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Abstract The skewer of a pair of skew lines in space is their common perpendicular.
To configuration theorems of plane projective geometry involving points and lines
(such as Pappus or Desargues) there correspond configuration theorems in space:
points and lines in the plane are replaced by lines is space, the incidence between
a line and a point translates as the intersection of two lines at right angle, and the
operations of connecting two points by a line or by intersecting two lines at a point
translate as taking the skewer of two lines. These configuration theorems hold in
elliptic, Euclidean, and hyperbolic geometries. This correspondence principle extends
to plane configuration theorems involving polarity. For example, the theorem that the
three altitudes of a triangle are concurrent corresponds to the Petersen—Morley theorem
that the common normals of the opposite sides of a space right-angled hexagon have a
common normal. We define analogs of plane circles (they are 2-parameter families of
lines in space) and extend the correspondence principle to plane theorems involving
circles. We also discuss the skewer versions of the Sylvester problem: given a finite
collection of pairwise skew lines such that the skewer of any pair intersects at least
one other line at right angle, do all lines have to share a skewer? The answer is positive
in the elliptic and Euclidean geometries, but negative in the hyperbolic one.
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Fig. 1 The Pappus theorem A3
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1 Introduction

Two lines in 3-dimensional space are skew if they are not coplanar. Two skew lines
share a common perpendicular line that we call their skewer. We denote the skewer of
lines a and b by S(a, b).!

Consider your favorite configuration theorem of plane projective geometry that
involves points and lines. For example, it may be the Pappus theorem, see Fig. 1: if
A1, Az, Azand By, B;, B3 are two triples of collinear points, then the three intersection
points A1 B> N Ay By, A1 B3 N A3 By, and Ay B3 N A3 B; are also collinear (we refer to
[30] for a modern viewpoint on projective geometry).

The Pappus theorem has a skewer analog in which both points and lines are replaced
by lines in 3-space and the incidence between a line and a point translates as the inter-
section of the two respective lines at right angle. The basic 2-dimensional operations
of connecting two points by a line or by intersecting two lines at a point translate as
taking the skewer of two lines.

Theorem 1 (Skewer Pappus theorem I) Let a1, az, a3 be a triple of lines with a com-
mon skewer, and let by, by, b3 be another triple of lines with a common skewer. Then
the lines

S(S(ar, ba), S(az, b1)), S(S(ai, b3), S(as, b)), and S(S(az, b3), S(asz, b))

share a skewer.

In this theorem, we assume that the lines involved are in general position in the
following sense: each time one needs to draw a skewer of two lines, this operation is
well defined and unique. This assumption holds in a Zariski open subset of the set of
the initial lines (in this case, two triples of lines with common skewers, a1, az, az and
b1, by, b3). A similar general position assumption applies to other theorems in this
paper.”

Another skewer analog of the Pappus theorem was discovered by R. Schwartz.

1 One can also define the skewer of two intersecting lines: it’s the line through the intersection point,
perpendicular to both lines.

2 The configuration theorems of plane geometry also rely on similar general position assumptions.
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Fig. 2 The Desargues theorem
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Theorem 2 (Skewer Pappus theorem II) Let L and M be a pair of skew lines. Choose
a triple of points A1, Ay, A3 on L and a triple of points By, B2, B3 on M. Then the
lines

S((A1By), (A2B1)), S((A2B3), (A3B2)), and S((A3B1), (A1B3))

share a skewer.

Although the formulation of Theorem 2 is similar to that of Theorem 1, we failed
to prove it along the lines of the proofs of other results in this paper, and the ‘brute
force’ proof of Theorem 2 is postponed until Sect. 6.

Another classical example is the Desargues theorem, see Fig. 2: if the three lines
A1B1, Ay By and A3 B3 are concurrent, then the three intersection points A1 A> N By Ba,
A1A3 N B B3, and A A3 N By B3 are collinear.

And one has a skewer version:

Theorem 3 (Skewer Desargues theorem) Let ay, az, az and by, by, bz be two triples
of lines such that the lines S(ai, b1), S(az, by) and S(as, b3) share a skewer. Then the
lines

S(S(ay, az), S(by, b2)), S(S(a1,a3), S(b1, b3)), and S(S(az, az), S(bz, b3))

also share a skewer.

The projective plane RP? is the projectivization of 3-dimensional vector space V.
Assume that the projective plane is equipped with a polarity, a projective isomorphism
¢ : RP? — (RP%)* induced by a self-adjoint linear isomorphism V — V*.

In particular, in 2-dimensional spherical geometry, polarity is the correspondence
between great circles and their poles.? In terms of 2-dimensional hyperbolic geometry,
polarity is depicted in Fig. 3: in the projective model, H? is represented by the interior
of a disc in RPZ, and the polar points of lines lie outside of H 2_in the de Sitter world.

3 0On $2, this is a 1-1 correspondence between oriented great circles and points; in its quotient RP2, the
elliptic plane, the orientation of lines becomes irrelevant.
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Fig. 3 Point P is polar dual to B

the line AB
7] N

Fig. 4 Altitude of a spherical
triangle

Asafourth example, consider a theorem that involves polarity, namely, the statement
that the altitudes of a (generic) spherical or a hyperbolic triangle are concurrent (in
the hyperbolic case, the intersection point may also lie in the de Sitter world).

The altitude of a spherical triangle ABC dropped from vertex C is the great circle
through C and the pole P of the line A B, see Fig. 4. Likewise, the line P Q in Fig. 3
is orthogonal in H? to the line AB.

In the skewer translation, we do not distinguish between polar dual objects, such
as the line AB and its pole P in Fig. 4. This yields the following theorem.

