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Abstract We consider generic smooth closed curves on the sphere S2. These curves
(oriented or not) are classified relatively to the group Diff(S2) or its subgroup
Diff+(S2)), with the Gauss diagrams as main tool. V. I. Arnold determined the num-
bers of orbits of curves with n double points when n < 6. This paper explains how
a preliminary classification of the Gauss diagrams of order 5, 6 and 7 allows to draw
up the list of the realizable chord diagrams of these orders. For each such diagram �

and for each Arnold symmetry type T , we determine the number of orbits of spherical
curves of type T realizing �. As a consequence, we obtain the total numbers of curves
(oriented or not) with 6 or 7 double points on the sphere (oriented or not) and also the
number of curves with special properties (e.g. having no simple loop).

Keywords Sphere · Smooth closed curve · Double point · Diffeomorphism ·
Enumeration

1 Introduction

In this paper, a spherical curve will be a generic smooth closed curve on S2, more
explicitly the image of the unit circle under an immersion f : S1 → S2, the mul-
tiple points of which are double points f (a) = f (b) (a �= b) with distinct tangent
directions.
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384 G. Valette

We consider not only spherical curves (often denoted by C) but also oriented spher-
ical curves (denoted by C+ and C−). Also the sphere may be oriented; this allows to
define orientation-preserving C∞-diffeomorphisms of S2; the group of such diffeo-
morphismswill be denoted byDiff+(S2).WhenG is a group acting on a set X , one says
that two objectsU, V are G-equivalent if there is an element of G mappingU onto V .
In particular, it makes sense to consider Diff(S2)-equivalent or Diff+(S2)-equivalent
curves or oriented curves.

We take an interest in the classifications of spherical curves. To begin with, we
consider curves without double points. It is known that two oriented spherical curves
without double point are Diff+(S2)-equivalent and, a fortiori, that two spherical curves
without double point are Diff+(S2)-equivalent. An analogous property is true for
oriented curves with just one double point, but not for oriented curves with more than
one double point: the number of Diff+(S2)-orbits is then larger than 1. Results of V.I.
(Arnold 1994, p. 27) over the numbers of orbits of spherical curves with at most five
double points are summarized in Table 1.

The last row contains the numbers of orbits of unoriented spherical curves with n
double points for n in {0, 1,…, 5}, relatively to the Diff(S2)-equivalence; the other
rows contain the numbers of orbits when S2 or S1 are oriented.

Themethod used byArnold (1996) for computing the numbers of orbits of spherical
curves becomes very long when the number n of double points is larger than 5; this
prompted us to look for another way to compute them. The method presented in this
paper is essentially based on a structured classification of combinatorial objects, the
Gauss diagrams, which summarize the intrinsic geometry of the curves (one forgets
that the curves are contained in a sphere). With this method, we first verified the
correctness of the values in Table 1, and afterwards we found the values for n = 6 and
n = 7, given in Table 2.

With Arnold we shall say that a curve is irreducible if it cannot be disconnected
by removing one double point. As they are building blocks for all other curves, it is

Table 1 Numbers of orbits of
spherical curves found by
Arnold

Oriented object(s) n = 0 1 2 3 4 5

S2, curves 1 1 3 9 37 182

S2 1 1 2 6 21 99

curves 1 1 2 6 21 97

none 1 1 2 6 19 76

Table 2 Numbers of orbits of
spherical curves with 6 or 7
double points

Oriented object(s) n = 6 7

S2, curves 1143 7553

S2 588 3829

Curves 579 3812

None 376 2194
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A Classification of Spherical Curves Based on Gauss Diagrams 385

Fig. 1 Arnold’s irreducible curves with 7 double points

Fig. 2 Supplementary irreducible curves with 7 double points

Fig. 3 Reducible curves with 7 double points, without any simple loop

important to know them concretely. Arnold (1996) described 9 irreducible curves with
7 double points, represented in Fig. 1.

To get a complete list of representatives of all irreducible curves with 7 double
points, one must add four elements, represented in Fig. 2.

No part of an irreducible curve is a simple loop (closed curve which is Diff(S2)-
equivalent with the right part of the symbol infinity). If we are looking for
representatives of all spherical curves with 7 double points and without any simple
loop, we must add to the curves of Figs. 1 and 2 the curves of Fig. 3.

