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1 Introduction

During his classification of hypersurface singularities, Arnold (1975) observed a
strange duality between the 14 exceptional unimodal singularities. Ebeling and Wall
(1985) discovered an extension of this duality embracing on one hand series of bimodal
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278 W. Ebeling, A. Takahashi

singularities and on the other, isolated complete intersection singularities (ICIS) inC4.
The duals of the complete intersection singularities are not themselves singularities,
but are virtual (k = −1) cases of series (e.g. W1,k : k ≥ 0) of bimodal singularities.
They associated to these well-defined Coxeter–Dynkin diagrams and Milnor lattices
and showed that all numerical features of Arnold’s strange duality continue to hold.
The k = −1 cases of the series were called virtual singularities in Ebeling and Wall
(1985), because setting k = −1 inArnold’s equations of the series one gets exceptional
unimodal singularities with a smaller Milnor number as germs at the origin.

The objective of this paper is to derive this extended strange duality from the
mirror symmetry and the Berglund–Hübsch transposition of invertible polynomials.
Moreover, we show that the virtual singularities exist in the sense that the equations
have to be considered as global polynomials. The bimodal series start with singularities
with k = 0 (e.g. W1,0). They can be given by polynomials with two moduli. Setting
one of the moduli equal to zero, one is left with a one-parameter family of weighted
homogeneous polynomials. It is natural from themirror symmetry view point to expect
that adding one monomial to an invertible polynomial is dual to having another C∗-
action on the dual polynomial, which leads to our duality between virtual singularities
and complete intersection singularities.

We shall proceed as follows. We first classify the non-degenerate invertible poly-
nomials with a Z/2Z-action. They are defined by certain 3 × 3-matrices. Then we
shall classify the possibilities to extend such a 3 × 3-matrix to a certain 4 × 3-matrix
satisfying certain conditions. Such a matrix defines a polynomial f(x, y, z) with four
monomials with a non-isolated singularity. We shall consider the Berglund–Hübsch
transpose of this polynomial. The kernel of the transpose 3 × 4-matrix defines a C∗-
action on the spaceC4 and this matrix and the degree 0 polynomials define a complete
intersection singularity in C4 as the zero set of two polynomials.

Following Ebeling and Takahashi (2011), we consider the polynomial f(x, y, z) −
xyz. Under certain conditions, there is a coordinate transformation which transforms
this polynomial to a polynomial h(x, y, z) − xyz, where h is again a polynomial with
four monomials, but now has an isolated singularity at the origin. We call this a virtual
singularity. The polynomial h is no longer weighted homogeneous but its Newton
polygon at infinity has two two-dimensional faces. We thus obtain a duality between
the virtual hypersurface singularities and complete intersection singularities.

We show that this duality has the features of Arnold’s strange duality. Namely, we
associate Dolgachev and Gabrielov numbers to the polynomials h and the equations
defining the complete intersection singularities generalizing the approach of Ebeling
and Takahashi (2011). It turns out that the Dolgachev numbers of the polynomial h
are the Gabrielov numbers of the pair of polynomials defining the complete inter-
section singularity and vice versa, the Gabrielov numbers of the polynomial h are
the Dolgachev numbers of the pair of polynomials defining the complete intersection
singularity. Moreover, we show that the reduced zeta function of the monodromy at
infinity of a virtual singularity coincides with the product of the Poincaré series of
the coordinate ring of the dual complete intersection singularity and a polynomial
encoding its Dolgachev numbers.

As an example we consider those singularities with Gorenstein parameter being
equal to 1. In this way, we recover precisely the virtual singularities of the bimodal
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Strange Duality Between Hypersurface and Complete Intersection… 279

series and the extension of Arnold’s strange duality found in Ebeling andWall (1985).
Therefore we have shown that these virtual singularities exist as global polynomi-
als. Moreover, the Dolgachev and Gabrielov numbers which we have associated to
them agree with the ones predicted in Ebeling and Wall (1985). Finally, we construct
Coxeter–Dynkin diagrams for the virtual bimodal singularities and show that they can
be transformed to graphs which have the same shape as in the exceptional unimodal
case used in Gabrielov’s original definition of the numbers now named after him.

2 Invertible Polynomials

We recall some general definitions about invertible polynomials.
Let f (x1, . . . , xn) be a weighted homogeneous polynomial, namely, a polyno-

mial with the property that there are positive integers w1, . . . , wn and d such that
f (λw1x1, . . . , λwn xn) = λd f (x1, . . . , xn) for λ ∈ C

∗. We call (w1, . . . , wn; d) a
system of weights.

Definition A weighted homogeneous polynomial f (x1, . . . , xn) is called invertible
if the following conditions are satisfied:

(i) the number of variables (=n) coincides with the number of monomials in the
polynomial f (x1, . . . , xn), namely,

f (x1, . . . , xn) =
n∑

i=1

ai

n∏

j=1

x
Ei j
j

for some coefficients ai ∈ C
∗ and non-negative integers Ei j for i, j = 1, . . . , n,

(ii) a system of weights (w1, . . . , wn; d) can be uniquely determined by the poly-
nomial f (x1, . . . , xn) up to a constant factor gcd(w1, . . . , wn; d), namely, the
matrix E := (Ei j ) is invertible over Q.

An invertible polynomial is called non-degenerate, if it has an isolated singularity at
the origin.

Without loss of generality one may assume that ai = 1 for i = 1, . . . , n. This can
be achieved by rescaling the variables. We may and shall also assume that det E > 0.

An invertible polynomial has a canonical system of weights W f = (w1, . . . , wn; d)

given by the unique solution of the equation

E

⎛

⎜⎝
w1
...

wn

⎞

⎟⎠ = det(E)

⎛

⎜⎝
1
...

1

⎞

⎟⎠ , d := det(E).

This system of weights is in general non-reduced, i.e. in general c f := gcd(w1, . . . ,

wn, d) > 1.
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280 W. Ebeling, A. Takahashi

Definition Let f (x1, . . . , xn) = ∑n
i=1 ai

∏n
j=1 x

Ei j
j be an invertible polynomial.

Consider the free abelian group ⊕n
i=1Z �xi ⊕ Z �f generated by the symbols �xi for the

variables xi for i = 1, . . . , n and the symbol �f for the polynomial f . The maximal
grading L f of the invertible polynomial f is the abelian group defined by the quotient

L f :=
n⊕

i=1

Z �xi ⊕ Z �f /I f ,

where I f is the subgroup generated by the elements

�f −
n∑

j=1

Ei j �x j , i = 1, . . . , n.

Definition Let f (x1, . . . , xn) be an invertible polynomial and L f be the maximal
grading of f . The maximal abelian symmetry group Ĝ f of f is the abelian group
defined by

Ĝ f := Spec(CL f ),

where CL f denotes the group ring of L f . Equivalently,

Ĝ f =
⎧
⎨

⎩(λ1, . . . , λn) ∈ (C∗)n

∣∣∣∣∣∣

n∏

j=1

λ
E1 j
j = · · · =

n∏

j=1

λ
Enj
j

⎫
⎬

⎭ .