Theorem 4 (Petersen—Morley [24]) Given three lines a, b, c, the lines

S(S(a,b),c), S(Sb,c),a), and S(S(c,a),b)

share a skewer*

In words, the common normals of the opposite sides of a rectangular hexagon have
a common normal; see Fig. 5, borrowed from [26].

These ‘skewer’ theorems hold not only in the Euclidean, but also in the elliptic and
hyperbolic geometries. In H3, two non-coplanar lines have a unique skewer. In elliptic
space RP3, a pair of generic lines has two skewers; we shall address this subtlety in
Sect. 2.3.

4 This result is also known as Hjelmslev—Morley theorem, see [13].
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Fig. 5 Petersen—Morley
configuration in Euclidean space

In the next section we shall formulate a general correspondence principle, Theorem
5, establishing skewer versions of plane configuration theorems. This correspondence
principle will imply the theorems formulated above, except for Theorem 2, whose
proof will be given in Sect. 6.

The correspondence principle concerns line geometry of 3-dimensional projective
space, a subject that was thoroughly studied in the 19th century by many an eminent
mathematician (Cayley, Chasles, Klein, Kummer, Lie, Pliicker, Study, ...) See [20]
for a classical and [28] for a modern account.

Although we did not see the formulation of our Theorem 5 in the literature, we
believe that classical geometers would not be surprised by it. Similar ideas were
expressed earlier. In the last section of [10], Coxeter writes:

... every projective statement in which one conic plays a special role can be
translated into a statement about hyperbolic space.

Coxeter illustrated this by the hyperbolic version of the Petersen—Morley theorem.

Earlier Morley [25] also discussed the hyperbolic Petersen—Morley theorem, along
with a version of Pascal’s theorem for lines in H> (the “celestial sphere” in the title
of this paper is the sphere at infinity of hyperbolic space).

We are witnessing a revival of projective geometry [28,30], not least because of the
advent of computer-based methods of study, including interactive geometry software
(such as Cinderella®> and GeoGebra). Elementary projective geometry has served as
a source of interesting dynamical systems [32,33], and it continues to yield surprises
[34]. We hope that this paper will contribute to the renewal of interest in this classical
area.

2 Correspondence Principle
2.1 What is a Configuration Theorem?
We adopt the following ‘dynamic’ view of configuration theorems.

One starts with an initial data, a collection of labelled points @; and lines b; in RP2,
such that, for some pairs of indices (i, j), the point g; lies on the line ;. One also

5 Which was used to create illustrations in this paper.
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Fig. 6 Concurrence of the
altitudes of a hyperbolic triangle

has an ordered list of instructions consisting of two operations: draw a line through
a certain pair of points, or intersect a certain pair of lines at a point. These new lines
and points also receive labels.

The statement of a configuration theorem is that, among so constructed points and
lines, certain incidence relations hold, that is, certain points lie on certain lines.

Assume, in addition, that a polarity ¢ : RP> — (RP?)* is given. We may think of
lines in RP? as points in (RP?)*. The polarity takes one back to RP?, assigning the
polar point to each line and vice versa.

Given a polarity, one adds to the initial data that, for some pairs of indices (k, /),
the point gy is polar dual to the line b;. One also adds to a list of instructions the
operation of taking the polar dual object (point <> line). Accordingly, one adds to
the statement of a configuration theorem that certain points are polar dual to certain
lines.

We assume that the conclusion of a configuration theorem holds for almost every
initial configuration of points and lines satisfying the initial conditions, that is, holds
for a Zariski open set of such initial configurations (this formulation agrees well with
interactive geometry software that makes it possible to perturb the initial data without
changing its combinatorics).

In this sense, a configuration theorem is not the same as a configuration of points
and lines as described in Chapter 3 of [17] or in [16]: there, the focus is on whether a
combinatorial incidence is realizable by points and lines in the projective plane.

For example, the configuration theorem in Fig. 6 has three points A, B and C as
an initial data. One draws the lines AB, BC and C A, and constructs their polar dual
points ¢, a and b, respectfully. Then one connects points a and A, b and B, and ¢ and
C. The claim is that these three lines are concurrent (that is, the intersection point of
the lines a A and b B lies on the line cC).

A configuration theorem for lines in space is understood similarly: one has an initial
collection of labelled lines ¢; such that, for some pairs of indices (i, j), the lines ¢; and
£ intersect at right angle. There is only one operation, taking the skewer of two lines.
The statement of a configuration theorem is that certain pairs of thus constructed lines
again intersect at right angle. This conclusion holds for almost all initial configurations
of lines (i.e., a Zariski open set) satisfying the initial conditions.
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2.2 Correspondence Principle

The correspondence principle provides a dictionary that translates a plane configura-
tion theorem, involving points and lines, to a configuration theorem in space involving
lines.

Theorem 5 (Correspondence principle) To a plane configuration theorem with the
initial data consisting of points a;, lines b j, and incidences between them, there corre-
sponds a configuration theorem for lines in space (elliptic, Euclidean, or hyperbolic),
so that:

e to each point a; and line b; of the initial data there corresponds a line in space;

o wheneverapointa; and a line b j are incident, the respective lines in space intersect
at right angle;

e the operations of connecting two points by a line and of intersecting two lines at
a point are replaced by the operation of taking the skewer of two lines.

If, in addition, a plane configuration theorem involves polarity, then each pair of polar
dual points and lines involved corresponds to the same line in space, and the operation
of taking the polar dual object in the plane (point <> line) corresponds to the trivial
operation of leaving a line in space intact.

The reader might enjoy formulating the skewer version of the whole hexagrammum
mysticum, the collection of results, ramifying the Pascal theorem, due to Steiner,
Pliicker, Kirkman, Cayley and Salmon; see [7,8,18] for a modern treatment.

