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Abstract Consider the problem of finding three non-overlapping circles in a given
triangle with the maximum total area. This is Malfatti’s marble problem, and it is
known that the greedy arrangement is the solution. In this paper, we provide a simpler
proof of this result by synthesizing earlier insights with more recent developments.
We also discuss some related geometric extremum problems, and show that the greedy
arrangement solves the problem of finding two non-overlapping circles in a tangential
polygon with the maximum total radii and/or area. In the light of this discussion, we
formulate a natural extension of Melissen’s conjecture.

Keywords Circle packing · Malfatti’s problem · Greedy algorithm · Chebyshev
center

1 Introduction

In mathematics the art of proposing
a question must be
held higher than solving it.

Georg Cantor

Let �ABC be a given triangle in a plane, and let n ∈ N be a given number. Consider
the following problem.

Problem 1 Find n non-overlapping circles inside of �ABC so that the sum of their
areas is maximal.
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310 U. Ninjbat

When n = 3, following a paper by Malfatti published in 1803, this problem is
known as Malfatti’s marble problem; according to Szabó et al. (2007), this is one of
thefirst examples of a packingproblemappeared inEuropeanmathematics. Initially,G.
Malfatti and others assumed that the solution would be three circles that are tangent to
each other and each circle is tangent to two sides of�ABC ; these circles later became
known as the Malfatti circles. However, Lob and Richmond (1930) discovered a case
in which the Malfatti circles were not the solution to Malfatti’s marble problem, and
Goldberg (1967) showed that they are never the optimal solution. Following this,
Zalgaller and Los (1994) gave a complete solution to this problem by showing that
the greedy arrangement is the optimal solution.

The greedy arrangement of n circles in �ABC is the result of the n-step process
where at each step one chooses the largest circle which does not overlap the previously
selected circles and is contained by �ABC . It is evident that, for n = 1, the greedy
arrangement solves Problem 1. It can be shown that the same is true for n = 2 [see
Theorem 1 in Andreatta et al. (2011), and also Sect. 2.3 in Andreescu et al. (2006)].
As mentioned above, Zalgaller and Los (1994) showed that one can extend this line
of reasoning to the case of n = 3. However, their proof is lengthy with the extensive
usage of trigonometric methods.1

In Sect. 2, we provide a simpler proof of the Zalgaller and Los (1994) result by
synthesizing their insights with these in Andreatta et al. (2011). The former paper
shows that, for n = 3, there are fourteen possible arrangements to be considered,
and it eliminates each non-greedy arrangement as being non-optimal; the latter paper
shows that not only there is an elegant and simple proof of the result for n = 2, but
also the same result holds for other regions including concave triangles. We connect
the more difficult case of n = 3 to the simple case of n = 2, which, in turn, allows us
to focus on seven groups of arrangements instead of fourteen cases, where each group
is analyzed in a unified fashion. In addition to clarifying the proof, this approach also
substantially reduces trigonometric calculations.

In Sect. 3, we discuss some other related geometric extremumproblems and suggest
a natural extension of Melissen’s conjecture (see Conjecture 3). We also show that
the greedy arrangement solves the problem of finding two non-overlapping circles
inscribed into a tangential convex polygon with the maximum total radii and/or area
(see Theorem 5). This result generalizes some of the earlier results such as Theorem
1 in Andreatta et al. (2011).

2 The Proof

Mathematical works consist of
proofs, just as poems consist of
characters.

Vladimir Arnold

1 Andreescu et al. (2006) give a simple proof of Zalgaller and Los (1994)’s result for the case of an
equilateral �ABC .
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On Malfatti’s Marble Problem 311

(a) (b) (c)

Fig. 1 Regions

2.1 Preliminaries

A region is a closed, bounded subset of a plane with a positive area. In addition to
polygons, we are mainly interested in the following regions: a triangle with three
concave sides, which we call a concave triangle; a triangle with one concave side,
which we call a semi-concave triangle; and a convex quadrilateral except one concave
side, which we call a semi-concave quadrilateral (see Fig. 1a–c respectively). In all
cases that we consider, the concave side is a circular arc.

Let us say that n ∈ N circles in a region form an arrangement if each of them is
contained in the region, and they are non-overlapping. When the region is either a
convex polygon, or a concave triangle, or a semi-concave triangle, these circles form
a greedy arrangement if they are the result of the n-step process, where at each step
one chooses the largest circle which does not overlap the previously selected circles
and is contained by the region. An arrangement of n circles is rigid if it is not possible
to continuously deform one of the circles to increase its radius without moving the
others and keeping all circles non-overlapping.2 Notice that the greedy arrangement
is a rigid arrangement. An arrangement of n circles is optimal if the sum of their areas
is maximal.