Moreover, we define

G f =
⎧
⎨

⎩(λ1, . . . , λn) ∈ Ĝ f

∣∣∣∣∣∣

n∏

j=1

λ
E1 j
j = · · · =

n∏

j=1

λ
Enj
j = 1

⎫
⎬

⎭ .

Let f (x1, . . . , xn) be an invertible polynomial and W f = (w1, . . . , wn; d) be the
canonical system of weights associated to f . Set

qi := wi

d
, i = 1, . . . , n.

Note that G f always contains the exponential grading operator

g0 := (exp(2π
√−1q1), . . . , exp(2π

√−1qn)).

Let G0 be the subgroup of G f generated by g0. One has (cf. Ebeling and Takahashi
2013)

[G f : G0] = c f .
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Strange Duality Between Hypersurface and Complete Intersection… 281

Let f (x1, . . . , xn) = ∑n
i=1 ai

∏n
j=1 x

Ei j
j be an invertible polynomial. Following

Berglund and Hübsch (1993), the Berglund–Hübsch transpose f̃ (x1, . . . , xn) of f
is defined by

f̃ (x1, . . . , xn) =
n∑

i=1

ai

n∏

j=1

x
E ji
j .

By Berglund and Henningson (1995), for a subgroup G ⊂ G f its dual group G̃ is
defined by

G̃ := Hom(G f /G,C∗).

Note that Hom(G f ,C
∗) is isomorphic to G f̃ , see Berglund and Henningson (1995).

By Krawitz (2009), we have

G̃0 = SLn(Z) ∩ G f̃ .

Moreover, by Ebeling and Takahashi (2013, Proposition 3.1), we have |G̃0| = c f .

3 Invertible Polynomials with Z/2Z-Action

Let f (x, y, z) be a non-degenerate invertible polynomial with [G f : G0] = 2. We
shall now classify the non-degenerate invertible polynomials with such a group action.

Proposition 1 There are the following non-degenerate invertible polynomials f (x, y,

z) with [G f : G0] = 2. We list the possible types and the conditions. The coordinates
are chosen so that the action of G̃0 = Z/2Z on f̃ is given by (x, y, z) 
→ (−x,−y, z).

I: f (x, y, z) = x p1 + y p2 + z p3; p1, p2 even,

IIA: f (x, y, z) = x p2 + xy p3/p2 + z p1; p2 odd, p3/p2 even,

IIB: f (x, y, z) = x p1 + y p2 + yz p3/p2; p1, p2 even,

III: f (x, y, z) = xq2+1y + xyq3+1 + z p1; q2, q3 even,

IV: f (x, y, z) = x p1 + xy
p2
p1 + yz

p3
p2 ; p2/p1 even, p1 odd.

Proof This follows by inspection of Ebeling and Takahashi (2011, Table 1). �

Let Ĝ0 be the subgroup of Ĝ f defined by the commutative diagram of short exact

sequences

{1} �� G0 ��
� �

��

Ĝ0
��

� �

��

C
∗ �� {1}

{1} �� G f �� Ĝ f
�� C∗ �� {1}

Let L0 be the quotient of L f corresponding to the subgroup Ĝ0 of Ĝ f .
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282 W. Ebeling, A. Takahashi

We shall now classify 4 × 3-matrices E = (Ei j )
i=1,2,3,4
j=1,2,3 such that

Z�x ⊕ Z�y ⊕ Z�z ⊕ Z �f /〈Ei1 �x + Ei2 �y + Ei3�z = �f , i = 1, . . . , 4〉 ∼= L0

and C(F,G0) := [(F−1(0)\{0})/Ĝ0], where F := ∑4
i=1 ai x Ei1 yEi2 zEi3 , is a smooth

projective linewith 4 isotropic pointswhose orders areα1, α2, α3, α4,where A( f,G0) =
(α1, α2, α3, α4) are the Dolgachev numbers of the pair ( f, G0) defined in Ebeling and
Takahashi (2013), for general a1, a2, a3, a4.

Proposition 2 The possible matrices E are classified into the following types up to a
permutation of the rows. The matrices are described by the corresponding polynomials
F.

I: a1x p1 + a2y p2 + a3z p3 + a4x
p1
2 y

p2
2

IIA: a1x p2 + a2xy
p3
p2 + a3z p1 + a4x

p2+1
2 y

p3
2p2

IIB: a1x p1 + a2y p2 + a3yz
p3
p2 + a4x

p1
2 y

p2
2

IIB� : (p2 = 2) a1x
p1
2 z

p3
2 + a2y2 + a3yz

p3
2 + a4x

p1
2 y

III: a1xq2+1y + a2xyq3+1 + a3z p1 + a4x
q2
2 +1y

q3
2 +1

IV: a1x p1 + a2xy
p2
p1 + a3yz

p3
p2 + a4x

p1+1
2 y

p2
2p1

IV� : (
p2
p1

= 2) a1x
p1−1
2 z

p3
p2 + a2xy2 + a3yz

p3
p2 + a4x

p1+1
2 y

Proof We only give the proof for the case IIB which is the most difficult one. The
other cases are easier and are treated analogously.

In the case IIB, the group L f is the quotient of the abelian groupZ�x ⊕Z�y⊕Z�z⊕Z �f
given by the relations p1�x = p2 �y = �y + p3

p2
�z = �f and L0 is given by the additional

relation p1
2

�x = p2
2

�y (3.1)

We derive from these relations the relation

(p2 − 1)�y = p3
p2

�z. (3.2)

1. We first classify all monomials which can appear in F . Suppose a monomial xa yb

appears. Then we must have

a�x + b�y = �f = p1
2

�x + p2
2

�y.

From this we get
( p1
2

− a
)

�x =
(

b − p2
2

)
�y.

By relation (3.1) there must exist an integer c such that

p1
2

− a = p1
2

c and b − p2
2

= p2
2

c.
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But

p1
2

(1 − c) = a ≥ 0 and
p2
2

(c + 1) = b ≥ 0.

This implies c = −1, 0, 1. Therefore we obtain the possibilities

x
p1
2 y

p2
2 , y p2 or x p1 .

In a similar way, using the relation (3.2), we can derive the possibilities

y p2 , yz
p3
p2 or z p3 (if p2 = 2).

Now suppose that a monomial xazb appears. Then

a�x + b�z = �f = �y + p3
p2

�z.

From this it follows that �y = c�x for some positive integer c since �y + p3
p2

�z = �f is the

only relation involving �z. Relation (3.1) implies p2 = 2, �y = p1
2 �x and

a�x + b�z = p1
2

�x + p3
2

�z.

This yields the possibilities

x p1 , x
p1
2 z

p3
2 (if p2 = 2) or z p3 (if p2 = 2).

