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Abstract We state and consider the Gabrielov–Khovanskii problem of estimating the
multiplicity of a common zero for a tuple of polynomials in a subvariety of a given
codimension in the space of tuples of polynomials. For a bounded codimension we
obtain estimates of the multiplicity of the common zero, which are close to optimal
ones. We consider certain generalizations and open questions.
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1 Introduction

1.1 The Gabrielov–Khovanskii Problem

Let CN be the complex coordinate space and F1, . . . ,FN some linear spaces of
functions, analytic in a neighborhood of the point o = (0, . . . , 0) and vanishing at that
point. For an arbitrary tuple ( f1, . . . , fN ) ∈ F1 ×· · ·×FN we define the multiplicity
of zero μ( f1, . . . , fN ) ∈ Z+ ∪ ∞:

• if the set { f1 = · · · = fN = 0} has a component of positive dimension, passing
through the point o, we set μ( f1, . . . , fN ) = ∞,

• otherwise, μ( f1, . . . , fN ) is the multiplicity of the isolated common zero o of the
functions f1, . . . , fN , that is, the integer dimCO/( f1, . . . , fN ).

By the Gabrielov–Khovanskii problem we mean the following question: what is
the codimension of the closed subset

B Aleksandr V. Pukhlikov
pukh@liv.ac.uk

1 Department of Mathematical Sciences, The University of Liverpool, Liverpool L69 7ZL, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40598-015-0031-5&domain=pdf


30 A. V. Pukhlikov

F(m) = {( f1, . . . , fN ) | μ( f1, . . . , fN ) � m}

in the space F = F1 × · · · × FN ?
There is an obvious dual form of this problem. Instead of fixing a multiplicity

m ∈ Z+ ∪ {∞} and computing or estimating the codimension of the set F(m), one
can fix (or bound from above) the codimension of an irreducible closed subset inF and
compute or estimate the multiplicity of a generic tuple in that subset. More precisely,
let B ⊂ F be an irreducible closed subset of codimension a ∈ Z+. Set

μ(B) = min{μ( f ) | f = ( f1, . . . , fN ) ∈ B},

that is,μ(B) is themultiplicity at zero of the general tuple of functions f ∈ B. Now the
Gabrielov–Khovanskii problem takes the form of the question: what is the maximal
multiplicity

μ(a) = max{μ(B) | codim(B ⊂ F) � a}?

Obviously, ifμ(a) = m, then for the codimension of the setF(m)we get the estimate

codim(F(m) ⊂ F) � a,

and if, conversely, the codimension of the setF(m) inF is some a∗ ∈ Z+, then for an
irreducible component B∗ ⊂ F(m) we get μ(B∗) � m, so that μ(a∗) � m. This is
what we mean by the duality of the two forms of the Gabrielov–Khovanskii problem.

Thus we can either fix the multiplicity and look for (or estimate) the codimension,
or fix the codimension and estimate the multiplicity. The second form is more natural
from the viewpoint of certain geometric applications (see Sect. 1.3), and in this paper
it is the second form that we consider. [For the original and most general form of the
Gabrielov–Khovanskii problem see their original paper (Gabrielov and Khovanskii
1998)]. For the spaces Fi we take the spaces of polynomials of degree di � 2,
vanishing at the point o; some natural generalizations of the Gabrielov–Khovanskii
problem are stated below in Sect. 1.2.

Example 1.1 Let us compute μ(1) for N = 2. Let B ⊂ F1 × F2 be an irreducible
hypersurface. For a general tuple of polynomials ( f1, f2) ∈ B the curves C1 = { f1 =
0} andC2 = { f2 = 0} are non-singular at the point o (otherwise, codim(B ⊂ F) � 2).
If the tangents Li = ToCi are distinct, then μ( f1, f2) = 1. Otherwise, the tangents
coincide for a general tuple ( f1, f2) ∈ B, therefore

B ⊂ {( f1, f2) | d f1(o)‖d f2(o)}.

However, the latter set is closed, irreducible and of codimension 1 in F1 × F2, so
that the inclusion sign can be replaced by the equality. But then for a general tuple
( f1, f2) ∈ B the curves C1 and C2 have simple tangency at the point o, so that
μ(B) = 2 and for that reason μ(1) = 2.
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Example 1.2 Let us computeμ(2) for N = 2. In the notations of the previous example
set:

Bi =
{
( f1, f2)

∣∣∣∣ ∂ fi

∂z1
(o) = ∂ fi

∂z2
(o) = 0

}
.

Obviously, Bi is an irreducible closed subset of codimension 2. For a general tuple
( f1, f2) ∈ B1 the curve C1 has multiplicity 2 at the point o, whereas the curve C2 is
non-singular at the point o, and moreover the tangent line L2 is not tangent to C1 at the
point o, so that μ(B1) = 2 (and μ(B2) = 2). Therefore, if B ⊂ F1 × F2 is a closed
irreducible subset of codimension 2, different from B1 and B2, then for a general tuple
( f1, f2) ∈ B the curves C1, C2 are non-singular at the point o. Set B◦

3 ⊂ F1 × F2 to
be the set of such tuples ( f1, f2), that the curves C1, C2 are non-singular at the point
o, and moreover

ordo f2|C1 � 3.

It is easy to see that the closure B3 = B◦
3 is irreducible, of codimension 2 in F1 ×F2

and moreover for a general tuple ( f1, f2) ∈ B3 the equality ordo f2|C1 = 3 holds. This
implies that μ(B3) = 3 and for any irreducible subset B ⊂ F1 × F2 of codimension
2, which is not B1, B2 or B3, we have μ(B) � 2. Therefore, μ(2) = 3.

Example 1.3 The computations of Example 1.1 generalize easily for an arbitrary num-
ber of variables N . The closed subset

B∗ = {( f1, . . . , fN ) | rk(d f1(o), . . . , d fN (o)) = N − 1}

is of codimension 1 in F1 × · · · ×FN . Obviously, μ(B∗) = 2 and for any irreducible
hypersurface B 	= B∗ we have μ(B) = 1. Therefore, μ(1) = 2.

It is clear that μ(a) < ∞ if and only if

a < codim(F(∞) ⊂ F).

(This, however, does not mean that the Gabrielov–Khovanskii problem makes sense
only for those values of a, see Sect. 1.2).

Example 1.4 Let N = 2 and d1 � d2. The closed setF(∞) is reducible: it consists of
such tuples ( f1, f2), that either one of the polynomials fi is identically zero or (in the
notations of Example 1.1) the curves C1, C2 have a common component. The degree
of that component parametrizes irreducible components of the set F(∞). It is easy to
check that the least codimension is that of either component consisting of such tuples
( f1, f2), that the curves C1, C2 have a line L 
 o as a common component, or of the
component {( f1, f2) | f1 ≡ 0}. Therefore,

codim(F(∞) ⊂ F) = min

(
d1 + d2 − 2,

(d1 + 1)(d1 + 2)

2
− 1

)
.
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Example 1.5 Again let N = 2 and d1 � d2. Consider the irreducible subvariety
B ⊂ F , given by the condition

B = {( f1, f2) |multoCi � m, i = 1, 2},

where m � d1; we use the notations Ci introduced in Example 1.1 again. Obviously,
codim(B ⊂ F) = m2 + m − 2 and μ(B) = m2. Therefore, the inequality

μ(m2 + m − 2) � m2

holds. The following elementary fact is well known (see, for instance, Hartshorne
1977, ChapterV, Sec.3, Ex.3.2): if the curves C1, C2 have no common irreducible
component passing through the point o, then

μ( f1, f2) =
∑
x�o

(multx C1)(multx C2),

where the sum is taken over the finite set consisting of the point o and all infinitely near
points of intersection of the curves C1 and C2, lying over the point o; the multiplicity
of a curve at an infinitely near point x is understood as the multiplicity at x of the
strict transform of that curve on the surface where x is a point in the usual sense,
that is, the surface obtained by a finite sequence of blow ups. [The set of all points
of an algebraic surface and all its infinitely near points, equipped with several natural
structures, forms a well known classical object, the “bubble space”; for its detailed
description see Manin Yu (1986).] Experimenting with finite sets of infinitely near
points, lying over the point o in the same way as it was done in the beginning of this
example, we arrive to the following general conjecture.

Conjecture 1.1 (i) (Stabilization) For any fixed N there is a function δ : Z+ → Z+
such that for min(di ) � δ(a) the number μ(a) does not depend on the tuple
d = (d1, . . . , dN ). Denote it by the symbol μst(a).

(ii) (Asymptotics). There is a finite limit

lim
a→∞

μst(a)

a
.

Now let us consider the behaviour of the numbers μ(a) for growing values of the
number of variables N .

Example 1.6 (See Pukhlikov 2004, Section 3.5) Let the closed subset B ⊂ F be given
by the condition

rk‖∂ fi/∂z j (o)‖1�i, j�N � N − b

for b ∈ {1, . . . , N }. It is easy to see that codim(B ⊂ F) = b2. Furthermore, for a
general tuple f ∈ B the rank of the Jacobi matrix ‖∂ fi/∂z j (o)‖ equals N − b, so that
there is a subset I ⊂ {1, . . . , N }, �I = b, such that the linear forms d fi (o), i /∈ I ,
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The Gabrielov–Khovanskii Problem for Polynomials 33

are linearly independent. Therefore, the subset X = { fi = 0 | i /∈ I } is a smooth
subvariety of dimension b around the point o. The restriction fi |X for i ∈ I has the
zero differential at the point o, that is,

ordo( fi |X ) � 2,

and moreover, for a general tuple f ∈ B we have the equality ordo( fi |X ) = 2. Since
no other conditions are imposed on f , for a general tuples f we get:

μ( f ) = 2b.

Therefore, μ(b2) � 2b. The function μ(a) is obviously non-decreasing, so that we
finally get the inequality μ(a) � 2[√a] for a � N 2.

Conjecture 1.2 For N � √
a there is the limit

lim
a→∞

μ(a)

2
√

a
= 1

In the present paper we will show a weaker statement: for a � N the function μ(a)

grows as C
√

a, where C > 0 is some effectively estimated constant. More precisely
(see Theorem 4.3 and Remark 4.3), we obtain an upper bound for μ(a) which asymp-
totically behaves as

1√
a

e2
√

a .

1.2 Open Questions and Generalizations

All the main questions related to the Gabrielov–Khovanskii problem are open. Com-
puting the multiplicities μ(a) (one should write μ(a; d), but the discrete parameter
d ∈ Z

N+ is implicitly meant) seems to be a very difficult problem. It is natural to try to
estimate them with various degrees of precision, examples of such estimates are given
by Conjectures 1.1 and 1.2.

