
∐

(
∐

a∈�III
β

∞a)
∐

(
∐

a∈�II
β

8a)
∐

(
∐

a∈�IV
β

8a)

disjoint union with a non-singular curve C′′ = B ′′(W ′′) ∩ (A × {0}) as has been
described above.
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Consider now the cores {δ =def δa,P(a)}a∈�β of the cross-handles and of the cross-
torii.We notice that δ∩B ′′(W ′′)must be empty in order to insure that B is 2-moderate.
Indeed, if x ∈ δ∩B ′′(W ′′), then x is a triple-intersectionpoint for B(W ),whichviolates
the 2-moderate property of B.

Note that the algebraic (i.e., signed) intersection number δa,P(a) ◦ B ′′(W ′′) is a
homological invariant for the relative homology class [δa,P(a)] ∈ H1(A × [0, 1], a ∪
PB(a); Z) of the path δa,P(a) and the relative homology class

[B ′′(W ′′)] ∈ H2
(
A × [0, 1], [A \ (a ∪ PB(a))] × {0} � (A × {1}); Z)

of the relative 2-cycle B ′′(W ′′). Since the relative homology class [δa,P(a)] and the
relative homology class

[γ (a, PB(a))] ∈ H1(A × [0, 1], a ∪ PB(a); Z)

are equal (the two paths are even homotopic relative to a ∪ PB(a) in A × [0, 1]), we
conclude that the algebraic intersection number

δa,P(a) ◦ B ′′(W ′′) = γ (a, PB(a)) ◦ B ′′(W ′′) = γ (a, PB(a)) ◦ C′′.

Therefore, if γ (a, PB(a)) ◦ C1 �= 0, we get a contradiction with the requirement
δa,P(a) ∩ B ′(W ′) = ∅. As a result, if γ (a, PB(a)) ◦ C′′ �= 0 for some a ∈ �β , then
the cobordism B is not 2-moderate.

On the other hand, assume that, for some R-amenable involution P : �β → �β ,
the intersection γ (a, P(a)) ◦ C′′ = 0 for all a ∈ �β , where C′′ is a 2-moderate
non-singular component of the replacement β‡ of β. Then, let us show that β is
2-moderately cobordant to an embedding β1.

Using the notations from the previous arguments, we start with the cobordism W
which is the union H ⊂ A × [0, 1] of 2-moderate cross-handles, attached to A × {0}
at points of�β according to the coupling P , with the non-singular surface C′′ × [0, 1].
Since v̂• is transversal to the cores of the narrow cross-handles, we may ensure that
H is 2-moderate.

Although the surfaces H and S = C′′ × [0, 1] individually are 2-moderate, their
union W = H ∪ S may be not.

However, ifwe assume that all the cores δ of cross-handles from H have the property
δ ◦ S = 0, then we can correct the failure of W = H ∪ S to be 2-moderate. Indeed, if
two adjacent intersections x, y of δ with the oriented surface S are of opposite signs,
then we can attach a 1-handle S1 × [x, y] to S whose core is the segment [x, y] ⊂ δ

and whose interior D2×[x, y] engulfs the cross-handles∞a×[x, y], or∞a×[x, y],
or 8a ×[x, y], or 8a ×[x, y]. The result is a new embedded oriented surface S′ which
intersects δa at fewer points: the intersections x and y has been eliminated. The rest
of the cores δb keep their old intersections with S. Continuing this elimination of the
adjacent along the cores intersections of opposite signs with evolving non-singular
surfaces, eventually we will get a non-singular oriented surface S̃ which is disjoint
from all the cross-handles. The union of S̃ with all the cross-handles delivers the
desired 2-moderate cobordism between the immersion β and some embedding β1.
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By the previous arguments, this recipe for constructing β1 works when, for some
free involution P : �β → �β , we have the property γ (a, P(a)) ◦ C′′ = 0 for
all a ∈ �β . This means exactly that there exists a pairing P ∈ ℘(�β,R) whose
function cC′′, P : Graph(P) → Z is identically zero. In other words, the semi-norm
m(�β,R, C′′) must vanish. ��

Wecontinuewith the proof of Theorem3.1. As before, in our notations, we suppress
the choices of the paths {γ (q, P(q))}q∈Q (equivalently, we assume them to be oriented
segments of lines).