Finally one can derive that there are nomonomials of the form xa ybzc with a, b, c > 0.
2. Therefore, if p2 �= 2, we only obtain the possibility

F(x, y, z) = a1x p1 + a2y p2 + a3yz
p3
p2 + a4x

p1
2 y

p2
2 .

If p2 = 2 we obtain several possibilities. In this case we have to consider the system
of weights for G0

( p3
2

,
p1 p3
4

,
p1
2

; p1 p3
2

)

and theDolgachev numbers of the pair ( f, G0) given by Ebeling and Takahashi (2013)

A( f,G0) =
( p1
2

,
p3
2

,
p3
2

,
p1
2

)
.

In order to obtain the same Dolgachev numbers for F , F(1, 0, z) must be non-zero
if z �= 0. Therefore the polynomial F must contain 3 monomials involving y. Note
here that L0 is given by the relations (p1/2)�x = �y = (p3/2)�z and 2�y = �f , which
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284 W. Ebeling, A. Takahashi

are symmetric under the change �x, p1 to �z, p3. This leaves us with the only additional
possibility

F(x, y, z) = a1x
p1
2 z

p3
2 + a2y2 + a3yz

p3
2 + a4x

p1
2 y.

�

We associate to these matrices a pair of polynomials as follows. We observe that

the kernel of the matrix ET is either generated by the vector (1, 1, 0,−2)T or by the
vector (1, 1,−1,−1)T . The second case occurs precisely for the matrices of type IIB�

and IV�. Let R := C[x, y, z, w]. In the first case, there exists a Z-graded structure on
R given by the C∗-action

λ ∗ (x, y, z, w) = (λx, λy, z, λ−2w) for λ ∈ C
∗.

In the second case, there exists a Z-graded structure on R given by the C∗-action

λ ∗ (x, y, z, w) = (λx, λy, λ−1z, λ−1w) for λ ∈ C
∗.

Let R = ⊕
i∈Z Ri be the decomposition of R according to one of these Z-gradings.

Let ET be the transposed matrix. We associate to this the polynomial

f̃ (x, y, z, w) := x E11 yE21 zE31wE41 + x E12 yE22 zE32wE42 + x E13 yE23 zE33wE43 .

In the first case, we have f̃ ∈ R0 = C[x2w, y2w, z, xyw]. Let

X := x2w, Y := y2w, Z := z, W := xyw.

In these new coordinates, we obtain a pair of polynomials

f̃1(X, Y, Z , W ) = XY − W 2, f̃2(X, Y, Z , W ) = f̃ (X, Y, Z , W ).

In the second case, we have f̃ ∈ R0 = C[xw, yz, xz, yw]. Let

X := xw, Y := yz, Z := xz W := yw.

In these new coordinates, we obtain a pair of polynomials

f̃1(X, Y, Z , W ) = XY − Z W, f̃2(X, Y, Z , W ) = f̃ (X, Y, Z , W ).

Nowwe choose for each of the matrices E special values a1, a2, a3, a4 such that the
corresponding polynomial F has a non-isolated singularity.We denote this polynomial
by f . We summarize the results in Table 1.
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Strange Duality Between Hypersurface and Complete Intersection… 285

Table 1 Correspondence between polynomials f and pairs of polynomials (̃f1, f̃2)

Type f (̃f1, f̃2)

I x p1 + y p2 + z p3 − 2x
p1
2 y

p2
2

{
XY − W 2

X
p1
2 + Y

p2
2 + Z p3

}

IIA x p2 + xy
p3
p2 + z p1 − 2x

p2+1
2 y

p3
2p2

{
XY − W 2

X W + Y
p3
2p2 + Z p1

}

IIB x p1 + y p2 + yz
p3
p2 − 2x

p1
2 y

p2
2

{
XY − W 2

X
p1
2 + Y

p2
2 Z + Z

p3
p2

}

IIB� −x
p1
2 z

p3
2 + y2 + yz

p3
2 − x

p1
2 y

{
XY − Z W

X
p1
2 + Y W + Z

p3
2

}

III xq2+1y + xyq3+1 + z p1 − 2x
q2
2 +1y

q3
2 +1

{
XY − W 2

(X
q2
2 + Y

q3
2 )W + Z p1

}

IV x p1 + xy
p2
p1 + yz

p3
p2 − 2x

p1+1
2 y

p2
2p1

{
XY − W 2

X
p1−1
2 W + Y

p2
2p1 Z + Z

p3
p2

}

IV� −x
p1−1
2 z

p3
p2 + xy2 + yz

p3
p2 − x

p1+1
2 y

{
XY − Z W

X
p1−1
2 W + Y W + Z

p3
p2

}

4 Virtual Singularities

We now associate other equations to the polynomials from above. For each type,
consider the polynomial f from Table 1 and assume that the conditions indicated in
Table 2 are satisfied. In all cases except IIB� and IV�, the polynomial f(x, y, z) is of
the form

f(x, y, z) = u(x, y, z) + v(x, y, z)(x − ye)2

or

f(x, y, z) = u(x, y, z) + v(x, y, z)(y − xe)2

for some monomials u(x, y, z) and v(x, y, z) and some integer e ≥ 2. We consider
the cusp singularity f(x, y, z) − xyz and perform the coordinate change x 
→ x + ye

or y 
→ y + xe respectively. The corresponding coordinate change is indicated in
Table 2. Then f(x, y, z) − xyz is transformed to h(x, y, z) − xyz where h(x, y, z) is
indicated in the last column of Table 2.

By inspection of Table 2, we see that some of the polynomials h have 4 monomials
and others only 3. We restrict our consideration to the cases where the polynomial
h has 4 monomials. These cases are listed in Table 3. The singularities defined by
the polynomials h(x, y, z) will be called virtual singularities. We consider the duality
between the virtual singularities on one side and the complete intersection singularities
on the other side.
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Table 2 Conditions and transformations

Type Conditions Coord. change h(x, y, z)

I p2 = 2 y 
→ y + x
p1
2 −x

p1
2 +1z + y2 + z p3

IIA p2 = 3 x 
→ x + y
p3
6 −y

p3
6 +1z + z p1 + x3 + x2y

p3
6

IIA p3
p2

= 2 y 
→ y + x
p2−1
2 −x

p2+1
2 z + z p1 + xy2

IIB p1 = 2 x 
→ x + y
p2
2 −y

p2
2 +1z + x2 + yz

p3
p2

IIB p2 = 2 y 
→ y + x
p1
2 −x

p1
2 +1z + y2 + yz

p3
2 + x

p1
2 z

p3
2

IIB� p2 = 2 y 
→ y + x
p1
2 −x

p1
2 +1z + y2 + yz

p3
2 + x

p1
2 y

III q2 = 2 x 
→ x + y
q3
2 −y

q3
2 +1z + z p1 + x3y + x2y

q3
2 +1

IV1 p1 = 3 x 
→ x + y
p2
6 −y

p2
6 +1z + x3 + yz

p3
p2 + x2y

p2
6

IV2
p2
p1

= 2 y 
→ y + x
p1−1
2 −x

p1+1
2 z + xy2 + yz

p3
p2 + x

p1−1
2 z

p3
p2

IV�
2

p2
p1

= 2 y 
→ y + x
p1−1
2 −x

p1+1
2 z + xy2 + yz

p3
p2 + x

p1+1
2 y

Let

h(x, y, z) =
4∑

i=1

ai x Ai1 y Ai2 z Ai3

be the polynomial defining a virtual singularity and let Supp(h) = {(Ai1, Ai2, Ai3) ∈
Z
3 | i = 1, . . . , 4}. Let �∞(h) be the Newton polygon of h at infinity (Kouchnirenko

