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Abstract
We study the existence of points on a compact oriented surface at which a symmetric
bilinear two-tensor field is conformal to a Riemannian metric. We give applications
to the existence of conformal points of surface diffeomorphisms and vector fields.
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1 Statement of Results

1.1 Conformal Points

Let � be a compact, oriented surface, possibly with non-empty boundary ∂�. Denote
by C1, . . . ,Cn the boundary components of � with the induced orientation. Let
Sym((T ∗�)⊗2) → � be the bundle of symmetric bilinear tensors on �. Fix a Rie-
mannian metric g on �, that is, a positive-definite section of Sym((T ∗�)⊗2) → �.

Definition 1.1 We say that a section h of Sym((T ∗�)⊗2) → � is conformal to g at
the point z ∈ � if there exists c ∈ R such that hz = cgz .

Motivated by [1], the goal of this note is to study the set of points

C(g, h) ⊂ �
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at which h is conformal to g (see Theorem 1.2) in order to investigate conformal
points of diffeomorphisms F : � → �, in which case h = F∗g (see Theorem 1.7
and Corollary 1.8), and of vector fields (see Corollary 1.10).

Ourmain observation is thatC(g, h) is the zero-set of a section Ha in a distinguished
vector bundle Ea → � over the surface, which we describe now. Let End(T�) → �

be the bundle of endomorphisms of T� and let

Ea ⊂ End(T�) (1.1)

be the subbundle of those endomorphisms which are symmetric with respect to g and
have zero trace. For all z ∈ �, an element of R ∈ Ea

z has the matrix expression

(
a b
b −a

)
a, b ∈ R,

with respect to a positive, orthonormal basis of Tz�. Thus any non-zero element
R ∈ Ea

z is, up to a positive scalar multiple, a reflection R : Tz� → Tz� along a line
in Tz�. In particular, the S1-bundle associated with Ea is the bundle of unoriented
lines in T�. This S1-bundle is doubly covered by the bundle of oriented lines in T�

which, in turn, is the unit-tangent bundle of �, that is, the S1-bundle associated with
T� → �. The above discussion shows that Ea is an oriented plane bundle over �

with Euler number

e(Ea) = 2e(T�) = 2χ(�). (1.2)

Given a symmetric bilinear two-tensor field h over�, let H be the section of End(T�)

representing h with respect to g, namely

gz(u, Hzv) = hz(u, v), ∀z ∈ �, ∀ u, v ∈ Tz�. (1.3)

We denote by

Ha := H − trH

2
I (1.4)

the section of Ea corresponding to the trace-free part of H . Here I is the section of
End(T�) such that Iz is the identity of Tz� for all z ∈ �.

Thus, we conclude that

z ∈ C(g, h) ⇐⇒ Ha
z = 0.

This relationship implies that given any closed setC ⊂ � and any field R of unoriented
lines on �\C, there is a section h such that C(g, h) = C and R is induced by h on
�\C, see e.g. [9, Theorem A]. Moreover, we see that, generically, h has only finitely
many, non-degenerate (as zeros of Ha) conformal points, and all of them lie in the
interior of�. If h has only finitelymany (degenerate or non-degenerate) critical points,
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and all of them lie in the interior of �, then we can use the Poincaré–Hopf Theorem
for unoriented line fields on oriented surfaces with boundary to algebraically count
conformal points. To give the precise statement, let us introduce some notation under
the assumption that C(g, h) is finite and C(g, h) ⊂ �\∂�. For each z ∈ C(g, h), we
define

ind(g,h)(z) ∈ Z

as the index of z seen as a zero of the section Ha of Ea → �. Thus ind(g,h)(z) ∈
{−1,+1} if z is non-degenerate. We count the elements in C(g, h) algebraically via
the integer

[C(g, h)] :=
∑

z∈C(g,h)

ind(g,h)(z) ∈ Z. (1.5)

Moreover, for every boundary component Ci of �, with i = 1, . . . , n, we define

wi (g, h) ∈ Z (1.6)

as the winding number of the section Ha |Ci with respect to Ri ∈ Ea, where Ri (z) is
the reflection along the line Tz∂� ⊂ Tz� for z ∈ Ci .