Given an element {Q, P, E} of the group D(R), we associate with it a 2-moderate
immersion β : C → A by replacing each point q ∈ Q with a small figure ∞,∞, or
8, 8 (depending on the type {I, II, III, IV} of q), and keeping the 2-moderate embedding
E for the role of C′′. By Lemma 3.5, β is cobordant via a 2-moderately cobordism
B : W → A×[0, 1] (whose self-intersection locus∐

� defines P) to an embedding if
and only if the element {Q, P, E} is such that the function cE, P : Graph(P) → Z is
identically zero. Therefore, by the definition ofD0(R), this construction {Q, P, E} �
β defines amonomorphism� : D(R)/D0(R) ↪→ K. Its image is exactly the subgroup
Ĝ (by this group’s definition).

Consider the subgroup G ⊂ Ĝ spanned over Z by the elements {∞(n) �∞} and
{8(n) � 8}, where n ∈ Z, n �= 0. For any R-admissible pairing P between the two
crossing a and P(a) of each figure, the intersection number γ (a, P(a)) ◦ C ′′ of any
path γ (a, P(a)) with the concentric loops C ′′ surrounding ∞,∞, or 8, 8 is equal
to n �= 0. Thus, by Lemma 3.5, the elements {∞(n) � ∞} and {8(n) � 8} are non-
trivial in K for all n �= 0. Moreover, for the same reason, their k-multiple copies
(with respect to �) are not 2-moderately cobordant to an embedding. Therefore, the
elements {∞(n) �∞} and {8(n) � 8} are of the infinite order in K. Along the same
lines, for n1 �= n2 �= 0, no k-multiple of {∞(n1) �∞} is 2-moderately cobordant to
{∞(n2) �∞}. Since K is abelian, it follows that G ≈ (Z)∞.

In fact, Ĝ = G. Indeed, consider a 2-moderate simple loop L that contains several
figures ∞,∞, or 8, 8 and does not contain any other simple loops. By a 2-moderate
1-surgery (the 1-handles must avoid the figures ∞,∞, 8, 8) on the domain D that
bounds L, we split D in several topological disks so that each of them contains a
single figure. Let us call temporarily a nested group of simple loops which contain a
single figure ∞,∞, or 8, 8 a “block”. If a block contains oppositely oriented simple
loops, they can be eliminated by a 2-moderate surgery on the annulus that is bounded
by them (see Fig. 4, the last two slices). Thus, we may assume that all the loops in a
block are oriented coherently.

If a simple loop L′ bounds a domain D′ that contains several blocks, then again
by a 2-moderate 1-surgery on D′ we can split D′ in a number of disks, each of which
bounds a single new block. Proceeding this way, we transform any configuration of
figures and simple loops into 2-moderately cobordant disjoint union of coherently
oriented blocks. This transformation does not affect the original figures {∞,∞, 8, 8}
and their pairings. Therefore, Ĝ = G ≈ (Z)∞.

The last claim of the theorem follows from the isomorphism (2.14), since any
oriented embedded doodle in A is the boundary of an oriented embedded blob. This
completes the proof of Theorem 3.1. ��
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Letβ : C → A be a 2-moderate oriented immersion. By canonical resolutions of the
types II and IV singularities “× ↑<” and “× > ↑”,we eliminate them inβ ′ (see Fig. 11).
The result, β†, is a new 2-moderate embedding β ′′ : C′′ → A disjoint union with a
number of immersions of the type “∞a” and “∞a”. The resolution resII,IV : β � β†

may change the 2-moderate bordism invariant ρII(β) − ρIV(β) and thus may change
the bordism class of β. These canonical resolutions produce a homomorphism

resII,IV : OCimm
moderate≤2(A) → OCimm, I&III

moderate≤2(A), (3.7)

where OCimm, I&III
moderate≤2(A) stands for the 2-moderate bordisms of oriented immersions

whose crossings are of the types I and III only. The map resII,IV is evidently the right
inverse of the obvious homomorphism OCimm, I&III

moderate≤2(A) → OCimm
moderate≤2(A).

The treatment of OCimm, I&III
moderate≤2(A) is very similar to our treatment of

OCimm
moderate≤2(A), although the case of OCimm, I&III

moderate≤2(A) is easier to analyze.