These results and many other which will appear further are consequences of a
previous determination of all the Gauss diagrams of order 6 and 7.
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386 G. Valette

2 Families of Gauss Diagrams

Let γ : S1 → S2 be an immersion whose image is a curve C with n double points
and let D be the closed disk bounded by S1; for every pair a, b of points of S1 which
determine a double point ofC , one may draw a line segment joining a and b; the figure
consisting of the disk D and these n line segments is the Gauss diagram �(γ ). The n
segments are the chords and their 2n endpoints are the nodes of �(γ ).

As we are interested in the curves γ (S1) and not of the immersions γ , it is not a
restriction to suppose that the nodes of every Gauss diagram are regularly placed on
S1 (they are the vertices of a regular 2n-gon).

As a matter of fact, the Gauss diagram of γ is a graphical representation of a
combinatorial object related with the curve γ (S1) which is defined below when n is
an integer larger than 1 (there are minor changes when n = 0 or 1).

Definition A chord diagram of order n is a setA of 2n elements, the nodes, provided
with two families E and C:
(a) The elements of E , called edges, are pairs of nodes such that (A, E) is a circuit

graph (if the chord diagram comes from �(γ ), the edges come from endpoints of
chords which are neighbours on S1);

(b) The elements of C, called chords, are disjoint pairs of nodes whose union isA (if
the chord diagram comes from �(γ ), the elements of C come from the chords of
�(γ )).

As (A, E) is a connected graph, two nodes have a distance: the smallest number of
edges needed to join the nodes. In a chord diagram, the step of a chord ab is the
distance between a and b. The following property of �(γ ) was observed by Gauss
(1900): along the arcs of S1 limited by endpoints of every chord, the number of nodes
is always even; this suggests a

Definition A Gauss diagram of order n is a chord diagram of order n satisfying the
parity condition: the step of every chord is odd.

For example, the first figure below represents a Gauss diagram, but the second one
does not:

Isomorphic Gauss diagrams will be identified; so there is only one Gauss diagram
of order 0, one of order 1 and one of order 2, but three of order 3.

Remark AGauss diagram of order n is not necessarily related with a generic spherical
curve having n double points; this Gauss realizability problem was solved on different
ways in papers of Francis (1969), Marx (1969), Lovasz and Marx (1976), Rosenstiehl
and Read (1977), Dowker and Thistlethwaite (1983), Chaves and Weber (1994).
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A Classification of Spherical Curves Based on Gauss Diagrams 387

For example, the following Gauss diagrams are not realizable:

Definition The distinct chords ab and cd of a Gauss diagram � are interlaced if
a, c, b, d are in cyclic order along the circuit graph of �; with Rosenstiehl and Read,
we define the interlacing graph of � as follows: its nodes are the chords of � and its
edges are the pairs of interlaced chords.

New Look of Diagrams: if one represents chords of a Gauss diagram by chords of a
circle, the chords the step of which is small w.r.t. the order of a Gauss diagram are
not very visible; for this reason and for aesthetic care, we replace the line segments
by circular arcs in the drawing of chords. For example, the diagram showed below on
the left has the new look drawn on the right:

We are now in a position to define the families of Gauss diagrams; we begin with
the notion of fatherhood for diagrams.

Definition If theGauss diagram� = (A, E, C) has at least one chord the step ofwhich
is 1, the father-diagram of � is the diagram �′ = (A′, E ′, C′) obtained as follows:

(a) C′ is the set of the chords of � whose step is larger than 1;
(b) (A′, E ′) is the circuit graph obtained by deleting the nodes which are endpoints

of chords of � with step 1, and respecting the cyclic order of the preserved nodes
(it is the empty graph if C′ is empty).

For example, the father-diagram of the Gauss diagram of order 6 represented below
by the first drawing is the Gauss diagram of order 4 represented by the second one,
which is equivalent to the third one:

When �′ has at least one chord with step 1, it has a father-diagram. The transfer
from a diagram� to its father-diagrammay be iterated until one gets a diagramwithout
chord with step 1; the latter is called leader-diagram of �.

For example, the leader-diagram of the Gauss diagram showed below on the left is
the Gauss diagram represented on the right:
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388 G. Valette

Fig. 4 The eleven Gauss diagrams of order ≤ 4 belong to 3 families

Definition The family of a Gauss diagram � is the (infinite) set of Gauss diagrams
which have the same leader-diagram as �. The natural bijection between the set of
the just defined families and the set of the leader-diagrams allows us to use the same
drawing to denote a family and its leader-diagram.

