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Abstract
In what follows, we present a large number of questions which were posed on the
problem solving seminar in algebra at Stockholm University during the period Fall
2014—Spring 2017 along with a number of results related to these problems. Many
of the results were obtained by participants of the latter seminar.

Keywords Waring problem for forms · Generic and maximal ranks · Ideals of
generic forms · Power ideals · Lefschetz properties · Symbolic powers

1 TheWaring Problem for Complex-Valued Forms

The following famous result on binary forms was proven by Sylvester in 1851. Below
we use the terms “forms” and “homogeneous polynomials” as synonyms.

Theorem 1.1 (Sylvester’s Theorem, see Sylvester (1973))
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(i) A general binary form f of odd degree k = 2s − 1 with complex coefficients can
be written as

f (x, y) =
s∑

j=1

(α j x + β j y)
k .

(ii) A general binary form f of even degree k = 2s with complex coefficients can be
written as

f (x, y) = λxk +
s∑

j=1

(α j x + β j y)
k .

Sylvester’s result was the starting point of the study of the so-calledWaring problem
for polynomials which we discuss in this section.

Let S = C[x1, . . . , xn] be the polynomial ring in n variables with complex coef-
ficients. Obviously, S = ⊕

k≥0 Sk with respect to the standard grading, where Sk
denotes the vector space of all forms of degree k.

Definition 1.2 Let f be a form of degree k in S. A presentation of f as a sum of k-th
powers of linear forms, i.e., f = �k1 + · · · + �ks , where �1, · · · , �s ∈ S1, is called a
Waring decomposition of f . The minimal length of such a decomposition is called the
Waring rank of f , and we denote it as rk( f ). By rk◦(k, n) we denote the Waring rank
of a general complex-valued form of degree k in n variables.

The name of this problem is motivated by its celebrated prototype, i.e., the Waring
problem for natural numbers. The latter was posed in 1770 by the British number
theorist E. Waring who claimed that, for any positive integer k, there exists a minimal
number g(k) such that every natural number can be written as a sum of at most g(k)
k-th powers of positive integers. The famous Lagrange’s four-squares Theorem (1770)
claims that g(2) = 4 while the existence of g(k), for any integer k ≥ 2, is due to D.
Hilbert (1900). Exact values of g(k) are currently known only in a few cases although
it is generally believed that

g(k) = 2k +
[
(3/2)k

]
− 2.

As we mentioned above, the interest in additive decompositions of polynomials
goes back to the 19-th century; in the last decades however these types of problems
received a lot of additional attention in several areas of pure and applied mathematics.
This interest is partially explained by the fact that homogeneous polynomials can
be naturally identified with symmetric tensors whose additive structure is important
in relation to problems coming from applications (an interested reader can consult
Landsberg’s book Landsberg (2012)).

The Waring problem for complex-valued forms has three major perspectives: (1)
calculation of the rank of a general form, i.e., the rank that occur in a Zariski open
(and dense) subset of forms of a given degree; (2) calculation of the maximal rank for
forms of a given degree; (3) calculation of the number of minimal decompositions of
a given form. In this section, we state some problems related to all three directions.
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Algebraic Stories from One and from the Other Pockets 139

Remark 1.3 The Waring problem for polynomials can be studied over other fields as
well.However ononehand, overfields offinite characteristic, evenDefinition1.2 needs
to be clarified; see Gallardo (2000), Car andGallardo (2004), Car (2008), Gallardo and
Vaserstein (2008), Liu andWooley (2010). On the other hand, the case of real numbers
although particularly interesting for applications is also very different from the case of
complex numbers from a geometric point of view. In particular, the notion of generic
rank has to be refined, since over real numbers Zariski open sets are not necessarily
dense; see Comon and Ottaviani (2012), Causa and Re (2011), Blekherman (2015),
Bernardi et al. (2017), Michałek et al. (2017), Carlini et al. (2017). Since the situation
with these other natural fields is quite different from the case of complex-valued
polynomials, we decided not to discuss these questions here.

1.1 Generic k-Rank

Another motivation for the renewed interest in the Waring problem for polynomials
comes from the celebrated result of Alexander and Hirschowitz (1995) which com-
pletely describes the Waring rank rk◦(k, n) of general forms of any degree and in any
number of variables (it generalizes the above Sylvester’s Theorem that claims that the
Waring rank of a general binary complex-valued form of degree k equals

⌊ k
2

⌋
).

Theorem 1.4 (Alexander-Hirschowitz Theorem, 1995). For all pairs of positive inte-
gers (k, n), the generic Waring rank rk◦(k, n) is given by

rk◦(k, n) =
⌈(n+k−1

n−1

)

n

⌉
, (1)

except for the following cases:

(1) k = 2, where rk◦(2, n) = n;
(2) k = 4, n = 3, 4, 5; and k = 3, n = 5, where, rgen(k, n) equals the r.h.s of (1)

plus 1.

Except for sums of powers of linear forms several other types of additive decompo-
sitions of homogeneous polynomials have been considered in the literature. These
include:

(a) decompositions into sums of completely decomposable forms, i.e., decomposi-
tions of the form f = ∑r

i=1 �i,1 · · · �i,d ; see Arrondo and Bernardi (2011), Shin
(2012), Abo (2014), Torrance (2017), Catalisano et al. (2015);

(b) decompositions of the form f = ∑r
i=1 �d−1

i,1 �i,2; see Catalisano et al. (2002),
Ballico (2005), Abo and Vannieuwenhoven (2018);

(c) decompositions of amoregeneral form f = ∑r
i=1 �

d1
i,1 · · · �dsi,s ,where (d1, . . . , ds)

� d any fixed partition of d; see Catalisano et al. (2017).

In particular, in Fröberg et al. (2012), Fröberg, Shapiro and Ottaviani considered the
following natural generalization of the Waring problem for complex-valued forms (to
the best of our knowledge such generalization has not been studied earlier).
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140 R. Fröberg et al.

Definition 1.5 Let k, d be positive integers. Given a form f of degree kd, a k-Waring
decomposition is a presentation of f as a sum of k-th powers of forms of degree d,
i.e., f = gk1 + · · · + gks , with gi ∈ Sd . The minimal length of such an expression is
called the k-rank of f and is denoted by rkk( f ). We denote by rk◦

k(kd, n) the k-rank
of a general complex-valued form of degree kd in n variables.

In this notation, the case d = 1 corresponds to the classical Waring problem, i.e., if
k = deg( f ), then rk( f ) = rkk( f ) and rk◦(k, n) = rk◦

k(k, n). Since the case k = 1 is
trivial, we assume below that k ≥ 2.

Problem A Given a triple of positive integers (k, d, n), calculate rk◦
k(kd, n).