Theorem 1.2 Let g be a Riemannian metric on a compact, oriented surface �. Then
the following two statements hold.

(1) For any symmetric bilinear two-tensor field h over � such that C(g, h) is finite
and C(g, h) ⊂ �\∂�, the equality

[C(g, h)] = 2χ(�) +
n∑

i=1

wi (g, h) (1.7)

holds, where χ(�) denotes the Euler characteristic of �.

(2) Let C ⊂ �\∂� be a finite set of points, ι : C → Z an arbitrary function, and
w1, . . . , wn ∈ Z arbitrary integers satisfying

∑
z∈C

ι(z) = 2χ(�) +
n∑

i=1

wi . (1.8)

Then there exists a symmetric bilinear two-tensor field h over � such that C =
C(g, h), ι(z) = ind(g,h)(z) for all z ∈ C and wi = wi (g, h) for all i = 1, . . . , n.

Remark 1.3 For the convenience of the reader, we give a short proof of Theorem 1.2
in Sect. 2 although this can be deduced from the literature. For statement (1), we refer
to [8, 14, 16] which deal with the Poincaré–Hopf Theorem for oriented line fields on
surfaces with boundary and to [11, III.2.2], [3, 12, 13] which deal with the Poincaré–
Hopf theorem for unoriented line fields on surfaces without boundary. The version

123



P. Albers, G. Benedetti

of statement (1) has been generalized from quadratic forms to symmetric totally real
n-forms in [6, Section 3]. For statement (2), we refer to the Extension Theorem in [10,
p. 145].

Remark 1.4 Passing to the orientation double cover, Theorem 1.2 also holds for non-
orientable surfaces.

Remark 1.5 In the literature, there are several formulas for the computation of the
indices ind(g,h)(z) and the winding numbers wi (g, h), for instance [19, Theorem 1],
[4, Theorem 2.1].

We discuss now two situations where the set C(g, h) naturally appears.

1.2 Umbilical Points of Immersed Surfaces

First, let us consider a smooth immersionρ : � → R
3.Herewe take gρ and hρ to be the

first and the second fundamental form of the immersion ρ, respectively, with respect
to the ambient Euclideanmetric. The elements of C(gρ, hρ) are the so-called umbilical
points, namely points at which the two principal curvatures of the immersion coincide.
In this case, (1.7) yields the well-known result that [C(gρ, hρ)] = 2χ(�). In general,
it is natural to ask which further conditions must the points z ∈ C(gρ, hρ) and their
indices satisfy besides [C(gρ, hρ)] = 2χ(�). For instance, Loewner’s conjecture [18]
asserts that ind(z) ≤ 2 for all z ∈ C(gρ, hρ). This conjecture implies Carathéodory’s
conjecture [7, 17], which asserts that if ρ is a convex embedding (hence � = S2 and
χ(�) = 2), then C(gρ, hρ) contains at least two points. Examples where C(gρ, hρ)

consists exactly of two points, both having index two, are ellipsoids of revolution,
where the two poles are umbilical.

Remark 1.6 In [5] the notion of k-roundings of immersedm-manifolds in R
n has been

introduced so that umbilical points correspond to k = 2, m = 2 and n = 3. If
k,m, n satisfy a certain relation, then k-roundings are generically isolated and can
algebraically be counted via an index.

1.3 Conformal Points of a Diffeomorphism

The second situation in which C(g, h) naturally appears is when h = F∗g, where
F : � → � is any orientation-preserving diffeomorphism of �. In this case,
C(g, F∗g) is the set of so-called conformal points of F (with respect to g). Assuming
that C(g, F∗g) is finite and C(g, F∗g) ⊂ �\∂�, we are going to give a formula for
wi (g, F∗g) in terms of the behavior of F at the boundary. To state the result, for
i = 1, . . . , n let νi : Ci → T� be the outward normal at the boundary component
Ci and τi : Ci → T� be the unit vector tangent to Ci in the positive direction. The
pair (νi , τi ) then forms a positive orthonormal frame for g along Ci . We trivialize
T�|∂� = �iCi × R

2 using (νi , τi ) at Ci , i = 1, . . . , n. Since F maps boundary
components to boundary components (not necessarily the same) we can express dF
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in this trivialization as

dF
∣∣
Ci

=: Ni = ci

(
ai 0
bi 1

)
. (1.9)

Here ai , ci : Ci → (0,∞), bi : Ci → R and (ai , bi ) is never equal to (1, 0) since F
has no conformal point on Ci by assumption.