The following properties, easy to prove, show that the concept family of diagrams
is natural, especially for a classification of spherical curves.

1. The relation of fatherhood turns each family into a rooted tree. Three such trees
are partially represented in Fig. 4.

2. All Gauss diagrams of a family have interlacing graphs with the same number
of edges. More precisely, the interlacing graph of a diagram � is isomorphic to
the union of a totally disconnected graph and the interlacing graph of the leader-
diagram of the family of �.

3. If a Gauss diagram is realizable, then all the Gauss diagrams of its family are also
realizable; hence one can say, in this case, that the family is realizable.

The way of constructing the Gauss diagrams of order n > 4 combines two methods:
the first one gives the list NL(n) of the Gauss diagrams which are not leader-diagrams
and is based on the catalogue of all Gauss diagrams whose orders are smaller than n;
the second one gives the catalogue L(n) of the leader-diagrams, and uses a part of
the list NL(n). We describe the first method immediately and delay the second one to
Sect. 3.

If � belongs to NL(n), it has a father-diagram which belongs to the catalogue of all
Gauss diagrams whose orders are < n. Hence one will obtain the elements of NL(n)
by answering, for every Gauss diagram �′ of order < n, the question:

what are the Gauss diagrams of order n that have �′ as father-diagram?
Let us consider the case where n = 5 and �′ is the Gauss diagram of order 3

represented hereunder; we must augment �′ by means of two chords with step 1.
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A Classification of Spherical Curves Based on Gauss Diagrams 389

Let us try to put a first chord between b and c, and a second one between d and e.
The result will be a diagram of order 5 whose father-diagram is the unique diagram
of order 2 and not �′.

To avoid this contradiction, it is necessary that the chords with step 1 in �′ do not
remain chords with step 1 in the new diagram; with other words:

At least one “new” chord with step 1 must be put in each edge of �′ joining the
endpoints of an “old” chord with step 1.

Obeying this rule and using the symmetries of �′, one gets the complete list NL(n)
without a double occurrence.

3 Gauss Diagrams of Order 5

In the rest of this text, we use the abbreviation k-chord for chord with step equal to
k. By adding 1-chords to Gauss diagrams of orders < 5, as explained above, one gets
the list NL(5) that appears in Table 3.

The partial representation of the rooted trees drawn in Fig. 4 may now be extended
to order 5; Fig. 5 shows the result for the second and the third families.

We now explain a method that may be applied to construct all leader-diagrams of
a given order n (n > 3); for clarity, we expose it for n = 5.

Among the elements of NL(5), there are three Gauss diagrams without 3-chord; we
now label their nodes by the integers modulo 10, in such a way that the neighbours of
the node k are the nodes k − 1 and k + 1.

Table 3 The 13 Gauss diagrams of order 5 which are not leader-diagrams
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390 G. Valette

Fig. 5 Parts of the rooted trees starting with the leader-diagrams of order 3 and 4

Let � be any diagram above. As 3 is invertible in the ringZ/10Z, the multiplication
by 3 defines a permutation m3 of the nodes of �; we now replace the chords of � by
their images under m3; each 1-chord becomes a 3-chord and each 5-chord remains a
5-chord. So this construction provides 3 elements of L(5):

All Gauss diagrams with at least one 3-chord and without 1-chord are obtained by
this procedure. In order to complete the list L(5), it suffices to add the Gauss diagrams
of order 5 which have neither 1-chord nor 3-chord; but this is easy: such a diagram is
unique:

So there are 4 leader-diagrams of order 5.

4 Gauss Diagrams of Order 6

We proceed as for the Gauss diagrams of order 5, constructing first the elements of
NL(6); they are shown in the second column of Table 4.
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A Classification of Spherical Curves Based on Gauss Diagrams 391

Table 4 The 44 Gauss diagrams of order 6 which are not leader-diagrams

Among the 44 elements of NL(6), seven diagrams have no 5-chords; they bear the
numbers 1, 2, 7, 8, 9, 13 and 21. If we label their nodes with the elements of the
ring Z/12Z, and proceed as we did for the leader-diagrams of order 5 (now using the
multiplication m5 instead of m3), we obtain 7 elements of L(6), namely

The elements of L(6) which are not obtained in this way are the Gauss diagrams
whose the step of every chord is 3; they are showed below (it is an easy exercise to
see that there is no other).
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392 G. Valette

In short, there are 9 leader-diagrams of order 6.