The main result of Fröberg et al. (2012) states that, for any triple (k, d, n) as above,

rk◦
k(kd, n) ≤ kn−1. (2)

At the same time, by a simple parameter count, one has a lower bound for rk◦(k, n)

given by

rk◦
k(kd, n) ≥

⌈(n+kd−1
n−1

)
(n+d−1

n−1

)
⌉
. (3)

A remarkable fact about the upper bound given by (2) is that it is independent of
d. Therefore, since the right-hand side of (3) equals kn−1 when d � 0, we get that
for large values of d, the bound in (2) is actually sharp. As a consequence of this
remark, for any fixed n ≥ 1 and k ≥ 2, there exists a positive integer dk,n such that
rk◦

k(kd, n) = kn−1, for all d ≥ dk,n .
In the case of binary forms, it has been proven that (3) is actually an equality

Reznick (2013), Lundqvist et al. (2017). Exact values of dk,n , and the behaviour of
rkk(kd, n) for d ≤ dk,n , have also been computed in the case k = 2 for n = 3, 4; see
(Lundqvist et al. (2017), Appendix). These results agree with the following conjecture
suggested to the authors by Ottaviani in 2014 in a private communication (in the case
k = 2, this conjecture agrees with ([Le et al. (2013), Conjecture 1])).

Conjecture 1.6 The k-rank of a general form of degree kd in n variables is given by

rk◦
k(kd, n) =

⎧
⎨

⎩
min

{
s ≥ 1 | s(n+d−1

n−1

) − (s
2

) ≥ (n+2d−1
n−1

)}
, for k = 2;

min
{
s ≥ 1 | s(n+d−1

n−1

) ≥ (n+kd−1
n−1

)}
, for k ≥ 3.

(4)

Observe that, for k ≥ 3, Conjecture 1.6 claims that the naïve bound (3) obtained by a
parameter count is actually sharp, while, for k = 2, due to an additional group action
there are many defective cases where the inequality (3) is strict. The intuition behind
Conjecture 1.6 can be explained by the geometric interpretation of Waring problems
in terms of secant varieties, see below.

Remark 1.7 (Waring problems and secant varieties) Problems on additive decompo-
sitions, such as all the Waring-type problems mentioned above, can be rephrased
geometrically in terms of the so-called secant varieties. Given any projective variety
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Algebraic Stories from One and from the Other Pockets 141

V , the s-secant variety σs(V ) is the Zariski closure of the union of all linear spaces
spanned by s-tuples of points on V (these geometric objects are very classical and
have been studied since the beginning of the last century; see e.g. Palatini (1906),
Scorza (1908), Palatini (1909), Terracini (1911). An abundance of information on
secant varieties can be found in Zak (1993)).

In the case of the classical Waring problem for complex-valued polynomials, we
should work with the projective variety parametrized by powers of linear forms in the
ambient projective space of homogeneous polynomials in n variables having degree
d, i.e., our projective variety is the classical Veronese variety Vn,d . Its s-secant variety
σs(Vn,d) is the Zariski closure of the set of homogeneous polynomials whose Waring
rank is at most s. Therefore, the generic Waring rank rk◦(d, n) is the smallest s such
that the s-secant variety coincides with the whole space of forms of degree d. Since the
dimension of the affine cone over the Veronese variety Vn,d has dimension n and the
dimension of its ambient space is

(n+d
n

)
, Alexander-Hirschowitz Theorem claims that

the s-secant variety σs(Vn,d) has the expected dimension, which is equal to sn, except
for a few defective cases, where the dimension is strictly smaller than the expected one.

In the case of k-Waring decompositions, we consider the variety of powers V (k)
n,d ,

i.e., the variety of k-th powers of forms of degree d in the ambient space of forms of
degree kd. Hence, Problem A can be rephrased as a problem about the dimensions of
secant varieties for V (k)

n,d . The dimension of the affine cone over the variety of powers

V (k)
n,d is

(n+d−1
n−1

)
and the dimension of its ambient space is

(n+kd−1
n−1

)
; hence, Conjecture

1.6 claims that, for k ≥ 3, the affine cone over the s-secant variety has the expected
dimension, which is s

(n+kd−1
n−1

)
. The case k = 2 is intrinsically pathological and gives

defective cases for an arbitrary pair (d, n) which is similar to the case (1) of Theorem
1.4; see [Oneto (2016), Remark 3.3.5] (we refer to Lundqvist et al. (2017) for more
details about this geometric interpretation of Problem A).

1.2 Maximal k-Rank

A harder problem, which is largely open even in the classical case of Waring decom-
positions, deals with the computation of the maximum of k-ranks taken over all
complex-valued forms of degree divisible by k.

Definition 1.8 Given a triple (k, d, n), denote by rkmax
k (kd, n) the minimal number of

terms such that every form of degree kd in n+1 variables can be represented as the sum
of at most rkmax

k (kd, n) k-th powers of forms of degree d. The number rkmax
k (kd, n)

is called the maximal k-rank. Similarly to the above, we omit the subscript when
considering the classical Waring rank, i.e., for d = 1.

In [Reznick (2013), Theorem 5.4], Reznick shows that the maximal Waring rank of
binary forms of degree k, which is equal to k, is attained exactly on the binary forms
representable as �1�

k−1
2 , where �1 and �2 are any two non-proportional linear binary

forms. As the author says, the latter result “must be ancient”, but we could not find a
suitable reference prior to Reznick (2013).

Problem B Given a triple of positive integers (k, d, n), calculate rkmax
k (kd, n).
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142 R. Fröberg et al.

At the moment, we have an explicit conjecture about the maximal k-rank of forms
of degree kd only in the case of binary forms.

Conjecture 1.9 For any positive integers k and d, the maximal k-rank rkmax
k (kd, 2) of

binary forms is k. Additionally, in the above notation, binary forms representable by
�1�

kd−1
2 , where �1 and �2 are non-proportional linear forms, have the latter maximal

k-rank.

Conjecture 1.9 is obvious for k = 2 since, for any binary form f of degree 2d, we
can write

f = g1g2 =
(
1

2
(g1 + g2)

)2

+
(
i

2
(g1 − g2)

)2

, with g1, g2 ∈ Sd . (5)

The first non-trivial case is that of binary sextics, i.e., k = 3, d = 2, which has been
settled in Lundqvist et al. (2017) where it has also been shown that the 4-rank of x1x72
is equal to 4.

