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1 Introduction

Among the class of systems of partial differential equations, evolutionary ones form
a minority. They are nevertheless of considerable importance because they describe
time evolution of physical data. This can already be seen for ordinary differential equa-
tions where, among differential equations, vector fields deserve a particular attention.
The aim of this paper is to prove that evolutionary linear partial differential systems
always admit sectorial analytic solutions, where the width of the sector depends on
the regularity of the initial condition.

Before stating our main theorem, let us recall the results obtained by Kovalevskaïa
in her thesis (von Kowalevsky 1875) (see also Audin 2008 for historical aspects).

We consider the vector space C
n with coordinates z1, . . . , zn and let On be the

algebra of germs of holomorphic functions at 0 ∈ C
n (series in z1, . . . , zn which are

analytic in some neighbourhood of the origin). We put
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408 M. Garay

∂ I := ∂ i1
z1∂

i2
z2 · · · ∂ in

zn
, I = (i1, . . . , in)

and define the order σ(I ) of the operator ∂ I as the sum of the coordinates of the vector
I ∈ N

n :

σ(I ) := i1 + · · · + in .

An evolution equation of order s is a system of partial differential equations of the
form

∂t u = F(u, ∂ I1u, . . . , ∂ Ik u), σ (I j ) ≤ s, u = (u1, . . . , um), z = (z1, . . . , zn)

with some initial condition u(t = 0, ·) = u0, where F is a holomorphic map.
Kovalevskaïa proved that the formal solution to such an initial value problem:

u(t, ·) :=
∑

k≥0

uktk, uk ∈ Om
n

exists and is unique. Then she proceeded to the analytic properties of time evolution.
For s = 1, she showed that the formal solution is holomorphic, in any sufficient small
neighbourhood of the origin in C

n+1. A result now called the Cauchy–Kovalevskaïa
theorem. For s = 2,Kovalevskaïa considered the particular case of the one dimensional
heat equation and discovered that the formal solution might be divergent.

To state Kovalevskaïa’s heat equation theorem, it is convenient to introduce the
space Ĝs

n of class s Gevrey series in n variables (Gevrey 1913, 1918) (see also Sect. 4
below). These are formal power series:

∑

I∈Nn

aI z I ∈ C[[z]]

such that

∑

I∈Nn

aI
z I

(σ (I )!)s−1

is convergent in a sufficiently small neighbourhood of the origin. For s = 1, Gevrey
series are just analytic series, for s < 1 these are entire functions and for s > 1 this
class contains divergent power series such as

∑
n(n!)s−1zn .

Theorem 1.1 (von Kowalevsky 1875) The formal solution to the one dimensional
heat equation

∂t u = ∂zzu, u(t = 0,−) = u0, u0 ∈ Ĝs
1

1. is a Gevrey class 2s series;
2. has a unique holomorphic solution if u0 ∈ Ĝ1/2

1 ;
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A Generalisation of the Cauchy–Kovalevskaïa Theorem 409

3. is divergent if u0 /∈ Ĝ1/2
1 .

Time evolution for the heat equation theorem became a classical subject and was
treated in details in Hadamard’s lectures on partial differential equations (Hadamard
1932).

In the 1980s, Ouchi made an important step, when he discovered that the divergent
series associated to time evolution of a single linear partial differential equation are
always asymptotic expansions of sectorial solutions (Ouchi 1983) (see also Tahara
2011a, b; Yonemura 1990 and references therein). We will extend the results of
Kovalevskaïa thesis and Ouchi’s theorem to arbitrary systems of linear partial dif-
ferential equations with Gevrey coefficients.

2 The Euler Differential Equation

Before stating our results, we briefly recall basic facts on divergent power series.
Consider the following differential equation of Euler type:1

t2
du

dt
+ (t − 1)u + 1 = 0, u(0) = 1.

The formal solution to this differential equation is the divergent series of Gevrey
class 2:

u(t) =
∑

n≥0

n!tn .

We perform a Borel transform:

tk �→ ξ k

k!
and get a convergent power series which extends as a meromorphic function in the
complex plane:

v(ξ) =
∑

n≥1

ξn = 1

1 − ξ
.

The functions v and u are related via a Laplace type integral. Indeed, a direct
computations shows that:

1

t

∫ +∞

0
e− ξ

t ξ kdξ = k!tk .

Thus for any polynomial, we get:

1 For computational reasons, I slightly modified Euler original example (Euler 1760).
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410 M. Garay

1

t

∫ +∞

0
e− ξ

t

(
n∑

k=0

akξ
k

)
dξ =

n∑

k=0

k!aktk .

More generally, consider a holomorphic power series:

ξ �→ v(ξ) =
∑

n≥0

anξn

which extends holomorphically to a neighbourhood of the real positive half-line with
at most exponential growth:

∃r, A > 0, |v(ξ)| ≤ Aeξ/r

Then the exponential integral:

u(t) = 1

t

∫ +∞

0
e− ξ

t v(ξ)dξ

is holomorphic in the “half-disk”:

{t ∈ C : Re t > 0, |t | < r}

and its asymptotic expansion at the origin is:

∑

n≥0

n!antn .

However, in our example, the function

v(ξ) = 1

1 − ξ

is not holomorphic in a neighbourhood of the real positive half-line: it has a meromor-
phic singularity at ξ = 1. Therefore, in order to define the exponential integral

u(t) = 1

t

∫

γ

e− ξ
t v(ξ)dξ,

we need to choose a path γ which avoids this singularity. This can be done in several
ways, for instance we get two different paths γ± by avoiding the singularity in the
upper half-plane or in the lower one (Fig. 1).

Fig. 1 Deformation of [0, +∞)

into γ+, γ−
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A Generalisation of the Cauchy–Kovalevskaïa Theorem 411

For both paths, the exponential integral is now well-defined:

u±(t) = 1

t

∫

γ±
e− ξ

t
1

1 − ξ
dξ

The formal solution

u(t) =
∑

n≥0

n!tn

is thus the asymptotic expansion of infinitely many functions. This explains why the
solution is divergent: if it were convergent then it would be the solution of a unique
holomorphic function. It was already known at the beginning of the twentieth century
that a similar phenomenon holds for the heat equation.