Here is an example of an open question. As we mentioned in Sect. 1.1, the equality
μ(a) = ∞ holds for a � codim(F(∞) ⊂ F), however this does not mean that the
Gabrielov–Khovanskii problem can not be set for such values of a. Set

μ∗(a) = max{μ(B) | B 	⊂ F(∞), codim(B ⊂ F) � a}.

The numbers μ∗(a) are defined for all a � dimF .

Example 1.7 Let N = 2, then

dimF = 1

2
(d2

1 + 3d1 + d2
2 + 3d2)

and obviously μ∗(dimF) = d1d2.
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34 A. V. Pukhlikov

For arbitrary N and a � dimF computing and estimating the numbers μ∗(a) is a
very difficult problem.

Now let us consider a more general setting of the Gabrielov–Khovanskii problem
(in the framework of algebraic geometry). Let X be a projective algebraic variety,
o ∈ X some point (not necessarily non-singular!). Set N = dimX . If the point o is
an isolated zero of the system of equations f1 = · · · = fN = 0, where fi ∈ Oo,X ,
fi (o) = 0, then the Samuel multiplicity

μ( f ) = eO/( f1, . . . , fN )

where O = Oo,X , is well defined (when X is non-singular at the point o, this is
just the dimension of the quotient algebra Oo,X/( f1, . . . , fN ), see Fulton (1984,
Examples 7.1.2 and 7.1.10). Now let L1, . . . , L N ∈ PicX be some classes, where
H0(X, Li ) 	= {0}. Set

F = {(s1, . . . , sN ) | si (o) = 0} ⊂
N∏

i=1

H0(X, Li ).

Locally the sections si are represented by regular functions fi ∈ Oo,X , so that the
multiplicities μ(s) = μ(s1, . . . , sN ) ∈ Z+ ∪ {∞} are well defined. This makes it
possible to define the numbers

μ(a) = μX (a; L1, . . . , L N )

in word for word the same way as it was done in Sect. 1.1 and set the generalized
Gabrielov–Khovanskii problem.

Example 1.8 Let N = 2, X = P
1 × P

1 (the surface X can be naturally seen as a
quadric in P3), Li = di�i , where �i are the standard generators of the Picard group,
PicX = Z�1⊕Z�2, that is,�i is the class of a lineP1×{pt} or {pt}×P

1, respectively.
Let o ∈ X be an arbitrary point. It is easy to see that μX (a; L1, L2) is equal to

max{n1n2 | ni � di , n1 + n2 � a + 2}.

For that reason, μX (a; L1, L2) = ( a
2 + 1)2, if a ∈ 2Z, and (a+1)(a+3)

4 , if a is odd.

Finally, one more generalization of the Gabrielov–Khovanskii problem for poly-
nomials will be considered in Sect. 5.

1.3 One Application of the Gabrielov–Khovanskii Problem

Let us describe brieflyone important application of theGabrielov–Khovanskii problem
for polynomials. In birational geometry of higher-dimensional rationally connected
algebraic varieties estimates of the multiplicity of a singular point in terms of the
degree of a subvariety are of high importance. Let X ⊂ P

N be an irreducible algebraic
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The Gabrielov–Khovanskii Problem for Polynomials 35

variety, o ∈ X a non-singular (for simplicity) point. Consider a subvariety Y ⊂ X .
One needs to estimate the ratio of the multiplicity to the degree:

multoY

degY
� c, (1)

where the estimate should be true for every subvariety Y of a given codimension (for
instance, if X is a sufficiently general hypersurface of degree N , where N � 4, then
for the codimension codim(Y ⊂ X) = 2 one can take c = 3/(N − 1), see Pukhlikov
2013b, Chapter 3). Of course, one can always take c = 1, but this estimate, as a rule,
is insufficient, especially in higher-dimensional problems. The only efficient method
of obtaining such estimates, known today, is the method of hypertangent divisors, the
idea of which can be explained by the following example. Let (z1, . . . , zN ) be a system
of affine coordinates with the origin at the point o, and

f = q1 + q2 + · · · + qk

a polynomial, such that f |X ≡ 0, where qi (z) are homogeneous of degree i . Now the
polynomial

fi = q1 + · · · + qi

has degree � i , however

fi |X = −(qi+1 + · · · + qK )|X ,

so that the multiplicity of the divisor { fi |X = 0} at the point o is at least (i + 1). If
fi |Y 	≡ 0, then one can form the effective cycle

(Y ◦ { fi |X = 0})

of codimension codim(Y ⊂ X)+ 1 on X , for which the ratio of the multiplicity at the
point o to the degree is at least

multoY

degY
· i + 1

i
.

The necessary condition Y 	⊂ { fi |X = 0} is provided by the regularity conditions for
the equations, defining the variety X . For the details and numerous examples of appli-
cations of the method of hypertangent divisors to the problems of higher-dimensional
birational geometry see Pukhlikov (2009, 2013b, 2015). The procedure described
above is iterated and makes it possible to construct, starting from the subvariety Y (the
existence of which is assumed), satisfying the estimate

multoY

degY
> c,
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36 A. V. Pukhlikov

an effective 1-cycle (that is, an integral linear combination of curves) C , such that
multoC > degC . The latter is impossible, whence we conclude that the inequality (1)
holds for all subvarieties Y ⊂ X of the given codimension.

Unfortunately, for certain classes of Fano varieties the procedure described above
gives nothing by itself: applying the techniques of hypertangent divisors, one can
construct an effective curve C , for which the ratio (multoC/degC) is less than 1,
although is close to that number. Therefore, no contradiction is obtained and the
inequality (1) can not be shown directly. In order to circumvent this obstruction, we
use the Gabrielov–Khovanskii problem.

For instance, if X is a Fano complete intersection of quadrics and cubics in P
N

of index 1 (see Pukhlikov 2013a), then for any irreducible curve � ⊂ X of degree
deg� � 2 the estimate

multo�

deg�
� 2

3

holds, which is sufficient to prove birational rigidity of the variety X , provided that
the lines passing through the point o, form a not too large part of the effective 1-cycle
C , which is the output of the technique of hypertangent divisors. The Gabrielov–
Khovanskii problem provides an estimate of the input of the lines. For the details, see
Pukhlikov (2013a).

It is this application that initially generated the interest of the author to the
Gabrielov–Khovanskii problem, see Pukhlikov (2012).

The author thanks the referee for a number of useful suggestions.

2 Statement of the Problem

In this section we give a precise statement of the Gabrielov–Khovanskii problem for
polynomials: we introduce the spaces of tuples of polynomials, bi-invariant subva-
rieties and multiplicities. Then we give an estimate of the codimension of the set
of tuples that vanish on a subset of positive dimension. We define the parameter β,
characterizing a subvariety of tuples of polynomials.

2.1 The Space of Tuples of Polynomials

Fix the complex coordinate space A = C
N
(z1,...,zN ) of dimension N � 1 with coordi-

nates (z∗) = (z1, . . . , zN ). For d ∈ Z+ let Pd,N be the linear space of homogeneous
polynomials of degree d in z∗ (in particular, P0,N = C), and for e � d set

P[e,d],N =
d⊕

i=e

Pi,N ,

for instance, P[1,d],N is the space of (non-homogeneous) polynomials of degree � d
with no free term. On each of these spaces acts the matrix group G1 = GL N (C) of
linear changes of coordinates. Fix a tuple of integers
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The Gabrielov–Khovanskii Problem for Polynomials 37

d = (d1, . . . , dN ),

where 2 � d1 � · · · � dN , and set

P(d) =
N∏

i=1

P[1,di ],N

to be the space of tuples ( f1, . . . , fN ) of polynomials of degree� d1, . . . , dN , respec-
tively, with no free term. On the space P(d), apart from the above-mentioned group
G1, act two more groups of transformations, which we will now define. The group
G21 consists of transformations of the form

( f1, . . . , fN ) �→ ( f +
1 , . . . , f +

N ), f +
i = fi +

i−1∑
j=1

si, j (z) f j ,

where si, j ∈ P[0,di −d j ],N are polynomials, fixed for the given transformation. Set
D = {d1} ∪ · · · ∪ {dN } ⊂ Z+ and let for d ∈ D

nd = �{i | di = d},

so that
∑

d∈D nd = N . Now the group G22 is defined as the matrix group (realized
by block-wise diagonal matrices, where the blocks of the size nd × nd are ordered by
increasing of the integers d)

∏
d∈D

GLnd (C),

acting on the tuples ( f∗) ∈ P(d) by linear transformations of the form

( f1, . . . , fN ) �→ ( f1, . . . , fN )A.

Let G2 = 〈G21, G22〉 be the group of linear transformations of the space P(d),
generated by the subgroups G21 and G22. The group G2 is clearly connected, hence
irreducible as an algebraic variety. An irreducible subvariety B ⊂ P(d) (respectively,
a map from P(d) to some set) is said to be bi-invariant, if it is invariant with respect
to the action of both groups G1 and G2.

2.2 Multiplicities

For a tuple f = ( f1, . . . , fN ) ∈ P(d) we define the multiplicity μ( f ) =
μ( f1, . . . , fN ) ∈ Z+ ∪ ∞, setting:

• μ( f ) = ∞, if the closed algebraic set { f1 = · · · = fN = 0} has a component of
positive dimension, containing the point o = (0, . . . , 0) ∈ A,

• μ( f ) = dimOo,A/( f1, . . . , fN ), otherwise.

Obviously, the function μ : P(d) → Z+ ∪ {∞} is bi-invariant. For an arbitrary
irreducible subvariety B ⊂ P(d) set
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38 A. V. Pukhlikov

μ(B) = min f ∈B{μ( f )} ∈ Z+ ∪ ∞,

so that μ(B) = μ( f ) for a general tuple f ∈ B. Furthermore, set

μ(a) = max{μ(B) | codim(B ⊂ P(d)) � a},

that is, the maximum is taken over all irreducible subvarieties of codimension a. If
〈B〉 is the bi-invariant span of the subvariety B, that is, the smallest bi-invariant
subvariety in P(d), containing B, then, obviously, μ(〈B〉) = μ(B), and moreover
codim(〈B〉 ⊂ P(d)) � (codim(B ⊂ P(d)), so that the number μ(a) can be defined
as the maximum of the numbers μ(B) over all bi-invariant irreducible subvarieties
B ⊂ P(d) of codimension at most a. This obvious remark will be used in the sequel
without special references.

Consider the closed subset

X∞ = { f ∈ P(d) | μ( f ) = ∞}

and set χ∞(d) = codim(X∞ ⊂ P(d)). Obviously, μ(B) = ∞, if and only if B ⊂
X∞, and μ(a) = ∞ if and only if a � χ∞(d). Consider the irreducible subvariety
X line ⊂ P(d), consisting of such tuples f , that

f1|L ≡ · · · ≡ fN |L ≡ 0 (2)

for some line L 
 o.