Theorem 1.7 For all i = 1, . . . , n we have the equality

wi (g, F
∗g) = w(ai − 1, bi ), (1.10)

wherew(ai−1, bi ) is thewindingnumber of the curve (ai−1, bi ) : Ci ∼= S1 → R
2\{0}

around the origin.

This formula, which will be proved in Sect. 3, allows us to compute wi (g, F∗g)
if we understand the behavior of F at points on the boundary sufficiently well. A
remarkable example of this phenomenon is illustrated by the next corollary.

Corollary 1.8 If F : � → � is the identity on the boundary and preserves an area
form on �, then

wi (g, F
∗g) = 0, ∀ i = 1, . . . , n. (1.11)

It follows that for this type of diffeomorphisms

[C(F)] = 2χ(�), (1.12)

that is, the number of conformal points of such an F is twice the Euler characteristic.

Proof By (1.10) the assertion is equivalent to showing wi (ai − 1, bi ) = 0. Since F is
the identity at the boundary we conclude that dF · τi = τi and thus ci = 1 in (1.9).
Since F preserves an area form, it follows that det Ni = 1, which implies that ai = 1
in (1.9). Therefore, the curve (ai −1, bi ) = (0, bi ) is contained in the y-axis and does
not cross 0. We conclude that its winding number around the origin w(ai − 1, bi )
vanishes.

Remark 1.9 Equation (1.12) was proved in [1], when � = D2, and F satisfies some
additional conditions, which hold, for instance, when F is C1-close to the identity,

If we linearize the property of being a conformal point for a diffeomorphism at the
identity of �, we get a corresponding condition for conformal points of vector fields
on �. This condition is easier phrased after reinterpreting conformality in terms of
complex geometry, as we explain next.
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1.4 Conformal Points and Complex Structures

Let j be the complex structure associated with the Riemannian metric g and the
orientation of �. In other words, j yields a section of End(T�) such that v and jzv

form a positive, orthogonal basis of Tz� for all z ∈ � and all v ∈ Tz�\{0}. Thus, jz
has the matrix expression

(
0 −1
1 0

)
(1.13)

with respect to a positive, orthonormal basis of Tz�. An endomorphism H : Tz� →
Tz� commutes with jz if and only if H has the matrix expression

(
a −b
b a

)
a, b ∈ R,

in such a basis. In particular, we deduce that H is, up to a scalar multiple, a rota-
tion matrix. Analogously, H anticommutes with jz if and only if H has the matrix
expression

(
a b
b −a

)
a, b ∈ R,

in such a basis. In particular, we deduce that Ea, see (1.1), is exactly the bundle
of endomorphisms anticommuting with j. Therefore, if we denote by Ec → � the
bundle of endomorphisms commuting with j, we get the splitting

End(T�) = Ec ⊕ Ea . (1.14)

Furthermore, as j -complex line bundle we can write

Ea ∼= T ⊗ T ∗, T := T (1,0)�,

where T (1,0)� is the holomorphic tangent bundle of� and T ∗ denotes the conjugate of
the dual bundle of T .With this identification, a local section of Ea is given by ∂

∂z ⊗dz̄
where z is a local holomorphic coordinate compatible with j. Thus, the Euler number
of Ea as real oriented plane bundle coincides with its Chern number as complex line
bundle. Using that c1(T ) = χ(�), this gives another derivation of (1.2) by computing

c1(E
a) = c1(T ⊗ T ∗) = c1(T ) − c1(T

∗) = c1(T ) + c1(T ) = 2c1(T ) = 2χ(�).