Still we need to check that u± are actual solutions to our initial differential equation
and not just formal ones, that is:

t2
du±
dt

+ (t − 1)u± + 1 = 0

The Laplace integral transformation maps the ring Dt of partial differential operator
on t to a convolution algebra on ξ according to the rules:

Dt → D̂ξ

t · �→ ξ �

∂t �→ ∂ξ + ξ∂2ξ

The Laplace transform of our differential operator:

P = t2∂t + t − id + 1

gives a new operator:

P̂ = 1

2
ξ2 � (∂ξ + ξ∂2ξ ) + ξ � −id + 1

which admits v(ξ) = 1/(1− ξ) as holomorphic solution in the neighbourhood of our
integration path. Thus

P(u±) = 1

t

∫

γ±
e− ξ

t P̂

(
1

1 − ξ

)
dξ = 0.

The difference between our two solutions can be computed using the residue the-
orem:

u− − u+ = 1

t

∫

α

e− ξ
t

1

1 − ξ
dξ = 2

√−1πe−1/t ,
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412 M. Garay

where α is a small loop around ξ = 1. We already knew that the difference between
our two solutions should be a flat function but this computation shows that it is of
exponential type. This is of course not a coincidence as we shall now see.

3 Gevrey Asymptotics

In the above example, all data are globally defined but in this paper we shall be
concerned with local assumptions. The problem of local resummability is slightly
more involved. Let us start with the basic definitions of local asymptotic analysis.

A closed sector of width α ∈]0, 2π ] and radius r is a subset of the form:

	 :=
{

t ∈ C : |t | ≤ r; | arg t − θ | ≤ α

2

}

for some direction θ ∈ S1. Its interior is an open sector or simply a sector. The
direction θ will play no role in this paper, so we fix θ = 0 for simplicity.

Given a Gevrey class α power series

û(t) =
∑

n≥0

antn,

we search for an open sector 	 and a holomorphic function

u : 	 → C

such that

lim
t→0

u(i)(t) = i !ai

where the limit is taken along any segment contained in 	. It can be shown that this
is equivalent to the condition for any n there exists a constant Cn :

∣∣∣∣∣∣
u(t) −

∑

i≤n

ai t
i

∣∣∣∣∣∣
≤ Cn|t |n+1

in any closed sector contained in 	. In such case, we say that û is the Poincaré
asymptotic expansion of u. If moreover Cn can be chosen of the form

Cn = An(n!)α−1,

we say that it is the Gevrey class α asymptotic expansion of u. For instance, the “Euler
series”:

∑

n≥0

(−1)nn!tn
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A Generalisation of the Cauchy–Kovalevskaïa Theorem 413

is the Gevrey class 2 asymptotic expansion of the Euler type function:

E(t) = 1

t

∫ +∞

0
e−ξ t

1

1 + ξ

Holomorphic functions which admit a Gevrey classα ∈]1, 3] asymptotic expansion
in a sector of “maximal” width:

	r :=
{

t ∈ C : |t | ≤ r; |arg t | < (α − 1)
π

2

}
,

for some radius r form an algebra. We denote it by Gα
1 and more generally by Gα

n in
case of n-variables. The definition extends to values of α > 3, if we consider functions
and sectors over the universal covering of a pointed disk (see Malgrange (1995), p.
190, for details).

For instance, the above function E(t) belongs to G2
1 : it is a Gevrey class 2 asymp-

totic expansion in the half-plane {Re t > 0}.
Proposition 3.1 For any α > 1, the map which associates to a Gevrey function its
asymptotic expansion

Gα
1 −→ Ĝα

1

is surjective: for any class α Gevrey power series û there exists a sector
	r of width (α − 1)π and a holomorphic function:

u : 	r → C

such that û is the Gevery asymptotic expansion of u at the origin.

Sketch of the proof. The Borel transform:

B : Ĝα
1 → Ĝ1

1 = O1,
∑

i≥0

ai t
i �→

∑

i≥0

ai

�(1 + (α − 1)i)
ξ i

associates a holomorphic function v(ξ) to the formal power series û. In general the
function v is defined only in a small neighbourhood of the origin. We take r > 0
smaller than the convergence radius of v and define the partial Laplace transform:

u(t) := 1

tk

∫ r

0
e
−

(
ξ
t

)k

v(ξ)d(ξ k)

with k = 1/(α − 1). A direct computation shows that û is the Gevrey asymptotic
expansion of u. This proves the proposition. 
�
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414 M. Garay

The following proposition shows that the ambiguity of Gevrey series considered as
asymptotic expansions is, in fact, exponentially small:

Proposition 3.2 For α > 1, the kernel of the map which associates to a Gevrey
function its asymptotic expansion

Gα
1 → Ĝα

1

consists of functions which are exponentially decreasing of exponent 1/(α − 1):

∃A, B > 0, |u(t)| ≤ Ae−B/|t |k , k := 1

α − 1

in closed subsectors.

The content of this section goes back to Borel, Gevrey, Goursat, Holmgren and
others (see Hadamard 1932). Resummation methods were already used in quan-
tum mechanics in the twenties and are standard in quantum field theory (see for
instance Landau and Lifschitz 1967). Borel summability was extended to arbitrary
Gevrey series by (Écalle 1981 and Ramis 1980). Other recent references are Balser’s
textbook andMalgrange’s lectures on divergent power series (Balser 1994;Malgrange
1995).

4 Main Theorem

After these preliminaries, we may now state our theorem on time evolution. First, we
need the following non-degeneracy condition: we say that a linear partial differential
operator of order s is non-degenerate, if after a change of variables, it can be written
in the form:

As∂
s
zn

−
∑

σ(I )<s

AI ∂
I , AI ∈ M(m, Gα

n )

and As is an invertible matrix. Here M(m, R) stands for m × m matrices with entries
in the ring R for some positive integer m. The main result of this paper is the:

Theorem 4.1 Let
∑

σ(I )≤s AI ∂
I u be a non-degenerate linear operator with AI ∈

M(m, Gα
n ) for some α ≤ 1. The initial value problem

∂t u =
∑

σ(I )≤s

AI ∂
I u, u0 := u(t = 0,−) ∈ (

Gα
n

)m

admits solutions u ∈ Gαs
1 ⊗̂Gα

n .