Proposition 2.1 The following equality holds:

codim(X line ⊂ P(d)) = 1 − N +
N∑

i=1

di .

Proof a trivial dimension count. When a line L 
 o is fixed, the condition (2) defines
an irreducible subvariety (in fact, a linear subspace) of codimension

∑N
i=1 di . Since

a general tuple f ∈ X line vanishes on exactly one line, considering the direct product

P
N−1 × P(d) and the second projection, we complete the proof in the standard way.

��
Set X+∞ = X∞\X line.

Proposition 2.2 The following estimate holds:

codim(X+∞ ⊂ P(d)) � d1N + 1.

Proof We use the technique developed in Pukhlikov (2001, Section 3). The space A
is considered as embedded in the projective space P = P

N
(x0:···:xN ) as the affine chart

(x0 	= 0), the polynomials f1, . . . , fN are represented by polynomials F1, . . . , FN ,
where Fi (o) = 0. We have to estimate the codimension of the subset of tuples (F∗),
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The Gabrielov–Khovanskii Problem for Polynomials 39

for which there exists an irreducible subvariety Y 
 o of positive dimension, which is
not a line and such that Fi |Y ≡ 0 for all i = 1, . . . , N . For every such tuple there is a
uniquely determined integer k ∈ {0, 1, . . . , N − 1}, satisfying the two conditions:
• codimo({F1 = · · · = Fk = 0} ⊂ P) = k (where codimo means the codimension
in a neighborhood of the point o, and for k = 0 the set {F1 = · · · = Fk = 0} is
the whole space P),

• the polynomial Fk+1 vanishes identically on an irreducible component B of the
closed set {F1 = · · · = Fk = 0}, containing the point o, and if k = N − 1, then
B is not a line.

Let

αk =
k+1∑
i=1

(
di + N − k

di

)
− k(N − k)

be the codimension of the closed set of such tuples (F1, . . . , Fk+1), that Fi |
 ≡ 0 for
a certain linear subspace 
 ⊂ P of codimension k, where k = 0, 1, . . . , N − 2 (in
order to see that the codimension of this closed set is indeed equal to αk , one argues
as in the proof of Proposition 2.1: consider the algebraic set

{(
, F) | F |
 ≡ 0} ⊂ G(k, N ) × {(F)},

where G(k, N ) is the projective Grassmanian of k-subspaces in P
N , and two projec-

tions on the direct factors G(k, N ) and the space {(F)} = {(F1, . . . , FN )} of tuples
of homogeneous polynomials, introduced above; the obvious details are left to the
reader). It is easy to check that αk � d1N + 1. Therefore, estimating the codimension
of the set of “irregular” tuples (F∗), we may assume that the irreducible component
B of the closed set {F1 = · · · = Fk = 0}, on which Fk+1 vanishes identically, is not
a linear subspace. Set

βk = minl∈{1,...,k}[(d1 + · · · + dk−l + dk+1 − (k − l))(N − k + l) + 1],

k = 1, . . . , N −1. Now the technique developed in Pukhlikov (2001, Section 3) gives
the estimate

codim((X∞\X line) ⊂ P(d)) � mink∈{1,...,N−1}βk,

so that in order to complete the proof of Proposition 2.1 it is sufficient to show that
the right-hand side of the last inequality is not smaller than (d1N + 1). This is an easy
task.

Now replacing in the expression for βk the numbers d1, . . . , dk+1 by d = d1, we
get

βk � minl∈{1,...,k}[((k − l + 1)d − (k − l))(N − k + l) + 1].
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40 A. V. Pukhlikov

The expression in the square brackets is a quadratic polynomial in l with the senior
coefficient −(d − 1)l2. Since d � 2, the minimum is attained at one of the endpoints
of the interval [1, k]. For l = k we get the value d N + 1, which is what we want. For
l = 1 we get

(k(d − 1) + 1)(N − k + 1) + 1.

Here k ∈ {1, . . . , N − 1} and the last expression is again a quadratic polynomial with
the senior coefficient −(d − 1)k2, that is, the minimum in k is attained at one of the
endpoints of the interval [1, N − 1]. For k = 1 we get the required value d N + 1.
For k = N − 1 we get 2d(N − 1) − 2N + 5 � d N + 1. This completes the proof of
Proposition 2.2. ��
Corollary 2.1 Assume that

a � min

(
d1N ,

N∑
i=1

di − N

)
.

Then the number μ(a) is finite.

Below we obtain estimates from above for μ(a), which are close to optimal ones,
for the values a � N .

2.3 The Rank of a System of Linear Forms

Let us consider the construction of the Example 1.6 more formally.

Example 2.1 (See Pukhlikov 2004, Section 3.5) For b ∈ Z+ set

X (b) = { f ∈ P(d) | rk(d f1(o), . . . , d fN (o)) � N − b}.

For b � N the set X (b) is non-empty, closed and bi-invariant, and of codimension

codim(X (b) ⊂ P(d)) = b2.

For a general tuple f in any irreducible component of the set X (b) there is a subset
I ⊂ {1, . . . , N }, �I = N − b, such that

rk(d fi (o) | i ∈ I ) = N − b.

Therefore, for any polynomials g j ∈ P[1,d j ],N , j /∈ I , such that

dg j (o) ∈ 〈d fi (o) | i ∈ I 〉,

the tuple ( f ∗
1 , . . . , f ∗

N ), given by the conditions
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• f ∗
i = fi for i ∈ I ,

• f ∗
j = g j for j /∈ I ,

belongs to the same irreducible component of the set X (b), as f . In other words, the
closed algebraic set Z I ( f ) = { fi = 0 | i ∈ I } in a neighborhood of the point o ∈ A

is a non-singular b-dimensional variety, and on the polynomials f j , j /∈ I , only one
condition is imposed: d f j |To Z I ( f ) ≡ 0. Therefore, for every irreducible component
B ⊂ X (b) we have

μ(B) = 2b.

Since codim(B ⊂ P(d)) � b2, we obtain the following estimate for the functionμ(a)

from below:

μ(a) � 2[√a].

This example motivates introducing a new parameter that characterizes an arbitrary
irreducible subvariety B ⊂ P(d) of codimension a ∈ Z+: set

β(B) = N − max
f ∈B

rk(d fi (o) | i = 1, . . . , N ).

Obviously, β(B) = max{b ∈ Z+ | B ⊂ X (b)}. In particular, β(B) � √
a.

Proposition 2.3 If β(B) = 0, then μ(B) = 1.

Proof This is obvious: for a general tuple f ∈ B the linear forms d fi (o) are linearly
independent. Q.E.D. for the proposition. ��
Proposition 2.4 The following equality holds: μ(1) = 2.

Proof Let B ⊂ P(d) be an irreducible subvariety of codimension 1. If β(B) = 0,
then μ(B) = 1. Assume that β(B) = 1. This means that for a general tuple f ∈ B
there is an index i , such that the linear forms

d f1(o), . . . , d fi−1(o), d fi+1(o), . . . , d fN (o)

are linearly independent, so that the set

{ f j = 0 | j = 1, . . . , i − 1, i + 1, . . . , N }

in a neighborhood of the point o is a curve C( f ), which is non-singular at the point
o, and moreover d fi |ToC( f ) ≡ 0. Since codim(B ⊂ P(d)) = 1, for any polynomial
g ∈ P[1,di ],N , such that g|ToC( f ) ≡ 0, we have ( f1, . . . , fi−1, g, fi+1, · · · fN ) ∈ B.
In particular, this is true for any quadratic form g ∈ P2,N . Therefore, for a general
tuple f ∈ B we have μ( f ) = 2, as we claimed. Q.E.D. for the proposition. ��
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3 Reduction to a Smaller Dimension

In this section we construct an inductive procedure of estimating the multiplicityμ(B)

in terms of multiplicities μ(Bi ) for certain subvarieties Bi in the space of tuples of
(N − 1) polynomials in (N − 1) variables. Iterating this procedure, we obtain in
Sect. 4 estimates for the function μ(a). In Sect. 3.1 we construct the map of bringing
a general tuple ( f ) ∈ B into the standard form, in Sect. 3.2 we state the main claim
about reduction to a smaller dimension, in Sects. 3.3–3.4 we prove it, in Sect. 3.5 we
consider its generalization.

3.1 Bringing into the Standard Form

Let B ⊂ P(d) be an irreducible bi-invariant subvariety of codimension a and β(B) =
b � 1; as we have seen, a � b2. Consider the subset

I ⊂ {1, . . . , N },

�I = b, such that for a general tuples f ∈ B

rk(d fi (o) | i /∈ I ) = N − b. (3)

Because of the bi-invariance of the set B wemay assume that the following conditions
are satisfied:

• for j ∈ I the linear form d f j (o) is a linear combination of the forms d fi (o), where
i /∈ I and i < j ;

• for d j = d j+1 if j ∈ I , then ( j + 1) ∈ I .

By the symbol B◦ we denote the open subset in B, defined by the condition (3).
Set e = max{ j | j ∈ I }. Consider the space of tuples of polynomials

P̃(d) =
∏
j /∈I

P[1,d j ],N ×
∏
j∈I

P[2,d j ],N .

On the open set B◦ the map of bringing into the standard form σ : B◦ → P̃(d),

σ : ( f1, . . . , fN ) �→ ( f̃1, · · · f̃N ),

is well defined, where f̃ j = f j for j /∈ I and f̃ j = f j − ∑
i /∈I,i< j λ j,i fi , the

coefficients λi ∈ C are uniquely determined by the relation

d f j (o) =
∑

i /∈I,i< j

λ j,i d fi (o).

Set Bst = σ(B◦) ⊂ P̃(d). Setting for j = 1, . . . , N

ε( j) = �{i /∈ I, i < j},
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we see that the fibre of general position σ : B◦ → Bst is of dimension

∑
j∈I

ε( j) � b(N − b)

(this inequality becomes an equality if I = {N − b + 1, . . . , N }). Taking into account
that

dimP̃(d) = dimP(d) − bN ,

we conclude that

codim(Bst ⊂ P̃(d)) = a − bN +
∑
j∈I

ε( j) � a − b2.

Now let us represent the space P̃(d) as the direct product of the spaces

P̃e(d) =
∏
j /∈I

P[1,d j ],N ×
∏

j∈I, j 	=e

P[2,d j ],N

and P[2,de],N . The projections onto these direct factors denote by the symbols π and
πe, respectively.

Let us consider the restriction πB = π |Bst : Bst → P̃e(d) of the projection π onto
Bst. For a general tuple f ∈ Bst set

γ = codim
(
π−1

B (π( f )) ⊂ P[2,de],N

)
.