Following Zalgaller and Los (1994), we call two arrangements of n circles in a
triangle combinatorially identical if the sides of the triangle and the circles in one
arrangement can be put in a bijection to these in the other arrangement such that the
existence or lack of a common point of a pair “a side and a circle” or “two circles”
is preserved under this mapping. Similarly, two arrangements of n circles in a semi-
concave triangle/quadrilateral are combinatorially identical if the concave side of the
triangle/quadrilateral, straight sides of the triangle/quadrilateral and the circles in one
arrangement can be put in a bijection to these in the other arrangement such that the
existence or lack of a common point of a pair “a side (concave or straight) and a circle”
or “two circles” is preserved under this mapping.

Our starting point is the following observation.

Lemma 1 Let us consider the problem of arranging n ∈ N circles in a region. Then

A. every optimal arrangement is a rigid arrangement, and

2 A closely related but stronger notion is the Pareto optimality (PO) which is frequently used in the multi-
objective optimization and in economics. PO reads as follows: an arrangement of n circles in a region
satisfies PO if it is not possible to rearrange them in a way that some circles get larger but none gets smaller.
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(a) (b)

Fig. 2 Two tangent circles

B. if the region enclosed by one of the circles in an optimal arrangement is removed,
the remaining circles constitute an optimal arrangement in the remaining region.

Proof We prove only the first statement; a similar argument applies to the second.
Suppose, by contradiction, that an optimal arrangement was not rigid. Then, by def-
inition, it is possible to rearrange the circles in such a way that at least one of them
gets larger while none gets smaller. In that arrangement, the total area is larger, which
contradicts the optimality of the initial arrangement. ��

The following useful result is obtained in the proof of Theorem 2 in Andreatta et al.
(2011).

Lemma 2 Let AA′ and CC ′ be two non-intersecting segments in �ABC. Assume
two externally tangent circles are given so that one of the following conditions holds:

– Both circles touch the side AC; the first circle touches the interior of AA′, and the
second circle touches the interior of CC ′ (see Fig. 2a).

– The first circle touches the side AB and the interior of AA′, and the second circle
touches the side BC and the interior of CC ′ (see Fig. 2b).

Then the radius r of one of the circles uniquely determines that of the other, R(r), and,
moreover, the function describing the sum of their areas is strictly convex with respect
to r .

For a proof, see Andreatta et al. (2011); note also that it can be reconstructed easily
from the proof of Lemma 3 below. Lemma 2 leads to the following result.

Theorem 1 Let n ≤ 2. Then the greedy arrangement is optimal if the region is either
a triangle, or a concave triangle, or a semi-concave triangle.

Proof The result is obvious for n = 1; so we assume n = 2. The optimality of
the greedy arrangement if the region is a triangle or a concave triangle is shown in
Theorems 1 and 2 in Andreatta et al. (2011). Thus, we focus on the case of a semi-
concave triangle. Let us show that any optimal arrangement must contain the incircle.
By Lemma 1A, we need to restrict our attention to rigid arrangements. Notice that
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On Malfatti’s Marble Problem 313

Fig. 3 Rigid but non-greedy arrangements

there are two combinatorially non-identical rigid arrangements which do not include
the incircle, as depicted in Fig. 3, arrangements 1 and 2.

Let us make an additional construction as in 1′, Fig. 3, where CC ′ is tangent to the
right circle at its common point with the concave side. Then all conditions of Lemma 2
are met for�ABC , which implies that one can increase the total area by enlarging one
of the circles in arrangement 1, i.e. there is a room for a local improvement, as a strictly
convex function reaches its maximum at one of the end points. Thus, arrangement 1,
Fig. 3, cannot be optimal. To see that arrangement 2 in Fig. 3 is not optimal, draw
tangents to each circle at their common points with the concave side as in arrangement
2′, Fig. 3. Then again all conditions of Lemma 2 are met for�ABC in arrangement 2′,
Fig. 3, which implies that there is a room for a local improvement. Thus, arrangement
2, Fig. 3, cannot be optimal. But since there must be an optimal arrangement by the
celebratedWeierstrass maximum theorem, we conclude that any optimal arrangement
must contain the incircle. This implies that the greedy arrangement is optimal. ��

Let us prove the result similar to Lemma 2 for convex quadrilaterals.