The theorem says that the formal solution is the asymptotic expansion of holomor-
phic solutions which are of Gevrey class αs in the time variable and of Gevrey class
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A Generalisation of the Cauchy–Kovalevskaïa Theorem 415

α in the others. For instance, when α = s = 1, the solution is holomorphic. This
is the linear version of the classical Cauchy–Kovalevskaïa theorem (in this particular
example, our proof gives the non-linear version as well).

If we take a non-degenerate operator of order s = 2, the theorem says that the
solution is of class 2α in the time variable. For instance, if we consider the heat
equation

∂t u =
n∑

i=1

∂2zi
u = �u

and take an initial data with α = 1/2 then, as Kovalevskaïa proved for n = 1, the
solution is unique and holomorphic. But if we only take a holomorphic initial condition
then the solutions will be of Gevrey class 2 and non unique.

Note that by gluing two solutions in opposite sectors we get that any analytic initial
data gives a C∞ solution on the real axis.

In the statement of the theorem, we used a topological tensor product which can
simply be understood as the space of functions which have asymptotic expansions
of Gevrey class αs (resp. α) in the t variable (resp. z variable). For more details on
topological tensor products see Grothendieck (1955).

There are two main ingredients in the proof of Theorem 4.1:

(i) a generalisation of Cauchy’s méthode des majorantes to general flows in infinite
dimensional spaces,

(ii) a Cauchy-Kovalevskaïa theorem for flat functions.

It would be interesting to extend the above theorem to the non-linear case. Let us now
comment the theorem in the most simple examples.

Example 4.2 Consider the initial value problem

∂t u = ∂zu, u(t = 0,−) = 1

1 − z
∈ G1

1 = O1.

The solution is unique and holomorphic:

u(t, z) = 1

1 − (z + t)
.

Note that the singularity at z = 1 propagates with time.

Example 4.3 Consider the Kovalevskaïa example:

∂t u = ∂2z u, u(t = 0,−) = 1

1 − z
∈ G1

1 = O1.

Here α = 1, s = 2 so that 	 is of the form

	 = 	1 × D1(r)
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416 M. Garay

where 	1 is a sector of width π , that is, a half plane. The theorem states that there
exists a holomorphic function

u(t, z) : {(t, z) ∈ D2(r)∗ : Re t > 0} → C

which satisfies the heat equation and whose expansion at the origin is the formal
solution. This result was already known at the beginning of the twentieth century
by Gevrey, Hadamard, Holmgren and others. It is also a particular case of Ouchi’s
theorem.

Observe that in real analysis, the solution of the heat equation in the circle can be
solved by Fourier series and the flow is only defined for positive time. The situation
is here completely different, since it admits solutions both for positive and negative
time.

The above theorem implies that for a sufficiently regular initial condition, the solu-
tion is unique and holomorphic:

Corollary 4.4 There is a unique holomorphic solution to an initial value problem of
the form

∂t u =
∑

σ(I )≤s

AI ∂
I u, u0 := u(t = 0,−) ∈ (G1/s

n )m, AI ∈ M(m, G1/s
n ).

Example 4.5 There is a unique holomorphic solution to the initial value problem.

∂t u = ∂2z u, u(t = 0,−) = ez ∈ G0
1.

This is a particular case of Kovalevskaïa’s heat equation theorem.

5 Formal Evolution

From a purely heuristic point of view, an evolution equation defines an infinite dimen-
sional dynamical system. This is of course an approximative assertion because these
infinite dimensional flows are in general ill-defined. Our first task is to clarify this
point.

In the linear case, this is quite obvious. Let E be a topological vector space over a
topological field k and

L : E → E

a linear map. We denote by E[[t]] := k[[t]]⊗̂E the vector space of formal power
series with coefficients in E :

∑

n≥0

tn ⊗ an,
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A Generalisation of the Cauchy–Kovalevskaïa Theorem 417

that is the projective limit of the vector spaces k[[t]]/(tn) ⊗k E .
The map L induces a map id ⊗ L on E[[t]]:

(id ⊗ L)

⎛

⎝
∑

n≥0

tn ⊗ an

⎞

⎠ =
∑

n≥0

tn ⊗ L(an).

We abuse notation and write L for id ⊗ L . Similarly, we write ∂t instead of ∂t ⊗ Id
and so on. We also identify E with the subspace 1 ⊗ E ⊂ E[[t]]. If the field k is
of characteristic zero then the exponential is well-defined and et Lu0 is the unique
solution to the initial value problem

∂t u = Lu, u(t = 0,−) = u0.

The operator et L is called the time evolution of the operator L.
In order to extend this definition of evolution to non-linear operators, we construct

the Lie derivative in the infinite dimensional context. First, we recall basic notions on
holomorphic maps.

Let E, F be locally convex vector spaces and let U ⊂ E denote an open subset. A
mapping:

f : U → F,

is called Gâteaux differentiable at a point u ∈ U , if for any ξ ∈ E , the following limits
exists

D f (u)ξ := lim
t �→0

f (u + tξ) − f (u)

t
.

We would like to find some vector space of functions from E to F which is stable
under differentiation. In finite dimensional differential geometry, one may choose
the space of C∞ functions but differentiability is difficult to handle in the infinite
dimensional context (except for the case of Banach spaces). Therefore, we now assume
that k = C and consider the space of holomorphic maps from E to F , denoted
H(E, F). These are defined as follows:

Definition 5.1 A mapping f : E ⊃ U → F is called holomorphic if it satisfies the
following two conditions:

(i) it is continuous,
(ii) for any continuous linear mappings j : C → E , π : F → C the map π ◦ f ◦ j

is holomorphic.

For instance, a linear mapping is holomorphic if and only if it is continuous. Like
in the finite dimensional case, holomorphic functions in infinitely many variables are
given by convergent analytic power series. In particular, if a series is convergent it
corresponds to a unique holomorphic map.
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418 M. Garay

The study of holomorphic functions in infinitely many variables goes back to the
beginning of the twentieth century. I have followed Dineen’s textbook (Dineen 1981)
to which the reader may refer for more details on the subject. Let us now proceed to
the definition of formal time evolution in the non-linear case.