(Herewe identify the fibreπ−1(π( f )) and the spaceP[2,de],N .) Therefore, the equality

codim(π(Bst) ⊂ P̃e(d)) = a − bN +
∑
j∈I

ε( j) − γ

holds, whereas the right hand side does not exceed a − b2 − γ , so that the estimate

b2 + γ � a (4)

holds. Before studying the just constructed map πB in full generality, let us consider
some simple examples.

Example 3.1 Assume that b = 1 and γ = 0, that is, every non-empty fibre of the map
πB : Bst → P̃e(d) is the whole space of polynomials P[2,de],N . Since b = 1, for a
general tuple f ∈ B◦ the closed set C = { fi = 0 | i 	= e} in a neighborhood of the
point o is a non-singular curve and the polynomial fe is of the form

g(z∗) +
∑
i 	=e

λi fi , (5)
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where g ∈ P[2,de],N is an arbitrary polynomial (as bringing into the standard form
means subtracting from fe a linear combination of polynomials fi , i 	= e, and gives
g(z∗) as a result).

Therefore, the restriction fe|C has at the point o a zero of order exactly 2, that is,
the equality μ(B) = 2 holds. This equality does not depend on the codimension a of
the subvariety B.

Example 3.2 Now let us assume that b = γ = 1, and de � 3. This case is not much
more complicated. Again for a general tuple f ∈ B◦ the set C = { fi = 0 | i 	= e} is a
curve, non-singular at the point o, and the polynomial fe is of the form (5), where in
this case

g ∈ π−1
B (π( f )) ⊂ P[2,de],N

(again, identifying the fibre of the projection π with the space P[2,de],N by means of
the projection πe, which is meant but not written) and π−1

B (π( f )) is of codimension
1 in the ambient space P[2,de],N . Blowing up the point o ∈ A, it is easy to see that for
de � 3 the condition

ordog|C � 3

defines an irreducible divisor in P[2,de],N , and moreover for a general polynomial g in
that divisor the equality ordog|C = 3 holds. Therefore, in the case under consideration
we have μ(B) ∈ {2, 3} for any value a of the codimension of the subvariety B.

3.2 Splitting Off a Direct Factor

Now let us consider the general case. Let d+ = (d1, . . . , de−1, de+1, . . . , dN ) be the
truncated tuple of degrees and

P(d+) =
∏
j 	=e

P[1,d j ],N−1

the corresponding space of tuples of (N − 1) polynomials in (N − 1) variables. We
keep the notations introduced at the beginning os Sect. 3.1: B ⊂ P(d) is an irreducible
subvariety of codimension a with β(B) = b.

Theorem 3.1 Assume that γ � N − 1. Then there are irreducible bi-invariant sub-
varieties Bi ⊂ P(d+), i = 1, 2, such that:

(i) the inequality μ(B) � μ(B1) + μ(B2) holds,
(ii) β(B1) = b − 1 and the estimate

a1 = codim(B1 ⊂ P(d+)) � a − 2b + 1 (6)

holds,
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(iii) either β(B2) = b − 1 and the codimension a2 = codim(B2 ⊂ P(d+)) satisfies
the inequality (6) (in this case we say that this is the case of stable reduction), or
β(B2) = b and the inequality

a2 � a − b (7)

holds (in that case we say that this is the case of non-stable reduction).

Before starting to show the theorem, let us explain briefly the strategy of the proof.
Bringing the tuples of the subvariety B into the standard form, we obtained a new
subvariety Bst, where the eth polynomial of every tuple has no linear term. Now we
intersect Bst with a special subvariety of tuples, the eth polynomial in which is a
reducible quadratic form (a product of two linear forms), whereas the other polyno-
mials are arbitrary. Calculating dimensions and taking into account the bi-invariance
of B, we show that the intersection is non-empty and estimate its (co)dimension.
Now we can use the following obvious observation: the multiplicity at zero of a tuple
( f1, . . . , fe, . . . , fN ) with fe just a product of two linear forms, say h1(z)h2(z), is
equal to the sum of multiplicities at zero of the tuples

( f1|{hi =0}, . . . , fe−1|{hi =0}, fe+1|{hi =0}, . . . , fN |{hi =0}),

i = 1, 2. The subvarieties {hi = 0} are hyperplanes and can be identified with CN−1.
Therefore, we can estimate the original multiplicityμ(B) in terms of the multiplicities
μ(Bi ), i = 1, 2, where the subvarieties Bi consist of (N − 1)-uples of polynomials
in (N − 1) variables. (It turns out that one of the linear forms, say h1(z), can be
pre-selected.) The main work in the proof is to estimate the parameters of the new
subvarieties Bi .

Now we proceed to the rigorous argument.

Proof of Theorem 3.1 Let h1(z∗) ∈ P1,N be a linear form of general position with
respect to the subset π(Bst) ⊂ P̃e(d), in the sense that the hyperplane {h1 = 0} does
not contain the linear space

{d f j (o) = 0 | j /∈ I }

for a general tuple f ∈ B. Furthermore, let

� = {h1(z∗)h(z∗) | h ∈ P1,N } ⊂ P2,N

be the linear space of reducible homogeneous quadratic polynomials divisible by h1.
Note that P2,N ⊂ P[2,de],N , so that we may (and will) consider � as a linear subspace
in P[2,de],N . Obviously, dim� = N . Set

P� = π−1
e (�) = P̃(d) × �.

This is closed irreducible subset of the space P̃(d). The following claim is true.
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Proposition 3.1 The intersection Bst ∩ P� is non-empty and is of codimension at
most a − bN + ∑

j∈I ε( j) � a − b2 in P�. Moreover, the equality

π(Bst) = π(Bst ∩ P�)

holds, and for a general tuple f ∈ Bst the intersection π−1
B (π( f )) ∩P� has positive

dimension.

Proof As the set B is bi-invariant, for a general tuple f ∈ Bst the fibre π−1
B (π( f ))

is a closed subset of the space P[2,de],N of codimension γ � N − 1, containing the
zero polynomial. Therefore, the intersection π−1

B (π( f )) ∩ P� is a non-empty closed
subset in � of codimension at most γ , so that its dimension is positive. The other
claims are now obvious. The proof is complete.

By the symbol π� we denote the projection P� → �, the fibre of which is the
space P̃e(d). By the bi-invariance (more precisely, the invariance with respect to the
group G1 of linear changes of variables) either

π�(Bst ∩ P�) = �,

or π�(Bst ∩ P�) is the line {λh2
1(z∗) | λ ∈ C} in �, and then γ = N − 1 (as � is

N -dimensional). The second case is simpler, let us start with the first one.
Let h1h2 ∈ π�(Bst ∩ P�) be a general polynomial, h2 /∈ {λh1 | λ ∈ C}. The

intersection

Bst ∩ π−1
� (h1h2) ⊂ P̃e(d)

is a closed subset of codimension at most

a − bN +
∑
j∈I

ε( j) − γ.

Let us fix isomorphisms of the hyperplanes {hi = 0} and C
N−1 and let

ρi : P[k,l],N → P[k,l],N−1

be the restriction map ρi ( f ) = f |{hi =0}, i = 1, 2. The same symbols ρi will be used
for the corresponding maps of the spaces of tuples of polynomials:

ρi ( f1, . . . , fk) = (ρi ( f1), . . . , ρi ( fk)).

Omitting the polynomial fe, we obtain two projections

ρi : P̃e(d) → P(d+),
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corresponding to restrictions onto the hyperplanes Hi = {hi = 0}. Finally, set

Bi = 〈ρi ◦ π(Bst ∩ π−1
� (h1h2))〉 ⊂ P(d+),

where the brackets 〈·〉mean the bi-invariant span, and the line abovemeans the closure.
The sets Bi without loss of generality can be assumed to be irreducible (if this is not
the case, take any irreducible component).

Let us show the claim (i) of Theorem 3.1. For a general tuple of polynomials

f = ( f1, . . . , fe−1, h1h2, fe+1, . . . , fN ) ∈ Bst ∩ π−1
� (h1h2)

the inequality μ( f ) � μ(B) holds, because f ∈ B. Let

f + = ( f1, . . . , fe−1, fe+1, . . . , fN )

be a truncated tuple. Obviously,

μ( f ) = μ(ρ1( f +)) + μ(ρ2( f +)),

where ρi ( f +) are tuples of general position in the algebraic sets

ρi ◦ π(Bst ∩ π−1
� (h1h2)),

so that μ(ρi ( f +)) = μ(Bi ). This proves the claim (i). ��

3.3 Restriction onto the Hyperplane H1

Let us show the claim (ii). By the generality of the linear form h1, the linear forms
d fi (o), i /∈ I , remain linearly independent after being restricted on the hyperplane
H1 = {h1 = 0}:

rk(d fi (o)|H1 | i /∈ I ) = N − b,

so that β(B1) = b − 1. Since the projection ρ1 is a surjective linear map, the codi-
mension of the set ρi ◦ π(Bst ∩ π−1

� (h1h2)) in the space

∏
j /∈I

P[1,d j ],N−1 ×
∏

j∈I, j 	=e

P[2,d j ],N−1

does not exceed the codimension of the set π(Bst ∩ π−1
� (h1h2)) in the space P̃e(d).

Now let us apply the procedure, inverse to the procedure of bringing into the standard
form: the variety B1 with every tuple

f + = ( f1, . . . , fe−1, fe+1, . . . , fN ) ∈ ρi ◦ π(Bst ∩ π−1
� (h1h2))
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contains also all tuples ( f̃1, . . . , f̃e−1, f̃e+1, . . . , f̃N ), where f̃ j = f j for j /∈ I and

f̃ j = f j +
∑

i /∈I,i< j

λ j,i fi

for j ∈ I , j 	= e, for all possible tuples of coefficients (λ∗,∗), and different tuples of
coefficients determine different tuples of polynomials ( f̃ ). Therefore, the codimension
codim(B1 ⊂ P(d+)) is bounded from above by the number

a − bN +
∑
j∈I

ε( j) − γ + (b − 1)(N − 1) −
∑

j∈I, j 	=e

ε( j)

= a − N − b − γ + ε(e) + 1.

Taking into account that ε(e) � �{ j /∈ I } = N − b, we obtain the estimate (6). This
completes the proof of the claim (ii).

Remark 3.1 If γ = 0, then π−1
B (π( f )) is the whole fibre of the projection π , that is,

the linear space P[2,de],N . In that case h2 ∈ P1,N is any form of general position (in
fact, in this case we could take h2 = h1 and make no assumption that h2 	= λh1).
Therefore, μ(B) � 2μ(B1), where B1 ⊂ P(d+) is a subvariety with β(B1) = b − 1,
the codimension of which satisfies the estimate (6). The claim (iii) in this case is not
needed (obviously, this is the case of stable reduction).