Theorem 3.2 Let A = R× [0, 1] and R◦ = {I ⇔ III}.
• There exists an exact sequence of abelian groups:

0 → KI& III → OCimm, I& III
moderate≤2(A)/OCemb

moderate≤2(A)
Iρ I& III

−→ Z → 0,

where the epimorphism Iρ I& III is given by the integral invariant ρ I(∼) − ρ III(∼).

• The kernel KI& III is generated by the doodles {∞(n)
∐∞}n∈Z; n �=0 and is iso-

morphic to the group D(R◦)/D0(R◦) ≈ (Z)∞ .
• Thus, any 2-moderate oriented doodle β with the crossings of the types I and III

only and such that ρI(β) = ρIII(β), is 2-moderately cobordant to an embedding if and
only if its image �(β) ∈ D0(R◦) (i.e., the “semi-norm” m(�β,R◦, C′) = 0).

Proof Since the oriented figure “∞” has the crossing of type I, and “∞” has the
crossing of type III, the map Iρ I& III = ρI(∼) − ρIII(∼) is an epimorphism.

By Lemma 3.5, any 2-moderate immersion β : C → A with the crossings of the
types I and III only and such that ρI(β) = ρIII(β) is cobordant in OCimm, I& III

moderate≤2(A)

to an embedding β1 if and only if the singular set �β admits a free involution P ∈
℘(�β,R◦) with the following property: for any a ∈ �β , the algebraic intersection
number γ (a, P(a)) ◦ C′ = 0. Here the embedded doodle C′ is the doodle C′′ from the
proof of Theorem 3.1. Equivalently, m(�β,R◦, C′) = 0.

For any triple {Q, P, E}, representing an element of D(R◦), we construct a 2-
moderate immersion β({Q, P, E}) by placing a small figure ∞ or ∞ at each point
q ∈ Q (depending on whether q is of color I or III) and using the embedded doodle
E as a part of the immersion. The role of the involution P : Q → Q is tenuous: it
makes sure that the colors of q and P(q) are different. By Lemma 3.5, β({Q, P, E})
is cobordant to an embedding if and only if there is a triple {Q, P̃, E} for which
m({Q, P̃, E}) = 0; in other words, when {Q, P̃, E} ∈ D0(R◦).
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Therefore, the correspondence {Q, P, E} � β({Q, P, E})gives rise to amonomor-
phism

� : D(R◦)/D0(R◦) → KI& III.

On the other hand, we have seen that, for any 2-moderate immersion β ∈ KI& III,
the immersion β† (see Fig. 11) from Lemma 3.5 is 2-moderately cobordant to β.
Evidently, β† is in the image of �. As a result, � is an epimorphism, and thus, an
isomorphism.

Exactly as in the proof of Theorem 3.1 and with the help of Lemma 3.5, we verify
that all the oriented doodles {∞(n)

∐∞}n∈Z are distinct elements of infinite order in
KI& III and generate a subgroup (Z)∞. ��

Let “∞-ribbon” denotes the immersion of a band S1× I in A, shaped as a fat figure
∞ in relation to v̂ (see Fig. 9(b)). The symbol “∞-ribbon(n)” stands for the∞-ribbon
surrounded by n concentric nested disks. Similarly, the “8-ribbon” is the immersion
of a band S1× I in A, shaped as a fat figure 8 in relation to v̂ and 8-ribbon(n) denotes
the 8-ribbon surrounded by n concentric nested disks.

In the case of non-oriented blobs, we get the following result:

Theorem 3.3 Let A = R× [0, 1].
• There is an exact sequence of abelian groups:

0 → M → Bimm
moderate≤2(A)

/
Bemb
moderate≤2(A)

Iρ−→ Z2 × Z → 0,

where Bemb
moderate≤2(A)

J≈ Z is a direct summand of Bimm
moderate≤2(A).

• The homomorphism Iρ is defined by the invariants

ρI(∼), ρIII(∼) ∈ Z2, ρII(∼) − ρIV(∼) ∈ Z

(which realize the subgroup Z2 × Z ↪→ Z2 × Z2 × Z).
• The kernelM contains the group (Z2)

∞ generated by blobs {∞-ribbon(n)�∞-
ribbon}n∈Z (n �= 0) as in Fig. 9(b).