5 Gauss Diagrams of Order 7

We have applied the procedure described at the end of Sect. 2 for drawing up the list
of the elements of NL(7); as it is a set of cardinality 217, we shall not annoy the reader
with its description. However, for the reader who would like to check this cardinality,
we decompose it as follows: the families

respectively include 27, 48, 34, 11, 21, 21, 7 elements of N L(7) and the union of the
families generated by leader-diagrams of order 6 includes 48 elements of N L(7).

The set NL(7) contains 37 elements which have no 5-chord; these may be trans-
formed (using the function m3 in the ring Z/14Z) into diagrams without 1-chord, but
having at least one 3-chord. The result gives a first part of L(7):

The other elements of L(7) have neither 3-chord, nor 1-chord; if they have at least
one 5-chord, they may be obtained (using the multiplication m5) from the elements of
NL(7) having neither 5-chord, nor 3-chord. The result gives a second part of the set
L(7):
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A Classification of Spherical Curves Based on Gauss Diagrams 393

The last element of L(7) is the diagram of order 7 which has only 7-chords.

6 The biparity condition

The parity condition imposed in our definition of a Gauss diagram � of order n is not
sufficient to insure that � is realizable, i.e. is the Gauss diagram of a spherical curve.
A second necessary condition of realizability is the

Biparity condition: If the chords aa’ and bb’ of � are not interlaced, then the number
of chords which are interlaced with aa’ and with bb’ is even.

Here is an example of a diagram that does not verify the biparity condition:

One notices that, if a Gauss diagram � satisfies the biparity condition, then all the
diagrams in the family of � also satisfy it. In this case, one can say that the family of
� satisfies the biparity condition.

Among the families the leader of which has an order smaller than 5 (drawn here-
after), the biparity condition is always verified.

Among the families whose leader has order 5, the biparity condition is verified for
half of the case, namely for the families

Among the families whose leader has order 6, the biparity condition is verified for
5 cases out of 9; here are the leaders of the 5 families

Among the families whose leader has order 7, the biparity condition is satisfied
only in 14 instances out of 43; they are represented hereafter:
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394 G. Valette

It remains to answer the questions, for every diagram among the 24 above: is it a
realizable Gauss diagram? In the affirmative, what are the realizations?

7 Spherical Realizations of Leader-Diagrams

As it happens, most of the 24 leader-diagrams described in the preceding section are
realizable. The exceptions are the diagram �6 of order 6 whose every chord has step
5 and the diagram of order 7 numbered as 35.

We prove by contradiction that �6 is not realizable: suppose to the contrary that it
is; then a vertex split at a (see definition and property in Lovasz and Marx (1976))
would transform it into a realizable diagram �5:

The contradiction is that �5 does not verify the biparity condition, so it cannot be
realizable.

An analogous reasoning proves that also the diagram 35 is not realizable.

Families generated by a realizable leader-diagram of order <8.
In Table 5, we associate a capital letter with each of the 22 families generated by a

realizable leader-diagram of order <8.
One says that a Gauss diagram � is decomposable if there exists a partition {A, B}

of the set of chords of � such that no element of A is interlaced with an element of
B; this determines a decomposition of � into two smaller diagrams; for example, the
leader-diagram of family V has a decompostion consisting in the leader-diagrams of
families B and C.

Let us say that a Gauss diagram has essentially one realization if it is realizable and
all its realizations belong to the same Diff(S2)-orbit. Using the informations given by
any of the 22 realizable leader-diagrams of order not greater than 7, one comes to the
following conclusions:

(a) every leader-diagram of order <6 has essentially one realization,
(b) one leader-diagram of order 6 has two orbits of realizations, the other three just

one,
(c) all but two leader-diagrams of order 7 have essentially one realization, one excep-

tion with two realizations and the other exception with three.
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A Classification of Spherical Curves Based on Gauss Diagrams 395

Table 5 Names of the families including a realizable diagram of order < 8

Pictures of curves with n double points (n < 8) without any simple loop (real-
izations of leader-diagrams of order <8).