3.4 Restriction onto the Hyperplane H2

Let us show the claim (iii). For a general tuple of polynomials

( f1, . . . , fe−1, fe+1, . . . , fN ) ∈ π(Bst ∩ π−1
� (h1h2))

there are two options:

• the subspace {d fi (o) = 0 | i /∈ I } is not contained in the hyperplane H2 = {h2 =
0},

• the subspace {d fi (o) = 0 | i /∈ I } is contained in H2.

In the first case we have the stable reduction: β(B2) = b − 1 and, arguing in word
for word the same way as in Sect. 3.3, we get that the codimension of the subvariety
B2 satisfies the inequality (6).

Therefore we assume that the second case takes place, so that

rk(d fi (o)|H2 , i /∈ I ) = N − b − 1

and β(B2) = b. Between the linear forms d fi (o)|H2 , i /∈ I , there is exactly one linear
dependence, so that there is a unique index m /∈ I , satisfying the relation

d fm(o)|H2 =
∑

i<m,i /∈I

λi d fi (o)|H2

123



The Gabrielov–Khovanskii Problem for Polynomials 49

with uniquely determined coefficients λi . Therefore, on the Zariski open subset

(ρ2 ◦ π(Bst ∩ π�(h1h2)))
◦

(see the condition (3) at the beginning of Sect. 3.1) we have a well defined map σm of
bringing into the standard form in the mth factor:

σm : (gi | i 	= e) �→ (g̃i | i 	= e).

The natural ambient space for the right-hand side is∏
j /∈I, j 	=m

P[1,d j ],N−1 × P[2,dm ],N−1 ×
∏

j∈I, j 	=e

P[2,d j ],N−1

(up to a permutation of the direct factors), and the codimension of the closed subset

σm ◦ (ρ2 ◦ π(Bst ∩ π−1
� (h1h2)))◦

with respect to that ambient space does not exceed

a − bN +
∑
j∈I

ε( j) − γ − (N − 1) + ε(m).

Nowwe argue in aword for word the sameway aswhen restricting onto the hyperplane
H1: we apply the procedure, inverse to the procedure of bringing into the standard form
in the factors with numbers

j ∈ (I\{e}) ∪ {m}.

The variety B2 with every tuple

g+ = (gi | i 	= e) ∈ σm ◦ (ρ2 ◦ π(Bst ∩ π−1
� (h1h2)))◦

contains all tuples (g̃i | i 	= e), where g̃ j = g j for j /∈ I , j 	= m and

g̃ j = g j +
∑

i /∈I,i 	=m,i< j

λ j,i gi

for j ∈ (I\{e}) ∪ {m}. Therefore, the codimension codim(B2 ⊂ P(d+)) is bounded
from above by the number

a − bN +
∑
j∈I

ε( j) − γ − (N − 1) + ε(m) + b(N − 1)

−
∑

j∈I, j 	=e, j<m

ε( j) −
∑

j∈I, j 	=e, j>m

(ε( j) − 1) − ε(m)

= a − b − γ − (N − 1) + ε(e) + �{ j ∈ I\{e} | j > m}.

123



50 A. V. Pukhlikov

Since obviously �{ j ∈ I\{e} | j > m} � b − 1 and ε(e) � N − b, this implies the
inequality (7). Proof of the claim (iii) is complete.

In the beginning of the proof of Theorem 3.1we put off the casewhenπ�(Bst∩P�)

is the line 〈h2
1(z∗)〉, so that γ = N − 1. In that case H1 = H2, so that we have stable

reduction (see Remark 3.1).
Proof of Theorem 3.1 is complete. Q.E.D. ��

3.5 The Case of High Codimension

Now let us assume that γ � N . In that case it is easy to state and prove an analog of
Theorem 3.1; however, with γ growing the resulting estimates get less and less useful.

Set k = [ γ
N

] + 1 � 2.

Proposition 3.2 Assume that de � k. Then there are irreducible bi-invariant subva-
rieties Bi ⊂ P(d+), i = 1, . . . , k, such that

(i) the inequality μ(B) � μ(B1) + · · · + μ(Bk) holds ,
(ii) for every i ∈ {1, . . . , k} we have: either β(Bi ) = b − 1, and then the codimension

ai = codim(Bi ⊂ P(d+)) satisfies the inequality (6), or β(Bi ) = b and the
codimension ai satisfies the inequality (7).

Proof repeats the proof of Theorem 3.1 word for word, with only one differ-
ence: for � we have to take the irreducible subvariety of decomposable forms of
degree k,

� =
⎧⎨
⎩

k∏
j=1

h j (z∗) | h j ∈ P1,N

⎫⎬
⎭ ⊂ Pk,N ⊂ P[2,de],N

(the last inclusion is provided by our assumption that de � k). Obviously, dim� > γ ,
so that the arguments used in the proof of Theorem 3.1 work in this case. Setting

B j = 〈ρ j ◦ π(Bst ∩ π−1
� (h1 · · · hk))〉 ⊂ P(d+),

where ρ j is the restriction onto the hyperplane Hj = {h j = 0}, and all the symbols
that we use have the same meaning as in Sects. 3.2–3.4, we obtain the inequality

μ(B) � μ(B1) + · · · + μ(Bk).

Repeating the arguments of Sects. 3.3, 3.4, we obtain the claim (ii). This completes
the proof of Proposition 3.2.

The proposition that we have just shown is far from being as useful as Theorem 3.1,
because k can be high and, the main point, all subvarieties Bi can have β(Bi ) = b,
which essentially weakens the estimates obtained by iterating Proposition 3.2. ��
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4 Explicit Estimates for Multiplicities

In this section we obtain estimates for μ(a) for a � N , which are close to optimal
ones. First, we consider the case of a subvariety B ⊂ P(d) with β(B) = 1 as an
example, when it is easy to obtain a precise estimate from above for μ(B). Then
using Theorem 3.1, we construct a recurrent procedure of estimating the multiplicity,
based on controlling two parameters, the codimension a and b = β(B). (Recall that
a � b2.) At first this procedure is applied to obtain the estimates for small values of
the codimension a � 49. After that, we consider the general case: in Sects. 4.3–4.5
we prove estimates from above forμ(a), where the estimating function grows as C

√
a ,

here C > 0 is some effectively estimated constant.

4.1 Estimating the Multiplicity for b = 1

Let P(d) be an irreducible bi-invariant subvariety of codimension a � N .

Proposition 4.1 Assume that β(B) = 1. Then the inequality μ(B) � a + 1 holds.

Proof As we saw above (Proposition 2.4), for a = 1 we have μ(B) � 2. Therefore
we may assume that N � a � 2 and prove the proposition by induction on N .
In the notations of Sect. 3, we have γ � a − 1 � N − 1, so that we can apply
Theorem 3.1: there are irreducible bi-invariant subvarieties Bi ⊂ P(d+), such that
μ(B) � μ(B1) + μ(B2). Here β(B1) = 0, so that μ(B1) = 1. On the other hand,
a2 = codim(B2 ⊂ P(d+)) � a − 1, so that by the inductive assumption

μ(B2) � a2 + 1 � a.

Q.E.D. for the proposition. ��
Remark 4.1 The estimate in Proposition 4.1 is sharp: for any a � N there is an
irreducible bi-invariant subvariety B ⊂ P(d) of codimension a with β(B) = 1 and
μ(B) = a + 1. Indeed, let B◦ ⊂ P(d) be defined by the conditions

• the equality rk(d f1(o), . . . , d fN−1(o)) = N − 1 holds, so that the set C = { f1 =
· · · = fN−1 = 0} in a neighborhood of the point o is a curve, non-singular at that
point,

• the inequality ordo ( fN |C ) � a + 1 holds.

It is easy to see that codim(B◦ ⊂ P(d)) � a, so that for the closure B of the
bi-invariant span 〈B◦〉 the more so codim(B ⊂ P(d)) � a, and μ(B) � a + 1.
Therefore, the last two inequalities we have the equality (the strict inequalities are
impossible by Proposition 4.1).

Let us show now that if the degrees di are high enough, then for β(B) = 1 the
restriction a � N for the codimension is not needed.

Proposition 4.2 Assume that d1 � a + 1 and β(B) = 1. Then μ(B) � a + 1.
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Proof Let f ∈ B be a general tuple. For some e ∈ {1, . . . , N } we have:

rk(d fi (o) | i 	= e) = N − 1,

so that C = { fi = 0 | i 	= e} in a neighborhood of the point o is a curve, non-singular
at that point. It is sufficient to show that the condition ordo ( fe|C ) � a + 1 defines
a closed subset in P[1,de],N of codimension at least a (and for that reason precisely
a). But this is obvious: let l(z∗) be a general linear form, then the polynomials li (z∗),
i = 1, . . . , a + 1, satisfy the condition ordo

(
li (z∗)|C

) = i . Therefore, the linear
subspaces

�i = { fe ∈ P[1,de],N | ordo ( fe|C ) � i}

are distinct and �1 = P[1,de],N ⊃ �2 ⊃ · · · ⊃ �a+1 (recall that de � d1 � a + 1).
Therefore indeed codim(�a+1 ⊂ �1) � a, as we need. Q.E.D. for the proposition. ��
Remark 4.2 It seems that the assumption d1 � a + 1 can be considerably relaxed.

4.2 Estimating Multiplicities for Small Codimensions

Theorem 3.1 shows that in order to estimate the multiplicity μ(B) one needs to take
into account the value of the parameter β(B) = b. Let U ⊂ Z+ × Z+ be the set
{(a, b) | a � b2}. Let us define inductively the function

μ : U → Z+,

setting μ(a, 0) ≡ 1, μ(a, 1) ≡ a + 1, for a < b(b + 1)

μ(a, b) = 2μ(a − (2b − 1), b − 1),

for a � b(b + 1)

μ(a, b) = μ(a − (2b − 1), b − 1) + max{μ(a − (2b − 1), b − 1), μ(a − b, b)}.

Theorem 3.1 immediately implies

Theorem 4.1 Let B ⊂ P(d) be an irreducible bi-invariant subvariety of codimension
a � N and β(B) = b. Then the inequality

μ(B) � μ̄(a, b)

holds. In particular, μ(a) � max0�b�√
a μ̄(a, b).