Proof Thanks to Proposition 3.1, to prove the theorem we need only to show that
the kernel M contains the group (Z2)

∞. It suffices to exhibit infinitely many distinct
elements of M of order 2.

Consider the immersion β• : X• → A of a band X• = S1 × I , whose image
is shaped as ∞-ribbon (see Fig. 9, (b)). With the help of β•, the orientation of X•
(and thus of ∂X•) is induced by the preferred orientation of A. The image β•(∂X•)
has four self-intersections of distinct colors {I, II, III, IV} as blobs (see Fig. 7) and
of distinct colors {I, II, III, IV} (as doodles). Alternatively, we could use the immersion
β• : X• = D2 ∐

D2 → A whose image has also four self-intersections of distinct
colors I, II, III, IV and of distinct colors I, II, III, IV (see Fig. 12).
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We add to β• the regular embeddings of n coherently oriented concentric disks so
that the image of the smallest disk in A contains properly the ∞-ribbon β•(X•).

We claim that∞-ribbon(n) is a non-trivial element of Bimm
moderate≤2(A). Assume to

the contrary that the ∞-ribbon(n) is the boundary of a solid 2-moderate cobordism
B : W → A×[0, 1). Then the self-intersection curves � ⊂ B(δW ) cannot connect the
unique self-intersection point of β•(∂X•) of type I to itself. Thus, no pairing consistent
with

R• =def {I ⇔ I, III ⇔ III, II ⇔ IV}

is available, and no such 2-moderate cobordism B exists.
Moreover, for n �= m, ∞-ribbon(n) �= ∞-ribbon(m) in Bimm

moderate≤2(A)/

Bemb
moderate≤2(A). Indeed, if

∞−ribbon(n) = ∞−ribbon(m) � α′ in Bimm
moderate≤2(A), (3.8)

whereα′ : X ′ ↪→ A is a 2-moderate embeddingwhose image is separated from the rest
of the blobs by a v̂-trajectory, then the 2-moderate solid cobordism B : W → A×[0, 1)
between the two blobs in the RHS and LHS of equality (3.8) is available.

Consider the self-intersection curve � ⊂ B(δW ) that connects the unique self-
intersection point a of type I in∞−ribbon(n) to the unique self-intersection point b
of type I in ∞−ribbon(m). Since B is an immersion, the preimage B−1(�) must be
union of several arcs, so that B : B−1(�) → � is an immersion. By the construction
of �, two of these arcs, �1 and �2, belong to the boundary δW , while the rest of the
arcs start at n points in the interior of W and terminate at m points in the interior of
W . For m �= n, at least one of these arcs must hit δW at some point c. Therefore, the
point B(c) ∈ � belongs to triple-intersection locus of B(δW ), a contradiction with the
assumption that B : δW → A × [0, 1] is 2-moderate.

Note that ∞-ribbon(n) does not belong to the kernel of Iρ since its ρI = 1. At
the same time, all the Iρ-invariants of ∞-ribbon(n) �∞-ribbon do vanish; thus, it
belongs to the kernel Iρ.

We recycle the previous arguments and examine the R•-permissible pairings
between the four self-intersections of type I of the ribbons∞−ribbon(n)�∞−ribbon
and ∞−ribbon(m) � ∞−ribbon. These pairings are delivered by a pair of curves
� ⊂ B(δW ) and �′ ⊂ B(δW ) that belong to the self-intersection locus of B(δW ).
Thus, form �= n, B(δW ) must develop triple intersections in A×[0, 1]. We conclude
that

∞−ribbon(n) �∞−ribbon �= ∞−ribbon(m) �∞−ribbon mod Bemb
moderate≤2(A).

On the other hand, if the mirror image (with respect to a v̂-trajectory) of a non-
oriented blob α : X → A is isotopic to the original blob α, then α � α = 0 in
Bimm
moderate≤2(A). Here the isotopy is assumed to preserve the oriented foliation F(v̂).