The best known general result about maximal ranks is due to Bleckherman and
Teitler, see Blekherman and Teitler (2015), where they prove that the maximal rank
is always at most twice as big as the generic rank. This fact is true for any additive
decomposition and, in particular, both for the classical (d = 1) and for the higher
(d ≥ 2) Waring ranks. In the classical case of Waring ranks, the latter bound is
(almost) sharp for binary forms, but in many other cases it seems rather crude. At
present, better bounds are known only in few special cases of low degrees Ballico
and Paris (2017), Jelisiejew (2014). To the best of our knowledge, the exact values
of the maximal Waring rank are only known for binary forms (classical, see Reznick
(2013)), quadrics (classical), ternary cubics [see Segre (1942), Landsberg and Teitler
(2010)], ternary quartics, see Kleppe (1999), ternary quintics, see De Paris (2015) and
quaternary cubics, see Segre (1942).

1.3 The k-Rank of Monomials

Letm = xa11 · · · xann be amonomialwith 0 < a1 ≤ a2 ≤ · · · ≤ an . It has been shown in
Carlini et al. (2012) that the classicalWaring rank ofm is equal to 1

(a1+1)

∏
i=1,...,n(ai+

1).

Problem C Given k ≥ 3 and a monomial m of degree kd, determine the monomial
k-rank rkk(m).

E. Carlini and A. Oneto settled the case of the 2-rank, see Carlini and Oneto (2015).
Namely, if m is a monomial of degree 2d, then we can write m = m1m2, where m1
andm2 are monomials of degree d. From identity (5), it follows that the 2-rank ofm is
at most two. On the other hand,m has rank one exactly when we can choosem1 = m2,
i.e., when the power of each variable in m is even. In Carlini and Oneto (2015), also
the case k = 3 in two and three variables has been settled, but, in general, for k ≥ 3,
the question about the k-rank of monomials of degree kd, is still open. At present,
we are only aware of only two general results in this direction. Namely, Carlini and
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Oneto (2015) contains the bound rkk(m) ≤ 2k−1, and recently, S. Lundqvist, A.Oneto,
B. Reznick, and B. Shapiro have shown that rkk(m) ≤ k when d ≥ n(k − 2), see
Lundqvist et al. (2017). Thus, for fixed k and n, all but a finite number of monomials
of degree divisible by k have k-rank less than k.

In the case of binary forms, a bit more is currently known which motivates the
following question.

Problem D Given k ≥ 3 and a monomial xa yb of degree a + b = kd, it is known that
rkk(xa yb) ≤ max(s, t) + 1, where s and t are the remainders of the division of a and
b by k, see Carlini and Oneto (2015). Is it true that the latter inequality is, in fact, an
equality?

The latter question has positive answer for k = 2 (see [Carlini and Oneto (2015),
Theorem 3.2]) and k = 3 (see [Carlini and Oneto (2015), Corollary 3.6]). For k = 4,
we know that xy7 has 4-rank equal to 4 (see [Lundqvist et al. (2017), Example 4.7]).
As far as we know, these are the only known cases.

1.4 Degree of theWaringMap

Here again, we concentrate on the case of binary forms (i.e., n = 2). As we mentioned
above, in this case, it is proven that

rk◦
k(kd, 2) =

⌈
dim Skd
dim Sd

⌉
=

⌈
kd + 1

d + 1

⌉
.

Definition 1.10 We say that a pair (k, d) is perfect if kd+1
d+1 is an integer.

All perfect pairs are easy to describe.

Lemma 1.11 The set of all pairs (k, d) for which kd+1
d+1 ∈ N splits into the disjoint

sequences E j := {( jd + j + 1, d) | d = 1, 2, . . .}. In each E j , the corresponding
quotient equals jd + 1.

Given a perfect pair (k, d), set s := kd+1
d+1 . Consider the map

Wk,d : Sd × . . . × Sd → Skd , (g1, . . . , gs) 	→ gk1 + . . . + gks .

Let W̃k,d be the same map, but defined up to a permutation of the gi ’s. We call it the
Waring map. By [Lundqvist et al. (2017), Theorem 2.3], W̃k,d is a generically finite
map of complex linear spaces of the same dimension. By definition, its degree is the
cardinality of the inverse image of a generic form in Skd .

Problem E Calculate the degree of W̃k,d for perfect pairs (k, d).

For the classical Waring decomposition (i.e., for d = 1), we get a perfect pair if
and only if k is odd. From Sylvester’s Theorem (Theorem 1.1), we know that in this
case the degree of the Waring map is 1, i.e., the general binary form of odd degree has
a unique Waring decomposition, up to a permutation of its summands.
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144 R. Fröberg et al.

Remark 1.12 For the classical Waring decomposition, the problem of counting the
number of decompositions of a generic form of degree k in n variables under the

assumption that
(n+k−1

n−1 )
n is an integer which coincides with the corresponding generic

Waring rank, has been actively studied not just fro binary forms but also in the case
of many variables. In modern terminology, the cases when the general form of a
given degree has a unique decomposition, up to a permutation of the summands, are
called identifiable. Besides the above mentioned case of binary forms of odd degree,
some other identifiable cases are known. These are the quaternary cubics (Sylvester’s
Pentahedral Theorem, see Sylvester (1973)) and the ternary quintics Hilbert (1888b),
Palatini (1903), Richmond (1904), Massarenti and Mella (2013). Recently, F. Galuppi
and M. Mella proved that these are the only possible identifiable cases, Galuppi and
Mella (2017). (We refer to Chiantini et al. (2017) for the current status of this problem.)

2 Ideals of Generic Forms

Let I be a homogeneous ideal in S, i.e., an ideal generated by homogeneous poly-
nomials. The ideal I and the quotient algebra R = S/I inherit the grading of the
polynomial ring.

Definition 2.1 Given a homogeneous ideal I ⊂ S, we call the function

HFR(i) := dimC Ri = dimC Si − dimC Ii

the Hilbert function of R. The power series

HSR(t) :=
∑

i∈N
HFR(i)t i ∈ C[[t]]

is called the Hilbert series of R.

Let I be a homogeneous ideal generated by forms f1, . . . , fr of degrees d1, . . . , dr ,
respectively. It was shown in Fröberg and Löfwall (1990) that, for fixed parameters
(n, d1, . . . , dr ), there exists only a finite number of possible Hilbert series for S/I , and
that there is a Zariski open subset in the space of coefficients of the fi ’s on which the
Hilbert series of S/I is one and the same. Additionally, in the appropriate sense, it is
the minimal series among all possible Hilbert series, see below. We call algebras with
this Hilbert series generic. There is a longstanding conjecture describing this minimal
Hilbert series due to the first author, see Fröberg (1985).