Lemma 3 Let ABC D be a convex quadrilateral with A and C being opposite vertices,
and let AA′ be a segment in it. Assume that two externally tangent circles are given
such that the first circle touches either the side AB or AD and the interior of AA′, and
the second circle touches the sides BC and C D. Then the radius of one of the circles,
r , uniquely determines that of the other, R(r), and, moreover, the function describing
the sum of their areas is strictly convex with respect to r .

Proof We follow a strategy similar to the one used in proving Lemma 2 in Andreatta
et al. (2011). Let r be the radius of the circle inscribed into � BC D. Without loss of
generality, we may assume that the other circle touches AD (see Fig. 4). It is easy
to see that each such circle induces a unique circle in � A′ AD, which implies that
we can obtain a functional relation between their radii. Let R(r) be the radius of the
circle in � A′ AD. We claim that R(r) is midpoint convex. To see this, let us recall
the following well known result: In any quadrilateral, the sum of the lengths of two
opposite sides is at least twice the distance between the midpoints of the remaining
two sides. As mentioned in Andreatta et al. (2011), the quadrilateral can be convex,
concave, or self-intersecting, and can have collinear or even coinciding vertices.

Let r1, R(r1) and r2, R(r2) be the radii of two pairs of circles arranged as it is
described in Lemma 3, and denote by O1, O ′

1, and, similarly, by O2, O ′
2 their centers

(see Fig. 4).
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Fig. 4 A pair of arrangements

Clearly, |O1O ′
1| = r1+ R(r1) and |O2O ′

2| = r2+ R(r2). Applying the above result
to the quadrilateral O1O2O ′

2O ′
1 taking O1O ′

1 and O2O ′
2 as the opposite sides, and M

and N as the midpoints of the two remaining sides, we get

|M N | ≤ |O1O ′
1| + |O2O ′

2|
2

= r1 + r2
2

+ R(r1) + R(r2)

2
.

It means that the circle of radius r1+r2
2 centered at M and the circle of radius R(r1)+R(r2)

2
centered at N are either externally tangent or overlap. Moreover, the first occurs if and
only if the bisectors of � A′ AD and � BC D coincide. Thus,

R

(
r1 + r2

2

)
≤ R(r1) + R(r2)

2
,

and R(r) is midpoint convex. Recall some basic results on convex functions, namely:
(a) for a continuous function mid-point convexity implies convexity, and if the first
is strict then so is the second; (b) if two real valued functions f (x), g(x) are convex,
and at least one them is strictly convex, then f (x) + g(x) is strictly convex; (c) if, in
addition to being strictly convex, f (x) is increasing, then f (g(x)) is strictly convex.
According to Niculescu and Persson (2006), the first result was proven independently
by H. Blumberg and W. Sierpiński under a weaker condition, whereas results (b) and
(c) can be easily obtained [see, for example, Chap. 3.2 in Boyd and Vandenberghe
(2004)]. Then we may conclude that the function S(r) = π(r2 + R(r)2) is strictly
convex with respect to r . ��

Let us call a circle contained in a semi-concave quadrilateral big if it touches at
least three of its sides. Lemma 3 leads to the following result.

Theorem 2 Let n ≤ 2. Consider an arrangement of n tangent circles in a semi-
concave quadrilateral such that one of them is tangent to two adjacent sides of the
quadrilateral. If such an arrangement is optimal, then at least one of the circles is big.

Proof When n = 1, it is clear that an optimal circle must be big; the center of such
circle is known as the Chebyshev center (see Chap. 8.5.1 in Boyd and Vandenberghe
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On Malfatti’s Marble Problem 315

Fig. 5 Rigid arrangements without a big circle

(2004)). Let n = 2; by Lemma 1A, we should focus on rigid arrangements. It suffices
to show that none of the rigid arrangements that satisfies the given description but has
no big circle is optimal.