We call elements of H(U, E) holomorphic vector fields in U . By contracting the
differential with a vector field X ∈ H(U, E), we define the Lie derivative

L X : H(U, E) → H(U, F), f �→ [u �→ D f (u)X (u)]

for general locally convex spaces. As the Lie derivative is a linear map, this defines
the derivation associated to a vector field in the infinite dimensional context.

Now consider the particular case E = F . The Lie derivative

L X : Ẽ → Ẽ, Ẽ = H(U, E)

being a linear map, we are back to the situation of linear evolution. Therefore, time
evolution of any mapping

f : Ẽ → Ẽ

exists. Now the vector space Ẽ contains a distinguished element: the identity.

Definition 5.2 The formal flow of a holomorphic vector field X ∈ H(U, E) at u0 is
the evaluation of the map et L X Id at u0, where L X is the Lie derivative along X .

Note that by construction the flow is a solution of the differential equation

du

dt
= (L X Id )(u) = X (u).

Thus, we defined evolution for non-linear vector fields in E . A convergent formal
power series defines in a unique way a holomorphic function, in the infinite dimen-
sional situation as well. Therefore the unicity of formal evolution implies the unicity
of holomorphic evolution when it exists.

Example 5.3 Consider the inviscid Burgers equation:

∂t u = u∂zu, u(t = 0, ·) = u0.

Here the vector field is

X : C{z} → C{z}, u �→ u∂zu

where C{z} is the vector space of convergent power series in one variable z, it has a
natural topology (see e.g. Grothendieck 1973). The Lie derivative

L X : H(C{z}) → H(C{z}), [u �→ f (u)] �→ [u �→ D f (u)u∂u]
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A Generalisation of the Cauchy–Kovalevskaïa Theorem 419

of the identity is.

f = L X Id : C{z} → C{z}, u �→ u∂zu.

The function f is bilinear thus the Gâteaux differential gives

D f (u)ξ = ξ∂zu + u∂zξ.

Substituting ξ by X gives time evolution up to order 2:

(et⊗L Id )u = u + tu∂zu + t2

2
(2u(∂zu)2 + u2∂2z u) + o(t2).

In simple words, the possibility to define differential calculus in the space of
holomorphic functions H(C{z}) allows us to define formal flows like for the finite
dimensional spaces. This explains the unicity of the formal and holomorphic solu-
tions to initial value problems.

6 Generalisation of the Heat Equation Theorem

Lutz–Myiake–Schäfke proposed to study the heat equation, under global assumptions,
via Borel resummation procedure (Lutz 1999). Although we will not deal with the
global problem of resummability, it is worthwhile to look back at the Kovalevskaïa
example from their point of view.

We start with the heat equation

∂t u = ∂zzu,

with initial value:

u0 : (C, 0) → (C, 0), z �→ 1

1 − z
.

The formal power series expansion of this Cauchy problem is of Gevrey class 2

û(t, z) = 1

1 − z

∑

k≥0

(2k)!
k!

tk

(1 − z)2k
.

The Borel transform of û is:

v(ξ, z) = 1

1 − z

∑

k≥0

(2k)!
(k!)2

ξ k

(1 − z)2k
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420 M. Garay

It extends as an algebraic function

v(ξ, z) = 1√
(1 − z)2 − 4ξ

.

The function v can be followed along any path starting from the origin which avoids
the curve of equation:

ξ = (1 − z)2

4
.

As before we define paths γ± avoiding the singularity ξ = 1/4 from above and
from below. For z sufficiently close to the origin, the paths also avoids the singularities
(1 − z2)/4. We are now in a situation similar to that of the Euler equation: the power
series û is the asymptotic expansion at t = 0 of the functions

u±(z, t) := 1

t

∫

γ±
e− ξ

t
1√

(1 − z)2 − 4ξ
dξ,

for z sufficiently small.
As explained above, the ring of partial differential operatorsDt,z is mapped to D̂ξ,z .

The function

v(ξ, z) = 1√
(1 − z)2 − 4ξ

is a solution of the partial differential equation:

(∂ξ + ξ∂2ξ )v = ∂2z v

and

(∂t − ∂2z )u± = 1

t

∫

γ±
(∂ξ + ξ∂2ξ − ∂2z )v(ξ)dξ = 0.

This means that the functions u± are solutions to our initial value problem. Like
for the Euler equation, the divergence of the asymptotic series is related to the non-
uniqueness of the solution.

Now back to formal solutions.

Theorem 6.1 (Garay 2008) The formal solution to an initial value problem

∂t u =
∑

σ(I )≤s

AI ∂
I u, u0 := u(t = 0,−) ∈ (

Ĝα
n

)m
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A Generalisation of the Cauchy–Kovalevskaïa Theorem 421

of order s is of Gevrey class αs in the time variable, that is, time evolution defines a
map:

et L Id : (
Ĝα

n

)m → (
Ĝα

n

)m ⊗̂Ĝαs, u0 �→ (et L Id )u0

where L is the Lie derivative associated to the operator.

For a single partial differential equation (m = 1) with holomorphic initial data
(α = 1), the theorem is due to Ouchi. Using techniques due to Boutet de Monvel and
Kree, Yonemura simplified the proof (Boutet de Monvel and Krée 1967; Ouchi 1983;
Yonemura 1990). Our proof will be self-contained.

Gevrey properties for someparticular systems of partial differential equations (other
than the heat equation) is proved in Fernández-Fernández and Castro-Jiménez (2011).
In the non-linear case, Tahara proved that C∞ solutions, when they exist, are always
Gevrey regular (Tahara 2011a, b). For themoment, no further result seems to be known
for non-linear evolution equations. Nevertheless, our proof would easily extend to the
non-linear case if we were able to prove the Gevrey regularity of the solution of the
initial value problem:

∂t u = u

1 − u
∂k

z u, u(t = 0,−) = u0.