Conjecture 2.2 (Fröberg’s Conjecture, 1985). Let f1, . . . , fr be generic forms of
degrees d1, . . . , dr , respectively. Then the Hilbert series of the quotient algebra
R = S/( f1, . . . , fr ) is given by

HFR(t) =
[∏r

i=1(1 − tdi )

(1 − t)n

]

+
. (6)
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Here [∑i≥0 ai z
i ]+ := ∑

i≥0 bi z
i , with bi = ai if a j ≥ 0 for all j ≤ i and bi =

0 otherwise. In other words, [∑i≥0 ai z
i ]+ is the truncation of a real power series∑

i≥0 ai z
i at its first non-positive coefficient.

Conjecture 2.2 has been proven in the following cases: for r ≤ n (easy exercise,
since in this case I is a complete intersection); for n ≤ 2, Fröberg (1985); for n = 3,
Anick (1986), for r = n + 1, which follows from Stanley (1978). Additionally, in
Hochster and Laksov (1987) it has been proven that (6) is correct in the first nontrivial
degree minri=1(di + 1). There are also other special results in the case d1 = · · · = dr ,
see Fröberg and Hollman (1994), Aubry (1995), Migliore and Miro-Roig (2003),
Nicklasson (2017a), Nenashev (2017).

We should also mention that Fröberg and Lundqvist (2018) contains a survey of the
existing results on the generic series for various algebras and it also studies the (oppo-
site) problemoffinding themaximalHilbert series for fixedparameters (n, d1, . . . , dr ).

It is known that the actual Hilbert series of the quotient ring of any ideal with the
same numerical parameters is lexicographically larger than or equal to the conjectured
one. This fact implies that if for a given discrete data (n, d1, . . . , dr ), one finds just a
single example of an algebra with the Hilbert series as in (6), then Conjecture 2.2 is
settled in this case.

Although algebras with the minimal Hilbert series constitute a Zariski open set,
they are hard to find constructively. We are only aware of two explicit constructions
giving the minimal series in the special case r = n + 1, namely R. Stanley’s choice
xd11 , . . . , xdnn , (x1 +· · ·+ xn)dn+1 , and C. Gottlieb’s choice xd11 , . . . , xdnn , hdn+1 , where
hd denotes the complete homogeneous symmetric polynomial of degree d, (private
communication). To the best of our knowledge, already in the next case r = n + 2
there is no concrete guess about how to construct a similar example. There is however
a substantial computer-based evidence pointing towards the possibility of replacing
generic forms of degree d by a product of generic forms of much smaller degrees. We
present some problems and conjectures related to such pseudo-concrete constructions
below.

2.1 Hilbert Series of Generic Power Ideals

Differently from the situation occurring in Stanley’s result, for ideals generated by
more than n + 1 powers of generic linear forms, there are known examples of
(n, d1, ..., dr ) for which algebras generated by powers of generic linear forms fail
to have the Hilbert series as in (6).

Recall that ideals generated by powers of linear forms are usually referred to as
power ideals. Due to their appearance in several areas of algebraic geometry, commu-
tative algebra and combinatorics, they have been studiedmore thoroughly than generic
ideals. In the next section, we will discuss their relation with the so-called fat points.
(For a more extensive survey on power ideals, we refer to the nice paper by Ardila and
Postnikov (2010), Ardila and Postnikov (2015).)
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146 R. Fröberg et al.

StudyingHilbert functions of generic power ideals, Iarrobino formulated the follow-
ing conjecture, usually referred to as the Fröberg-Iarrobino Conjecture, see Iarrobino
(1997), Chandler (2005).

Conjecture 2.3 (Fröberg-IarrobinoConjecture). Given generic linear forms �1, . . . , �r
and a positive integer d, let I be the power ideal generated by �d1 , . . . , �

d
r . Then

the Hilbert function of R = S/I coincides with that in (6), except for the cases
(n, r) = (3, 7), (3, 8), (4, 9), (5, 14) and possibly for r = n + 2 and r = n + 3.

This conjecture is still largely open. In Fröberg and Hollman (1994), Fröberg and
Hollman checked it for low degrees and small number of variables using the first
version of the software packageMacaulay2, see Grayson and Stillman (2002). In the
last decades, some progress has beenmade in reformulation of Conjecture 2.3 in terms
of the ideals of fat points and linear systems. We will return to this topic in the next
section.

2.2 Hilbert series of other classes of ideals

Computer experiments suggest that in order to always generically get the Hilbert
function as in (6) we need to replace power ideals by slightly less special ideals.

For example, given a partition μ = (μ1, . . . , μt ) � d, we call by a μ-power ideal
an ideal generated by forms of the type (lμ1 , . . . , lμr ), where lμi = �

μ1
i,1 · · · �μt

i,t and �i, j ’s
are distinct linear forms.

Problem F Forμ �= (d), does a genericμ-power ideal have the same Hilbert function
as in (6)?

Computer computations of the Hilbert series of μ-power ideals whose generators are
produced randomly suggest a positive answer to the latter problem (such calculations
can be preformed in any computer algebra software such as CoCoA, see Abbott and
Bigatti (2014),Macaulay2, see Grayson and Stillman (2002) or Singular, see Decker
et al. (2018)). Nicklasson has also conjectured that ideals generated by powers of
generic forms of degree ≥ 2 have the Hilbert series as in (6).

Conjecture 2.4 (Nicklasson (2017a)). For generic forms g1, . . . , gr in n variables and
of degree d > 1, the ideal (gk1, . . . , g

k
r ) has the Hilbert series equal to

[
(1 − tdk)r

(1 − t)n

]

+
.

Remark 2.5 (Power ideals and secant varieties). In Remark 1.7, we explained the rela-
tion between Waring problems and the study of dimensions of secant varieties. Here,
we want to relate the computation of dimensions of secant varieties with the study of
Hilbert functions of the families of ideals we just presented.

The standard way to compute the dimension of a variety V is to consider its tangent
space at a generic smooth point. In Terracini (1911), A. Terracini proved the so-called
Terracini Lemma which claims that the tangent space at a generic smooth point of
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the s-secant variety σs(V ) coincides with the linear span of the tangent spaces at s
generic smooth points of the variety V . Now, if we consider the Veronese variety
Vn,d of d-th powers of linear forms, it is easy to observe that the affine cone over the
tangent space at a point [�d ] ∈ Vn,d coincides with the n-dimensional linear space
{[�d−1m] | m is any linear form}. Therefore, the dimension of the affine cone over
the tangent space to the s-secant variety of Vn,d at a generic point of the linear span〈[�d1 ], . . . , [�ds ]

〉
, where the �i ’s are generic linear forms, is equal to the dimension of

the homogeneous part of degree d of the ideal (�d−1
1 , . . . , �d−1

s ). Hence, the defective
cases listed in Alexander-Hirschowitz Theorem (Theorem 1.4) can be described in
terms of the defective cases listed in the Fröberg-Iarrobino’s Conjecture.