1976), i.e. �∞(h) is the convex closure in Rn of Supp(h)∪ {0}. The Newton polygon
�∞(h) has two faces which do not contain the origin. Call these faces �1 and �2. Let
Ik := {i ∈ {1, . . . , 4} | (Ai1, Ai2, Ai3) ∈ �k}, k = 1, 2, and let

hk =
∑

i∈Ik

ai x Ai1 y Ai2 z Ai3 .

Then hk is an invertible polynomial with a non-isolated singularity at the origin. The
polynomials h1 and h2 are listed in Table 3. Their canonical systems of weights are
reduced. One of the systems of weights of h1 and h2 coincides with the reduced
system of weights of the non-degenerate invertible polynomial f we started with. Let
the numbering be chosen such that this is the system of weights of h2. The systems of
weights are listed in Table 4.

The dual complete intersection singularity defined by f̃1 = f̃2 = 0 is weighted
homogeneous. We list the systems of weights of these complete intersection singular-
ities in Table 5. It turns out that the degrees of the systems of weights of h1 and h2
coincide with the degrees of the two polynomials f̃1 and f̃2 respectively.

123



Strange Duality Between Hypersurface and Complete Intersection… 287

Table 3 Virtual singularities

Type h1(x, y, z) h2(x, y, z)

IIA p2 = 3 −y
p3
6 +1z + z p1 + x2y

p3
6 z p1 + x3 + x2y

p3
6

IIB p2 = 2 −x
p1
2 +1z + y2 + x

p1
2 z

p3
2 y2 + yz

p3
2 + x

p1
2 z

p3
2

IIB� p2 = 2 −x
p1
2 +1z + yz

p3
2 + x

p1
2 y y2 + yz

p3
2 + x

p1
2 y

III q2 = 2 −y
q3
2 +1z + z p1 + x2y

q3
2 +1 z p1 + x3y + x2y

q3
2 +1

IV1 p1 = 3 −y
p2
6 +1z + yz

p3
p2 + x2y

p2
6 x3 + yz

p3
p2 + x2y

p2
6

IV2
p2
p1

= 2 −x
p1+1
2 z + xy2 + x

p1−1
2 z

p3
p2 xy2 + yz

p3
p2 + x

p1−1
2 z

p3
p2

IV�
2

p2
p1

= 2 −x
p1+1
2 z + yz

p3
p2 + x

p1+1
2 y xy2 + yz

p3
p2 + x

p1+1
2 y

Table 4 Systems of weights corresponding to the virtual singularities

Type System of weights of h1 System of weights of h2

IIA
(

p1 + p3
6 , 2p1 − 2, p3

3 + 2; p1
( p3
3 + 2

)) ( p1 p3
6 , p1,

p3
2 ; p1 p3

2
)

IIB (p3 − 2, p1 p3
4 + p3

2 − p1
2 , 2; p1 p3

2 + p3 − p1) (
p3
2 ,

p1 p3
4 ,

p1
2 ; p1 p3

2 )

IIB� (
p3
2 ,

p1
2 + p3

2 ,
p1
2 ; p1 p3

4 + p3
2 + p1

2 ) (
p3
2 ,

p1 p3
4 ,

p1
2 ; p1 p3

2 )

III (
q3
2 + 1, 2p1 − 2, q3 + 2; p1(q3 + 2)) (

q3
2 p1, p1, 3

q3
2 + 1; p1(3

q3
2 + 1))

IV1 (
p2
6 + p3

p2
− 1, 2 p3

p2
− 2, p2

3 ; p3
3 + 2 p3

p2
− 2) (

p3
6 ,

p3
p2

,
p2
2 − 1; p3

2 )

IV2 (2 p3
p2

− 2, p3
4 − p3

2p2
− p1

2 + 3
2 , 2; p3

2 + p3
p2

− p1 + 1) (
p3
p2

, (p1 − 1) p3
2p2

,
p1+1
2 ; p3

2 )

IV�
2 (

p3
p2

,
p1+1
2 ,

p1+1
2 ; p3

4 + p3
2p2

+ p1
2 + 1

2 ) (
p3
p2

, (p1 − 1) p3
2p2

,
p1+1
2 ; p3

2 )

Table 5 Systems of weights of the pairs (̃f1, f̃2)

Type System of weights

IIA (p1(
p3
3 − 1), 3p1,

p3
2 ,

p1
2 (

p3
3 + 2); p1(

p3
3 + 2), p1 p3

2 )

IIB (p3,
p1 p3
2 − p1, p1,

p1 p3
4 + p3

2 − p1
2 ; p1 p3

2 + p3 − p1,
p1 p3
2 )

IIB� (p3,
p1 p3
4 + p1

2 − p3
2 , p1,

p1 p3
4 + p3

2 − p1
2 ; p1 p3

4 + p3
2 + p1

2 ,
p1 p3
2 )

III (p1q3, 2p1, 3
q3
2 + 1, ( q3

2 + 1)p1; p1(q3 + 2), p1(3
q3
2 + 1))

IV1 (
p3
3 − p3

p2
+ 1, 3( p3

p2
− 1), p2

2 ,
p3
6 + p3

p2
− 1; p3

3 + 2 p3
p2

− 2, p3
2 )

IV2 (
p3
p2

+ 1, p3
2 − p1, p1,

p3
4 + p3

2p2
− p1

2 + 1
2 ; p3

2 + p3
p2

− p1 + 1, p3
2 )

IV�
2 (

p3
p2

+ 1, p3
4 − p3

2p2
+ p1

2 − 1
2 , p1,

p3
4 + p3

2p2
− p1

2 + 1
2 ; p3

4 + p3
2p2

+ p1
2 + 1

2 ,
p3
2 )

5 Dolgachev and Gabrielov Numbers

We shall now define Dolgachev and Gabrielov numbers for the polynomials h and the
pairs of polynomials (̃f1, f̃2) occurring in our duality.
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We first define these numbers for the pairs (̃f1, f̃2). Let X f̃1 ,̃f2 ⊂ C
4 be the

weighted homogeneous complete intersection in C
4 defined by the two equations

f̃1(W, X, Y, Z) = f̃2(W, X, Y, Z) = 0, where f̃1(W, X, Y, Z) = XY − W 2 or
f̃1(W, X, Y, Z) = XY − Z W .