Finally, let us assume that z is a conformal point of an orientation-preserving diffeo-
morphism F : � → �. Then,

(F∗g)z = cgz for some c > 0. (1.15)
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If we denote by M the matrix representation of dz F with respect to positive, orthonor-
mal bases of Tz� and TF(z)�, then (1.15) can be rewritten as

MT M = cI .

This condition is equivalent to saying that M is, up to a scalar multiple, a rota-
tion matrix. Since jz and jF(z) are represented by the matrix (1.13), we see that
dz Fjz = jF(z)dz F . We conclude that z is a conformal point of F if and only if F is
j -holomorphic at z with respect to j -holomorphic coordinates around z and F(z).

1.5 Conformal Points of Vector Fields

Let f be a vector field on �. Let Ft : � → � be the time-t map of the flow of
f . Suppose that z ∈ � is a point such that Ft (z) ∈ C(g, (Ft )∗g) for all t close to
zero. In particular, Ft is j -holomorphic at z in a local j -holomorphic chart for all
small t . Taking the derivative in t at t = 0, we conclude that the vector field f is
j -holomorphic at z. In other words ∂̄j f is a section of Ea which vanishes at z. Here
∂̄j denotes the Cauchy–Riemann operator sending sections of the holomorphic tangent
bundle T = T (1,0)� to sections of T ⊗ T ∗ ∼= Ea, and f is identified with its image
under the isomorphism

T� → TC� ∼= T (1,0)� ⊕ T (0,1)� → T (1,0)�, (1.16)

where TC� is the complexification of T�.

Let C(j, f ) be the set of zeros of ∂̄j f . If C(j, f ) is finite and C(j, f ) ⊂ �\∂�,

then we can associate an index ind(j, f )(z) to each z ∈ C(j, f ) and a winding number
wi (j, f ) representing the relativewinding number of ∂̄j f with respect to the canonical
section Ri along Ci for every i = 1, . . . , n. Defining the algebraic count

[C(j, f )] :=
∑

z∈C(j, f )

ind(j, f )(z),

we get the following consequence of Theorem 1.2(1).

Corollary 1.10 Let j be a complex structure on a compact surface � and f a vector
field on � such that C(j, f ) is finite and C(j, f ) ⊂ �\∂�. Then the equation

[C(j, f )] = 2χ(�) +
n∑

i=1

wi (j, f )

holds.
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1.6 An Open Question

Given any Riemannian metric g on � and diffeomorphism F : � → �, it is inter-
esting to ask which further restrictions must the points z of C(g, F∗g), their indices
ind(g,F∗g)(z) and the numbers wi (g, F∗g) satisfy besides Eq. (1.7). This question is
related to the uniformization theorem for compact surfaces with boundary via Theo-
rem 1.2(2). For instance, given any twometrics g and h on� = S2 or� = D2,we can
find a diffeomorphism F : � → � such that F∗g and h are conformal at every point,
see [15, Theorem 1]. Thus, C(g, F∗g) = C(g, h), ind(g,F∗g)(z) = ind(g,h)(z) for
every z in this set, and wi (g, F∗g) = wi (g, h) for all i = 1, . . . , n. As a consequence
of Theorem 1.2(2), there are no further restrictions in this case.

As an instructive example, let us construct a diffeomorphism F : S2 → S2 having
exactly one conformal point without resorting to the uniformization theorem. We start
by defining a suitable vector field f (a section of T (1,0)� under the identification
(1.16)) and then we will define F := Ft , the time-t map of f for t > 0 small enough.
The complex manifold S2 is obtained gluing together two charts with holomorphic
local coordinates z, w ∈ C having the relationship zw = 1. In the z-chart, we define f
via f1(z) := z3ρ(|z|2)where ρ : [0,∞) → C is any smooth curve such that ρ′(s) �= 0
for all s ∈ [0,∞) and such that ρ(s) = s for small s and ρ(s) = −1/s for large s.
Thus ∂̄ f1(z) = z3ρ′(|z|2)z is different from zero if z �= 0. On the other hand, for z
near zero, ∂̄ f1(z) = z4 and thus z = 0 is a holomorphicity point of index 4. In the
w-chart, f1 gets transformed into

f2(w) := −w2 f1(
1
w

) = − 1
w

ρ( 1
|w|2 ),

which for w small enough becomes f2(w) = |w|2
w

= w̄. Thus f2 smoothly extends
at w = 0 and ∂̄ f2(0) = 1 �= 0. Defining f as f2 in the w-chart, we get the desired
vector field.