In Figs. 6 and 7, we exhibit drawings of realizations in increasing values of the
order n and, in case of equality of order, in decreasing values of the number of edges
int of its interlacing graph. Sometimes, we show two plane representations which are
Diff(S2)-equivalent; but in most cases, the chosen drawing is a curve with a maximum
number of symmetries.

Remark (1) If n ∈ {2, 3, . . . , 7}, the leader-diagrams of order n which are not decom-
posable are exactly the prime diagrams of order n in the paper of Chmutov et al.
(2006).

(2) The groups of diffeomeophisms preserving the realizations of the leader-diagrams
B,C,D andK act transitively on their double points; the description of all spherical
curves having this property is given in our paper (2016).

Fig. 6 Spherical realizations of the leader-diagrams of order <7
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396 G. Valette

Fig. 7 Spherical realizations of the leader-diagrams of order 7

8 Spherical Realizations of Other Gauss Diagrams

The spherical realizations of a Gauss diagram � which has a father-diagram could be
done like those of the leader-diagrams, but this method is lengthy. We prefer to make
use of the realizations of the father-diagram of �, which are supposed already known.
The idea is simple: in each Diff(S2)-orbit of realizations of the father-diagram of � we
choose a model M , called mother-curve in the sequel, and we proceed as follows: for
each edge of the father-diagram where some 1-chords were added to get �, we mark,
by means of a short stroke, the corresponding open arc of M which must be modify to
give birth to a loop of the realization of � in progress; an analysis of the combinatorial
symmetries of M enables to eliminate duplications of the resulting curve. We give
additional explanations on this analysis by treating an example.

We first introduce some terminology: if M is a spherical curve with at least one
double point, we define an M-domain D as a connected component of the complement
of M in S2 and a side of D as the closure of an open arc of the boundary of D without
double point and maximal for this property.

Imagine that we are looking for the spherical realizations of the diagram � showed
below on the left. The father-diagram of �, showed on the right,
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A Classification of Spherical Curves Based on Gauss Diagrams 397

may be realized by several Diff(S2)-equivalent curves, for instance

(we denote a point of S1 and its image through a parametrization by the same letter). If
M is one of these models, the stabilizer H of M in the group Diff(S2) acts transitively
on the set of sides ac, ad, bc and bd, so that we may choose ad as arc where a loop
will be added. Moreover, the model below, on the left, shows that there exists in H a
diffeomorphism permuting the M-domains adc and dab.

We may put the loop in dab. Therefore there is essentially one spherical realization
of the Gauss diagram �. It looks like the curve sketched on the right.

The method explained above allows to determine, for any Gauss diagram �, a
complete set of spherical curves realizing � (such a set S is complete if any spherical
curve with Gauss diagram � is Diff(S2)-equivalent with exactly one element of S).
Table 6 gives, for every family whose leader-diagram has order <7 and for every
n ≤ 7, the number of curves with n double points, up to Diff(S2)-equivalence, which
realize a Gauss diagram belonging to the family.

The Appendix concerning Table 6 shed light on the way to obtain the given values:
beside every non leader-diagram � appears the number of orbits of curves realizing
�.

As a consequence, we obtain a classification of the spherical curves based on the
number of double points and the absence of simple loops (Table 7).
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Table 6 Number of curveswith n double points, up toDiff(S2)-equivalence, which realize aGauss diagram
belonging to a given family

n A B C D E F G H J Totals

0 1 1

1 1 1

2 2 2

3 5 1 6

4 16 2 1 19

5 55 16 3 1 1 76

6 240 92 31 2 6 1 1 1 2 376

7 1149 654 228 22 76 14 12 8 15 2178

Table 7 Summary without the families of diagrams

Number of double points Number of orbits of spherical curves Total number of orbits

Without simple loop With simple loop or loops

0 1 0 1

1 0 1 1

2 0 2 2

3 1 5 6

4 1 18 19

5 2 74 76

6 5 371 376

7 16 2178 2194

9 Arnold Types

Arnold (1994, 1996) distinguishes between five types of symmetry for plane curves;
this classification is used by Gusein-Zade and Duzhin (1998) for determining the
numbers of curves (oriented or not) with n double points (n ≤ 10) in the plane
(oriented or not).