First, we claim that there are six combinatorially different such arrangements.
To see this, notice that, in such arrangement, each of the mutually tangent circles

must touch two sides of the quadrilateral; otherwise, rigidity is violated. Since at least
one of the circles is tangent to two adjacent sides, there are two possibilities: either
(a) a circle is tangent to two adjacent straight sides, or (b) a circle is tangent to a
straight side and the concave side adjacent to it. In Case (a), the second circle can be
tangent either to two adjacent straight sides (arrangement 1 in Fig. 5); or to a straight
side and the concave side adjacent to it such that the straight side is common to both
circles (arrangement 2 in Fig. 5); or the second circle is tangent to the third straight
side and to the concave side (arrangement 3 in Fig. 5); or, finally, the second circle
is tangent to the concave side and to the initial straight side opposite to the concave
side (arrangement 4 in Fig. 5). Case (b) leads us to arrangements 2, 3, 5, and 6 in Fig.
5; namely that the second circle is located either in one of the three other corners,
or it is tangent to the nonadjacent straight and concave sides. However, two out of
these four arrangements are combinatorially identical to arrangements in Case (a),
and the remaining two arrangements are arrangements 5 and 6 in Fig. 5. This proves
our claim.

For all arrangements in Fig. 5, except arrangement 3, one can directly apply Lemma
2 and make a similar argument as in the proof of Theorem 1 to show that there is a
room for a local improvement. This then shows that none of arrangements 1, 2, 4, 5,
or 6 in Fig. 5 is optimal. Regarding arrangement 3 in Fig. 5, let us make an additional
construction shown in Fig. 6, where AA′ is tangent to the top circle at its common
point with the concave side.
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Fig. 6 Additional construction
for arrangement 3

Then all the conditions of Lemma 3 are met for the quadrilateral ABC D, which
implies that one can increase the total area by enlarging one of the circles, i.e. there
is a room for a local improvement. Thus, arrangement 3 can not be optimal either.

��

2.2 Solution to Malfatti’s Marble Problem

Let us now prove the following result.

Theorem 3 [Zalgaller and Los (1994)] If n = 3, the greedy arrangement solves
Problem 1.

Proof By Lemma 1A, we need to consider only rigid arrangements. We proceed in
four steps.

Step 1: There are fourteen combinatorially different rigid arrangements.

It is shown in Zalgaller and Los (1994) that there are fourteen combinatorially different
rigid arrangements as depicted in Figs. 7 and 8 below.

Step 2: Let us analyze arrangements 1–5 in Fig. 7.

Fig. 7 Rigid arrangements
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Fig. 8 More rigid arrangements

We claim that if an arrangement is optimal, and one of the circles is the incircle, then
it must be the greedy arrangement. To see this, assume that one of the circles is the
incircle, and remove the region enclosed by this circle from the triangle. Then, by
Lemma 1B, the remaining circles possess an optimal arrangement in the remaining
region. Notice that the remaining region is a union of three non-overlapping semi-
concave triangles.

There are two possibilities: either the remaining two circles are located in different
semi-concave triangles, or they are located in the same semi-concave triangle. In each
case, their allocation must be greedy by Theorem 1. Since, in the greedy arrangement,
the first circle is always the incircle, our claim is established. This shows that, if there
is an optimal arrangement in Fig. 7, then it must be the greedy one, which is either
arrangement 1 or arrangement 2.

Step 3: Let us analyze arrangements 11–14 in Fig. 8.

Let us first apply the following procedure to arrangements 11–13 in Fig. 8. Take one
of the circles which is tangent to two sides of the triangle, and remove the region
enclosed by this circle. If the initial arrangement was optimal, then, by Lemma 1B,
the remaining two circles must be arranged optimally in the remaining semi-concave
quadrilateral. By Theorem 2, this implies that at least one of the remaining two circles
must be big. Thus, we may conclude that arrangements 11–13 are not optimal.

For arrangement 14 in Fig. 8, let us draw three inner tangents to the circles as in
Fig. 9. It is known that they intersect at the radical center of the circles, denoted by O .

Take any pair of circles; we claim that their inner tangent line intersects the sides of
�ABC (or their extensions) to which the circles are tangent. To see this, consider the
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Fig. 9 Additional construction
for arrangement 14

(a) (b)

Fig. 10 Violations of rigidity. Arrows indicate the directions of enlargement

top two circles. It is clear that their inner tangent line intersects at least one of the sides
AB or BC . Assume, without loss of generality, that the tangent line intersects BC
at the point N . Let us show that �O NC < �ABC . Suppose, by contradiction, that
�O NC ≥ �ABC . If �O NC = �ABC , then one can displace the circle centered
at H toward BC without affecting the other circles. This means that one can enlarge
the circle centered at F by moving it toward the point A, which contradicts rigidity
(see Fig. 10a). If �O NC > �ABC , then one can enlarge the circle centered at H by
moving it toward point B, which also contradicts rigidity (see Fig. 10b).