Unfortunately, I was unable to prove or to disprove this fact.
We postpone the proof of the theorem to Sect. 8 and discuss the relation between

formal solutions and asymptotic ones. We face here the same problem than in the
one variable case: partial Laplace resummation is not a mapping of D-modules. For
instance, for any r < 1/3, the asymptotic expansion at t = 0, inside the half plane
Re t > 0, of the function:

f (z, t) := 1

t

∫ r

0
e− ξ

t
1√

(1 − z)2 − 4ξ
dξ

gives the formal solution to the heat equation with initial data 1/(1− z). Nevertheless,
this function does not satisfy the heat equation. The function

(∂t − ∂zz) f

is a non zero flat function at t = 0. Thuswe need aCauchy–Kovalevskaïa type theorem
for flat functions. Namely, we search for a solution of the form

u = f + v,

where v is flat at t = 0.
Now, the heat equation gives:

(∂t − ∂zz)v + (∂t − ∂zz) f = 0
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which we re-write as

∂zzv = ∂tv + h, h = (∂t − ∂zz) f.

Therefore if we can find a flat function v in the t-variable which solves this equation
then we are done. More generally for the n-dimensional heat equation, we are led to
an equation of the form:

∂2zn
v = ∂tv −

n−1∑

i=1

∂2zi
v + h

where h is flat in the t-variable.

7 Cauchy–Kovalevskaïa Theorem for Flat Functions

Let us start with the now standard abstract Cauchy–Kovalevskaïa theorem. A Banach
scale (Ei , | · |i ), i ∈ I is a decreasing chain of Banach subspaces of a complex vector
space E indexed by a filtred set I (in the sequel an interval or a product of such). We
denote by BE the union of their unit balls:

BE =
⋃

r

{x ∈ Er : |x |r ≤ 1}.

Theorem 7.1 (Baouendi and Goulaouic 1977; Nagumo 1942; Nirenberg 1972;
Nishida 1977; Ovsyannikov 1965) Let (Er , | · |r ), r ∈ ]0, 1] be a chain of Banach
spaces and

F : BE → E

a holomorphic map for which there exists a constant C > 0 such that

|F(u) − F(v)|r ≤ C

σ
|u − v|r+σ ,

for any r ∈ [0, 1[ and any σ ∈]0, 1 − r ]. There exists a holomorphic function u :
{|z| < s} → E such that:

d

dτ
u = F(u), u(τ = 0, ·) = 0.

As the map is holomorphic, the solution is necessarily unique. Let us first apply this
theorem to the original Cauchy–Kovalevskaïa situation. We consider the polydisks:

Dr = {z ∈ C
n : |zi | < r}.
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and take Er to be the space of holomorphic functions inside Dr which are continuous
on its boundary:

Er = C0(Dr ) ∩ O(Dr ).

The supremum norm | · |r induces a Banach space structure on Er . The Cauchy
integral formula implies the Cauchy inequalities:

|∂zi u|r ≤ 1

σ
|u|s+σ , σ > 0.

These Cauchy inequalities imply that there exists a constant C such that:

|F(u) − F(v)|r ≤ C

σ
|u − v|r+σ

for any non-linear partial differential operator F of order 1. Now given an initial value
problem:

∂τ u = F(u), u(τ = 0, ·) = u0

wedefine v = u+u0 and get a new initial value problem for v such that v(t = 0, ·) = 0.
Therefore, the condition of the theorem u(0) = 0 is not restrictive. This shows that
the abstract theorem implies the standard one as a particular case. Note also that the
non-autonomous case can be reduced to the autonomous case by adding the time as a
new variable. This is the Nagumo approach to the Cauchy–Kovalevskaïa theorem.

The interesting point is that Nagumo’s proof can be formulated in abstract terms
and that the resulting abstract Cauchy–Kovalevskaïa theorem is valid in much more
general situations. For instance, consider the rings:

Rr = {z ∈ C
n : r1 ≤ |zi | ≤ r2}.

The abstract Cauchy–Kovalevskaïa theorem tells us that there is a unique holomor-
phic solution in any of these. However, it does not imply a solution in the pointed disk.
Indeed when r = (r1, r2) go to zero, the bound for the flow is, in general, not uniform
in the r variable.

This difficulty can already be seen for the initial value problem:

∂τ u = ∂zu, u(τ = 0,−) = e−1/z .

The solution is:

u(τ, z) = e−1/(z−τ)
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at τ = 0 there is a singularity at z = 0. When τ moves this singularity propagates so
there does not exist flow in a subspace of holomorphic functions in the pointed disk:

D∗ = {z ∈ C : 0 < |z| < 1}.

If such a propagation of singularities occurred in our case then we would be lost.
Fortunately this does not happen.

Before stating an abstract Cauchy–Kovalevskaïa theorem for flat functions, we give
a variant of the Cauchy inequalities in the sectorial case.

Consider the closed sets:

	r := {z ∈ C : r1 ≤ |z| ≤ r2, | arg z| ≤ 2r3}

with r3 < π/2. We introduce the R+-action on R
3 defined by:

(r1, r2, r3) + σ = (r1 − σ, r2 + σ, r3 + σ).

We get that:

∀z ∈ 	r , z + r1D(σ ) ⊂ 	r+σ

for σ small enough. More generally we say that the Banach scale admits an R+-action
if there is an action on its indices compatible with the order.

From this property, we deduce the following variant of the Cauchy inequalities:

Lemma 7.2 For any holomorphic function

u : 	r → C

we have
∣∣∣∣

d

dz
u

∣∣∣∣
r

≤ 1

r1σ
|u|r+σ ,

for σ small enough.

Proof Take z ∈ 	r and denote by γ the oriented boundary of the disk z + r1D(σ ).
By integration by part in the Cauchy integral formula:

d

dz
u(z) = 1

2
√−1π

∫

γ

u′(ξ)

ξ − z
dξ

we get that:

d

dz
u(z) = 1

2
√−1π

∫

γ

u(ξ)

(ξ − z)2
dξ.
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We parametrise γ by

θ �→ z + r1σe2iπθ

and obtain the integral formula:

d

dz
u(z) = 1

r1σ

∫ θ=1

θ=0
u(z + r1σe2iπθ )e−2iπθ dθ.