We shall give an analogous classification of spherical curves, using following nota-
tions:

(a) If C is a curve, we denote by C+ and C− the oriented curves along C ;
(b) We denote by [C] the orbit of C under Diff+(S2); we define analogously [C+]

and [C−];
(c) We denote by −C the image of C under the antipody of S2, that is the restriction

to S2 of the operator x → −x in R
3; we define analogously the oriented curves

−C+ and −C−. The orbit [−C+] of −C+ under Diff+(S2) is also the set of
the images of C+ under the elements of Diff(S2)\Diff+(S2); hence the equality
[ f (C+)] = [−C+] is valid for every oriented curve C+ and every reflection f .
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A Classification of Spherical Curves Based on Gauss Diagrams 399

It is fairly obvious that the orbit ofC (resp.C+, resp.C−) under Diff(S2) is [C]∪[−C]
(resp. [C+] ∪ [−C+], resp. [C−] ∪ [−C−]).

We now define the Arnold type of a spherical curve C by looking at the possible
coincidences of the orbits [C+], [C−], [−C+], [−C−]. Because each equality of two
among these orbits implies the equality of the other two, the number of cases reduces
to 5.

(1) If the orbits [C+], [C−], [−C+], [−C−] are different from each other, then we say
that the curve C is asymmetric or of type Asy; this implies that the oriented curves
C+ and C− are not equivalent on the unoriented sphere and that the curves C and
−C are not equivalent on the oriented sphere; in other words, the contribution of
such a curve
to the number of orbits of oriented curves on the unoriented sphere is 2,
to the number of orbits of unoriented curves on the oriented sphere is 2,
to the number of orbits of oriented curves on the oriented sphere is 4.
A 4-tuple summarizes these properties: (1, 2, 2, 4), later used as a column of a
matrix.

Three examples of curves of type Asy are given hereafter.

Remark that the last one is invariant under a half-turn and nevertheless is of type
Asy.

(2) If the orbits [C+], [C−], [−C+] and [−C−] coincide, then we say that C is
supersymmetric or of type Sup; this implies that the oriented curves C+ and
C− are equivalent on the unoriented sphere and that the curves C and −C are
equivalent on the oriented sphere; in other words, the contribution of C
to the number of orbits of oriented curves on the unoriented sphere is 1,
to the number of orbits of unoriented curves on the oriented sphere is 1,
to the number of orbits of oriented curves on the oriented sphere is 1.
The 4-tuple related to the type Sup is thus (1, 1, 1, 1).
Four examples of curves of type Sup are given herafter.

One easily sees that [−C+] = [C−] for the last two curves above; in order to be
convinced that the equalities [−C+] = [C+] and [C−] = [C+] are also true for these
curves, it is convenient to look at the following models:
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400 G. Valette

(3) If [−C+] = [C−] �= [−C−] = [C+], then we say that C is symmetric(1) or of
type Sy1; this implies that the oriented curves C+ and C− are equivalent on the
unoriented sphere and that the curves C and −C are equivalent on the oriented
sphere; with other words, the contribution of such a curve
to the number of orbits of oriented curves on the unoriented sphere is 1,
to the number of orbits of unoriented curves on the oriented sphere is 1,
to the number of orbits of oriented curves on the oriented sphere is 2.
The 4-tuple related to the type Sy1 is thus (1, 1, 1, 2).

For instance, the curves hereunder are plane representations of spherical curves of
type Sy1.

(4) If [C−] = [C+] �= [−C−] = [−C+], then we say that C is symmetric(2) or of
type Sy2; this implies that the oriented curves C+ and C− are equivalent on the
unoriented sphere and that the curves C and−C are not equivalent on the oriented
sphere; with other words, the contribution of such a curve
to the number of orbits of oriented curves on the unoriented sphere is 1,
to the number of orbits of unoriented curves on the oriented sphere is 2,
to the number of orbits of oriented curves on the oriented sphere is 2.
The 4-tuple related to the type Sy2 is thus (1, 1, 2, 2).

The curves hereafter are models of spherical curves of type Sy2.

(5) If [−C+] = [C+] �= [−C−] = [C−], then we say that C is symmetric(3) or of
type Sy3; this implies that the oriented curves C+ and C− are not equivalent on
the unoriented sphere and that the curves C and−C are equivalent on the oriented
sphere; with other words, the contribution of such a curve
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A Classification of Spherical Curves Based on Gauss Diagrams 401

to the number of orbits of oriented curves on the unoriented sphere is 2,
to the number of orbits of unoriented curves on the oriented sphere is 1,
to the number of orbits of oriented curves on the oriented sphere is 2.
The 4-tuple related to the type Sy3 is thus (1, 2, 1, 2).