We shall present two proofs of the Correspondence principle, one concerning the
elliptic, and another the hyperbolic geometry. Either proof implies the Correspondence
principle for the other two classical geometries: if a configuration theorem holds in
the elliptic geometry, then it also holds in the hyperbolic geometry, and vice versa, by
‘analytic continuation’. And either non-zero curvature version implies the Euclidean
one as a limiting case.

This analytic continuation principle is well known in geometry; we refer to [1,27]
where it is discussed in detail.

2.3 Elliptic Proof

A line in elliptic space RP3 is the projectivization of a 2-dimensional subspace of
R*, and the geometry of lines in RP? is the Euclidean geometry of 2-planes in R?.
The space of oriented lines is the Grassmannian G (2, 4) of oriented 2-dimensional
subspaces in R*.

To every oriented line ¢ in RP? there corresponds its dual oriented line £*: the
respective oriented planes in R* are the orthogonal complements of each other (the
orientation of the orthogonal complement is induced by the orientation of the plane
and the ambient space). The dual lines are equidistant and they have infinitely many
skewers. The preimage of a pair of dual lines in 3 is a Hopf link.

The next lemma collects the properties of the Grassmannian G (2, 4) that we shall
use. These properties are well known, see [15] for a detailed discussion.
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Lemma 1 (1) The Grassmannian is a product of two spheres: G(2,4) = §2 x S%r.
This provides an identification of an oriented line in RP3 with a pair of points of
the unit sphere S2: € < (£_, £4).

(2) The antipodal involutions of the spheres S* and Sf_ generate the action of the
Klein group Zy x 7> on the space of oriented lines. The action is generated by
reversing the orientation of a line and by taking the dual line.

(3) Two lines € and m intersect at right angle ifand only ifd({—,m_) = d ({4, m) =
/2, where d denotes the spherical distance in S>.

(4) The set of lines that intersect £ at right angle coincides with the set of lines that
intersect £ and £*.

(5) A line n is a skewer of lines £ and m if and only if n_ is a pole of the great circle
{_m_, and ny is a pole of the great circle £ 1m .

(6) A pair of generic lines has exactly two skewers (four, if orientation is taken into
account), and they are dual to each other.

Proof Given two planes in R4, there are two angles, say 0 < o < 8 < /2, between
them: « is the smallest angle made by a line in the first plane with the second plane,
and g is the largest such angle.

Recall the classical construction of Klein quadric (see, e.g., [11,28]). Given an
oriented plane P in R4, choose a positive basis u, v in P, and let wp be the bivector
u A v, normalized to be unit. In this way we assign to every oriented plane a unit
decomposable element in A’R*. The decomposability condition w A @ = 0 defines
a quadratic cone in A’R*, and the image of the Grassmannian is the spherization of
this cone (the Klein quadric is its projectivization).

Consider the star operator in A’R*, and let E_ and E be its eigenspaces with
eigenvalues 41. These spaces are 3-dimensional, and A’R* = E_ @ E. . Let Si be
the spheres of radii 1/+/2 in E-+. Then the bivector wp has the components in E4 of
lengths 1/ V2, and hence G(2,4) = §2 x Si. We rescale the radii of the spheres to
unit. Thus an oriented plane P becomes a pair of points P+ of a unit sphere.

Let us prove claim (2). Orientation reversing of a plane P changes the sign of the
bivector wp corresponding to the antipodal involutions of both spheres. Letey, ..., e4
be an orthonormal basis in R*. Then the following vectors form bases of the spaces
E.:

et NeytezANey er Ne3F ey Neyq et NesterNes
Uy = ——"—"—, Vg =———, wi=f.

2 2
Without loss of generality, assume that a plane P is spanned by ¢; and e,. Then P+
is spanned by e3 and e4. Since e; A ey = u4 +u_, e3 A es = uy — u_, the antipodal
involution of $2 sends P to P.

Given two planes P and Q, one has two pairs of points on S%: (P_, Q_) and
(P4, O4). Let o and B be the two angles between P and Q. Then

d(P_,Q )=a+p, dPy, Q) =p—a,

see [15].
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In particular, P and Q have a nonzero intersection when « = 0, that is, when
d(P_, Q_) =d(Py, O4). Likewise, P and Q are orthogonal when 8 = /2. It fol-
lows that the respective lines intersect at right angle whend (P—, Q_) = d (P4, O4+) =
/2. This proves (3) and implies (5).

In terms of bivectors, two lines intersect if and only if wp - *wg = 0, and they
intersect at right angle if, in addition, wp - g = 0. Here dot means the dot product
in A’2R* induced by the Euclidean metric. The duality £ <> £* corresponds to the star
operator on bivectors. This implies (4).

Finally, given two lines, £ and m, consider the distance between a point of £ and
a point of m. This distance attains a minimum, and the respective line is a skewer
of ¢ and m. By the above discussion, the skewers of lines ¢ and m are the lines that
intersect the four lines ¢, £*, m and m*. This set is invariant under duality and, by an
elementary application of Schubert calculus (see, e.g., [11]), generically consists of
two lines. This proves (6). O

Thus taking the skewer of a generic pair of lines is a 2-valued operation. However,
by the above lemma, the choice of the skewer does not affect the statement of the
respective configuration theorem.

One can also avoid this indeterminacy by factorizing the Grassmannnian G (2, 4)
by the Klein group, replacing it by the product of two elliptic planes RP% x RPi. In
this way, we ignore orientation of the lines and identify dual lines with each other. As
a result, a generic pair of lines has a unique skewer.

Now to the Correspondence principle.