This shows that:

∣∣u′∣∣
r ≤ 1

r1σ
|u|r+σ

and concludes the proof of the lemma. 
�
The lemma shows that from an abstract viewpoint the operator S = ∂z in the

sectorial case behaves like the singular operator S = z−1∂z in the pointed disk. Indeed,
consider the Banach spaces:

Er = C0(Rr ) ∩ O(Rr ).

We define an R+ action on the indices by putting

(r1, r2) + σ = (r1 − σ, r2 + σ)

In both cases we have:

|S(u)|r ≤ f (r)

σ
|u|r+σ

with f (r) = 1/r1.
We may now state our Cauchy–Kovalevskaïa theorem for flat functions2:

Theorem 7.3 Let (Er ), r ∈ I be a Banach scale together with an R+-action and let

f : I → R+, r �→ f (r)

be some decreasing function. Consider a linear initial value problem of order j > 1:

d j

dτ j
u(τ ) = K (u) + S(u) + h,

di

dτ j
u(τ ) = 0, i < j

where K , S : E → E are linear and h ∈ E. Assume that there exists constants
A, B, C such that for any indices:

2 The exponent which we denoted by k in Proposition 3.2 is now called α
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(i) |K (u)|r ≤ C
σ j |u|r+σ ,

(ii) |S(u)|r ≤ C f (r)
σ

|u|r+σ ,

(iii) |h|r ≤ Be−A f (r)α , α := 1
j−1 ,

then the system has a unique holomorphic solution τ �→ u(τ )and there exists constants
A′, B ′, δ such that

|u(τ )|r ≤ B ′e−A′ f (r)α

for |τ | ≤ δ, |r | ≤ δ.

Note that from a down-to-earth point of view the definition of the partial differential
operator consists of two parts: an operator K whose order is at most j and a singular
part S of order one.

Proof Up to multiplication of all norms by a constant, we may assume that C = e−1.
Then by applying k-times the estimate on L over the intervals

[r + iσ/k, r + (i + 1)σ/k], i = 0, . . . , s − 1,

we get that:

|K k(u)|r ≤ e−kk jk

σ jk
|u|r+σ ≤ (k!) j

σ jk
|u|r+σ (1)

and similarly

|Sk(u)|r ≤ k! f (r)k

σ k
|u|r+σ (2)

To solve our initial value problem, we introduce new variables:

v1 = u, v2 = du

dτ
, . . . , v j = d j−1u

dτ j−1

and endow E j
r with the norm:

|(u1, . . . , u j )|r = max(|u1|r , . . . , |u j |r ).

We write the initial value problem as a first order system:

d

dτ
v = Mv + H, H = (h, 0, . . . , 0)
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where M is a j × j matrix of the form:

M =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 · · · 0 0
0 0 1 0 · · · 0 0
0 0 0 1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 · · · 0 1

K + S 0 0 0 · · · 0 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

Nowendomorphisms of E act on endomorphisms of E j by diagonalmultiplication:

P M := diag(P, . . . , P)M

and a direct computation gives:

M j = (K + S)I.

where I is the identity k × k matrix. This shows that the formal solution:

v(τ) =
∑

k≥0

Mk H
τ k+1

(k + 1)!

can be written as:

v(τ) =
∑

k≥0

(K + S)k
j−1∑

i=0

Mi H
τ jk+i+1

( jk + i + 1)! .

We have an obvious estimate

|v(τ)|r ≤
∑

k≥0

|τ jk |
( jk)!

∣∣∣∣∣∣
(K + S)k

j−1∑

i=0

Mi H

∣∣∣∣∣∣
r

and according to the above estimates (1) and (2), we get that:

∣∣∣∣∣∣
(K + S)k

j−1∑

i=0

Mi H

∣∣∣∣∣∣
r

≤
∑

n+p=k

(
k
n

)
(n!)(p!) j f (r)n

σ nσ j p

∣∣∣∣∣∣

j−1∑

i=0

Mi H

∣∣∣∣∣∣
r+σ

As

( jk)! ≥ ( jn)!( j p)!, k = n + p
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we get that:

|v(τ)|r ≤
∑

n,p≥0

(
n + p

n

)
n!|τ jn| f (r)n

( jn)!σ n

(p!) j |τ j p|
( j p)!σ j p

∣∣∣∣∣∣

j−1∑

i=0

Mi H

∣∣∣∣∣∣
r+σ

and:

∑

n,p≥0

(
n + p

n

)
n!|τ jn| f (r)n

( jn)!σ n

(p!) j |τ j p|
( j p)!σ j p

=
∑

n≥0

n!τ jn f (r)n

( jn)!σ n

∑

p≥0

(p!) jτ j p

( j p)!σ j p

Thus, we have shown the estimate:

|v(τ)|r ≤
∑

n≥0

τ jn f (r)n

(( j − 1)n)!σ n

∑

p≥0

τ j p

σ j p

∣∣∣∣∣∣

j−1∑

i=0

Mi H

∣∣∣∣∣∣
r+σ

We apply the estimate

∑

n≥0

xn

(( j − 1)n)! ≤ exα

, α := 1

j − 1

with

x = τ j f (r)

σ

and use the assumption on h to deduce the estimate:

|v(τ)|r ≤ j B

1 − τ/σ
e−(A+τ jα/σα) f (r)α

for τ sufficiently small. This proves the theorem. 
�
We may now conclude the proof of our main theorem:

Proof of Theorem 4.1 Theorem 6.1 implies that the formal solution

f̂ (t) =
∑

k≥0

aktk, ak ∈ Gα
n

is of Gevrey class αs in the time variable. We apply the partial resummation procedure
in the t variable: first wemake a Borel transform and then a partial Laplace integration.
This defines a holomorphic map

f : 	r × U → C
n
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where U is a neighbourhood of the origin in C
n and

	r =
{

t ∈ C : |t | ≤ r; |arg t | <
π

2(α − 1)

}
.