In a similar way, the tangent space at a point [gk] lying on the variety of powers
V (k)
n,d is given by the n-dimensional linear space {[gk−1m] | m is any linear form}.

Therefore by Terracini’s Lemma we can relate Conjecture 2.4 with the computation
of the dimensions of secant varieties to varieties of powers and, therefore, to generic
k-ranks. In particular, in [Lundqvist et al. (2017), Theorem A.3], the authors proved
that Conjecture 2.4 implies Conjecture 1.6 about generic k-ranks. In [Lundqvist et al.
(2017), Lemma 2.2], it was also shown that Conjecture 2.4 holds in the case of binary
forms. The proof is obtained by specializing each one of the gi ’s to be the d-th power
of a generic linear form and applying the fact that generic power ideals in two variables
have the generic Hilbert series Geramita and Schenck (1998). It is worth to mention
that the same idea as in [Lundqvist et al. (2017), Lemma 2.2] gives a positive answer
to Problem F in the case of binary forms, by specializing �i,1 = . . . = �i,t , for
i = 1, . . . , r .

2.3 Lefschetz Properties of Graded Algebras

We say that a graded algebra A has the weak Lefschetz property (WLP) if there exists
a linear form � such that for all i , the multiplication map ×� : Ai → Ai+1 has
maximal rank, i.e., is either injective or surjective. Similarly, we say that A has the
strong Lefschetz property (SLP) if there exists a linear form � such that for all i and
k, the map ×�k : Ai → Ai+k has maximal rank.

Being tightly connected to many branches of mathematics, the Lefschetz properties
of graded algebras has evolved into an important area of research in commutative
algebra.Herewe concentrate on problems related to complete intersections andgeneric
forms. For more references and open problems related to the Lefschetz properties, we
refer to Migliore and Nagel (2013), Michałek and Miro-Roig (2016), Migliore et al.
(2017), and Harima et al. (2013).

Stanley’s proof of the Fröberg conjecture for r = n+1 is actually also a proof of the
fact that every monomial complete intersection has the SLP. The proof uses the hard
Lefschetz theorem, but other proofs has since then been given. An elementary ring
theoretic proof appeared in Reid et al. (1991). In the same paper, it was conjectured
that each complete intersection has theWLP and the SLP. The conjecture also appears
as a question in Migliore and Nagel (2013). The conjecture is true in three variables,
see Harima et al. (2003), but remains open in four or more variables. The next problem
originally appeared in an unpublished paper by J. Herzog and D. Popescu, see Herzog
and Popescu (2005).
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Problem G Let f1, . . . , fr be generic forms in S, and r ≥ n. Does S/( f1, . . . , fr )
have the SLP?

Remark 2.6 The answer to Problem G in the case r = n is “Yes”, and follows from
Stanley’s result and semicontinuity.

In Boij et al. (2018), the Lefschetz properties for powers of monomial complete
intersections are studied. For the ring Tn,d,k = S/(xd1 , . . . , xdn )k , it is shown that for
k ≥ dn−2, n ≥ 3, (n, d) �= (3, 2), Tn,d,k fails the WLP. For n = 3, there is an explicit
conjecture for when the WLP holds. Additionally, there is some information about
n > 3. It is shown that Tn,2,2 satisfies the WLP when n is odd, and it is believed that
Tn,2,2 has theWLP also for n even.When n ≥ 11, computer studies suggest that Tn,d,k

fails the WLP when (d, k) /∈ {(2, 2), (2, 3), (3, 2)}.
Problem H When are the WLP and the SLP true for Tn,d,k?

In characteristic p, not every monomial complete intersection satisfies the WLP.
There is a complete classification of the monomial complete intersections of uniform
degrees that enjoy the WLP, see Brenner and Kaid (2011) (n = 3) and Kustin and
Vraciu (2014) (n ≥ 4). The SLP has been classified also for mixed degrees, see
Nicklasson (2017b) (n = 2) and Lundqvist and Nicklasson (2016) (n ≥ 3). However,
it remains an open problem to classify the monomial complete intersections of mixed
degrees which has theWLP. Partial results appear in Vraciu (2015) and Lundqvist and
Nicklasson (2016).

Problem I In characteristic p, classify the monomial complete intersections (of mixed
degree) which has the WLP.

Let us now introduce the concept of the μ-Lefschetz properties, where μ =
(μ1, . . . , μk) is a partition of d, i.e.,

∑k
i=1 μi = d. We say that an algebra has

the μ-Lefschetz property if ×lμ : Ai → Ai+d has maximal rank for all i , where
lμ = �

μ1
1 · · · �μk

k , and �i ’s are generic linear forms.

Problem J For R = S/( f1, . . . , fr ), where f1, . . . , fr are generic forms, does R
satisfy the μ-Lefschetz property for all partitions μ?

Remark 2.7 (Lefschetz properties and Fröberg’s conjecture). The study of Lefschetz
properties is relevant for our problems about the Hilbert functions of particular classes
of ideals and Fröberg’s Conjecture. Indeed, if I is an ideal having the Hilbert function
as in (6) and if the map × f : Ai → Ai+d of multiplication by a form f of degree
d has maximal rank for any i , then, we can conclude that the ideal I + ( f ) also has
the Hilbert function as in (6). Therefore, the study of the aforementioned problems
about Lefschetz properties might allow to compute Hilbert functions “inductively”,
by adding one generator at a time. Notice also that replacing SLP byWLP in Problem
G gives a special case of the Fröberg conjecture.

3 Symbolic Powers

For a prime ideal ℘ in a Noetherian ring R, define its m-th symbolic power ℘(m) as

℘(m) = ℘m R℘ ∩ R.
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It is the ℘-primary component of ℘m . For a general ideal I in R, its m-th symbolic
power is defined as I (m) = ∩℘∈Ass(I )(Im R℘∩R), whereAss(I ) is the set of associated
primes of I .

3.1 Hilbert Functions of Fat Points

Let IX be the ideal in C[x1, . . . , xn] defining a scheme of reduced points X = P1 +
. . .+ Ps in Pn−1, say IX = ℘1∩· · ·∩℘s where℘i is the prime ideal defining the point
Pi . Then, the m-th symbolic power I (m) is the ideal I (m)

X = ℘m
1 ∩ · · · ∩ ℘m

s which
defines the scheme of m-fat points mX = mP1 + · · · + mPs .