Given a plane configuration theorem, we realize it in the elliptic geometry:
the initial data consists of points a; and lines b; in RP? with some incidences
between them, and the polarity in RP? is induced by the spherical duality (pole <>
equator).

Let us replace the lines by their polar points. Thus the initial data is a collection
of points {a;, bjf} in the projective plane such d(a;, bjf) = /2 when the point g; is
incident with the line b;.

Likewise, instead of connecting two points, say p and ¢, by a line, we take the polar
dual point to this line, that is, the cross-product p x ¢ of vectors in R3, considered
up to a factor. In this way, our configuration theorem will involve only points, and its
statement is that certain pairs of points are at distance /2.

Take another initial collection, {a;, E’;}, and consider the collection of pairs
{(a;, a;), (b;f, 15;‘.)} in RPZ x RP2+. According to Lemma 1, one obtains a config-
uration of lines {¢;, £;} in elliptic space such that if a point ¢; is incident with a line
b; then the corresponding lines ¢; and £; intersect at right angle. This is the initial
data for the skewer configuration theorem. By varying the generic choices of {a;, b;f}
and {a;, I;;f} satisfying the initial incidences, we obtain a dense open set of initial
configurations of lines {¢;, £;}.

Likewise, the operations that comprise the configuration theorem (connecting pairs
of points by lines and intersecting pairs of lines) become the operation of taking the
skewer of a pair of lines, and the conclusion of the theorem is that the respective pairs
of lines intersect at right angle.
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2.4 Hyperbolic Proof

In a nutshell, a skewer configuration theorem in 3-dimensional hyperbolic space is a
complexification of a configuration theorem in the hyperbolic plane. We use ideas of
Morley and Morley [26] and Arnold [3].

Consider the 3-dimensional space of real binary quadratic forms ax? +2bxy + cy?
in variables x, y, equipped with the discriminant quadratic form A = ac — b? and the
respective bilinear form. We view the Cayley-Klein model of the hyperbolic plane as
the projectivization of the set A > 0, the circle at infinity being given by A = 0. The
projectivization of the set A < 0 is the 2-dimensional de Sitter world.

Thus points of H? are elliptic (sign-definite) binary quadratic forms, considered up
to a factor. To a line in H? there corresponds its polar point that lies in the de Sitter
world, see Fig. 3. Hence lines in H? are hyperbolic (sign-indefinite) binary quadratic
forms, also considered up to a factor.

Consider the standard area form dx A dy in the x, y-plane. The space of smooth
functions is a Lie algebra with respect to the Poisson bracket (the Jacobian), and
the space of quadratic forms is its 3-dimensional subalgebra s/(2, R). The following
observations are made in [3].

Lemma 2 A point is incident to a line in H? if and only if the corresponding quadratic
forms are orthogonal with respect to the bilinear form A. Given two points of H?, the
Poisson bracket of the respective elliptic quadratic forms is a hyperbolic one, corre-
sponding to the line through these points. Likewise, for two lines in H?, the Poisson
bracket of the respective hyperbolic quadratic forms is an elliptic one, corresponding
to the intersection point of these lines.

A complexification of this lemma also holds: one replaces RP? by CP?, viewed as
the projectivization of the space of quadratic binary forms (and losing the distinction
between sign-definite and sign-indefinite forms). The conic A = 0 defines a polarity
in CP2.

Lemma 2 makes it possible to reformulate a configuration theorem involving points
and lines in H? as a statement about the Poisson algebra of quadratic forms. For
example, the statement that the three altitudes of a hyperbolic triangle are concurrent,
see Fig. 4, right, becomes the statement that the commutators

{{f. gt hy, {{g. h}, f}, and {{h, [}, g}
are linearly dependent, which is an immediate consequence of the Jacobi identity
{{f g} b} +{{g. h}. [}, +{{h. f}. g} =0

in the Poisson Lie algebra.
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Likewise, the Pappus theorem follows from the Tomihisa’s identity

U s o) Ul f538) + U5, W fsh (s Al + s U2, ih s, 3 =0

that holds in s/(2, R), see [37], and also [2,19,35] for this approach to configuration
theorems.

Now consider 3-dimensional hyperbolic space H? in the upper halfspace model.
The isometry group is SL(2, C), and the sphere at infinity is the Riemann sphere CP'.

A line in H3 intersects the sphere at infinity at two points, hence the space of
(non-oriented) lines is the configuration space of unordered pairs of points, that is, the
symmetric square of CP! with the deleted diagonal. Note that S?(CP') = CP? (this is
a particular case of the Fundamental Theorem of Algebra, one of whose formulations
is that nth symmetric power of CP! is CP"). Namely, to two points of the projective
line one assigns the binary quadratic form having zeros at these points:

(a1 :b1,az : bo) — (a1y — bix)(azy — bax).

Thus a line in H3 can be though of as a complex binary quadratic form up to a factor.
The next result is contained in §52 of [26].

Lemma 3 Two lines in H? intersect at right angle if and only if the respective binary
quadratic forms f; = a;jx® + 2bjxy + ¢;y*, i = 1,2, are orthogonal with respect to
A:

ajcr — 2b1by + axc1 = 0. (1)

Iftwo lines correspond to binary quadratic forms f; = a;jx>+2bixy+ciy?, i = 1,2,
then their skewer corresponds to the Poisson bracket (the Jacobian)

{f1, f} = (a1by — apb1)x* + (a1c2 — azcr)xy + (bica — bacy)y>.

If (a1 : b1 : c1) and (ap : by : ¢2) are homogeneous coordinates in the projective
plane and the dual projective plane, then (1) describes the incidence relation between
points and lines. In particular, the set of lines in A that meet a fixed line at right angle
corresponds to a line in CP?.