We now claim that the time-t flow map Ft of f has exactly one conformal point at
z = 0, provided that t > 0 is small enough. Indeed, if z is close to 0, then f1(z) = z4 z̄
is real analytic and therefore the Cauchy–Kovalevskaya Theorem implies that Ft (z)
is real analytic and the expansion Ft (z) = z + t z4 z̄ + O(t2|z|6) holds. Therefore,
∂̄Ft (z) = t z4 + O(t2|z|5), which vanishes only for z = 0 when t > 0 is small
enough. On the other hand, in any compact neighborhood of 0 in thew-chart, we have
Ft (w) = w + t f2(w) + O(t2) and ∂̄Ft (w) = t ∂̄ f2(w) + O(t2) which is nowhere
vanishing if t > 0 is small enough since |∂̄ f2(w)| is bounded away from zero.

Coming back to the case of an arbitrary surface �, we see that in general there
are metrics g and h such that h and F∗g are not conformal at all points, no matter
how we choose the diffeomorphism F . The easiest examples where this happens is
when � = T

2, or when � = D2 and we require in addition the diffeomorphism F
to be the identity at the boundary. For instance, on T

2 conformal classes of metrics g
are classified by lattices 
 in C, up to Euclidean isometries and homotheties, where
g is the Riemannian metric on T

2 = C/
 induced by the Euclidean metric on C.

To get an example on the disc, let us identify D2 with the unit Euclidean disc in
C. Let g be the Euclidean metric on D2. Recall that the group of diffeomorphisms
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ϕ : D2 → D2 such that g and ϕ∗g are conformal at all points consists of the Möbius
transformations preserving D2. Consider G : D2 → D2 to be any diffeomorphism
such that G|∂D2 �= ϕ|∂D2 for all ϕ. Such a G surely exists since if ϕ is not the identity,
then ϕ can have at most two fixed points on the boundary. If we define h := G∗g,
then there is no diffeomorphism F : D2 → D2 which is identity at the boundary
and such that F∗h and g are conformal at every point. Indeed, if such an F exists,
then (G ◦ F)∗g = F∗G∗g = F∗h is conformal to g at all points, which means
that F ◦ G = ϕ for some Möbius transformation ϕ preserving the disc. Since F
is the identity at the boundary, this would imply that G = ϕ on the boundary. A
contradiction.

Thus, in the case of T
2 and of D2, it is meaningful to ask if there is a metric g and

a diffeomorphism F (being the identity on the boundary in the case of D2) such that
C(g, F∗g) is empty. If one can find a vector field f (vanishing on the boundary in the
case of D2) such that C(j, f ) = ∅, then C(g, F∗

t g) = ∅ for small t �= 0, as well,
where Ft is the time-t map of the flow of f .

In the case of � = T
2, we can readily find such a vector field for all conformal

classes of complex structures. Indeed, let T
2 = C/
 where 
 is a lattice in C and let

j be the complex structure on � induced by that on C. Up to Euclidean isometries
and homotheties, we can assume that 
 is generated by 1, τ ∈ C, where τ = a + ib
with b > 0. Consider the vector field which in a global holomorphic trivialization of

T (1,0)� is written as f (z) = e
2π i
b Im z .Notice that f is well-defined since it is invariant

under translations by 1 and τ. Moreover,

∂̄j f (z) = ∂

∂ z̄
e

π
b (z−z̄) = −π

b
f (z),

which is nowhere vanishing.
However, we do not know if such a vector field f exists on D2. Since vector fields

on D2 correspond to functions in a global trivialization of T (1,0)D2, we have the
following open question.

Question 1.11 Does there exist a smooth function f : D2 → C satisfying the following
two conditions?

(1) ∀z ∈ D2,
∂ f
∂ z̄ (z) �= 0.

(2) ∀z ∈ ∂D2, f (z) = 0.