Ideals of 0-dimensional schemes have been studied since the beginning of the last
century. Their Hilbert functions are of particular interest since they are related to
polynomial interpolation problems. Indeed, the homogeneous part of degree d of the
ideal I (m)

X is the space of hypersurfaces of degree d in P
n−1 passing through each Pi

to order at least m − 1, i.e., it is the space of polynomials of degree d whose partial
differentials up to order m − 1 vanish at every Pi . In a more geometric language, this
is the linear system of hypersurfaces of degree d in Pn−1 having multiple base points
of multiplicity m at the support of X .

It is well-known that the Hilbert function of a 0-dimensional scheme is strictly
increasing until it reaches the multiplicity of the scheme, see [Iarrobino (2006), Theo-
rem1.69]. Hence, since the degree of anm-fat point inPn−1 is

(n−1+m−1
n−1

)
, the expected

Hilbert function is

exp.HF
S/I (m)

X
(d) = min

{(
n − 1 + d

n − 1

)
, s

(
n − 1 + m − 1

n − 1

)}
.

In the case of simple generic points X = P1 + · · · + Ps , i.e., for m = 1, it is known
that the actual Hilbert function is as expected. Indeed, the homogeneous part of IX
in degree d is obtained by solving a system of linear equations defined by the matrix
(mi (Pj ))i j , where the set of mi ’s forms a standard monomial basis for the vector
space of homogeneous polynomials of degree d and the symbol mi (Pj ) denotes the
evaluation of the monomial at the point. If the points are generic, the latter matrix has
maximal rank; see Geramita and Orecchia (1981).

In the case of double points (m = 2), counterexamples to the latter statement
were known since the end of the 19-th century. In 1995, after a series of important
papers, Alexander andHirschowitz proved that the classically known counterexamples
were the only ones, see Theorem 1.4. For higher multiplicity, very little information is
available at present. In the case of the projective plane, a series of equivalent conjectures
have been formulated by Segre (1961), Harbourne (1986), Gimigliano (1987) and
Hirschowitz (1989). They are baptized as theSHGH-Conjecture, seeHarbourne (2000)
for a survey of this topic.

Apolarity Theory is a very useful tool in studying the ideals of fat points and it ties
together all the algebraic stories we have mentioned above. In particular, the following
lemma is crucial (we refer to Iarrobino (2006) and Geramita (1996) for an extensive
description of this issue).
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Lemma 3.1 (Apolarity Lemma) Let X = P1 +· · ·+ Ps be a scheme of reduced points
in P

n−1 and let L1, . . . , Ls be linear forms in C[x0, . . . , xn] such that, for any i , the
coordinates of Pi are the coefficients of �i . Then, for every m ≤ d,

HF
S/I (m)

X
(d) = dimC[(�d−m+1

1 , . . . , �d−m+1
s )]d .

Using this statement we obtain that the calculation of the Hilbert function of a
scheme of fat points is equivalent to the calculation of the Hilbert function of the cor-
responding power ideal. In particular, the Fröberg-Iarrobino Conjecture (Conjecture
2.3) can be rephrased as a conjecture about the Hilbert function of ideals of generic
fat points.

Remark 3.2 (Fat points and secant varieties). In Remark 2.5, we described the relation
of the study of the Hilbert functions for power ideals with the study of the dimensions
of the secant varieties of Veronese varieties and with the problem of calculation of
generic Waring ranks. By Apolarity Lemma, we can observe that the study of the
Hilbert functions of power ideals is directly related to the computation of the Hilbert
functions for fat points. In particular, the aforementioned theorem of Alexander and
Hirschowitz (Theorem 1.4) is in fact a result about the Hilbert function of double
points in generic position which implies the results on the dimensions of the secant
varieties of Veronese varieties and generic Waring ranks.

We have also seen how generic k-ranks are related to the dimensions of the secant
varieties of varieties of powers and to the Hilbert functions of ideals generated by
powers of forms of degree higher than one. Unfortunately, as far as we know, there is
no appropriate version of Apolarity Lemma in such a setting. For this reason, most of
the classical approaches to Waring problems do not apply in the case of k-ranks and
new ideas are required.

It is worth mentioning that not only the Hilbert functions of double points in projec-
tive spaces are related to secant varieties of particular projective varieties and additive
decomposition problems. In the study of the dimensions of secant varieties of several
classical varieties there appear other 0-dimensional schemes whose Hilbert functions
are important. For example, to compute the dimensions of the secant varieties of tan-
gential varieties of Veronese varieties which are closely related to decompositions
of the form

∑r
i=1 �d−1

i,1 �i,2, one has to study the Hilbert functions of the unions of
(3, 2)-points, where a (3, 2)-point is by definition a 0-dimensional scheme obtained by
intersecting a 3-fat point with a 2-fat line passing through it, i.e., it is the 0-dimensional
scheme defined by an ideal of the type I 3P + I 2L , where L is a line passing through the
point P; see Bernardi et al. (2009).

Another question posed by R. Fröberg during the problem solving seminars at
StockholmUniversitywas about the ideals of generic fat points in amulti-graded space.
A point in a multi-projective space P ∈ P

n1−1×. . .×P
nt−1 is defined by a prime ideal

℘ in the multi-graded polynomial ring S = C[x1,1, . . . , x1,n1; . . . ; xt,1, . . . , xt,nt ] =⊕
I⊂Nt SI , where SI is the vector space of multi-graded polynomials of multi-degree

I = (i1, . . . , it ) ∈ N
t . A scheme of fat points mX = mP1 + · · · +mPs is the scheme

associated with the multi-graded ideal ℘m
1 ∩ · · · ∩ ℘m

s .
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Problem K Given a scheme of generic fat points mX ⊂ P
n1−1 × · · · × P

nt−1, what is
the multi-graded Hilbert function HFS/ImX (I ), for I ∈ N

t ?

This question was first considered by Catalisano et al. (2005) who solved it in the case
of double points, i.e., for m = 2, in any P

1 × · · · × P
1. Recently, A. Oneto jointly

with Carlini and Catalisano solved the case of triple points (m = 3) in P
1 × P

1 and
computed the Hilbert function for an arbitrary multiplicity except for a finite region
in the space of multi-indices, see Carlini et al. (2017).

Remark 3.3 Once again, by using Terracini’s Lemma, the computation of the Hilbert
function of double points in generic position in a multi-projective space is related to
the dimension of the secant varieties of Segre and Segre-Veronese varieties; see e.g.
Catalisano et al. (2005), Catalisano et al. (2005), Catalisano et al. (2011). Moreover, as
explained inRemark 3.2, theHilbert functions of other types of 0-dimensional schemes
inmulti-projective spaces can be used to compute the dimensions of the secant varieties
of other varieties such as tangential varieties of Segre and Segre-Veronese varieties;
see e.g. Catalisano and Oneto (2018).