Suppose a configuration theorem involving polarity is given in RP2. The projective
plane with a conic provide the projective model of the hyperbolic plane, see Figs. 3 and
6, so the configuration is realized in H2. Consider the complexification, the respective
configuration theorem in CP? with the polarity induced by A. According to Lemma
3, this yields a configuration of lines in H> such that the pairs of incident points and
lines correspond to pairs of lines intersecting at right angle.

Another way of saying this is by way of comparing Lemmas 2 and 3: the relations in
the Lie algebras s/(2, R) and s/(2, C) are the same, hence to a configuration theorem
in H? there corresponds a skewer configuration theorem in H3.
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2.5 Euclidean Picture

The following description of the Euclidean case is due to I. Dolgachev (private com-
munication).

Add the plane at infinity to R3; call this plane H. A point of H represents a family
of parallel lines in R>. For a line L in R3, let g(L) = L N H be its direction, that is,
the respective point at infinity.

One has a polarity in H defined as follows. Let A be a point in H. This point
corresponds to a direction in R3. The set of orthogonal directions constitutes a line A*
in H; this is the line polar to A.

Lemma 4 Let L and M be skew lines in R3. Then
q(S(L, M)) = q(L)* Ng(M)*.

Proof The direction g (L)* Ng(M)* is orthogonal to L and to M, and so is the skewer
S(L, M). This implies the result. O

Thus the skewer S(L, M) is constructed as follows: find points g (L) and g (M) of
the plane at infinity H, intersect their polar lines, and construct the line through point
q(L)* N g(M)* that intersect L and M. This line exists and is, generically, unique: it
is the intersection of the planes through point ¢ (L)* N g (M)* and line L, and through
point g (L)* N g(M)* and line M.

To summarize, a skewer configuration in R? has a ‘shadow’ in the plane H: to
a line L there corresponds the point g (L) that is also identified with its polar line
g(L)*. In this way, the shadow of a skewer configuration is the respective projective
configuration in the plane H. For example, both Theorems 1 and 2 become the usual
Pappus theorem in H.

2.6 Odds and Ends

(1) Legendrian lift One can associate a skewer configuration in RP? to a configuration
in S? using contact geometry.

A cooriented contact element in S is a pair consisting of a point and a cooriented
line through this point. The space of cooriented contact elements is SO(3) = RP°.
We consider RP? with its metric of constant positive curvature (elliptic space). The
projection RP? — $2 that sends a contact element to its foot point is a Hopf fibration.

The space of contact elements carries a contact structure generated by two tangent
vector fields: u is the rotation of a contact element about its foot point, and v is the
motion of the foot point along the respective geodesic. The fields u and v are orthogonal
to each other.

A curve tangent to the contact structure is called Legendrian. A smooth cooriented
curve in $2 has a unique Legendrian lift: one assigns to a point of the curve the tangent
line at this point.

Consider a configuration of points and (oriented) lines in S2. One can lift each point
as a Legendrian line in RP3, consisting of the contact elements with this foot point.
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Likewise, one can lift each line as a Legendrian line, consisting of the contact elements
whose foot point lies on this line. As a result, a configuration of lines and points in
S? lifts to a configuration of lines in RP? intersecting at right angle, as described in
Theorem 5.

The family of (oriented) Legendrian lines in RP? is 3-dimensional; it forms the
Lagrangian Grassmannian A(2) C G(2,4). In the classical terminology, the 3-
parameter family of Legendrian lines in projective space is the null-system, [11,20].

(2) Comparing the elliptic and hyperbolic approaches The approaches of Sects. 2.3
and 2.4 are parallel. The sphere S2 in Sect. 2.3 is the spherization of R? = 50(3), the
Lie bracket being the cross-product of vectors. The pole of a line uv in §? corresponds
to the vector u x v in R3. Thus the operations of connecting two points by a line and
of intersecting two lines are encoded by the Lie bracket of so(3).

Likewise, the Poisson bracket of two quadratic forms in Sect. 2.4 can be identified
with the Minkowski cross-product that encodes the operations of connecting two points
by a line and of intersecting two lines.

Note that so(3) is the Lie algebra of motions of S2. whereas s[(2, R) is the Lie
algebra of motions of H2, and the complex forms of these Lie algebras coincide. Inter-
estingly, this Lie algebraic approach to configuration theorems fails in the Euclidean
plane, see [19] for a discussion; however, Euclidean skewer configurations, such as
the Petersen—Morley theorem, can be described in terms of the Lie algebra of motions
of R3, see [31].

In both proofs, one goes from the Lie algebra of motions in dimension 2 to that
in dimension 3. In the elliptic situation, we have so(4) = so(3) @ so(3), and in
the hyperbolic situation, the Lie algebra of motions of H? is s1(2, C). Accordingly,
an elliptic skewer configuration splits into the product of two configurations in $2,
and a hyperbolic skewer configuration is obtained from a configuration in H? by
complexification.

(3) Skewers in R3 via dual numbers One can approach skewer configurations in R3
using Study’s dual numbers [36]; see [28] for a modern account.

Dual numbers are defined similarly to complex numbers:

a+¢eb, wherea,b e R, and 2 =0.

Dual vectors are defined analogously.

To an oriented line £ in R3 one assigns the dual vector & = u + ¢v, whereu € § 2
is the unit directing vector of ¢, and v is the moment vector: v = P x u where P is
any point of £. The vectors &, form the Study sphere: & - &, = 1.

This construction provides an isomorphism between the isometry group of R and
the group of dual spherical motions. Two lines £ and m intersect at right angle if and
only if & - £, = 0. Thus skewer configurations in R* correspond to configurations of
lines and points in the Study sphere whose real part are the respective configurations
in $2.