Thus, we conclude that�O NC < �ABC , which implies that the rays O N and AB
must intersect, and our claim is established. Then, points P and K are well defined,
and applying Lemma 2 to�AP K , we conclude that the sum of the areas of the circles
centered at H and F is subject to a local improvement, i.e. one can increase this sum
without affecting the third circle. This, in turn, implies that arrangement 14 in Fig. 8
is not optimal.

Step 4: Let us analyze arrangements 6–10 in Fig. 8.

Proving the non-optimality of arrangements 6, 7, 8, and 10 is rather straightforward,
see Zalgaller and Los (1994). Here are the main ideas. Arrangement 6 in Fig. 8 is
known as the Malfatti circles. Using explicit formulas for their radii, one can show
that the sum of their areas is less than that in arrangement 1 in Fig. 7 (see p. 3166 in
Zalgaller and Los (1994)). For arrangement 7 in Fig. 8, one can express the sum of
the areas of the circles as a function of the radius of the top circle and show that it
is strictly convex. Arrangement 8 in Fig. 8 is treated similarly, with the middle circle
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On Malfatti’s Marble Problem 319

Fig. 11 Analysis of
arrangement 9. Rigidity implies
that O3 is located below the
dashed line perpendicular to AB

playing the role of the top circle in arrangement 7 [(see p. 3167 in Zalgaller and Los
(1994)]. Finally, for arrangement 10 in Fig. 8, one can always reflect the middle circle
with respect to the line connecting centers of the other two circles, and then enlarge
its mirror image [(see p. 3175 in Zalgaller and Los (1994)]. Thus, arrangements 6, 7,
8, and 10 can not be optimal.

However, it is not easy to prove the non-optimality of arrangement 9 in Fig. 8. The
proof in Zalgaller and Los (1994) can be outlined as follows. Consider arrangement 9
in Fig. 8 and draw three auxiliary circles centered at S, Q, O as shown in Fig. 11.

Assume, by contradiction, that the circles centered at O1, O2, O3 constitute an
optimal arrangement. This implies that �A < �B; otherwise the circle centered at
Q is larger than the circle centered at O3. In addition, the circle centered at O3 must
be at least as big as any of the three auxiliary circles. These statements, together with
rigidity, put a narrow bound on the shape of �ABC , as well as on the positions of
the circles centered at O1, O2, O3. Zalgaller and Los (1994) then used a computer
to show that, within this range, the total area of the three circles in arrangement 9 in
Fig. 8 is less than that in arrangement 1 in Fig. 7.

Final conclusion: From Steps 3 and 4, it is clear that Fig. 8 does not contain an
optimal arrangement. Since, by the Weierstrass maximum theorem, there must be an
optimal arrangement, this, together with Lemma 1A and Step 1, implies that Fig. 7
contains an optimal arrangement. Then, by Step 2, we may conclude that the greedy
arrangement is optimal. ��

3 Some Related Extremum Problems

To prove and conjecture!

Paul Erdős

For any vector x ∈ R
n , let x′ ∈ R

n be the vector obtained from x by reordering
its components in a descending order. We say that x ∈ R

n weakly majorizes y ∈ R
n ,

denoted as x 
 y, if
∑k

i=1 x ′
i ≥ ∑k

i=1 y′
i for all k ∈ {1, 2, ..., n}. Consider the

following problem.

Problem 2 Find an arrangement of m ∈ N circles in �ABC so that the sum of their
radii is maximal.

The following result gives a direct connection between Problems 1 and 2.
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Theorem 4 Let �ABC be a given triangle in a plane, and let n ∈ N be a given
number. If the greedy arrangement solves Problem 2 for all 1 ≤ m ≤ n, then it solves
Problem 1.

Proof The following result is well known.

Lemma 4 (Hardy-Littlewood-Pólya type inequality) Let x, y ∈ R
n+ be such that

x 
 y. If f : R+ → R is an increasing and convex function, then
∑n

i=1 f (xi ) ≥∑n
i=1 f (yi ).