The formal solution f̂ is the asymptotic expansion of the function f .We substitute u
by v+ f in our system of partial differential equations. The non-degeneracy condition
implies that this new system can be written in the form:

∂s
zn

v = K (v) + B(z)∂tv + h.

where K is a linear partial differential of order s in the zi , B is a matrix with entries in
Gα

n and h is an exponentially decreasing flat mapping. We search for a solution with
initial condition

∂ i
zn

v(0) = 0, i = 0, . . . , s − 1.

According to Lemma 7.2, Theorem 7.3 applies. Thus our initial value problem
has a unique solution v which decreases like h when t approaches the origin. The
holomorphic mapping

u := f + v

provides a solution to our original initial value problem. This proves the theorem. 
�

8 Generalisation of Cauchy’s Majorant Method

To conclude our proof, it remains to prove Theorem 6.1. We consider vector fields
in the infinite dimensional Gevrey spaces (Ĝs

n)m and extend the classical Cauchy
majorant method by comparing series in these different functional spaces. Via formal
Borel transform these topological vector spaces are isomorphic to spaces of convergent
power series. They are therefore endowed with a standard topology (see Grothendieck
1973 for the definition of the topology).

Recall that a formal power series

u :=
∑

I∈Nn

aI z I ∈ C[[z]], z = (z1, . . . , z p)

is majorated by another formal power series

u :=
∑

I∈Nn

bI z I ∈ R+[[z]]

if, for all I ∈ N
n , we have the estimates:

|aI | ≤ bI .
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In such cases, we use the notation

u � v.

In particular, u � 0 means that u is a formal power series with real non-negative
coefficients.

Definition 8.1 Let X, Y be two vector fields in
(
Ĝs

n

)m
. A vector field X in

(
Ĝs

n

)m

majorates another one Y if for any u, v ∈ (
Ĝs

n

)m

u � v �⇒ X (u) � Y (v).

In particular X � 0 means that:

u � 0 �⇒ X (u) � 0.

Example 8.2 Let X be a vector field associated to a linear partial differential operator

X : (On)m → (On)m, u �→
∑

σ(I )≤s

AI ∂
I u.

Then X � 0 provided that the entries of the matrices AI are analytic series with real
non negative coefficients, i.e., AI � 0.

The following proposition is a direct consequence of the exponential formula for
time evolution:

Proposition 8.3 Let X, Y be two vector fields defined in an open subset of (Ĝs
n)m.

(i) If X � Y then the flow of X at u0 � 0 is majorated by that of Y at the same
point,

(ii) If X � 0 and v0 � u0 then the flow of X at u0 is majorated by that of X at v0.

We proceed to the proof of Theorem 6.1 and start with a

Proposition 8.4 The following assertions are equivalent

1. the flow of any linear initial value problem of order s in (Ĝα
n )m is of Gevrey class

αs in the time variable,
2. the flow of any linear initial value problem of order s in Ĝα

n is of Gevrey class αs
in the time variable,3

3. the flow of any linear initial value problem of order s at u0 = ∑
n≥0(n!)α−1zn ∈

Ĝα
1 is of Gevrey class s,

4. the flow of u �→ u0∂
s
z u at the point u0 = ∑

n≥0(n!)α−1zn is of Gevrey class αs.

3 Note that Ouchi’s theorem implies that this is true for α = 1.
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Proof Let us firstmake a remark. Consider a vector field defined by a linear differential
operator:

X : (
Ĝα

n

)m → (
Ĝα

n

)m
, u �→

∑

σ(I )≤s

AI ∂
I
z u; I = (i1, . . . , in)

at a point u0.
The map

abs : Ĝα
n → Ĝα

n ,
∑

I

aI z I �→
∑

I

|aI |z I

induces a map on matrices with coefficients in Ĝα
n that we denote in the same way.

Replace, in the initial value problem the AI ’s by abs AI ’s and u0 by abs u0. By
Proposition 8.3, if the solution of this new initial value problem is of Gevrey class k
then X, u0 has the same property. Therefore it is sufficient to consider the case X � 0,
u0 ∈ {u � 0}.
(2) �⇒ (1).

Let us consider the linear mapping

ψ : (
Ĝα

n

)m → Ĝα
n , (u1, . . . , um) �→

m∑

k=1

uk .

Write AI = (AI1, . . . , AI m) � 0 and put f I = ∑
k AI k . For any u � 0, we have

ψ

⎛

⎝
∑

σ(I )≤s

AI ∂
I u

⎞

⎠ =
m∑

k=1

∑

σ(I )≤s

AI k∂
I
z uk �

∑

σ(I )≤s

(
m∑

k=1

AI k

)
∂

j
z

(
m∑

k=1

uk

)

=
∑

σ(I )≤s

f I ∂
I ψ(u).

The exponential formula for time evolution implies that the image underψ of the flow
of X at u0 is majorated by the flow of

∑
I f I ∂

I at ψ(u0).
(3) �⇒ (2).

Consider the open subset U = {x � 0} ⊂ Ĝα
n . The mapping

R : C → C
n, z �→ (z, . . . , z)

induces a map

R∗ : Ĝα
n [[t]] ⊃ U [[t]] → Ĝα

1 [[t]],

An element is of Gevrey class s in the t variable provided that it is the case of its image
under R∗.
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The equalities

R∗∂zi z
k
j = kzk−1δi j ,

d

dz
R∗zk

j = kzk−1

give the estimate

R∗∂zi � d

dz
R∗.

Consider a vector field in Ĝα
n for the form:

X : u �→
∑

I

f I ∂
I
z u, f I � 0

As R∗∂zi � ∂z R∗, the flow of the vector field

Ĝα
1 → Ĝα

1 , x �→
∑

σ(I )≤s

R∗ f j
dσ(I )u

dzσ(I )

at R∗u0, u0 � 0 majorates the image under R∗ of the flow of X .
Consider the Gevrey series

f (z) :=
∑

n≥0

(n!)α−1 zn ∈ Ĝα
1 .

and take

u0 =
∑

n≥0

anzn ∈ Ĝα
1 .

The series

∑

n≥0

an

(n!)α−1 zn

is analytic. Thus, by Hadamard’s lemma, there exists A, r > 0 such that

an

(n!)α−1 ≤ Arn .