3 Circles

Denote the set of lines in 3-space that share a skewer £ by Ny. We saw in Sect. 2
that \V; is an analog of a line in the plane. Two-parameter families of lines in 3-space
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are called congruences. Ny is a linear congruence: it is the intersection of the Klein
quadric with a 3-dimensional subspace RP®> C RP?, that is, it is defined by two linear
equations in Pliicker coordinates.

Now we describe line analogs of circles.

Let ¢ be an oriented line in 3-space (elliptic, Euclidean, or hyperbolic). Let G, be
the subgroup of the group of orientation preserving isometries that preserve £. This
group is 2-dimensional. Following [29], we call the orbit G¢(m) of an oriented line m
an axial congruence with £ as axis.

In particular, Ny is an axial congruence.

In R3 (the case considered in [29]), the lines of an axial congruence with axis £
are at equal distances d from ¢ and make equal angles ¢ with it. One defines the dual
angle between two oriented lines ¢ + ed, see [28]. The dual angle between the lines
of an axial congruence and its axis is constant.

Thus, in R3, an axial congruence consists of a regulus (one family of ruling of a
hyperboloid of one sheet) and its parallel translations along its axis.

Likewise, one defines a complex distance between oriented lines £ and m in H 3,
Let d be the distance from £ to m along their skewer S(£, m), and let ¢ be the angle
between m and the line £/, orthogonal to S (¢, m) in the plane spanned by ¢ and S (£, m),
and intersecting m. (Both d and ¢ have signs determined by a choice of orientation of
the skewer). Then the complex distance is given by the formula x (¢, m) = d + i,
see [22]. Again, the complex distance between the lines of an axial congruence and
its axis is constant.

If £1 2 and m > are the respective points on the sphere at infinity CP! then

Es
cosh? (w) = [y, my1, my, £2],

where the cross-ratio is given by the formula

[a,b,c, d] = w’
(a—d)(b—o)

see [22].
In the next lemma, CP! is the ‘celestial sphere’, that is, the sphere at infinity of H>.

Lemma 5 Let y : CP! — CP! be a Mébius (projective) transformation having two
distinct fixed points. The family of lines connecting point z € CP' with the point V¥ (z)
is an axial congruence, and all axial congruences are obtained in this way.

Proof Without loss of generality, assume that the fixed points of i are 0 and oo, and
let £ be the line through these points. Then v (z) = ¢z for some constant ¢ € C. One
has [0, z, ¢z, o0] = [0, 1, ¢, 00] = ¢/(c — 1). Hence, for the lines m connecting z and
¥ (z), the complex distance x (£, m) is the same.

Conversely, given an axial congruence, we may assume, without loss of generality,
that its axis £ connects 0 and co. Then G consists of the transformations z +— kz, k €
C. Let m be the line connecting points w; and wy. Then the axial congruence G (m)
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Fig. 7 Pascal’s theorem for a A5
circle A3

Al

A4
A6

A2

consists of the lines connecting points kwj and kwy = ¥ (kwp), with ¥ : z —
(w2/wy)z. o

In S3, an axial congruence is characterized by the condition that the angles « and
B (see the proof of Lemma 1) between the axis and the lines of the congruence are
constant. It follows from the proof of Lemma 1 that an axial congruence is a torus, a
product of circles, one in $2 and another in S}r.

Thus an axial congruence of lines is an analog of a circle in 2-dimensional geometry.
The arguments from Sect. 2.3 imply analogs of the basic properties of circles:

1. If two generic axial congruences share a line then they share a unique other line.
2. Three generic oriented lines belong to a unique axial congruence.

(A direct proof of the first property: if the axes of the congruences are £ and ¢;, and
the shared line is m, then the second shared line is obtained from m by reflecting in
S(€1, £2) and reverting the orientation).

Using the approach of Sect. 2, one extends the Correspondence principle to theorems
involving circles. For example, one has

Theorem 6 (Skewer Pascal theorem) Let Ay, ..., Ag be lines from an axial congru-
ence. Then

S(S(A1, A2), S(As, As)), S(S(A2, A3), S(As, Ag)), and S(S(A3, As), S(Ae, A1)

share a skewer, see Fig. 7.

As another example, consider the Clifford’s Chain of Circles. This chain of theorems
starts with a number of concurrent circles labelled 1,2,3,...,n. In Fig. 8, n = 5,
and the initial circles are represented by straight lines (so that their common point is
at infinity).® The intersection point of circles i and j is labelled i j. The circle through
points ij, jk and ki is labelled ijk.

The first statement of the theorem is that the circles ijk, jki, kli and [ij
share a point; this point is labelled ijk/. The next statement is that the points
ijkl, jkim, klmi,Imij and mijk are cocyclic; this circle is labelled i jklm. And so on,

6 As usual, lines are considered as circles of infinite radius.
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Fig. 8 Clifford’s chain of circles (n = 5)

with the claims of being concurrent and cocyclic alternating; see [9,26], and [21,31]
for a relation with completely integrable systems.

A version of this theorem for lines in R? is due to Richmond [29]. The approach
of Sect. 2 provides an extension to the elliptic and hyperbolic geometries.

Theorem 7 (Clifford’s Chain of Lines)

(1)

(2)

(3)

Consider axial congruences C;, i = 1,2,3,4, sharing a line. For each pair of
indicesi, j € {1, 2,3, 4}, denote by {;; the line shared by C; and C;, as described
in statement 1 above. For each triple of indices i, j, k € {1, 2,3, 4}, denote by
Cijk the axial congruence containing the lines €;j, € ji, Lx;, as described in the
statement 2. Then the congruences Ci23, Ca34, C341 and C412 share a line.
Consider axial congruences C;, i = 1,2,3, 4,5, sharing a line. Each four of the
indices determine a line, as described in the previous statement of the theorem.
One obtains five lines, and they all belong to an axial congruence.