Indeed, in such symmetric case, α � α is the boundary of the 2-moderate cobordism
B : W → A × [0, 1), traced by a rotation in A × [0, 1) of α(X) ⊂ R× [0, 0.5] ⊂ A
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on the angles 0 ≤ φ ≤ π around the axis γ = R × {0.5} ⊂ A × {0} ⊂ A × [0, 1).
Thus,

(∞−ribbon(n) �∞−ribbon
) � (∞−ribbon(n) �∞−ribbon

) = 0

inBimm
moderate≤2(A) and hence inM. Therefore, {∞−ribbon(n)�∞−ribbon}n deliver

distinct elements of order 2 in M.
Thanks to the homomorphismRJ : Bimm

moderate≤2(A) → Bemb
moderate≤2(A) from (2.9),

Bemb
moderate≤2(A)

J≈ Z is a direct summand of Bimm
moderate≤2(A). ��

Remark 3.1 We do not know whether M ≈ (Z2)
∞ and we do not have geometric

models for all the generators ofM, beyond the ones that have been constructed above
and the similar ones from (3.10), based on Fig. 12. The main difficulty is that we do
not have localized resolutions of singularities, present in the boundaries of immersed
blobs, into canonical singular (like a small ∞-ribbon) and non-singular parts. This
prevents us from establishing an analogue of Lemma 3.5 for blobs. ♦

In the case of oriented blobs, many new invariants counting self-intersections of
their boundaries arise. In principle, there are 16 ways to combine the orientation
independent types I− IV with the orientation dependent types I− IV. As before, the
curves � that belong to the self-intersections of the δ-boundaries of solid cobordisms
W , define 8 parings π from the set R•• between these 16 types:

(I, I) ⇔ (I, III), (I, II) ⇔ (I, IV), (II, I) ⇔ (IV, III), (II, II) ⇔ (IV, IV),

(III, I) ⇔ (III, III), (III, II) ⇔ (III, IV), (IV, I) ⇔ (II, III), (IV, II) ⇔ (II, IV).

(3.9)

These pairings fromR•• follow two rules: 1) start with a boldRoman number, indexing
a sector that belongs to a pair of intersecting blobs at a point a where their boundaries
intersect (see Fig. 7); subject the sector to a reflection with respect to the vector v̂(a),
then the new sector acquires new bold Roman number; 2) the second Roman number
that indexes the orientations of two intersecting boundaries, is changed to the Roman
number that indexes the two flipped orientations of the boundary curves.

Consider two subsets,A andB, of the 16 patterns, each subset containing 8 patterns:
A consists of patterns whose second index is I or II, while B consists of patterns whose
second index is III or IV. We notice that the pairings from (3.9) couple only elements
from A with elements from B.

For a given oriented blob α : X → A, counting the crossings of each of the 16
types κ from the list (3.9), produces a number ρκ . Each of the 8 pairings π ∈ R••
from the list (3.9), with the help of the self-intersection curves � ⊂ δW , generates an
oriented cobordism invariant ρκ − ρπ(κ) ∈ Z.

Together, {ρκ − ρπ(κ)}κ produce a homomorphism

Iρ•• : OBimm
moderate≤2(A) −→ (Z)8.

Examining the pairings π from the list (3.9) between different types of intersection
patterns, we notice that π couples crossings of two similarly oriented (clockwise or
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counterclockwise) blobs with crossings of two similarly oriented blobs, and couples
crossings of two oppositely oriented blobs with crossings of two oppositely oriented
blobs. Therefore, Iρ•• is the direct product of two homomorphisms Iρ• and Iρ•.

Theorem 3.4 For A = R× [0, 1], there is an exact sequence of abelian groups:

0 → OM → OBimm
moderate≤2(A)

/
OBemb

moderate≤2(A)
Iρ• ×Iρ•−→

(Z)4 × (Z)4
�×�−→ Z2 × Z2 → 0,

where OBemb
moderate≤2(A)

K×L≈ Z × Z is a direct summand of OBimm
moderate≤2(A). The

homomorphism � takes each 4-vector to the sum of its components modulo 2.
The kernelOM contains the subgroup (Z)∞, generated by the blobs {Y(μ̄,ν)(n, 0)},

{Y(μ̄,ν)(0,m)} from (3.10) (see Fig. 12) and indexed by the elements of the set

{
m, n ∈ Z; m, n �= 0; (μ̄, ν) ∈ Ã =def {I, II} × {I, II}}.