Examples of curves of type Sy3 are

Because the symmetry type is the same for all curves in an orbit K of Diff(S2), one
may speak of the symmetry type of K ; we also say that K realizes a diagram when
the elements of K realize it.

If � is a realizable diagram, then we associate with it the following integers:
v (resp. w, x, y, z) is the number of orbits of type Sup (resp. Sy1, Sy2, Sy3, Asy)

which realize �;
uu (resp. ou) is the number of Diff(S2)-orbits of unoriented (resp. oriented) curves

which realize � (the sphere is unoriented);
uo (resp. oo) is the number of Diff+(S2)-orbits of unoriented (resp. oriented) curves

which realize � (the sphere is oriented).
N.B.: in the symbols uu, ..., oo, the first character is related to the curves and the

second one to the sphere; u is the initial of unoriented and o begins oriented.
The stated properties of the five types of symmetry imply that uu, ou, uo and oo

are linear functions of v, w, x , y and z:

uu = v + w + x + y + z,

ou = v + w + x + 2y + 2z,

uo = v + w + 2x + y + 2z,

oo = v + 2w + 2x + 2y + 4z.

This system can be rewritten as a matrix equation

⎡
⎢⎢⎣

uu
ou
uo
oo

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
1 1 1 1 1
1 1 1 2 2
1 1 2 1 2
1 2 2 2 4

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎢⎢⎣

v

w

x
y
z

⎤
⎥⎥⎥⎥⎦

where the columns of the 4 × 5-matrix are the 4-tuples related to the five symmetry
types.

As an introduction to Sect. 10, suppose we want to determine the numbers
uu, ou, uo, oo of orbits which realize the Gauss diagram having one 5-chord and
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four 1-chords. The method explained in Sect. 7 produces seven orbits under Diff(S2);
they are represented by the curves

The first two curves have type Sup, the following three (from left to right), types Sy1,
Sy2, Sy3, and the last two, type Asy; hence v = 2, w = x = y = 1, z = 2 for
the studied diagram and the matrix equation yields uu = 7, ou = 10, uo = 10 and
oo = 16.

10 Numerical Results

Counting the orbits of spherical curves with 5 double points
Table 8 gets together the results of the enumeration of orbits of spherical curves

with 5 double points; each row corresponds to a family, named in the first column;
the second column gives the number of Gauss diagrams of order 5 in the family; the
columns 3 to 7 give for each symmetry type T (in the order Sup, Sy1, Sy2, Sy3, Asy),
the number of orbits of type T realizing diagrams of order 5 in the family; the columns
8 to 11 give
the number UU of orbits of unoriented curves with 5 double points on the unoriented
sphere,
the number OU of orbits of oriented curves with 5 double points on the unoriented
sphere,
the number U O of orbits of unoriented curves with 5 double points on the oriented
sphere,
the number O O of orbits of oriented curves with 5 double points on the oriented
sphere.

The last row gives total numbers; for example, the number of realizable Gauss
diagrams of order 5 is 15, the number of orbits of supersymmetric spherical curves
with 5 double points is 10 (but there is only one orbit of type Sy3), the number of
Diff+(S2)-orbits of oriented curves is 182.

As expected, the last four entries of the last row coincide with the values found by
Arnold (see last column of first table in Sect. 1).

The Appendix concerning Table 8 sheds light on how to obtain the values given
in it: beside every diagram � in the considered family appear a 5-tupel giving the
numbers v,w, x, y, z defined at the end of Sect. 9, and the related 4-tuple giving the
numbers uu, ou, uo, oo. So, the entry of this appendix describing the realizations of
the diagram considered at the end of Sect. 9 is:
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Table 8 Numbers of orbits of curves with 5 double points