Consider axial congruences C;, i = 1,2,3,4,5, 6, sharing a line. Each five of
them determine an axial congruence, as described in the previous statement of
the theorem. One obtains six axial congruences, and they all share a line. And so
on. ..

Next, we present an analog of the Poncelet Porism, see, e.g., [12,14]. This theorem
states that if there exists an n-gon inscribed into a conic and circumscribed about a
nested conic then every point of the outer conic is a vertex of such an n-gon, see
Fig. 9.
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Fig. 9 Poncelet porism, n = 3

Consider a particular case when both conics are circles (a pair of nested conics
can be sent to a pair of circles by a projective transformation). The translation to the
language of lines in space is as follows.

Consider two generic axial congruences C; and C;, and assume that there exist a
pair of lines £; € C; and £, € C; that intersect at right angle. That is, C; and Ny, share
the line £;. By property (1) above, there exists a unique other line ¢] € Cy, shared with
N, that s, £/ intersects £ at right angle. Then there exists a unique other line £} € C;
that intersects £} at right angle, etc. We obtain a chain of intersecting orthogonal lines,
alternating between the two axial congruences.

The following theorem holds in the three classical geometries.

Theorem 8 (Skewer Poncelet theorem) If this chain of lines closes up after n steps,
then the same holds for any starting pair of lines from C1 and C; that intersect at right
angle.

Proof Arguing as in Sect. 2.3, we interpret one axial congruence as the set of points of
a spherical circle, and another one as the set of geodesic circles tangent to a spherical
circle. The incidence between a geodesic and a point corresponds to two lines in space
intersecting at right angle. Thus the claim reduces to a version of the Poncelet theorem
in $2 where a spherical polygon is inscribed in a spherical circle and circumscribed
about a spherical circle.

This spherical version of the Poncelet theorem is well known, see, e.g., [6,38]. For
a proof, the central projection sends a pair of disjoint circles to a pair of nested conics
in the plane, and the geodesic circles to straight lines, and the result follows from the
plane Poncelet theorem. O

A pair of nested circles in the Euclidean plane is characterized by three numbers:
their radii, r < R, and the distance between the centers, d. The conditions for the
existence of an n-gons inscribed into one and circumscribed about another circle (a
bicentric n-gon) are known as the Fuss relations. The first ones, forn = 3 and n = 4,
are

R?—d*>=2rR, (R*—rH?=2r%(R* +d%;
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Fig. 10 A central projection of
aline to a line

b
0]
a
the case n = 3 is due to Euler; Fuss found the relations for n = 4, ..., 8. More

generally, Cayley gave conditions for Poncelet polygons to close up after n steps for
a pair of conics, see [12,14]).

It would be interesting to find an analog of the Fuss and Cayley relations; up to
isometry, a pair of axial congruence depends on 6 parameters (two characterizing each
congruence and two describing the mutual position of the axes).

4 Projections and Conics

In this section, we propose a definition-construction of a skewer analog of a conic.

Let us first describe a skewer analog of a projection of a line to a line. Figure 10
depicts the central projection ¢ : a — b between two lines in the plane.

Consider three lines in space, a, b and O, and define a map ¢p : N, — N as
follows: for £ € N, set oo (£) = S(S(£, O), b). This is a skewer analog of the central
projection. Like in the plane, this operation is involutive: swapping the roles of @ and
b, and applying it to the line S(S(¢, O), b), takes one back to line £.

Following Sect. 2.4, one can describe the hyperbolic case of this construction in
CP?; the result is (a complex version of) the central projection in Fig. 10.

Recall the Braikenridge—Maclaurin construction of a conic depicted in Fig. 11; see
[23] for the history of this result.

Fix two lines, p and ¢, and three points, O, A and B. Identify p with the pencil
of lines through point A, and ¢ with the pencil of lines through point B. The central
projection ¢ : p — ¢ induces a projective transformation between the two pencils
of lines. Then the locus of intersection points of the corresponding lines from these
pencils is a conic.

One can use the skewer version of the Braikenridge—Maclaurin construction to
define a line analog of a conic. Start with five lines O, p, ¢, A, B. For each line
¢ € N, we have the corresponding line m = S(S(¢, 0),q) € N,. Then the 2-
parameter family of lines

S(S, A), S(m, B)), LelN,
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Fig. 11 The Braikenridge-Maclaurin construction of a conic

is a skewer analog of a conic. In the hyperbolic case, this set is identified with a conic
in CP%.

5 Sylvester Problem

Given a finite set S of points in the plane, assume that the line through every pair of
points in S contains at least one other point of S. J.J.Sylvester asked in 1893 whether
S necessarily consists of collinear points. See [5] for the history of this problem and
its generalizations.

In R?, the Sylvester question has an affirmative answer (the Sylvester—Galai theo-
rem), but in C? one has a counter-example: the 9 inflection points of a cubic curve (of
which at most three can be real, according to a theorem of Klein), connected by 12
lines.

Note that the dual Sylvester—Galai theorem holds as well: if a finite collection of
pairwise non-parallel lines in R? has the property that through the intersection point
of any two lines there passes at least one other line, then all the lines are concurrent.

The skewer version of the Sylvester Problem concerns a finite collection S of
pairwise skew lines in space such that the skewer of any pair intersects at least one
other line at right angle. We say that S has the skewer Sylvester property. The question
is whether a collection of lines with the skewer Sylvester property necessarily consists
of lines that share a skewer.

Theorem 9 The skewer version of the Sylvester—Galai theorem holds in the elliptic
and Euclidean geometries, but fails in the hyperbolic one.