Proof Consider two smooth simple loops (say, ellipcii), C1 and C2, in A = R× [0, 1]
such that they intersect transversally only at a pair of points a and b, where the
vectors v̂(a) and v̂(b) are transversal to both curves (see Fig. 12). We pick any pair of
indexes (μ̄(a), ν(a)), where μ̄(a) from the list {I, II, III, IV} and ν(a) from the list
{I, II, III, IV}. This choice of (μ̄(a), ν(a)) determines orientations (counterclockwise
or clockwise) of the curves C1 and C2 as well as one of the four possible choices of
the domains D1 and D2 in A that bound C1 and C2, respectively. Only one of the four
choices will produce a pair of compact domains. To address this complication, we trim
the non-compact domains by bounding them with very big concentric circles, disjoint
from C1 ∪ C2.

With these choices in place, the intersection point b acquired a unique type
(μ̄(b), ν(b)) ∈ {I, II, III, IV} × {I, II, III, IV}. Thus, with the help of oriented D1 and
D2, we get a permutation map � of the set {I, II, III, IV} × {I, II, III, IV} to itself.

By a direct inspection,we see that�preserves the two subsetsA = {I, II, III, IV}×
{I, II} and B = {I, II, III, IV} × {III, IV}. Moreover, � is a free involution on A and on
B. In particular, the involution � generates 4 pairs-orbits in A and 4 pairs-orbits in B.

In contrast, the involutions

π : {I, II, III, IV} × {I, II, III, IV} → {I, II, III, IV} × {I, II, III, IV}

from the list R•• pair elements of A to elements of B. As a result, the invariants
{ρκ − ρπ(κ)}κ∈A do not vanish for the blobs D1 and D2 whose crossings are indexed
by (μ̄(a), ν(a)) and (μ̄(b), ν(b)), both from A or B. Moreover, {ρ(μ̄(a), ν(a)) = 1 =
ρ(μ̄(b), ν(b))} for any of the 8 choices of (μ̄(a), ν(a)) ∈ A and for any of the 8 choices of
(μ̄(a), ν(a)) ∈ B. Therefore, each choice of (μ̄(a), ν(a)) ∈ A or (μ̄(a), ν(a)) ∈ B
produces a vector #z(μ̄(a), ν(a)) ∈ (Z)16 with exactly two components equal to 1 and
the rest of components equal to 0. The pairs of 1’s in each vector are indexed by
either elements of A or by elements of B. Again, by a direct inspection, the 8 × 16
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Fig. 12 The table lists 16 possible types at the crossing a. Vertically are displayed blobs’ types I, II, III, IV,
horizontally doodles’ types I, II, III, IV. The vector field v̂ is vertical. The corresponding types at the second
crossing b define the pairing �. The two bars at each crossing show the orientations of the intersecting
curves. The shadings indicate the two choices of interior or exterior for each ellipse. Any non-compact
domain is assumed to be bounded by a big circle, not shown

matrix T , formed by these vectors is of the rank 8. It consists of four 4 × 8 blocks
T11, T12, T21, T22, where T11 = T22 and T12 = 0 = T21. In turn, T11 consists of two
4× 4 blocks, the first of which has 1’s along the diagonal, and the second one has 1’s
along the anti-diagonal; the rest of entries are zeros.

Therefore, the image ofOBimm
moderate≤2(A)

/
OBemb

moderate≤2(A)
Iρ• ×Iρ•−→ (Z)4×(Z)4

contains the lattice spanned by the 8 vectors {#z(μ̄(a), ν(a))}(μ̄(a), ν(a))∈A∪B.
On the other hand, by Lemma 3.2, no vector in (Z)4 whose sum of components is

odd (in particular, with a single component 1) can be realized by an immersion of a
compact surface α : X → A, since the total number of crossings

∑
κ(ρκ + ρπ(κ)) for

α(∂X) must be even, and
∑

κ(ρκ − ρπ(κ)) ≡ ∑
κ(ρκ + ρπ(κ)) mod 2.