For a proof, see p. 92 in Marshall et al. (2011). Let x = (r�
1 , ..., r�

n) ∈ R
n+ be the

vector of radii of n circles arranged according to the greedy arrangement. Notice that,
by definition, r�

1 > r�
2 ≥ ... ≥ r�

n . Let y = (r1, ..., rn) ∈ R
n+ be the vector of radii of

n circles arranged arbitrarily. If there is any arrangement of n circles in �ABC , then
any k ≤ n of them constitute an arrangement of k circles in the same triangle. Then
the condition that the greedy arrangement solves Problem 2 for all 1 ≤ m ≤ n implies
that x 
 y. Since f (r) = r2 is convex and increasing on [0,∞), by Lemma 4, we
conclude that

∑n
i=1 r�

i
2 ≥ ∑n

i=1 ri
2. ��

Notice that the objective function in Problem 2 is linear. Moreover, when m ≤ 2,
the solution of Problem 1 in Andreatta et al. (2011) directly applies to Problem 2. For
m = 3, the above solution of Problem 1 in Sect. 2 can be adapted to Problem 2without
much alteration if one makes the following observation: “the quadrilateral inequality
that our proof is based on is strict when we restrict our attention to a triangular region,
which, in turn, implies that, in a rigid arrangement, the sum of radii function is strictly
convex.”

The analysis of all fourteen rigid arrangements in Problem 2, except arrangements
6 and 9 in Fig. 8, is the same as above. Only arrangements 6 and 9 need somewhat
different approach. We should also note here that the idea of using majorization tech-
nique to connect optimization problems is rather classic, as stated in Dahl and Margot
(1998): “A general and important technique for finding inequalities in various fields
is to discover some underlying majorization combined with a suitable Schur convex
function.”

It is reported in Andreatta et al. (2011) that Melissen made the following conjecture
in 1997.

Conjecture 1 (Melissen) For all n ∈ N, the greedy arrangement solves Problem 1.

The discussion above suggests that Problems 1 and 2 are likely to have the same
solution. Probably, to solve Problem 2 is not much more difficult, if not easier, than to
solve Problem 1, and Problem 2 also has broader implications. Therefore, it is natural
to direct our attention to Problem 2, and update Conjecture 1 as

Conjecture 2 For all m ∈ N, the greedy arrangement solves Problem 2.

In the context of generalizing the Chebyshev center problem, Enkhbat and Barsbold
(2013) studied the problem of inscribing two non-overlapping balls of the maximal
total radii into a polytope. They formulated it as a bilevel programming problem,
proposed a gradient basedmethod, and demonstrated it by solving some test problems.
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On Malfatti’s Marble Problem 321

Below, we show that there is a simple, elegant, and complete solution to this problem
if we consider a certain class of polygons. From now on, we consider only convex
polygons, and, as usual, a polygon is tangential if there is an inscribed circle that
touches each of its sides, and two vertices of a tangential polygon are diagonally
opposite if they are collinear with the incenter. Let us prove two useful lemmas.

Lemma 5 Let ω be a circle, and X, Y be two points disjoint from the region enclosed
by ω. Then any circle which passes through X and Y has an arc connecting these two
points and disjoint from the region enclosed by ω.

Proof An XY -circle is a circle that passes through the points X and Y . An XY -line,
XY -segment, and XY -arc are defined analogously. The plane is divided into two halves
when we draw the XY -line. One of these halves we call the left half-plane, and the
other one we call the right half-plane. It is well known (and can be easily proven) that
locus of the centers of the XY -circles is the line perpendicular to the XY -segment,
which divides each of the circles into two equal parts. We call this line the center line
(see Fig. 12).

There are two cases: either ω intersects the XY -line, or it does not. If ω does not
intersect the XY -line, we may assume, without loss of generality, that ω is located
entirely in the left half-plane. Then, since every XY -circle has an XY -arc located in
the right half-plane, this arc is disjoint from ω and its interior (see Fig. 13). Notice
that this argument also applies if ω is tangent to the XY -line.

If ω intersects the XY -line, there are again two possibilities: either ω intersects the
XY -segment, or it does not. Assume that ω intersects the XY -segment. Then, there

Fig. 12 Locus of the centers of
XY -circles

Fig. 13 ω does not intersect the
XY -line
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Fig. 14 ω intersects the
XY -segment

are exactly two XY -circles which are internally tangent to ω. The existence of these
XY -circles is assured by solving celebrated Apollonius problem for the triple X , Y ,
and ω. Let their centers be O1 and O2 (see Fig. 14).

For any XY -circle whose center is located to the left of O1 (or O2), its XY -arc
belonging to the left half-plane is disjoint from ω and its interior, since such a circle
can be obtained as a continuous image of transforming O1 (or O2) to the left along the
center line. The same argument applies to show that for any XY -circle whose center
is located to the right of O1 (or O2), its XY -arc belonging to the right half-plane is
disjoint from ω and its interior.