For small values of a the function μ is easy to compute by hand; it is not hard to
write a computer program, computing μ, either. Below we give the table of values
μ(a, b) for a � 49, b � 7. The symbol ∗ means that the pair (a, b) /∈ U and the value
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of the function μ is not defined. Already for these small values of the codimension
the growth of the values μ(a, b) can be clearly seen. In boldface we give the maximal
value μ(a, b) for a given a.

a 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
b = 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
b = 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
b = 2 * * * 4 6 8 11 14 18 22 27 32 38 44 51 58
b = 3 * * * * * * * * 8 12 16 22 28 36 44 55
b = 4 * * * * * * * * * * * * * * * 16
b = 5 * * * * * * * * * * * * * * * *

a 17 18 19 20 21 22 23 24 25 26 27 28
b = 0 1 1 1 1 1 1 1 1 1 1 1 1
b = 1 18 19 20 21 22 23 24 25 26 27 28 29
b = 2 66 74 83 92 102 112 123 134 146 158 171 184
b = 3 68 82 99 119 140 165 193 223 257 295 335 380
b = 4 24 32 44 56 72 88 110 136 164 198 238 280
b = 5 * * * * * * * * 32 48 64 88
b = 6 * * * * * * * * * * * *

a 29 30 31 32 33 34 35 36 37 38 39
b = 0 1 1 1 1 1 1 1 1 1 1 1
b = 1 30 31 32 33 34 35 36 37 38 39 40
b = 2 198 212 227 242 258 274 291 308 326 344 363
b = 3 429 481 538 600 665 736 812 892 978 1070 1166
b = 4 330 391 461 537 625 726 841 966 1106 1264 1441
b = 5 112 144 176 220 272 328 396 476 560 660 782
b = 6 * * * * * * * 64 96 128 176
b = 7 * * * * * * * * * * *

a 40 41 42 43 44 45 46 47 48 49
b = 0 1 1 1 1 1 1 1 1 1 1
b = 1 41 42 43 44 45 46 47 48 49 50
b = 2 382 402 422 443 464 486 508 531 554 578
b = 3 1269 1378 1492 1613 1741 1874 2015 2163 2317 2479
b = 4 1631 1842 2076 2333 2609 2912 3242 3602 3987 4404
b = 5 922 1074 1250 1452 1682 1932 2212 2528 2893 3313
b = 6 224 288 352 440 544 656 792 952 1120 1320
b = 7 * * * * * * * * * 128
b = 8 * * * * * * * * * *

Now let us consider the problem of obtaining a simple effective upper bound for
the multiplicities μ(B). From the technical viewpoint, one needs to find a simple
and visual formalization of the procedure of estimating these numbers in terms of
the numbers μ(B ′) for subvarieties B ′ ⊂ P(d ′) in the spaces of truncated tuples
(d ′

1, . . . , d ′
N ′) with N ′ < N .
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4.3 The General Method of Estimating the Multiplicity

The symbol B stands for an irreducible bi-invariant subvariety of codimension a with
β(B) = b. Let us consider the three-letter alphabet {A, C0, C1}. Let W be the set of
all words in that alphabet, including the empty word ∅. The length of the word w is
denoted by the symbol |w| ∈ Z+. The length of the empty word is equal to zero.

Let us describe a procedure of constructing a sequence of subsets Wl ⊂ W , l =
0, 1, · · · . The length of every word

w ∈
⋃

l∈Z+

Wl

does not exceed N . Set N (w) = N − |w| ∈ Z+. This sequences stabilizes, that
is, Wl = Wl+1, starting from some l = L . For every word w ∈ ∪Wl we assign a
multi-index d(w) ∈ Z

N (w)
+ and an irreducible bi-invariant subvariety

B[w] ⊂ P(d(w))

of codimension a(w) with β(B[w]) = b(w).
We start the construction with W0 = {∅}. Set B[∅] = B ⊂ P(d), where d(∅) = d,

so that a(∅) = a and b(∅) = b. If b(∅) = 0, then set W1 = W2 = · · · = W0: the
procedure terminates. Assume that the subsets W0,…, Wl are already constructed. If
for everyw ∈ Wl the equality b(w) = 0 holds, then we set Wl+1 = Wl+2 = · · · = Wl ,
terminating the procedure. Otherwise, take any word w ∈ Wl with b(w) � 1. Now
apply Theorem 3.1 to the subvariety B[w] ⊂ P(d(w)) (constructed at a previous
step). Consider the words w1 = wA and w2 = wCi , i ∈ {0, 1}, where i = 1 in the
case of stable reduction and i = 0, otherwise. Furthermore,

B[w j ] = (B[w]) j ⊂ P(d+(w)),

j = 1, 2, in the sense of notations of Theorem 3.1, so that d(w j ) = (d(w))+ and

a(w j ) = (a(w)) j = codim(B[w j ] ⊂ P(d(w j ))),

b(w1) = b(w) − 1 and b(w2) = b(w) − i . The inequality

a(w1) � a(w) − (2b(w) − 1)

holds, in the case of stable reduction the same inequality ifs satisfied by the second
codimension,

a(w2) � a(w) − (2b(w) − 1),

whereas in the case of non-stable reduction the estimate

a(w2) � a(w) − b(w)

holds. In any case, however, a(w j ) < a(w).
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The set of words Wl+1 is obtained from Wl by removing the word w and adding
the words w1, w2:

Wl+1 = (Wl \ {w}) ∪ {w1, w2}.

In particular, �Wl+1 = �Wl + 1. Theorem 3.1 implies that

∑
w∈Wl

μ(B[w]) �
∑

w∈Wl+1

μ(B[w]).

Therefore, for every l we have the estimate

μ(B) �
∑

w∈Wl

μ(B[w]) (8)

Proposition 4.3 The procedure of constructing the sets Wl ⊂ W terminates: for some
l = L we have b(w) = 0 for all words w ∈ WL.

Proof This is obvious, if, in order to construct Wl+1 we take a word w ∈ Wl with
the maximal value of the codimension a(w), since a(w j ) < a(w) for both words w j ,
j = 1, 2. However, this implies the finiteness of the procedure for any choice of the
word w ∈ Wl : it is easy to see that the set

⋃
l∈Z+

Wl ⊂ W

does not depend on which word w ∈ Wl with b(w) � 1 is chosen at every step, and
for that reason this set is finite.

One can argue in a simpler way: as we mentioned above, the length of every word
does not exceed N . Q.E.D. for the proposition.

Set W = WL . For anyw ∈ W we have b(w) = 0, so that μ(B[w]) = 1. Therefore,

μ(B) � �W. (9)

So in order to estimate from above the multiplicity μ(B), we need to estimate the
cardinality of the set W .

4.4 An Estimate for the Cardinality of the Set of Words

We will write the words in the following way:

w = τ1 · · · τK ,

where τi ∈ {A, C0, C1}. Now let

ν : {A, C0, C1} → {A, C}
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be the map from the three-letter alphabet to the two-letter one, given by the equalities
ν(A) = A, ν(Ci ) = C , and

ν : w = τ1 · · · τK �→ w̄ = ν(τ1) · · · ν(τK )

the corresponding map of the set of words. Now we have

Lemma 4.1 For every i = 0, 1, . . . the map ν|Wi is injective. In particular, ν|W is
injective.

Proof A stronger claim is true: among all words w̄ = ν(w), w ∈ Wi , no one is a
left segment of another one. (In particular, no two words are equal, which means the
injectivity of the map ν|Wi .) The last claim is easy to show by induction. The set W0
consists of one word, and for it the claim is trivial. Assume that we have shown it for
Wi , where i = 0, . . . , e. If We+1 = We, then there is nothing to prove. If We+1 	= We,
then We+1 is obtained from We by removing somewordw ∈ We and adding twowords
w1 = wA and w2 = wCα , where α ∈ {0, 1}. For these words we have w̄1 = w̄A and
w̄2 = w̄C . Obviously, w̄1 and w̄2 are not left segments of each other and no word w̄′
for w′ ∈ We\{w} is not a left segment of w̄1 or w̄2, because otherwise w̄′ = w̄1 or
w̄2 (since w̄′ is not a left segment of the word w̄ by the inductive assumption), but
then w̄ would be a left segment of the word w̄′, contrary to the inductive assumption.
In a trivial way w̄1 and w̄2 are not left segments of the word w̄′, since otherwise this
would have been true for w̄ as well, contrary to the inductive assumption. Q.E.D. for
the lemma. ��

Let w ∈ W be a word, w′ its left segment (by the construction of the set W we
have

w′ ∈
⋃

l∈Z+

Wl ,

since w is obtained from the empty word ∅ by adding letters at the right-hand end
when changing from Wk to Wk+1 for certain values k), and moreover, w′ 	= w and
w′τ is the left segment of the word w of length |w′| + 1.

Lemma 4.2 (i) If τ = A or C1, then the inequality

a(w′τ) � a(w′) − (2b(w′) − 1)

holds and b(w′τ) = b(w′) − 1.
(ii) If τ = C0, then the inequality

a(w′τ) � a(w′) − b(w′)

holds and b(w′τ) = b(w′).

Proof it follows immediately from Theorem 3.1. Q.E.D. for the lemma. ��
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Besides, the inequality (4) implies that for every word w ∈ ⋃
l∈Z+ Wl we have the

estimate
a(w) � b2(w). (10)

Example 4.1 Let us prove Proposition 4.1 in terms of the formalism developed above.
Let b = b(∅) = 1. Now for every word w ∈ Wi we have the alternative: either
b(w) = 0 (and then w ∈ W ), or b(w) = 1 (and then a(wτ) � a(w) − 1 for any letter
τ ), so that the set W is of the form

A, C0A, C0C0A, . . . , C0C0 · · · C0︸ ︷︷ ︸
k

A, C0 · · · C0︸ ︷︷ ︸
k

C1,

where k + 1 � a. Therefore, �W � a + 1, as we claimed above in Sect. 4.1.

Let us come back to the general case. Recall that a � N .

Theorem 4.2 The following inequality holds:

�W � 2b (a − b(b−1)
2 )b

(b!)2 . (11)

Proof For every word w ∈ W by construction b(w) = 0. Since the letter C0 does
not change the value of the parameter b, and the letters A and C1 bring it down by 1,
we may conclude that in the word w there are precisely b positions, occupied by the
letters A and C1. Let them be the positions with numbers

m1 + 1, m1 + m2 + 2, . . . , m1 + m2 + · · · + mb + b,

mi ∈ Z+. By Lemma 4.2, the inequality

0 � a(w) � a − m1b − (2b − 1)−
− m2(b − 1) − (2(b − 1) − 1)−

· · ·
− mi (b − (i − 1)) − (2(b − (i − 1)) − 1)−

· · ·
− mb − 1 =

= a − b2 −
b∑

i=1
mi (b − (i − 1))

holds, so that (m1, . . . , mb) is an arbitrary integral point in the polytope

� = {x1 � 0, . . . , xb � 0, bx1 + (b − 1)x2 + · · · + xb � a − b2} ⊂ R
b.