Thus, the image of Iρ• × Iρ• is the kernel of the homomorphism (Z)4×(Z)4
�×�−→

Z2 × Z2.
For any element (μ̄, ν) ∈ A, consider the two blobs X(μ̄,ν) in Fig. 12 for which the

crossing at a has the type (μ̄, ν). Then, the crossing at b has the type �(μ̄, ν) ∈ A.
There are unique π, π ′ ∈ R•• (see (3.9)) such that π(μ̄, ν) ∈ B and π ′(�(μ̄, ν)) ∈

B. Moreover, π ′(�(μ̄, ν)) = �(π(μ̄, ν)).
We denote by X(μ̄,ν)(n) the blob X(μ̄,ν), surrounded by n big concentric coherently

oriented discs. Then the blob
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Y(μ̄,ν)(n,m) =def X(μ̄,ν)(n) � Xπ(μ̄,ν)(m) (3.10)

is in the kernel of Iρ• × Iρ•. Moreover, for m �= n, Y(μ̄,ν)(n,m) is an element of
infinite order in OM. The validation of this claim is similar to the one used in the
proof of Theorem 3.3. First, we show that Y(μ̄,ν)(n,m) is non-trivial element in OM.
Assume to the contrary that there is a solid cobordism B : W → A × [0, 1) that
bounds Y(μ̄,ν)(n,m). Consider the self-intersection curve � ⊂ B(δW ) that connects
the unique self-intersection point a of type (μ̄, ν) ∈ X(μ̄,ν)(n) to the unique self-
intersection point a′ of type π(μ̄, ν) in Xπ(μ̄,ν)(m). Since B is an immersion, the
preimage B−1(�) must be union of several arcs. By the construction of �, two of these
arcs, �1 and �2, belong to the boundary δW , while the rest of the arcs start at n points
in the interior of W and terminate at m points in the interior of W . For m �= n, at
least one of these arcs must hit δW at some point c. Therefore, the point B(c) ∈ �

belongs to triple-intersection locus of B(δW ), a contradiction with the assumption
that B : δW → A × [0, 1] is 2-moderate. The demonstration that Y(μ̄,ν)(n,m) is an
element of infinite order is similar. ��
Conjecture 3.1 For A = R× [0, 1], consider the exact sequence of abelian groups:

0 → OM → OBimm
moderate≤2(A)/(Z× Z)

Iρ• ×Iρ•−→ (Z)4 × (Z)4
�×�−→ Z2 × Z2 → 0

from Theorem 3.4. The kernel OM is Z-generated by the blobs Y(μ̄,ν)(n,m) from
(3.10).

For the set of rules R••, there is an isomorphism

�•• : D(R••)/D0(R••) ↪→ OM.

With the help of �••, the elements of OM acquire “norms” m(Q,R••, E) ∈ Z+ as
in (3.6). ♦

To formulate the next conjecture, we introduce very informally a new topological
space Gmoderate≤2. Its points are the 2-moderate functions f ∈ Fmoderate≤2 together
with a “coupling” τ of their zeros. This τ may “link” either two simple zeros of f , or
a double zero to itself, or a double zero to a pair of distinct simple zeros. One needs
to describe also the deformation rules for τ , as a function f deforms within the space
Fmoderate≤2.

The space Gmoderate≤2 admits a slightly different interpretation. LetQmoderate≤2 ⊂
Fmoderate≤2 be the subspace of functions with either two simple zeros, or a single
double zero, or with no zeros at all. Then any f ∈ Fmoderate≤2 is a finite product∏

i fi , where fi ∈ Qmoderate≤2 and the order of the multipliers is unimportant. Of
course, the presentation f = ∏

i fi is far from being unique. For example, we always
can replace

∏
i fi by a product

∏
i hi fi , where {hi }i have no zeros and

∏
i hi = 1.

We would like to think of points of the hypothetical space Gmoderate≤2 as the pre-
sentations of functions f ∈ Fmoderate≤2 as such unordered products, being considered
up to the equivalence

∏
i fi ∼ ∏

i hi fi , where the positive functions {hi } are such that∏
i hi = 1.
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Conjecture 3.2 Let A = R × [0, 1]. There exists a topological space Gmoderate≤2
(whose construction is sketched above) and a surjective map q : Gmoderate≤2 →
Fmoderate≤2, given by q( f , τ ) = f , with finite fibers and such that the fundamental
group

π1(Gmoderate≤2, pt) ≈ Bimm
moderate≤2(A).

The isomorphism is delivered by an analogue Q imm of themap J imm fromTheorem 2.1
so that q ◦ Q imm = J imm. ♦
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