Definition Let C̃f1 ,̃f2 := [(X f̃1 ,̃f2\{0})/C∗]. Then C̃f1 ,̃f2 is a smooth projective curve
with three isotropic points of orders α1, α2, α3. We call these numbers the Dolgachev
numbers of the pair (̃f1, f̃2).

The Gabrielov numbers are defined similarly as in the hypersurface case. We con-
sider the complete intersection singularity (X ′, 0) defined by

{
f̃1(W, X, Y, Z),

f̃2(W, X, Y, Z) − Z W.

As in Ebeling and Takahashi (2011) one can show that one can find a holomorphic
change of coordinates such that the singularity (X ′, 0) is also given by equations of
the form

{
XY − Zγ1 − W γ2 ,

Xγ3 + Y γ4 − Z W.

This means that (X ′, 0) is a cusp singularity of type T 2
γ1,γ3,γ2,γ4

in the notation of
Ebeling (1987, 3.1).

Definition TheGabrielov numbers of the pair (̃f1, f̃2) are the numbers (γ1, γ2; γ3, γ4).

The Dolgachev and Gabrielov numbers for the pairs (̃f1, f̃2) of Table 1 are indicated
in Table 6.

Now let h be the polynomial of Table 3 defining a virtual singularity. The Gabrielov
numbers of h are defined as in Ebeling and Takahashi (2011). Namely, we consider

Table 6 Pairs (̃f1, f̃2): Dolgachev and Gabrielov numbers

Type Dolgachev Gabrielov

I p2, p3, p1 2, 2p3 − 2; p1
2 ,

p2
2

IIA p1, p2,
(

p3
p2

− 1
)

p1 2, 2p1 − 2; p1(p2−1)
2 ,

p3
2p2

IIB p1, p2,
(

p3
p2

− 1
)

p1 2, 2 p3
p2

− 2; p1
2 ,

p1(p2−1)
2

IIB� p3
2

( p1
2 − 1

) + p1
2 , 2, p1

2
( p3
2 − 1

) + p3
2

p3
2 ,

p1
2 ; p3

2 ,
p1
2

III p1q2, p1q3, p1 2, 2p1 − 2; p1,
q3
2 p1

IV p1,
p3
p1

− p3
p2

+ 1,
(

p3
p2

− 1
)

p1 2, 2 p3
p2

− 2; 1
2

p3
p2

(p1 − 1), 1
2 (p2 − p1 + 1)

IV� p1−1
2

(
p3
p2

+ 1
)

,
p3
p2

+ 1, p1+1
2

(
p3
p2

− 1
)

+ 1 p3
p2

, 1
2 (p1 + 1); p3

p2
, 1
2

p3
p2

(p1 − 1)
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the polynomial h(x, y, z) − xyz. As in Ebeling and Takahashi (2011), one can show
that the germ at the origin of this polynomial is right equivalent to a cusp singularity

xγ1 + yγ2 + zγ3 − xyz,

i.e. it can be transformed to such a polynomial by a holomorphic change of coordinates
at the origin. We define the Gabrielov numbers of h to be the triple (γ1, γ2, γ3).

Example 3 We illustrate how to find the corresponding holomorphic coordinate
change by two examples.

(a) IIA (p2 = 3): Here h(x, y, z) = −y
p3
6 +1z + z p1 +x3+x2y

p3
6 . The substitution

x 
→ x − y
p3
6 transforms the polynomial h(x, y, z) − xyz back to

f(x, y, z) − xyz = x3 + xy
p3
3 + z p1 − 2x2y

p3
6 − xyz.

The substitution z 
→ z + y
p3
3 −1 transforms this polynomial to

x3 + xy
p3
3 + (z + y

p3
3 −1)p1 − 2x2y

p3
6 − xy

p3
3 − xyz

= x3 + y(
p3
3 −1)p1 + z p1 − xyz + . . . ,

where themonomial xy
p3
3 is cancelled and the dots refer to other monomials involving

more than one variable. According to Arnold (1974, Lemma 7.3), by similar transfor-
mations, one can get rid of the monomials of lowest degree involving more than one
variable by possibly introducing new such monomials, but of higher degree. The pure
powers of single variables of lowest degree are preserved. In this way, we see that we
get the Gabrielov numbers in the first line of Table 7. See also Example 8 in Sect. 7
for a concrete example and more details on this type of deformation of the polynomial
h(x, y, z).

(b) IV2 (
p2
p1

= 2): Here h(x, y, z) = −x
p1+1
2 z + xy2 + yz

p3
p2 + x

p1−1
2 z

p3
p2 . Again

we work with

f(x, y, z) − xyz = x p1 + xy2 + yz
p3
p2 − 2x

p1+1
2 y − xyz.

The substitution z 
→ z + y followed by x 
→ x + z
p3
p2

−1
transforms this polynomial

to

x p1 + y
p3
p2

+1 + z
(

p3
p2

−1)p1 − xyz + . . . ,

where the dots again refer to certain mixed terms. By arguments as above, we can
get rid of the mixed terms. This yields the Gabrielov numbers in Table 7. (Note that
p2
p1

= 2 implies that p3
p2

+ 1 = p3
p1

− p3
p2

+ 1.)

The Dolgachev numbers of the polynomial h are defined as follows. We associated
to h two weighted homogeneous polynomials h1 and h2. Let i = 1, 2 and let Vi :=
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Table 7 Virtual singularities: Dolgachev and Gabrielov numbers

Type Dolgachev Gabrielov

IIA 2, 2p1 − 2; p1,
p3
6 3,

( p3
3 − 1

)
p1, p1

IIB 2, 2 p3
p2

− 2; p1
2 ,

p1
2 p1, 2,

( p3
2 − 1

)
p1

IIB� p3
2 ,

p1
2 ; p3

2 ,
p1
2

p3
2

( p1
2 − 1

) + p1
2 , 2, p1

2
( p3
2 − 1

) + p3
2

III 2, 2p1 − 2; p1,
q3
2 p1 2p1, q3 p1, p1

IV1 2, 2 p3
p2

− 2; p3
p2

, 1
2 (p2 − 2) 3, p3

3 − p3
p2

+ 1, 3( p3
p2

− 1)

IV2 2, 2 p3
p2

− 2; 1
2

p3
p2

(p1 − 1), 1
2 (p1 + 1) p1,

p3
p1

− p3
p2

+ 1,
(

p3
p2

− 1
)

p1

IV�
2

p3
p2

, 1
2 (p1 + 1); p3

p2
, 1
2

p3
p2

(p1 − 1) p1−1
2

(
p3
p2

+ 1
)

,
p3
p2

+ 1, p1+1
2

(
p3
p2

− 1
)

+ 1

{(x, y, z) ∈ C
3 |hi (x, y, z) = 0}. We consider the C

∗-action on Vi given by the
system of weights of hi (see Table 4). We consider the exceptional orbits (i.e. orbits
with a non-trivial isotropy group) of this action. We distinguish between two cases:

(A) Vi contains a coordinate hyperplane.
(B) Vi does not contain a coordinate hyperplane.