1.7 Plan of the Paper

Theorem 1.2 is proven in Sect. 2. Theorem 1.7 is proven in Sect. 3.

2 Proof of Theorem 1.2

We prove Theorem 1.2(1). Let h be a symmetric bilinear two-tensor field over � such
that C(g, h) is finite and C(g, h) ⊂ �\∂�. Recall the definition of H and Ha from
(1.3) and (1.4).
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If � has no boundary, then [C(g, h)] = e(Ea) = 2χ(�) by the Poincaré–Hopf
Theorem for oriented plane bundles [2, Theorem 11.17]. If � has boundary, let �̂

be the closed, oriented surface that we obtain from � by gluing a disc D1, . . . , Dn

along each boundary component C1, . . . ,Cn . The gluing maps D2 → Di have the
Euclidean disc

D2 = {(x, y) ∈ R
2 | x2 + y2 ≤ 1}

as domain and send the boundary ∂D2 traversed in the positive sense to C̄i , that is, to
Ci traversed in the negative sense. In this way, the gluing maps are positively oriented
with respect to the orientation on �̂.

We let ĝ be any extension of g to � as a Riemannian metric. On the bundle Ea |Di

we choose a nowhere vanishing sectionMi defined as the reflection along the direction
of ∂x ∈ T D2. Let wC̄i

(Ha, Mi ) be the winding number of Ha with respect to Mi

along Ci traversed in the negative direction. Then

wC̄i
(Ha, Mi ) = wC̄i

(Ha, Ri ) + wC̄i
(Ri , Mi )

= −wCi (H
a, Ri ) + w∂D2(Ri , Mi ) = −wi (g, h) + 2,

where we have used that C̄i is identified with ∂D2 and that the unoriented line tangent
to ∂D2 rotates twice with respect to the horizontal unoriented line. By the Extension
Theorem in [10, p. 145], it is possible to construct an extension ĥ of h to �̂ such
that C(ĝ, ĥ) = C(g, h) ∪ {z1, . . . , zn}, where z1, . . . , zn are the centers of the discs
D1, . . . , Dn and

ind
(ĝ,ĥ)

(zi ) = wC̄i
(Ha, Mi ) = 2 − wi (g, h). (2.1)

Therefore,

[C(g, h)] = [C(ĝ, ĥ)] −
n∑

i=1

ind
(ĝ,ĥ)

(zi )

= 2χ(�̂) − 2n +
n∑

i=1

wi (g, h) = 2χ(�) +
n∑

i=1

wi (g, h),

where we used that χ(�) + n = χ(�̂) as follows from the formula χ(A ∪ B) =
χ(A) + χ(B) − χ(A ∩ B). We have thus completed the proof of Theorem 1.2(1).

Let us first prove Theorem 1.2(2) when � has no boundary. Let us consider an
embedded closed disc D containing C in its interior. There is a section Hout of Ea

which is nowhere vanishing on �\D̊ and there is a section H in which is nowhere
vanishing over D. The winding number of Hout with respect to H in along ∂D is
w(Hout, H in) = 2χ(�). For each z ∈ C consider an embedded closed disc Dz

centered at z and contained in D̊. After shrinking the discs Dz we may assume that
they are pairwise disjoint. Let Hz be a section of Ea |Dz which has just one zero at z
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with index ind(z) = ı(z). Thus the winding number of Hz with respect to H in along
∂Dz is w(Hz, H in) = ı(z). Since 2χ(�) = ∑

z∈C ι(z) by assumption, we get

w(Hout, H in) =
∑
z∈C

w(Hz, H in).

Consider the surface

�̃ := D\
⊔
z∈C

D̊z .

It satisfies ∂�̃ = ∂D�(�z∈C∂Dz). Sincew(Hout, H in)−∑
z∈C w(Hz, H in) = 0, the

Extension Theorem in [10, p. 145] implies that there is a nowhere vanishing section H̃
of Ea |�̃ coinciding with Hout on ∂D and with Hz on every ∂Dz . Thus, Hout, H̃ , and
all Hz glue together to yield a section H of Ea → � having the desired properties.