Remark 3.4 One of the major differences between the study of the Hilbert function of
sets of (fat) points in projective spaces and the study of the Hilbert function of sets of
(fat) points in multiprojetive spaces is that, in the latter setting, the coordinate ring of
a collection of points is not always Cohen-Macaulay. There is an extensive literature
studying theHilbert functions and other algebraic properties of ideals of arithmetically
Cohen-Macaulay (aCM) points in multi-projective spaces; see e.g. Guardo and Van
Tuyl (2015). However, these sets of points in multi-projective spaces are very special
and, in some sense, Problem K considers the opposite situation, where the points are
assumed to be generic.

3.2 Symbolic Powers vs. Ordinary Powers

As we mentioned above, if I is the ideal defining a set X of points, then the m-th
symbolic power of I is the ideal of polynomials vanishing of order at least m − 1 at
all points in X . In other words, it is the space of hypersurfaces which are singular at
all points of X up to order m − 1. For this reason, symbolic powers are interesting
from a geometrical point of view, but they are more difficult to study compared to the
ordinary powers which carry less geometrical information. Hence, it is important to
find relations between these two. Observe that the inclusion Im ⊂ I (m) is trivial.

Containment problems between the ordinary and the symbolic powers of ideals of
points have been studied in substantial detail. One particularly interesting question is to
understand for which positive integers m and r , we have I (m) ⊂ I r . A very important
result in this direction is the statement that, for any ideal I of reduced points in Pn and
any r > 1, we have I (nr) ⊂ I r . This theorem was proven in Ein et al. (2001) by L.
Ein, Lazersfeld and Smith in characteristic 0 and by Hochster and Huneke in positive
characteristic, see Hochster and Huneke (2002). At present, the important question is
whether the bound in the latter statement is sharp. In Dumnicki et al. (2013), Dumicki,
Szemberg and Tutaj-Gasińska provided the first example of a configuration of points
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such that I (3) �⊂ I 2. (We refer to Szemberg and Szpond (2017) for a complete account
of this topic.)

In the recent paper Galetto et al. (2016), Galetto, Geramita, Shin and Van Tuyl
defined the m-th symbolic defect of an ideal as the number of minimal generators of
the quotient ideal I (m)/Im . If I defines a set of general points in projective space, it was
already known that I (m) = Im if and only if I is a complete intersection. Additionally,
in [Galetto et al. (2016), Theorem 6.3] the authors characterize all cases of s points in
P
2 having the 2-nd symbolic defect equal to 1. These cases are exactly s = 3, 5, 7, 8.

Problem L For the ideal I of s general points in Pn−1, what is the difference between
the Hilbert series of the m-th symbolic power and the m-th ordinary power?

4 Miscellanea

4.1 Hilbert Series of Numerical Semigroup Rings

Let S = 〈s1, . . . , sn〉 be a numerical semigroup, i.e. S consists of all linear com-
binations with non-negative integer coefficients of the positive integers si . Let
C[S] = C[xs1 , . . . , xsn ] be the semigroup ring. The ring C[S] is the image of
φ : C[t1, . . . , tn] → C[x], where φ(ti ) = xsi . If we let deg(ti ) = si , the map will be
graded, and we can define the Hilbert series of C[S] as ∑∞

i=0 dimC C[S]i t i . If C[S]
happens to be a complete intersection,C[S] = C[t1, . . . , tn]/(r1, . . . , rn−1), where the
ri ’s are homogeneous relations, and the Hilbert series is

∏n−1
i=1 (1− tdeg ri )/

∏n
i=1(1−

t si ). Thus the numerator has all its roots on the unit circle. For any numerical semi-
group the Hilbert series is of the form p(t)/

∏n
i=1(1− t si ), where p(t) is a polynomial

with integer coefficients. A semigroup is called cyclotomic if the polynomial p(t) has
all its roots in the unit circle (which in fact implies that they lie on the unit circle if
they are non-zero) (more information about the following conjecture can be found in
Ciolan et al. (2016)).

Conjecture 4.1 S is cyclotomic if and only if C(S) is a complete intersection.

4.2 Non-Negative Forms

The next circle of problems is related to the celebrated articleHilbert (1888a) ofHilbert
and to a number of results formulated in Choi et al. (1980).

Denote by Pn,m the set of all non-negative real forms, i.e., real homogeneous poly-
nomials of (an even) degree m in n variables which never attain negative values;
denote by 	n.m ⊆ Pn,m the subset of non-negative forms which can be represented
as sums of squares of real forms of degree n

2 . (In Hilbert (1888a) Hilbert proved that

n,m = Pn,m\	n,m is non-empty unless the pair (n,m) is of the form (n, 2), (2,m)

or (3, 4).) Important qualitative characterization of 
n,m was obtained 6 years ago by
G. Blekherman, see Blekherman (2012). Following the original Blekherman (2012),
many more results dealing with
n,m for some special situations and/or special values
of n and m were obtained during the last 5 years. One natural question in this area is
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to find some properties of a non-negatie multivariate polynomial which will ensure
that it belongs to the difference 
n,m . The next problem is pointing in this direction.

Namely, if Z(p) stands for the real zero locus of a real form p, denote by Bn,m

(resp. B ′
n,m) the supremum of |Z(p)| over p ∈ Pn,m such that |Z(p)| < ∞ (resp.

over p ∈ 	n,m such that |Z(p)| < ∞). In other words, B(n,m) is the supremum of
the number of zeros of non-degenerate forms under the assumption that all these roots
are isolated (and similarly for B ′

n,m). Obviously, B
′
n,m ≤ Bn,m .

The following basic question was posed in Choi et al. (1980).

ProblemM Are Bn,m and B ′
n,m finite for any pair (n,m) with even n?

In Choi et al. (1980) it was shown that the answer to this problem is positive for
m = 2, 3 and for the pair (4, 4). Relatively recently, in Cartwright and Sturmfels
(2013) the following upper bound for Bn,m was established

Bn,m ≤ 2
(m − 1)n+1 − 1

m − 2
.

However this bound can not be sharp, as shown in Kozhasov (2017). It seems however
that the above finiteness follows from the classical Petrovski-Oleinik inequalities,
see Petrovskii and Oleinik (1949). According to I. Itenberg (private communication)
Petrovksi’s estimate using the middle Hodge number of the complex zero locus a
non-negative polynomial seems to give a better upper bound than the above one.

On the other hand, in case of B ′
n,m , the following guess seems quite plausible and

is proven in the original paper Choi et al. (1980) for m = 3.

Conjecture 4.2 For any given pair (n,m) with even n, B ′
n,m = (m

2

)n−1
.

For Bn,m , no similar guess is known, but some intriguing information is available
in the case n = 3, see Choi et al. (1980). The following problem is also related to
the classical Petrovski-Oleinik upper bound on the number of real ovals of real plane
algebraic curves.