This means that the series u0 is majorated by A f (r z). If X � 0, the formal flow
passing through u0 is majorated by the formal flow passing through A f (r z). Up to
multiplication of u and z by constants, we may assume that A = r = 1.

(4) �⇒ (3).
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Consider the flow of a vector field of the form:

X : u �→
s∑

j=0

a j
d j u

dz j

at f defined above.
As

ds

dzs
� d j

dz j

for any j < s, we get that the flow of X at u0 is majorated by that of the vector field

u �→ b(z)
dsu

dzs
, b(z) :=

s∑

j=0

a j (z).

As before there exists constants A, r > 0 such that

b(z) � A f (r z)

and without loss of generality we may assume, as above, that A = r = 1. This
concludes the proof of the proposition. 
�

To conclude the proof of Theorem 6.1, it remains to prove that the flow of the vector
field:

X = f (z)
ds

dzs
, f (z) :=

∑

n≥0

(n!)α−1 zn

with initial condition

u0(z) = f (z)

is of Gevrey class αs.
In the Banach space of continuous function the multiplication map

g �→ f g

is bounded. There is an analogous statement for power series:

Lemma 8.5 For any α there exists a constant Cα > 0 with the following property.
Let

f (z) :=
∑

n≥0

(n!)α−1 zn
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and

g :=
∑

n≥0

(n!)α−1 anzn

be such that (an) is a real positive increasing sequence then:
f g � Cα

∑

n≥0

(n!)α−1 anzn

Proof Write

f g =
∑

n≥0

cnzn

with

cn :=
∑

i+ j=n

(i !)α−1 ( j !)α−1 a j ≤
⎛

⎝
∑

i+ j=n

(i !)α−1 ( j !)α−1

⎞

⎠ an .

One easily sees that:
∑

i+ j=n

i ! j ! ≤ 3n!

For α ≥ 1, as (an) is a positive increasing sequence, we get that:

cn ≤ 3α−1 (n!)α−1 an .

If α < 1 we have

∑

n≥0

⎛

⎝
∑

i+ j=n

(i !)α−1 ( j !)α−1

⎞

⎠ =
⎛

⎝
∑

i≥0

(i !)α−1

⎞

⎠
2

< +∞.

Consequently the sequence
⎛

⎝
∑

i+ j=n

(i !)α−1 ( j !)α−1

⎞

⎠

n∈N

tends to zero at infinity. This implies that cn = o(an) and concludes the proof of the
lemma. 
�

We have

∂s
z f =

∑

n≥0

(n + s)!
n! ((n + s)!)α−1 zn .
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The above lemma gives a constant Cα such that:

( f ∂s
z )

k f � Ck
α

∑

n≥0

(n + ks)!
n! ((n + ks)!)α−1 zn .

Therefore

u(t) �
∑

n,k≥0

Ck
α

(n + ks)!
n!

((n + ks)!)α−1

k! zntk .

Let us write an ≡ bn if the series |an/bn| is bounded by a geometric series. We
have

(i + j)!
i ! j ! ≤ 2i+ j

thus

(i + j)! ≡ i ! j !

We get that:

(n + ks)!
n!

((n + ks)!)α−1

k! ≡ ((αs − 1)k)! (n!)α−1 .

Thus the flow is of Gevrey class αs in the time variable. This concludes the proof of
Theorem 6.1.
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Appendix: On the Divergence of Formal Solutions

In Łysik (2004), Łysik proved a result similar to Kovalevskaïa divergence result for
the Korteweg–de Vries equation, namely that the solution to the initial value problem:

∂t u = ∂ 3
z u + u∂zu, u(t = 0, ·) = 1

1 + z2

is not holomorphic (see also Domrin and Domrina 2008; Łysik and Michalik 2008).
More generally, one may wonder if our Gevrey estimate for time evolution is optimal.
This is indeed the case under very general assumptions:

Theorem 9.1 Consider an evolutionary initial value problem of order s

∂t u = g(u, z)∂s
z1u + G(u, ∂ I1u, ∂ I2u, . . . , ∂ Ik u, ∂̂s

z1u), σ (Iα) ≤ s,

123



436 M. Garay

with u(t = 0, ·) = u0. Assume that g, G � 0 and u0 � 0. If the convergence radius
of the formal Borel transform

C → C
m, z1 �→ Bαu(z1, 0, . . . , 0)

is finite then the formal solution to this initial value problem is not of Gevrey class
(αs − ε), for any ε > 0.

Proof of Theorem 9.1

The vector field associated to our initial value problem majorates the vector field

X : u �→ g(u, z)∂s
z1u

Moreover, the flow of X at u0 obviously majorates that of

Y : u �→ g(u0, z)∂s
z1u

at the same point. Finally, let

αz I , α �= 0, I ∈ N
n

be a monomial appearing with a non-zero coefficient in the Taylor expansion of g. We
have

Y � αz I ∂
j

z1 .

It remains to prove that the flow of

L = z I ∂s
z1

at u0 is not of Gevrey class (αs − ε), for any ε > 0.
Given formal power series f, g, we write

f � g

if there are infinitely many coefficients of f which are greater than that of g. If f � g
and g is not of Gevrey class s then f cannot be of Gevrey class s.

Write

u0 = (u0,1, . . . , u0,m).

Define

f (z) :=
∑

n≥0

(n!)α−1 zn
1 .
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The assumption on Bαs implies that for at least one of the components of u0, say
u0, j ,there exists A, r > 0 such that :

u0, j � A f (r z1).

Up to a multiplication of z1 and u0 by constants, we may assume that A = r = 1.
As L = z I ∂s

z1 , we have the majorant:

Lk � zk I ∂ks
z1 , j ∈ N.

Therefore:

Lk f � zk I
∑

n≥0

(
(n + ks)!

n!
)α

(n!)α−1 zn
1 � zk I

∑

n≥0

(k!)sα (n!)α−1 zn
1 .

Consequently

et Lk u0 �
∑

k≥0,n≥0

zk I (k!)sα−1 (n!)α−1 zn
1 tk .

The right hand-side is not of Gevrey class sα − ε for any ε > 0. This proves the
theorem.
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