Therefore, even if we assume that all possible distributions of the letters A and C1 on
the chosen positions are realized by words w ∈ W (in reality this is not the case: we
have a lot less words in W , see Remark 4.3), then the inequality
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�W � 2b · �(� ∩ Z
b)

holds. Now let us estimate the number of integral points in �. For that purpose,
consider a larger polytope

�+ =
{

x1 � 0, . . . , xb � 0, bx1 + · · · + xb � a − b(b − 1)

2

}
⊂ R

b.

Obviously, � ⊂ �+.

Lemma 4.3 The following inequality holds:

�(� ∩ Z
b) � vol(�+).

Proof To every point x = (x1, . . . , xb) ∈ R
b we correspond the unit cube

�(x) = [x1, x1 + 1] × [x2, x2 + 1] × · · · × [xb, xb + 1] ⊂ R
b,

the vertex with the minimum value of the sum of coordinates x1 + · · · + xb of which
is the point x . If x ∈ �, then �(x) ⊂ �+, since

b + (b − 1) + · · · + 1 + a − b2 = a − b(b − 1)

2
.

Therefore

�(� ∩ Z
b) =

∑
x∈�∩Zb

vol(�(x)) = vol

⎛
⎝ ⋃

x∈�∩Zb

�(x)

⎞
⎠ � vol(�+),

as we claimed. Q.E.D. for the lemma. ��
Computing the volume of the polytope�+, we complete the proof of Theorem 4.2.

4.5 Some Calculus

The inequality (11) immediately implies the estimate

μ(a) � max
1�b�[√a]

vb,

where

vb = 2b (a − b(b−1)
2 )b

(b!)2 .

We have to estimate the maximum of the sequence vb on the set {1, . . . , [√a]} by a
function that depends on the argument a only. We do it in a few steps. Set
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ub = 1

2πb

(
2a − b(b − 1)

b2
e2
)b

.

Lemma 4.4 The inequality vb � ub holds.

Proof Applying the Stirling formula, we write

vb = 1

2πbeθ/6b

(
2a − b(b − 1)

b2
e2
)b

,

where 0 < θ < 1. Q.E.D. for the lemma. ��
Lemma 4.5 The sequence ub is increasing if the following inequality holds:

2a − b(b − 1) � 5

2
b2. (12)

Proof Write

ub+1

ub
= 1

1 + 1
b

e2(
1 + 1

b

)2b

1(
1 + 2b

2a−b(b+1)

)b

2a − b(b + 1)

(b + 1)2
. (13)

Assume first that b � 9. If the numbers a and b satisfy the inequality 2a − b(b +1) �
5
2 (b + 1)2 (that is, the inequality (12) for b + 1), then the denominator of the third
factor in the right hand side can estimated from above in the following way:

(
1 + 2b

2a − b(b + 1)

)b

�
(
1 + 4

5

1

b

)b

< e
4
5 .

The second factor in the right hand side of the inequality (13) is strictly higher than
one, whereas the fourth is at least 5

2 . As a result, we get:

ub+1

ub
>

9

10
· 5
2

· e− 4
5 > 1,

which is what we need. For smaller values b � 8 the second and third factors in the
right hand side of the inequality (13) can be estimated more precisely, and elementary
calculations with a computer complete the proof of the lemma. ��
Corollary 4.1 For a � 17 the value bmax ∈ {1, . . . , [√a]}, at which the maximum of
the sequence ub is attained, satisfies the inequality

2a − bmax(bmax − 1) � 5

3
a.
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Proof By the previous lemma, the value bmax satisfies the inequality

2a − bmax(bmax + 1) � 5

2
b2max

(otherwise, the next element of the sequence ub would be higher). Now elementary
computations complete the proof of the corollary. ��
Corollary 4.2 (i) For a � 17 the following estimate holds:

�W � qb = 1

2πb

(
5a

3b2
e2
)b

.

(ii) For any a the following estimate holds:

�W � wb = 1

2πb

(
2a

b2
e2
)b

.

Proof Both claims follow immediately from the inequality (11), taking into account
Lemma 4.4 and the previous corollary. ��
Theorem 4.3 (i) For a ≥ 17 the following estimate holds:

μ(a) � e2

2π [√a]
(
5

3
e2
)[√a]

.

(ii) For any a the following estimate holds:

μ(a) � e2

2π [√a]
(
2e2

)[√a]
.

Proof The arguments are identical in both cases, the only difference is which of the
two claims of Corollary 4.2 is used.

Let us show part (i). Arguing as in the proof of Lemma 4.5, we conclude that the
sequence qb is increasing. Therefore, its maximum is attained for b = [√a]. Since

a < (b + 1)2 = b2 + 2b + 1,

the inequality

( a

b2

)b
�

(
1 + 2

b

)b

< e2,

holds, which immediately implies the claim (i). The second part is shown in word for
word the same way. Q.E.D. ��
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Remark 4.3 As we can see from the given proof, the estimate we obtained is not
optimal and can be essentially improved. For b ≈ √

a we have 2a − b(b − 1) ≈
a, so that in the inequality of Theorem 4.3 the expression (2e2) can be replaced
by e2. Furthermore, in the proof of Theorem 4.2 we took into account all possible
tuples of positions (m1, . . . , mb) and all possible distributions of the letters A and
C1 into b positions. However, since in the set of words W = ν(W ) of the two-letter
alphabet {A, C} no word is a left segment of another word and the map ν : W → W
is one-to-one, for a fixed distribution of the letters A and C1 into b positions, such
that at least two letters C1 follow one another, not all tuples (m1, . . . , mb) ∈ � ∩
Z

b are realized, since two distinct words w1 	= w2, {w1, w2} ⊂ W can not differ
only on a segment consisting of the letters C0, C1. The question of finding a precise
upper estimate for the numbers μ(a), even in the asymptotic sense, remains an open
problem.

5 A Generalization of the Gabrielov–Khovanskii Problem

In this section we consider a generalization of the Gabrielov–Khovanskii problem:
the polynomials f1, . . . , fN are restricted onto an arbitrary (not a fixed) subvariety
R 
 o of codimension l, and for the multiplicity we take the multiplicity of zero at the
point o of a tuple of generic N − l polynomials in the polynomial span of the tuple
f . In Sect. 5.1 we give a formal statement of the problem, in Sect. 5.2 its alternative
setting using the Chow varieties, parameterizing effective cycles of a given degree and
codimension in PN . In Sect. 5.3 we show that the estimates of the multiplicity of zero
in the generalized problem can be obtained parallel to the estimates for the original
problem (Sects. 3, 4).

5.1 Polynomial Spans and Multiplicities

We consider the affine space AN = C
N
(z1,...,zN ) as open set embedded in the projective

space P
N
(x0:x1:···:xN ) as the standard affine chart {x0 	= 0}, that is, zi = xi/x0. For

an ordered multi-index d consider the space of tuples of polynomials P(d). For an
arbitrary tuple f ∈ P(d) we define its polynomial span

[ f ] = [ f1, . . . , fN ] ⊂ P(d)

as the smallest bi-invariant set, containing the tuple f . In particular, the polynomial

span contains all tuples of the form ( f +
1 , . . . , f +

N ), where

f +
i = fi +

∑
j<i

si, j (z∗) f j ,

the polynomials si, j (z∗) run through the entire space P[0,di −d j ],N (independently of
each other), so that f +

i ∈ P[1,di ],N and f + ∈ P(d).
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Now for an irreducible subvariety R ⊂ P
N of codimension l ∈ {0, 1, . . . , N } set:

• if o /∈ R, then μ( f ; R) = 0,
• if the closed set

R ∩ { f1 = · · · = fN = 0}

has an irreducible component of a positive dimension, passing through the point
o, then μ( f ; R) = ∞,

• if none of the two cases described above takes place, then

μ( f ; R) = eO( f +
l+1, . . . , f +

N )

whereO = Oo,R is the local ring at the point o and eO is the Samuel multiplicity,
see Fulton (1984, Chapter 7); ( f +

1 , . . . , f +
N ) ∈ [ f1, . . . , fN ] is a general tuple.

For an arbitrary effective cycle R = � j∈J r j R j of pure codimension l define
μ( f ; R) by linearity, setting

μ( f ; R) =
∑
j∈J

r jμ( f ; R j ),

where the sum in the right hand side is ∞, if at least one value μ( f ; R j ) is ∞ (and
r j � 1). It is easy to see that if μ( f ; R) is a finite non-zero number, then it is equal to
the multiplicity of the point o in the 0-cycle

({ f +
l+1 = 0} ◦ · · · ◦ { f +

N = 0} ◦ R),

where the scheme-theoretic intersection is taken in a neighborhood of the point o.
Furthermore, set for any δ � 1

μ( f , δ) = sup
degR=δ

{μ( f ; R)},

where the supremum is taken over all effective cycles R on P
N of pure codimension

l and degree degR = δ.
Now let us consider an irreducible bi-invariant subvariety B ⊂ P(d). For an effec-

tive cycle R of pure codimension l ∈ {0, . . . , N } set

μ(B; R) = μ( f ; R),

where f ∈ B is a general tuple of polynomials. For any δ � 1 set

μ(B, δ) = μ( f , δ),

where f ∈ B is a general tuple of polynomials; obviously,

μ(B, δ) = inf{μ( f , δ) | f ∈ B}.

123



The Gabrielov–Khovanskii Problem for Polynomials 63

Finally,

μl(a, δ) = sup
α(B)�a

{μ(B, δ)},

where α(B) = codim(B ⊂ P(d)) and the supremum is taken over all irreducible
bi-invariant subvarieties of codimension at most a in P(d).

We emphasize that μ(B, δ) is not

sup
degR=δ

{μ(B; R)},

because the equality μ(B; R) = μ( f ; R) holds for any tuple f ∈ UR from a non-
empty Zariski open subset UR ⊂ B, which depends on R.

The generalized Gabrielov–Khovanskii problem, considered in this section, is to
compute (or estimate) the function μl(a, δ). We will show that for a � N the induc-
tive procedure of estimating this function is totally similar to the absolute problem,
considered in Sects. 2–4. The resulting estimates are linear in the degree δ.

5.2 The Chow Varieties

By the symbol Cl,N (δ)we denote the Chow variety, parameterizing effective cycles of
pure codimension l and degree δ on PN , so that the definition of the number μ( f , δ),
given above, can be written in the following way:

μ( f , δ) = sup
Cl,N (δ)
R

{μ( f ; R)}.

Now let us describe an alternative definition of the numbers μ(B, δ). Consider the
sets

Xl,N (m, δ) ⊂ P(d) × Cl,N (δ),

consisting of such tuples ( f , R), that

μ( f ; R) � m ∈ Z+ ∪ {∞}.