In case (A) we consider those exceptional orbits which are not contained in the coor-
dinate hyperplane which is contained in Vi . In case (B) we consider those exceptional
orbits which do not coincide with the singular locus of Vi . We call these the principal
orbits. It turns out that in all cases we have exactly two principal orbits.

Example 4 (a) IIA (p2 = 3): h1(x, y, z) = −y
p3
6 +1z + z p1 + x2y

p3
6 with the system

of weights
(

p1 + p3
6 , 2p1 − 2, p3

3 + 2; p1
( p3
3 + 2

))
. The exceptional orbits are:

y = z = 0 singular line

x = −y
p3
6 +1z + z p1 = 0 order of isotropy group : 2

x = z = 0 order of isotropy group : 2p1 − 2

(b) IV2 (
p2
p1

= 2): h1(x, y, z) = −x
p1+1
2 z + xy2 + x

p1−1
2 z

p3
p2 = x(−x

p1−1
2 z + y2 +

x
p1−3
2 z

p3
p2 )with the systemofweights (2 p3

p2
−2, p3

4 − p3
2p2

− p1
2 + 3

2 , 2; p3
2 + p3

p2
− p1+1).

The exceptional orbits not contained in the hyperplane x = 0 are:

y = z = 0 order of isotropy group : 2 p3
p2

− 2

y = −x
p1+1
2 z + x

p1−1
2 z

p3
p2 = 0 order of isotropy group : 2

Definition The Dolgachev numbers of h are the numbers α1, α2;α3, α4 where α1, α2
and α3, α4 are the orders of the isotropy groups of the principal exceptional orbits of
h1 and h2 respectively.

We list the Dolgachev and Gabrielov numbers of the polynomials h corresponding
to the virtual singularities in Table 7.
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6 Strange Duality

Comparing Table 7 with Table 6, we obtain the following result.

Theorem 5 The Gabrielov numbers of the polynomial h corresponding to a virtual
singularity coincide with the Dolgachev numbers of the dual pair (̃f1, f̃2) and, vice
versa, the Gabrielov numbers of a pair (̃f1, f̃2) coincide with the Dolgachev numbers
of the dual polynomial h.

Let f1, . . . , fk be quasihomogeneous functions on C
n of degrees d1, . . . , dk

with respect to weights w1, . . . , wn . Here w1, . . . , wn are positive integers with
gcd(w1, . . . , wn) = 1, f j (λ

w1x1, . . . , λwn xn) = λd j f j (x1, . . . , xn), λ ∈ C. We sup-
pose that the equations f1 = f2 = . . . = fk = 0 define a complete intersection X
in C

n . There is a natural C∗-action on the space C
n defined by λ ∗ (x1, . . . , xn) =

(λw1x1, . . . , λwn xn), λ ∈ C
∗.

Let A = C[x]/( f1, . . . , fk) be the coordinate ring of X . There is a natural grading
on the ring A: As is the set of functions g ∈ A such that g(λ ∗ x) = λs g(x). Let
PX (t) = ∑∞

s=0 dim As · t s be the Poincaré series of the graded algebra A = ⊕∞
s=0As .

One has

PX (t) =
∏k

j=1(1 − td j )
∏n

i=1(1 − twi )
. (6.1)

For 0 ≤ j ≤ k, let X ( j) be the complete intersection given by the equations f1 = · · · =
f j = 0 (X (0) = C

n , X (k) = X ). The restriction of the function f j ( j = 1, . . . , k) to
the variety X ( j−1) defines a locally trivial fibration X ( j−1)\X ( j) → C

∗. Let V ( j) =
f −1

j (1)∩ X ( j−1) be the (Milnor) fibre of this fibration (the fibre V ( j) is not necessarily

smooth) and ϕ( j) : V ( j) → V ( j) be the classical monodromy transformation of it. For
a map ϕ : Z → Z of a topological space Z , let ζϕ(t) be its zeta function

ζϕ(t) =
∏

p≥0

{
det

(
id − t · ϕ∗|Hp(Z;C)

)}(−1)p

.

If, in the definition, we use the actions of the operators ϕ∗ on the homology groups
H p(Z;Z) reduced modulo a point, we get the reduced zeta function

ζ ϕ(t) = ζϕ(t)

(1 − t)
.

Let

ζ X, j (t) := ζ ϕ( j) (t).

If both X ( j) and X ( j−1) have isolated singularities at the origin then H p(V ( j);Z) is
non-trivial only for p = n − j and therefore, if n − j ≥ 1,

(
ζ X, j (t)

)(−1)n− j = det
(
id − t · ϕ

( j)∗ |Hn− j (V ( j);C)

)
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is the characteristic polynomial of the classical monodromy operator ϕ
( j)∗ .

One can show that (ϕ( j)∗ )d j = id and therefore ζ X, j (t) can be written in the form

∏

�|d j

(1 − t�)α�, α� ∈ Z.

Following Saito (1998a, b), we define the Saito dual to ζ X, j (t) to be the rational
function

ζ
∗
X, j (t) =

∏

m|d j

(1 − tm)
−α(d j /m)

(note that different degrees d j are used for different j).
Let Y (k) = (X (k)\{0})/C∗ be the space of orbits of the C∗-action on X (k)\{0} and

Y (k)
m be the set of orbits for which the isotropy group is the cyclic group of order m.

Let

OrX (t) :=
∏

m≥1

(1 − tm)χ(Y (k)
m )

be the product of cyclotomic polynomials with exponents corresponding to the par-
tition of the complete intersection X = X (k) into parts of different orbit types; here
χ(Z) denotes the Euler characteristic of a topological space Z .

Let (X, 0) be the virtual hypersurface singularity defined byh = 0 and (X̃ , 0) be the
dual complete intersection singularity given by the equations f̃1 = f̃2 = 0 according
to Theorem 5. The function OrX̃ (t) is equal to the polynomial

OrX̃ (t) :=
3∏

k=1

(1 − tαk ) · (1 − t)−1,

where α1, α2, α3 are the Dolgachev numbers of the pair (̃f1, f̃2), see Sect. 5.
Finally, let ζX (t) be the zeta function of the monodromy at infinity of h and

ζ X (t) = ζX (t)

(1 − t)
.

be the reduced zeta function of h.

Theorem 6 Under the conditions of Table 3 we have

ζ X (t) = PX̃ (t) · Or X̃ (t).