Assume now that ω intersects the XY -line, but does not intersect the XY -segment.
Without loss of generality, we may assume also that the center of ω is located in the
left half-plane. Again, by solving Apollonius problem, we can find two XY -circles
which are externally tangent to ω. Let their centers be O1 and O2 (see Fig. 15).

Then:

– If an XY -circle has a center located to the left of O1, then its XY -arc lying in the
right half-plane is disjoint from ω and its interior;

– If an XY -circle has a center located to the right of O2, then its XY -arc lying in the
left half-plane is disjoint from ω and its interior; and

– If an XY -circle has a center located between O1 and O2, then it is entirely disjoint
from ω and its interior.

Thus, in all cases, for any XY -circle, there is an XY -arc which is disjoint from ω and
its interior. This proves Lemma 5. ��

Fig. 15 ω intersects the
XY -line, but does not intersect
the XY -segment
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(a) (b)

Fig. 16 Circles tangent to two nonadjacent sides

Lemma 6 Let k ≥ 3, and let us consider a tangential k-gon and a circle inscribed
into it. Then the circle touches two nonadjacent sides of the polygon if and only if it is
the incircle.

Proof First, notice that the incircle clearly touches two nonadjacent sides of the poly-
gon. For the other direction, let AB and C D be the nonadjacent sides to which the
circle is tangent. We denote the common points of AB and C D with the circle by X
and Y respectively. Furthermore, let O be the center of the incircle, and O� be the
center of the circle touching nonadjacent sides AB and C D. It suffices to show that
these two circles are concentric.

Suppose, by contradiction, that they are not concentric. Then both points X and Y
must be outside the region enclosed by the incircle. By Lemma 5, this implies that
there is an arc of the circle centered at O� that connects X and Y and is disjoint from
the region enclosed by the incircle. Since sides AB and C D are nonadjacent, there
must be a section of the polygon that contains at least one of its sides and surrounds
this arc (see the dashed sections in Fig. 16).

But that section cannot have any commonpointswith the incircle since it is separated
from it by the arc. On the other hand, the incircle must have a common point with
every side of the polygon. Hence, we got a contradiction, and this proves Lemma 6.

��
Consider the following problem.

Problem 3 Let k ≥ 3. Find an arrangement of two circles in a tangential k-gon such
that the sum of their radii is maximal.

We already know that the greedy arrangement solves Problem 3 for k = 3. If the
polygon is a square, it solves also the closely related problem of maximizing the sum
of the areas of two circles, as shown in Problem 2.3.1 in Andreescu et al. (2006). Our
next result is as follows.

Theorem 5 Let k ≥ 3. Then the greedy arrangement solves Problem 3.
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(a) (b)

Fig. 17 Violations of rigidity in a tangential polygon. Arrows indicate the directions of enlargement

Proof By arguments similar to those in the proof of Lemma 1A, we can focus only
on rigid arrangements. We claim that, in any such arrangement, there exist two circles
that are mutually tangent, and each of them touches two adjacent sides of the polygon.
To see this, suppose that these circles are not externally tangent. Then one can enlarge
one of them by moving its center toward the incenter of the polygon, while keeping
the other circle fixed (see Fig. 17a). This contradicts rigidity. Thus, we may assume
that some two circles are mutually tangent.

Now suppose, by contradiction, that one of these circles (centered at O1) does
not touch any side of the polygon, and let l be the inner tangent of the circles. As
a consequence of the celebrated supporting hyperplane theorem [(see Chap. 2.5.2 in
Boyd and Vandenberghe (2004)], l divides the polygon into two small polygons, in
one of which the circle centered at O1 is inscribed in such a way that it touches only
the side lying on l. Then the circle centered at O1 can clearly be enlarged bymoving its
center along the direction orthogonal to l until it touches another side of the polygon
(see Fig. 17b). Since the other circle remains fixed throughout this enlargement, it
contradicts rigidity. Thus, we may assume that each of the two mutually tangent
circles is tangent to at least one side of the polygon.

Suppose, again by contradiction, that one of the circles (centered at O1) is tangent
to one side of the polygon (AB), but not to any of the two sides adjacent to this side.
Draw the line l described above. There are two possibilities: either AB is not parallel
to l, or it is. In the first case, one can enlarge the circle by moving its center along the
bisector of the angle obtained by the intersection of l with the line through AB (see
Fig. 18a). Such an enlargement is feasible as long as the circle does not touch any
other side of the polygon, and it follows from Lemma 6 that this condition is indeed
satisfied. But this enlargement does not affect the other circle; hence, it contradicts
rigidity.