Proof In the elliptic case, we argue as in Sect. 2.3. A collection of lines becomes two
collections of points, in RP? and in RP2+. The skewer Sylvester property implies that
each of these sets enjoys the property that the line through a pair of points contains
another point, and one applies the Sylvester—Galai theorem to each of the two sets.
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In the hyperbolic case, we argue as in Sect. 2.4. Letay, . . ., ag be the nine inflection
points of a cubic curve in CPZ, and let by, ..., b1z be the respective lines (the coun-
terexample to the complex Sylvester-Galai theorem). Let b7, . . ., b}, be the polar dual

points. As described in Sect. 2.4, the points a; correspond to nine lines in H>, and
the points b* to their skewers. We obtain a collection of nine lines that has the skewer
Sylvester property but does not possess a common skewer.

In the intermediate case of R3, the following argument is due to V. Timorin (private
communication).

The approach is the same as in Sect. 2.5. It follows from the discussion there that
if three lines in R3 share a skewer then their intersections with the plane at infinity H
are collinear.

Let Ly,..., L, be a collection of lines enjoying the skewer Sylvester property.
Then, by the Sylvester—Galai theorem in H, the points g(L1), .. ., g(L,) are collinear.
This means that the lines L1, ..., L, lie in parallel planes, say, the horizontal ones.

Consider the vertical projection of these lines. We obtain a finite collection of non-
parallel lines such that through the intersection point of any two there passes at least
one other line. By the dual Sylvester—Galai theorem, all these lines are concurrent.
Therefore the horizontal lines in R> share a vertical skewer. O

6 Pappus Revisited

In this section we prove Theorem 2. This computational proofis joint with R. Schwartz.

As before, it suffices to establish the hyperbolic version of Theorem 2. We use
the approach to 3-dimensional hyperbolic geometry, in the upper half-space model,
developed by Fenchel [13]; see also [19,22]. The relevant features of this theory are
as follows.

To a line £ in H3, one assigns the reflection in this line, an orientation preserving
isometry of the hyperbolic space, an element of the group PGL(2, C). One can lift
it to a matrix My, € GL(2, C), defined up to a complex scalar. Since reflection is an
involution, one has Tr(M/,) = 0. More generally, a traceless matrix M € GL(2,C) is
called a line matrix; it satisfies M2 = — det(M)E where E is the identity matrix.

The skewer relations translate to the language of matrices as follows:

e two lines ¢ and n intersect at right angle if and only if Tr(M,M,,) = 0;

e the skewer of two lines £ and n corresponds to the commutator [M, M,,];

o three lines £, m, n share a skewer if and only if the matrices M,, M,,, and M,, are
linearly dependent.

Likewise, one assigns matrices to points. The reflection in a point P is an orientation-
reversing isometry of H 3. one assigns to it a matrix Np in GL(2, C), defined up to
a real scalar, with det Np > 0 and satisfying N pNp = —det(Np)E, where bar
means the entry-wise complex conjugation of a matrix. Such matrices are called point
matrices.

Equivalently, point matrices N satisfy nyy = —nj1, ni2 € R, ny; € R, that is, the
real part of N is a traceless matrix, and the imaginary part is a scalar matrix. It is
convenient to normalize so that the imaginary part is £, and then N can be though of
as a real 3-vector consisting of three entries of the real part of N.
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Incidence properties translate as follows:
e apoint P lies on a line £ if and only of My Np = NPM@;
e three points are collinear if and only if the respective point matrices are linearly
dependent (equivalently, over R or C).

We need a formula for a line matrix corresponding to the line through two given
points. Let N1 and N3 be point matrices corresponding to the given points. Then the
desired line matrix M € GL(2, C) satisfies the system of linear equations

MN, = N\M, MN,=N,M, Tr(M)=0. )

This system is easily solved and it defines M up to a factor (we do not reproduce the
explicit formulas here).
With these preliminaries, the proof proceeds in the following steps.

1. Start with two triples of linearly dependent point matrices, corresponding to the
triples of points A1, Ay, A3 and By, B3, Bs.

2. Compute the line matrices, corresponding to the lines (A B») and (A2 B1), (A2 B3)
and (A3 B»), and (A3 Bj) and (A B3) by solving the respective systems (2).

3. Compute the commutators of these three pairs of line matrices.

4. Check that the obtained three matrices are linearly dependent.

We did these computations in Mathematica. Since a line matrix is traceless, it can be
viewed as a complex 3-vector, and the last step consists in computing the determinant
made by three 3-vectors. The result of this last computation was zero (for arbitrary
initial point matrices) which proves the theorem.

Remark 1 Theorem 2 can be restated somewhat similarly to Theorem 1. Given two
skew lines L and M, consider the 1-parameter family of lines F (L, M) consisting of
the lines that pass through a point A € L and orthogonal to the plane spanned by point
A and line M. Likewise, one has the 1-parameter family of lines F (M, L). These
families, F(L, M) and F(M, L), replace the 2-parameter families of lines A7, and
Ny in the formulation of Theorem 1, and yield Theorem 2.

Remark 2 Bachmann [4] developed an approach to 2-dimensional geometry (elliptic,
Euclidean, and hyperbolic) based on the notion of reflection and somewhat similar to
Fenchel’s approach to 3-dimensional hyperbolic geometry [13]. Namely, to a point P
there corresponds the reflection op in this point, and to a line £—the reflection oy in
this line. The incidence relation P € ¢ is expressed as opoy = ogop. Two lines, £
and m, are orthogonal if and only if o¢0,, = 0,,0¢. More generally, one has a system
of axioms of plane geometry in terms of involutions in the group of motions. At the
present writing, it is not clear how to deduce the Correspondence principle using this
approach.
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