Proof The zeta function ζX (t) can be computed from the Newton polygon of h at
infinity by Libgober and Sperber (1995). From Tables 4, 5, and 6 we can derive the
formula. �


From Ebeling and Gusein-Zade (2004) we get the following corollary:
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Corollary 7 Under the conditions of Table 3 we have

ζ X (t) = ζ
∗
X̃ ,1(t) · ζ

∗
X̃ ,2(t).

7 Examples

Let f (x, y, z) be aweighted homogeneous polynomialwith reduced systemofweights
W = (w1, w2, w3; d). The Gorenstein parameter a f of f is defined to be

a f := d − w1 − w2 − w3.

We now consider the classification of virtual singularities according to the Goren-
stein parameter a f of the non-degenerate invertible polynomial f .

The classification of the non-degenerate invertible polynomials f with [G f : G0] =
2 and with a f < 0 can be extracted from Ebeling and Takahashi (2013, Table 3). From
this we derive the classification of virtual singularities given in Table 8.

One can also classify the non-degenerate invertible polynomials with [G f : G0] =
2 with a f = 0, 1. It turns out that there are no such polynomials with a f = 0. The
virtual singularities corresponding to polynomials with a f = 1 are listed in Table 9.

I turns out that the virtual singularities with a f = 1 are exactly the virtual singular-
ities corresponding to the bimodal series. According to Arnold’s classification Arnold
(1975), there are 8 series of bimodal hypersurface singularities. The virtual bimodal
singularities are defined by setting k = −1 in the equations of these singularities.
The names of Arnold are used in Table 9 and the equations for k = −1 are listed in
Table 10. We compare them with our polynomials h. We also indicate the names of
the dual isolated complete intersection singularities according to the notation of Wall
(1983). It turns out that these are exactly the singularities in the extension of Arnold’s
strange duality of Ebeling and Wall (1985).

We indicate the values of the Dolgachev and Gabrielov numbers of the polynomials
h associated to the virtual bimodal singularites and the Dolgachev and Gabrielov
numbers of the corresponding dual pairs of polynomials defining the isolated complete
intersection singularities (ICIS) in Table 11.

Let h(x, y, z) = 0 be the equation for one of the virtual bimodal singularities. By
inspection, one sees that the germ at the origin is an exceptional unimodal singularity.
The corresponding singularity is indicated inTable 12.Moreover the global polynomial

Table 8 Gorenstein parameter <0 cases

Type p1, p2, p3 h Name Dolgachev Gabrielov

IIA 2, 3, 6 −y2z + z2 + x3 + x2y J1,−1 2, 2; 2, 1 2, 3, 2

IIB 2, 2, 2k −x2z + y2 + yzk + xzk A2k−1,−1 2, 2k − 1; 1, 1 2, 2, 2k − 2

IIB� 2, 2, 2k −x2z + y2 + yzk + xy A�
2k−1,−1 k, 1; k, 1 1, 2, 2k − 1
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Table 9 Gorenstein parameter 1 cases

Type p1, p2(q2), p3(q3) h Name Dolgachev Gabrielov

IIA 2, 3, 18 −y4z + z2 + x3 + x2y3 J3,−1 2, 2; 2, 3 2, 3, 10

IIB 4, 2, 6 −x3z + y2 + yz3 + x2z3 Z1,−1 2, 4; 2, 2 4, 2, 8

IIB� 4, 2, 6 −x3z + y2 + yz3 + x2y W �
1,−1 3, 2; 3, 2 5, 2, 7

IIB 6, 2, 4 −x4z + y2 + yz2 + x3z2 W1,−1 2, 2; 3, 3 6, 2, 6

IIB� 6, 2, 4 −x4z + y2 + yz2 + x3y W �
1,−1 2, 3; 2, 3 7, 2, 5

III 2, 2, 4 −y3z + z2 + x3y + x2y3 Z1,−1 2, 2; 2, 4 2, 4, 8

IV2 3, 6, 18 −x2z + xy2 + yz3 + xz3 S�
1,−1 2, 4; 3, 2 3, 6, 4

IV�
2 3, 6, 18 −x2z + xy2 + yz3 + x2y U1,−1 3, 2; 3, 3 4, 4, 5

IV1 3, 12, 24 −y3z + x3 + yz2 + x2y2 Q2,−1 2, 2; 2, 5 3, 3, 7

IV2 5, 10, 20 −x3z + xy2 + yz2 + x2z2 S1,−1 2, 2; 4, 3 5, 5, 3

IV�
2 5, 10, 20 −x3z + xy2 + yz2 + x3y S�

1,−1 2, 3; 2, 4 6, 3, 4

Table 10 Bimodal virtual singularities

Series Arnold’s equation Type h(x, y, z) Dual

J3,−1 x3 + x2y3 + z2 + y8 IIA x3 + x2y3 + z2 − y4z J ′
9

Z1,−1 x3y + x2y3 + z2 + y6 III x3y + x2y3 + z2 − y3z J ′
10

Q2,−1 x3 + x2y2 + yz2 + y5 IV1 x3 + x2y2 + yz2 − y3z J ′
11

W1,−1 x3z2 + y2 + z4 + x5 IIB x3z2 + y2 + yz2 − x4z K ′
10

W �
1,−1 (x3 + z2)2 + y2 + x4z IIB� x3y + y2 + yz2 − x4z L10

S1,−1 xy2 + x2z2 + yz2 + x4 IV2 xy2 + x2z2 + yz2 − x3z K ′
11

S�
1,−1 x3y + xy2 + yz2 + x3z IV�

2 x3y + xy2 + yz2 − x3z L11

U1,−1 x2y + y3 + yz3 + x2z IV�
2 x2y + xy2 + yz3 − x2z M11

h has besides the origin an additional critical point which is of type A1.1 This also
gives an explanation of the deformation h(x, y, z) − xyz which we used to define the
Gabrielov numbers.

Example 8 We consider the case J3,−1 and the 1-parameter family h(x, y, z)− t ·xyz,
t ∈ C, where h(x, y, z) = x3 + x2y3 + z2 − y4z. A comparison with Ebeling and
Takahashi (2011, Table 12) shows that for t = 0 the germat the origin is the exceptional
unimodal singularity E14. For t �= 0 the substitution x 
→ x − 1

t y3 yields

h(x − 1
t y3, y, z) − t · (x − 1

t y3)yz

1 Note that this is different for some of the original equations of Arnold. There in the cases W1,−1, S1,−1,
and U1,−1 we have two additional critical points and the singularities W12, S11, and Q11 respectively at
the origin.
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Table 11 Strange duality of virtual bimodal singularities and ICIS