When � has boundary, we construct the closed surface �̂ as in the proof of The-
orem 1.2(1). We define Ĉ := C ∪ {z1, . . . , zn} and ı̂ : Ĉ → Z as the extension of ı
such that ı(zi ) = 2 − wi for all i = 1, . . . , n. Applying Theorem 1.2(2) for closed
surfaces to �̂ and ı̂ and using (2.1) yields Theorem 1.2(2) for the case of surfaces with
boundary, as well.

3 Proof of Theorem 1.7

Let Ci be a component of ∂� for some i ∈ {1, . . . , n}. There is j ∈ {1, . . . , n} such
that F(Ci ) = C j . Recall that dF |Ci is expressed by the matrix

Ni = ci

(
ai 0
bi 1

)

with respect to the positive orthonormal bases νi , τi and ν j , τ j .

The metric F∗g|Ci is represented by the endomorphism dFT · dF via (1.3). A
computation shows that the matrix representing dFT · dF with respect to the basis
νi , τi is

NT
i Ni = c2i Qi , with Qi =

(
a2i + b2i bi

bi 1

)
.

We point out that the condition that (ai , bi ) is never equal to (1, 0) is equivalent to Qi

having distinct eigenvalues, since Qi is symmetric. Let qi : Ci → RP1 ∼= R/πZ be
the eigendirection of Qi with larger eigenvalue. By (1.6), wi (g, F∗g) is the degree of
the map qi : Ci → R/πZ. Therefore, our goal is to show that the degree of qi is equal
to the winding number of (ai − 1, bi ) : Ci → R

2 around the origin. To this purpose,
let us parametrize Ci in the positive direction by θi ∈ R/2πZ and, to ease notation,
let us drop all the subscripts i in what follows.
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Wemay assume without loss of generality that the curve (a−1, b) : R/2πZ → R
2

intersects the positive real axis transversely. In this casew(a−1, b) counts the number
of points θ0 ∈ R/2πZ such that (a(θ0)−1, b(θ0)) lies on the positive real axis, namely
a(θ0) > 1 and b(θ0) = 0,with sign: the intersection is counted positively if b′(θ0) > 0
and negatively if b′(θ0) < 0.

On the other hand, the degree of q is computed using a regular value ξ ∈ R/πZ of
q. Being regular means that q ′(θ0) �= 0 for all θ0 ∈ q−1(ξ). In this case, the degree of
q counts number of points θ0 ∈ q−1(ξ) with sign: the point θ0 is counted positively if
q ′(θ0) > 0 and negatively if q ′(θ0) < 0.

Choosing ξ = 0,we see that θ0 ∈ q−1(0) if and only if (1, 0) ∈ R
2 is an eigenvector

of Q with eigenvalue larger than 1. This happens exactly when b(θ0) = 0 and a(θ0) >

1, that is when (a − 1, b) intersects the positive real axis. Therefore, we prove that 0
is a regular value of q and that w(a − 1, b) is the degree of q if we can show that for
every such θ0 the numbers b′(θ0) and q ′(θ0) have the same sign.

For this purpose, let v(θ) = (x(θ), y(θ)) ∈ R
2 be a generator of the line q(θ) such

that v(θ0) = (1, 0) and write λ(θ) for the corresponding eigenvalue of Q(θ), so that
λ(θ0) = a(θ0). Then q ′(θ0) = y′(θ0). To compute y′(θ0) we differentiate the vector
equation

(
Q(θ) − λ(θ)I

)
v(θ) = 0 at θ0:

(
Q(θ0) − λ(θ0)I

)
v′(θ0) + (

Q′(θ0) − λ′(θ0)I
)
v(θ0) = 0.

Therefore, substituting the values for Q(θ0), λ(θ0) and Q′(θ0) and taking the y-
component of the vector equation, we get

(
1 − a(θ0)

)
y′(θ0) + b′(θ0) = 0.

Thus,

q ′(θ0) = y′(θ0) = b′(θ0)
a(θ0) − 1

from which we see that q ′(θ0) and b′(θ0) have the same sign since a(θ0) > 1. This
completes the proof.
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