Now, let AB be parallel to l. Then one can displace the circle centered at O1 by
moving its center in a direction parallel to l; the other circle remains unaffected by
this displacement (see Fig. 18b). Again, Lemma 6 ensures that such displacement is
feasible. After this, we obtain two disjoint circles, one of which is the same as one of
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(a) (b)

Fig. 18 More violations of rigidity in a tangential polygon. Arrows indicate the directions of enlargement

(a) (b)

Fig. 19 Pair of rigid arrangements in a tangential polygon

the original two circles, while the other one is obtained from the other of the original
two circles by a parallel translation. But as we already showed, if we have two disjoint
circles, we can always enlarge them, which contradicts rigidity. This proves our claim.

Consider any rigid arrangement, and let V and F be the two vertices of the polygon
such that eachof them is the commonendpoint of a pair of adjacent sides corresponding
to this arrangement. There are two cases: either V and F are diagonally opposite, or
they are not. In the first case, the sum of radii of the two circles is a linear function.
To see this, observe that if V and F are diagonally opposite, their bisectors coincide,
which implies that the points O1, O ′

1, O2, O ′
2 are collinear (see Fig. 19a).

Then, the quadrilateral inequality is an equality, which implies that

R

(
r1 + r2

2

)
= R(r1) + R(r2)

2
. (1)

Equation (1) is called Jensen’s equality; it is known that any continuous function
R : [a, b] → R satisfying (1) is linear [(see p.43 in Aczél (1966)]. Since the sum of
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(a) (b)

Fig. 20 Cases in which the greedy arrangement is not optimal. In (a), the sum of the radii for the greedy
arrangement is roughly the radius of the incircle which is equal to |OV |. The construction in (b) is inspired
by Melissen’s pentagon

two linear functions is linear, this implies that our objective function r1 + R(r1) is
linear. Then, either it is a constant function, or it is not. In the first case, every point in
its domain (which is a closed interval) is optimal; while in the second case, it attains its
maximum at the end points of the domain. Thus, in either case, the greedy arrangement
is optimal.

If V and F are not diagonally opposite, consider two circles whose centers lie on the
bisectors of � V ′V V ′′ and � F ′F F ′′ (see Fig. 19b). Then one can repeat the argument
in the proof of Lemma 3 to show that the function describing the sum of the radii of the
two circles is strictly convex, which implies that any arrangement that does not contain
the incircle is subject to a local improvement.3 Thus, we may conclude that an optimal
arrangement must contain the incircle. Then it must be the greedy arrangement. This
proves Theorem 5. ��

Let us add few remarks on Theorem 5. First, in the light of Theorem 4, it should
be clear that the greedy arrangement solves the problem of inscribing two circles into
a tangential polygon with the maximum total area. However, as mentioned above, the
objective function for the problem of the sum of the radii can be constant over rigid
arrangements centered on the main diagonal (indeed, this is the case when we consider
regular 2k-gons). This implies that for this problem there can be optimal arrangements
other than the greedy arrangement. But this is not the case for the problem of the
maximization of the sum of the areas as it has a strictly convex objective function.
This is one important aspect where these two problems differ.

Second, one might attempt to generalize Theorem 5 for more than two circles.
However, the example in Fig. 20a gives an arrangement of three circles in a regular
12-gon, which resembles an Apollonian gasket, which has a larger sum of the radii
than the greedy arrangement.4 Onemight also look for a result analogous to Theorem 5

3 It suffices to observe that if V and F are not diagonally opposite, the quadrilateral inequality on which
our proof is based is strict. Thus, the sum function is strictly convex.
4 This construction is generic as it works for any 2k-gon and, probably, for any n > 2 circles.
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for cyclic polygons. But, again, there is a counterexample to such a claim (see Fig.
20b).

Finally, since a triangle is a tangential polygon, based on the above analysis, we
suggest the following generalization of Conjecture 1.

Conjecture 3 For all n ∈ N and k ≥ 3, the greedy arrangement solves the problem of
finding an arrangement of n circles in a tangential k-gon with the maximal total area.

Notice that if we fix the radius of the incircle and let k → ∞, we may think of
the tangential polygon as a circle. Then, for any n ∈ N, it is clear that the greedy
arrangement is the only optimal solution for the problem of inscribing n circles with
the maximal total area into the limiting circle. This observation adds a credibility to
Conjecture 3.
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