Name Dol(h) Gab(h) Dol(̃f1, f̃2) Gab(̃f1, f̃2) Dual

J3,−1 2, 2; 2, 3 2, 3, 10 2, 3, 10 2, 2; 2, 3 J ′
9

Z1,−1 2, 2; 2, 4 2, 4, 8 2, 4, 8 2, 2; 2, 4 J ′
10

Q2,−1 2, 2; 2, 5 3, 3, 7 3, 3, 7 2, 2; 2, 5 J ′
11

W1,−1 2, 2; 3, 3 2, 6, 6 2, 6, 6 2, 2; 3, 3 K ′
10

W �
1,−1 2, 3; 2, 3 2, 5, 7 2, 5, 7 2, 3; 2, 3 L10

S1,−1 2, 2; 3, 4 3, 5, 5 3, 5, 5 2, 2; 3, 4 K ′
11

S�
1,−1 2, 3; 2, 4 3, 4, 6 3, 4, 6 2, 3; 2, 4 L11

U1,−1 2, 3; 3, 3 4, 4, 5 4, 4, 5 2, 3; 3, 3 M11

Table 12 Coxeter–Dynkin diagrams of virtual bimodal singularities

Virtual Equation Germ at 0 Numbers M j γ1, γ2, γ3 μ

J3,−1 x2 + y3 + y2z3 − xz4 E14 7 + 1, 7 2, 3, 9 + 1 15

Z1,−1 x2 + y3(z − y) + y2z3 − xz3 Z13 5 + 1, 3, 5 2, 4, 7 + 1 14

Q2,−1 x3 + (z − x)y2 + x2z2 − yz3 Q12 2, 2, 4 + 1, 4 3, 3, 6 + 1 13

W1,−1 x2y + y2 + x2z3 − xz4 W13 5, 4 + 1, 4 2, 5 + 1, 6 14

W �
1,−1 x2y + y2 + yz3 − xz4 W13 5 + 1, 4, 4 2, 5, 6 + 1 14

S1,−1 x2y + (z − y)y2 + x2z2 − xz3 S12 2, 4, 3 + 1, 3 3, 4 + 1, 5 13

S�
1,−1 x2y + (z − y)y2 + yz3 − xz3 S12 2, 4 + 1, 3, 3 3, 4, 5 + 1 13

U1,−1 x2y + xy2 + yz3 − x2z S12 2 + 1, 4, 3, 3 3 + 1, 4, 5 13

= (x − 1
t y3)3 + (x − 1

t y3)2y3 + z2 − y4z − t · (x − 1
t y3)yz

= x3 − 3
t x2y3 + 3

t2
xy6 − 1

t3
y9 + x2y3 − 2

t xy6 + 1
t2

y9 + z2 − t · xyz.

For t �= 0, 1 the coefficient of y9 is non-zero. Therefore, the arguments of Example 3
show that in this case the germ at 0 is right equivalent to the cusp singularity x3 +
y9 + z2 − t · xyz with Milnor number 13. For t = 1, the coefficient of y9 is equal to
zero and Example 3 shows that the germ at 0 is right equivalent to the cusp singularity
x3+ y10+ z2− xyz withMilnor number 14. One can easily compute that the situation
is as follows: For t /∈ {0, 1}, the polynomial h(x, y, z) − t · xyz has two additional
critical points of type A1 outside the origin. One of them merges with the singularity
at the origin for t = 0, the other one merges with the singularity at the origin for t = 1.

Now we want to consider Coxeter–Dynkin diagrams of these singularities. Let
X := {(x, y, z) ∈ C

3 |h(x, y, z) = 0}. The functionh defines a locally trivial fibration
h : C3\X → C

∗. Let V = h−1(1) ∩ X be the Milnor fibre of this fibration. We shall
consider a (strongly) distinguished basis of vanishing cycles of the homology group
H2(V ;Z) (see e.g. Arnold et al. 1988; Ebeling 2007). The critical point outside the
origin gives an additional vanishing cycle in H2(V ;Z). We define the Milnor number
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Fig. 1 Coxeter–Dynkin diagrams of a distinguished basis for h|z=0

• δμ

• δμ−1

•
δ21

· · · •
δ2γ2−1

•
δμ−2

•
δ3γ3−1

· · · •
δ31

•
δ1γ1−1

· · ·

•
δ11

Fig. 2 The graph Sγ1,γ2,γ3

μ of X to be the rank of H2(V ;Z). It is equal to the sum of the Milnor numbers of the
singular points of h. It is indicated in Table 12.

In order to compute a Coxeter–Dynkin diagram for a distinguished basis of van-
ishing cycles we use the method of Gabrielov (1979). We have to consider the polar
curve corresponding to a choice of a linear function z : C

n → C. The choice of
the function is indicated in Table 12. The additional critical point lies on the polar
curve. One can easily generalize the method of Gabrielov to include this additional
critical point. By Gabrielov (1979), one obtains an intersection matrix of a distin-
guished basis of h from the one of a distinguished basis for h|z=0 by the following
formulas. Let (e j ) ( j = 1, 2 in case a, j = 1, 2, 3 in case b and j = 1, 2, 3, 4 in
case c) be a distinguished basis of h|z=0 corresponding to the Coxeter–Dynkin dia-
gram presented in Fig. 1. Let M j be the numbers indicated in Table 12. Then there
is a distinguished basis (em

j , 1 ≤ m ≤ M j ) with the following intersection num-
bers

〈em
j , em

j ′ 〉 = 〈e j , e j ′ 〉,
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•δρ−2

•δρ−4 • δρ

•
δ21

· · · •
δ2γ2−1

•
δρ−3

•
δρ−1

•
δ4γ4−1

· · · •
δ41

•
δ1γ1−1

•
δ3γ3−1

· · · · · ·

•
δ11

•
δ31

Fig. 3 The graph 
γ1,γ2,γ3,γ4

〈em
j , em′

j 〉 = 1 for |m′ − m| = 1,

〈em
j , em′

j ′ 〉 = −〈e j , e j ′ 〉 for |m′ − m| = 1 and (m′ − m)( j ′ − j) < 0,

〈em
j , em′

j ′ 〉 = 0 for |m′ − m| > 1 or (m′ − m)( j ′ − j) > 0.

In Table 12, the contribution of the additional critical point to the numbers M j is
indicated. By the sequences of elementary basis transformations indicated in Ebeling
(1996), the distinguished basis (em

j ) can be transformed to a distinguished basis

(δ11, δ
1
2, . . . , δ

1
γ1−1; δ21, δ

2
2, . . . , δ

2
γ2−1; δ31, δ

3
2, . . . , δ

3
γ3−1; δμ−2, δμ−1, δμ)

with aCoxeter–Dynkin diagramof the formof Fig. 2where γ1, γ2, γ3 are theGabrielov
numbers of X . We call this graph Sγ1,γ2,γ3 .

Now let us consider the dual pair (̃f1, f̃2) and the isolated complete intersection
singularity defined by it. According to Ebeling (1987, Proposition 3.6.1) one can find
a Coxeter–Dynkin diagram with respect to a distinguished basis of thimbles of the
form 
γ1,γ2,γ3,γ4 of Fig. 3 where γ1, γ2; γ3, γ4 are the Gabrielov numbers of the pair
(̃f1, f̃2).
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