1 2 3 4 5 6 7 8 9 10 11
Family #GD Su S1 S2 S3 As UU OU UO OO

A 6 6 31 1 1 16 55 72 72 136

B 5 2 9 2 3 16 19 21 36

C 2 2 1 3 4 4 8

D 1 1 1 1 1 1

E 1 1 1 1 1 1

Total 15 10 42 3 1 20 76 97 99 182

Table 9 Numbers of orbits of curves with 6 double points

1 2 3 4 5 6 7 8 9 10 11
Family #GD Su S1 S2 S3 As UU OU UO OO

A 12 8 98 6 3 125 240 368 371 722

B 13 36 56 92 148 148 296

C 10 11 5 15 31 46 51 92

D 1 2 2 2 2 4

E 3 2 4 6 10 10 20

F 1 1 1 1 1 2

G 1 1 1 1 2 2

H 1 1 1 1 1 2

J 1 1 1 2 2 2 3

Total 43 9 152 12 3 200 376 579 588 1143

Counting the orbits of spherical curves with 6 double points
The number of realizable Gauss diagrams of order 6 is 43. In the following table, we

give, for each family, the numbers of orbits of unordered curves with 6 double points
classified according to symmetry type, and the numbers of orbits if one supposes that
the curves or the sphere are oriented.

The elements of the header of Table 9 have the same meaning as in Table 8.

Remark (1) We got the last four values of the row “Total” of Table 9 in 2004 and
added them to four sequences initiated by V. I. Arnold in the On-line Encyclopedia
of Integer Sequences; the identifiers are A008989 for theUU -sequence, A008988,
A008987 and AA008986 for the other three.

(2) The same remark, for n = 7 instead of n = 6, is valid for the last four values of
the row “Totals” in Table 10.
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Table 10 Numbers of orbits of curves with 7 double points

Family #GD Su S1 S2 S3 As UU OU UO OO

A 27 16 288 12 12 821 1149 1982 1982 3924

B 48 8 136 14 2 494 654 1150 1162 2288

C 34 40 188 228 416 416 832

D 7 2 11 4 5 22 27 31 52

E 21 2 11 4 4 55 76 135 135 260

F 7 4 10 14 24 24 48

G 7 12 12 24 24 48

H 4 4 4 8 12 12 24

J 4 6 9 15 24 24 48

K 1 1 1 1 1 1

L 1 1 1 1 1 1

M 1 1 1 1 1 1

N 1 1 1 1 1 1

P 1 1 1 1 1 2

Q 1 1 1 1 1 2

R 1 1 1 1 2 2

S 1 1 1 1 1 2

T 1 1 1 1 1 1

U 1 1 1 2 2 4

V 1 2 2 2 2 4

W 1 1 1 2 2 4

X 1 2 1 3 3 3 4

Total 172 35 506 35 18 1600 2194 3812 3829 7553

(3) In a recent paper, Robert Coquereaux and Zuber (2016) use another method to
count the last four numbers of the rows “Total” in Tables 8, 9 and 10 in their Table
5 (p. 25), they confirm our results without using our 22 families.

(4) The interested reader who wants to know about the contributions of a specific
Gauss diagram of order 6 to the numbers Su, S1,…, U O, O O (or comparing
her/his own counts with ours) may consult the Appendix concerning Table 9.

Counting the orbits of spherical curves with 7 double points
The number of realizable Gauss diagrams of order 7 is 172 (13 are leader-diagrams

and 159 are not). Table 10 is analogous to Tables 8 and 9, giving now informations
about curves with 7 double points in each of the 22 considered family.

The contributions of a given Gauss diagram to the numbers Su, S1, ..., U O, O O
are detailed in the Appendix concerning Table 10.

In Table 11, we give, for each symmetry type T, the numbers of orbits of unordered
curves of type T classified according to their number of double points.
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Table 11 Numbers of orbits of
curves with a given symmetry
type.

Type n = 0 1 2 3 4 5 6 7

Sup 1 1 1 3 5 10 9 35

Sy1 1 3 12 42 152 506

Sy2 3 12 35

Sy3 1 3 18

Asy 20 200 1600

Total 1 1 2 6 19 76 176 2194

Table 12 Numbers of orbits of
curves wthout simple loop and
with n double points (n < 8)

Oriented object(s) n = 0 1 2 3 4 5 6 7

Sphere and curves 1 0 0 1 1 2 9 29

Sphere 1 0 0 1 1 2 6 19

Curves 1 0 0 1 1 2 5 18

None 1 0 0 1 1 2 5 16

In a last table, we consider only curves without any simple loop (realizations of
leader-diagrams); the numbers of orbits of such curves (oriented or not) under Diff(S2)

or Diff+(S2)) are given in Table 12. The given values also appear in the Table 6
(p. 26) of Coquereaux and Zuber (2016).
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