It is easy to see that Xl,N (m, δ) are closed algebraic sets. Denote by the symbol πP
the projection

( f , R) �→ f .

By projectivity of Chow varieties we get that

Xl,N (m, δ) = πP (Xl,N (m, δ)) ⊂ P(d)
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is a closed algebraic set. Explicitly, it consists of such tuples f , for which there exists

and effective cycle R ∈ Cl,N (δ), satisfying the inequality μ( f ; R) � m.
Let B ⊂ P(d) be an irreducible subvariety. We define the multiplicity μ(B, δ) =

μl,N (B, δ) (in order to simplify the notations,we sometimes omit arguments or indices,
the value of which is fixed at the moment), setting

μ(B, δ) = max
m∈Z+∪{∞}

{m | B ⊂ Xl,N (m, δ)}.

Explicitly: μ(B, δ) = m, if for a general tuple f ∈ B and any effective cycle R ∈
Cl,N (δ) the inequality

μ( f ; R) � m

holds, and for at least one cycle R ∈ Cl,N (δ) this inequality turns into the equality. It is
clear that ifμl,N (B, δ) = ∞, then for a general (and therefore, every) tuple ( f ) the set
of its zeros Z( f1, . . . , fN ) has a component of positive dimension, passing through
the point o. The converse is also true: if there is such a component, for R one can take
such a subvariety that dim(R ∩ Z( f∗)) � 1. By the previous remark, in the notations
of Sect. 2.2 the equality Xl,N (∞, δ) = X∞ holds and for that reason Propositions 2.1
and 2.2 give an estimate of the codimension of that set.

By construction, the sets Xl,N (m, δ) are bi-invariant, so that in order to define and
estimate the numbersμl(a, δ) it is sufficient to consider bi-invariant subsets B ⊂ P(d),
as we did it in Sects. 2, 3. (If we replace an arbitrary subvariety B ⊂ P(d) by its bi-
invariant span [B] ⊂ P(d), then the codimensiondoes not decrease and all the numbers
μ(B; R), μ(B, δ) do not change.) The further study of the numbers μ(B; R), μ(B, δ)

and μl(a, δ) goes parallel to the constructions of Sects. 2–4, and we will only outline
its main steps, paying attention to the additional arguments and modifications.

An analog of Proposition 2.3 is the following

Proposition 5.1 If β(B) = 0, then μ(B; R) = multo R for every R ∈ Cl,N (δ).

Proof We may assume that the subvariety B is bi-invariant. Let us fix an effective
cycle R. If o /∈ SuppR, then in a trivial way μ(B; R) = multo R = 0. So we assume
that R ⊂ P

N is an irreducible subvariety containing the point o.
For a general tuple f ∈ B by assumption we have

{d f1(o) = · · · = d fN (o) = 0} = {0},

so that

codim
(
{d f1(o) = · · · = d fl+1(o) = 0} ⊂ C

N
)

= l + 1.

Since the variety B is bi-invariant, with every tuple g ∈ B it contains also the tuple

g+ = (g+
1 , . . . , g+

N ), where
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g+
i = gi +

i−1∑
j=1

λi, j g j

for any λi, j ∈ C. It follows that for a general tuple f ∈ B the linear form d fl+1(o)

does not vanish identically on every component of the tangent cone To R (they all have
codimension l in CN ). Therefore,

multo(R ◦ { fl+1 = 0}) = multo R.

This equality holds for every algebraic cycle R of codimension l on PN and a general
tuple f . The cycle (R ◦ { fl+1 = 0}) has codimension l + 1. Continuing in this way
for the codimension l + 1, . . . , N , we complete the proof of the proposition. ��
Corollary 5.1 If β(B) = 0, then μ(B, δ) = δ for every δ � 1.

Proof Indeed, for every effective cycle R of pure codimension l the inequality
multo R � degR holds, and moreover, for the cones we have the equality. Q.E.D.
for the corollary.

Assume now that a = codim(B ⊂ P(d)) � N and consider the procedure of
reducing to the smaller dimensions, constructed in Sect. 3, and the resulting explicit
estimates for the numbers μl(a, δ), similar to those obtained for the numbers μ(a) in
Sect. 4.

5.3 Reduction to the Smaller Dimensions and Explicit Estimates
in the Generalized Problem

The procedure of bringing into the standard form and subsequent splitting off a direct
factor yields the following generalization of Theorem 3.1.

Theorem 5.1 Assume that a = codim(B ⊂ P(d)) � N and b = β(B) � 1. Then
there are irreducible bi-invariant subvarieties Bi ⊂ P(d+), i = 1, 2, and integers
δ1, δ21, δ22 ∈ Z+, such that δ = δ1 + δ21 + δ22 and the inequality

μl,N (B, δ) � μl,N−1(B1, δ1) + μl,N−1(B2, δ1)

+μl−1,N−1(B1, δ21) + μl−1,N−1(B2, δ22), (14)

holds, whereas the claims (ii), (iii) of Theorem 3.1 remain true.

Proof is almost word for word the same as the proof of Theorem 3.1. We dwell only
on the necessary changes. We use the notations of Sects. 3.2–3.4.

Let μl,N (B, δ) = m. Consider a general polynomial h1h2 ∈ π�(Bst ∩ P�) and a
general tuple

f = ( f1, . . . , fe−1, h1h2, fe+1, . . . , fN ) ∈ Bst ∩ π−1
� (h1h2).

By the definition of multiplicity, there is an effective cycle R ∈ Cl,N (δ), such that
μ( f ; R) � m.We define effective cycles R1, R21 and R22 by the following conditions:
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• R = R1 + R21 + R22,
• the component Q of the cycle R is contained in R1 if and only if Q 	⊂ H1 and

Q 	⊂ H2,
• the component Q of the cycle R is contained in R21 if and only if Q ⊂ H1,
• the component Q of the cycle R is contained in R22 if and only if Q 	⊂ H1, but

Q ⊂ H2,

Set δ1 = degR1, δ2i = degR2i , i = 1, 2. Obviously, δ = δ1 + δ21 + δ22. Consider
an arbitrary irreducible component Q of the cycle R. It is an irreducible component
of precisely one of the cycles R1, R21, R22.

If Q ⊂ SuppR1, then

μ( f ; Q) � μ(ρ1( f +); (Q ◦ H1)) + μ(ρ2( f +); (Q ◦ H2)).

Here (Q ◦ Hi ) are effective cycles of pure codimension l on Hi ∼= P
N−1.

If Q ⊂ SuppR21, then

μ( f ; Q) � μ(ρ1( f +); Q),

where Q is considered as a subvariety of codimension (l − 1) on H1 ∼= P
N−1; in a

similar way, if Q ⊂ SuppR22, then

μ( f ; Q) � μ(ρ2( f +); Q),

where Q ⊂ H2 ∼= P
N−1 is a subvariety of codimension (l − 1). This proves the

inequality (14). The remaining part of the proof of Theorem 3.1 works as it is.
Q.E.D. for Theorem 5.1. ��

Remark 5.1 If we fix an effective cycle R ∈ Cl,N (δ), then the following claim is
an analog of Theorem 3.1: if a � N and β(B) � 1, then there are irreducible bi-
invariant subvarieties Bi ⊂ P(d+), i = 1, 2, and effective cycles R1 ∈ Cl,N−1(δ1)

and R2 ∈ Cl−1,N−1(δ2) of degrees δ1, δ2 ∈ Z+, where δ = δ1 + δ2, such that the
inequality

μ(B; R) � μ(B1; R1) + μ(B2; R1) + μ(B2; R2) (15)

holds, and moreover, the claims (ii), (iii) of Theorem 3.1 hold. The proof is word for
word the same as the proof of the previous claim, with the only difference: for a fixed
cycle R the general hyperplane H1 does not contain any of its irreducible components,
so that in the notations of the proof of Theorem 5.1 one can set R21 = 0.

Now similar to Proposition 4.1 we get

Corollary 5.2 For a � N, β(B) = 1 the inequality μl,N (B, δ) � (a + 1)δ holds.

Proof is given by induction on N . By the inequality (14) and Corollary 5.1 we have
the estimate

μl,N (B, δ) � δ1 + δ21 + μl,N−1(B2, δ1) + μl−1,N−1(B2, δ22).
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If β(B2) = 0, then μl,N (B, δ) � 2δ1 + δ21 + δ22 � 2δ, which what we need. If
β(B2) = 1, then by the inductive assumption

μl,N (B, δ) � δ1 + δ21 + aδ1 + aδ22 � (a + 1)δ.

Q.E.D. for the corollary. ��
In Sect. 4.2 we introduced the function μ̄(a, b).

Corollary 5.3 The inequality

μl,N (B, δ) � μ̄(a, b)δ,

holds, where a = codim(B ⊂ P(d)) � N b = β(B).

Proof This follows immediately from Theorem 5.1. Q.E.D. for the corollary. ��
As an analog on the inequality (9), we have the estimate

μl,N (B, δ) � (�W )δ, (16)

which is obtained by repeating the arguments of Sect. 4.3 word for word, taking into
account the equality δ = δ1 + δ21 + δ22 at every step. The corresponding formal
procedure is constructing irreducible bi-invariant subvarieties B[w], parameterized
by the words of three-letter alphabet {A, C0, C1}, and non-negative integers δ j (w),
j = 0, . . . ,min{l, |w|}, satisfying the equality

δ =
min{l,|w|}∑

j=0

δ j (w).

As an analog of the estimate (8), we have the estimate

μl,N (B, δ) �
∑

w∈Wl

min{l,|w|}∑
j=0

μl− j,N−|w|(B[w], δ j (w)),

shown by induction on l = 0, 1, . . .. If for a word w we have β(B[w]) = 0, then
Corollary 5.1 allows us to replace the summand μl− j,N−|w|(B[w], δ j (w)) by the
number δ j (w). The details are left to the reader. Proof of the inequality (16) is complete.

Theorem 4.2 now implies

Theorem 5.2 Assume that a = codim(B ⊂ P(d)) � N and b = β(B) � 1. Then
for every δ ∈ Z+ the following inequality holds:

μl,N (B, δ) � 2b (a − b(b−1)
2 )b

(b!)2 δ.
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More convenient estimates follow from Theorem 4.3.

Theorem 5.3 For a ≥ 17 the estimate

μl,N (B, δ) � e2

2π [√a]
(
5

3
e2
)[√a]

δ

holds, and for every a � 1 the following estimate holds:

μl,N (B, δ) � e2

2π [√a]
(
2e2

)[√a]
δ.

Corresponding estimates are true for the suprema μl(a, δ) as well.
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