Problem N Determine limm→∞ B3,m
m2 .

The latter limit exists and lies in the interval
[

5
18 ,

1
2

]
, see Choi et al. (1980). Accord-

ing to I. Itenberg (private communication), he jointlywithA.Degtyarev andE.Brugalle
has an improvement of the left endpoint of the latter interval.

4.3 Polynomial Generation

Let p be a prime number and let Fp denote the field with p elements. Consider the
two maps

φ : Fp[x1, . . . , xn] → Fp[x1, . . . , xn], f 	→
∑

a∈Z( f )

xa,

ψ : Fp[x1, . . . , xn] → Fp[x1, . . . , xn], f 	→
∑

a∈Fnp
f (a)xa .
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Here xa := xa11 · · · xann , where each ai is regarded as an integer, and Z( f ) is the zero
locus of f in F

n
p, i.e., Z( f ) := {a ∈ F

n
p | f (a) = 0}. When p = 2, the map φ is a

bijection on the vector space of polynomials of degree at most one in each variable,
and φ4( f ) = f , see Lundqvist (2015).

The map ψ , suggested by Boij, is a linear bijective map on the vector space of
polynomials with degree at most p − 1 in each variable, and when p = 2, these two
maps are closely related in the sense that φ( f ) = ψ( f ) + ∑

a∈Fn2 x
a .

Consider now the case n = 1 and p > 2. The map φ is no longer a bijection,
but by a dimension argument, the sequence φ( f ), φ2( f ), . . . will eventually become
periodic. It is an easy exercise to show that

0 	→ 1 + x + · · · + x p−1 	→ x 	→ 1 	→ 0, (7)

so for each p, there exists a period of length four. By exhaustive computer search we
have shown that when p ≤ 17, this is the only period, i.e., φ( f )d( f ) = 0 for some
d( f ), eventually giving the period (7). For p = 71, we have found a period of length
two;

1 + x63 	→ x23 + x26 + x34 + x39 + x41 + x51 + x70 	→ 1 + x63.

One can easily show that the length of the period is always an even number, but it is
not clear which even numbers that can occur as lengths of periods. So far, we are only
aware of periods of length two and four.

Problem O For n = 1 and given p, what are the (lengths of the) possible periods of
φ?

Let us now turn to the map ψ and the case n = 1. For p = 3, ψ8( f ) = f for
all polynomials f in F3[x] of degree at most two, as can be checked by hand. For
p = 5, a computer calculation shows that the least i such that ψ i = Id on the space of
polynomials of degree at most four, is equal to 124.With brute force, we also managed
to determine to corresponding number for p = 7 to 1368, and for p = 11 to 32129475.

Problem P For n = 1 and given p, find the minimal positive integer i such that ψ i is
the identity map on the space of polynomials of degree at most p − 1.

4.4 Exterior Algebras

Denote by E the exterior algebra on n generators over C. Like the polynomial ring,
the algebra E is naturally graded. Since the square of a generator in E is zero, one has
E = E0 ⊕ E1 ⊕ · · · ⊕ En , and the Hilbert series of E is equal to (1+ t)n . Notice that
this is the same Hilbert series as for the squarefree algebra S/(x21 , . . . , x

2
n ). A natural

problem is to find an analog to Fröberg’s conjecture for quotients of exterior algebras
with ideals generated by generic forms. A first guess would be that the Hilbert series
of E/( f1, . . . , fr ), each fi a generic form of degree di , is equal to

[(1 + t)n
∏

i=1,...,r

(1 − tdi )]+.
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Moreno-Socías and Snellman (2002) showed that this is the case when r = 1 and d1 is
even. However, since f 2 = 0when f has odd degree in E , it holds that ( f ) ⊆ Ann( f ).
Thus, the series cannot be equal to [(1+ t)n(1− td)]+ when f has odd degree equal
to d.

The annihilator ideal Ann( f ) shows some unexpected behavior. Indeed, when
(n, d) = (9, 3), the map induced by multiplication be a generic cubic form from

E3 (of dimension
(9
3

)
) to E6 (of dimension

(9
6

) = (9
3

)
) has a kernel of dimension four,

see Lundqvist and Nicklasson (2018), while a one-dimensional kernel is what one
would expect.

However, we find it natural to believe that the graded pieces of Ann( f ) behaves as
expected in low degrees. The next problem is inspired by [Lundqvist and Nicklasson
(2018), Question 1].

Problem Q Let f be a generic form of odd degree d in E. Is it true that (Ann( f ))i =
( f )i for i < (n − d)/2?

A lower bound for the series of E/( f ) is given in Lundqvist and Nicklasson (2018).
It is also shown that the lower bound agrees with the generic series is some special
cases. To show that the lower bound is equal to the Hilbert series for E/( f ), with
f generic, it is enough to find an explicit form such that the Hilbert series of the
corresponding quotient is equal to the lower bound. This was the method of proof
used by Moreno-Socías and Snellman in the even case.

But while the form used in the even degree case has a simple structure — it is the
sum of all monomials — there is at the moment no good candidate to use in the odd
case. We are surprised over the difficulty of the problem.

Problem R For each n and odd d, find a form f of degree d such that E/( f ) has the
minimal series as given in Lundqvist and Nicklasson (2018).

Wenow turn to the problem of deciding the Hilbert series of the quotient of the ideal
generated by two generic quadratic forms. One would expect that E/( f , g) should
have series equal to [(1 + t)n(1 − t2)2]+, but this is not true. Fröberg and Löfwall
(2002) showed by a brute force calculation that when n = 5, the generic series is
equal to [(1 + t)5(1 − t2)2]+ + t3. In Crispin Quiñonez et al. (2018), the connection
between pairs of quadratic forms and matrix pencils was used to show that the failure
for n = 5 is just the top of the iceberg.

We finish with the following conjecture from Crispin Quiñonez et al. (2018), which
surprisingly connects the question about the Hilbert series of quotient of the exterior
algebra with quotients of the polynomial ring.

Conjecture 4.3 Let f and g be generic quadratic forms in E and let �1 and �2 be
two generic linear forms in S. Then the Hilbert series of E/( f , g) is equal to the
Hilbert series of S/(x21 , . . . , x

2
n , �

2
1, �

2
2) and is given by 1 + a(n, 1)t + a(n, 2)t2 +

· · ·+ a(n, s)t s + · · · , where a(n, s) is the number of lattice paths inside the rectangle
(n+2−2s)× (n+2) starting from the bottom-left corner and ending at the top-right
corner by using only moves of two types: either (x, y) → (x + 1, y + 1) or (x −
1, y + 1).
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