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1 Introduction

Hamiltonian systems tend to have infinitely many periodic orbits. For many phase
spaces, every system, without any restrictions, has infinitely many simple periodic
orbits. Moreover, even if not holding unconditionally, this is still a C°°-generic prop-
erty of Hamiltonian systems for the majority of phase spaces. Finally, for some phase
spaces, a system has infinitely many simple periodic orbits when certain natural local
conditions are met.

This paper is mainly a survey focusing on this phenomenon for Hamiltonian dif-
feomorphisms and Reeb flows. The central theme of the paper is the so-called Conley
conjecture, proved for a broad class of closed symplectic manifolds and asserting that
under some natural conditions on the manifold every Hamiltonian diffeomorphism
has infinitely many (simple) periodic orbits. We discuss in detail the established cases
of the conjecture and related results, including an analog of the conjecture for Reeb
flows, and also the manifolds for which the conjecture is known to fail. In particu-
lar, we investigate local geometrical conditions that force globally the existence of
infinitely many periodic orbits and consider the question of the generic existence of
infinitely many periodic orbits.

We also briefly touch upon the applications to dynamical systems of physical origin.
For instance, we show how a recently established variant of the Conley conjecture for
Reeb flows can be used to prove the existence of infinitely many simple periodic orbits
of a low-energy charge in a non-vanishing magnetic field on a surface other than a
sphere.
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Our perspective on the problem and the methods we use here are mainly Morse
theoretic, broadly understood, and homological. In this framework, the reasons for the
existence of periodic orbits lie at the interplay between local dynamical features of the
system and the global behavior of the homology “counting” the periodic orbits, e.g.,
Floer, symplectic or contact homology.

This is not the only perspective on the subject. For instance, in dimensions two and
three, one can alternatively use exceptionally powerful methods of low-dimensional
dynamics (see, e.g., Franks 1992, 1996; Franks and Handel 2003; Le Calvez 2006)
and holomorphic curves (see, e.g., Bramham and Hofer 2012; Hofer et al. 1998, 2003).
In higher dimensions, however, most of the results on this class of problems rely on
homological methods.

It is important to note that for Hamiltonian diffeomorphisms, in contrast with the
classical setting of geodesic flows on a majority of manifolds as in Gromoll and
Meyer (1969), the existence of infinitely many simple periodic orbits is not forced
by the homological growth. Likewise, the local dynamical features we consider here
are usually of different flavor from, say, homoclinic intersections or elliptic fixed
points often used in dynamics to infer under favorable circumstances the existence
of infinitely many periodic orbits. There is no known single unifying explanation for
the ubiquity of Hamiltonian systems with infinitely many periodic orbits. Even in the
cases where the Conley conjecture holds, this is usually a result of several disparate
phenomena.

The survey can be read at three levels. First of all, we give a broad picture, explain
the main ideas, results, and conjectures in a non-technical way, paying attention not
only to what has been proved but also to what is not known. This side of the survey
requires very little background in symplectic and contact topology and dynamics from
the reader. However, we also give the necessary technical details and conditions when
stating the most important results. Although we recall the relevant definitions in due
course, this level of the survey is intended for a more expert reader. Finally, in several
instances, we attempt to explain the main ideas of the proofs or even to sketch the
arguments. In particular, in Sect. 3 we outline the proof of the Conley conjecture;
here we freely use Floer homology and some other, not entirely standard, symplectic
topological tools.

The survey is organized as follows. In Sect. 2, we discuss the Conley conjecture
(its history, background, and the state of the art) and the generic existence results, and
also set the conventions and notation used throughout the paper. A detailed outline of
the proof is, as has been mentioned above, given in Sect. 3. The rest of the paper is vir-
tually independent of this section. We discuss the Conley conjecture and other related
phenomena for Reeb flows in Sect. 4 and applications of the contact Conley conjecture
to twisted geodesic flows, which govern the motion of a charge in a magnetic field, in
Sect. 5. Finally, in Sect. 6, we turn to the manifolds for which the Conley conjecture
fails and, taking the celebrated Frank’s theorem (see Franks 1992, 1996) as a starting
point, show how certain local geometrical features of a system can force the existence
of infinitely many periodic orbits. Here we also briefly touch upon the problem of the
existence of infinitely many simple periodic orbits for symplectomorphisms and for
some other types of “Hamiltonian”systems.
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2 Conley Conjecture
2.1 History and Background

As has been pointed out in the introduction, for many closed symplectic manifolds,
every Hamiltonian diffeomorphism has infinitely many simple periodic orbits and,
in fact, simple periodic orbits of arbitrarily large period whenever the fixed points
are isolated. This unconditional existence of infinitely many periodic orbits is often
referred to as the Conley conjecture. The conjecture was, indeed, formulated by Conley
(1984) for tori, and since then it has been a subject of active research focusing on
establishing the existence of infinitely many periodic orbits for broader and broader
classes of symplectic manifolds or Hamiltonian diffeomorphisms.

The Conley conjecture was proved for the so-called weakly non-degenerate Hamil-
tonian diffeomorphisms in Salamon and Zehnder (1992) (see also Conley and Zehnder
1983b) and for all Hamiltonian diffeomorphisms of surfaces other than S in Franks
and Handel (2003) (see also Le Calvez 2006). In its original form for the tori, the con-
jecture was established in Hingston (2009) (see also Mazzucchelli 2013), and the case
of an arbitrary closed, symplectically aspherical manifold was settled in Ginzburg
(2010). The proof was extended to rational, closed symplectic manifolds M with
c1(TM)|z,my = 0 in Ginzburg and Giirel (2009b), and the rationality requirement
was then eliminated in Hein (2012). In fact, after Salamon and Zehnder (1992), the
main difficulty in establishing the Conley conjecture for more and more general mani-
folds with aspherical first Chern class, overcome in this series of works, lied in proving
the conjecture for totally degenerate Hamiltonian diffeomorphisms not covered by
Salamon and Zehnder (1992). (The internal logic in Franks and Handel (2003) and Le
Calvez (2006), relying on methods from low-dimensional dynamics, was somewhat
different.) Finally, in Ginzburg and Giirel (2012) and Chance et al. (2013), the Conley
conjecture was proved for negative monotone symplectic manifolds. (The main new
difficulty here was in the non-degenerate case.)

Two other variants of the Hamiltonian Conley conjecture have also been investi-
gated. One of them is the existence of infinitely many periodic orbits for Hamiltonian
diffeomorphisms with displaceable support; see, e.g., Frauenfelder and Schlenk
(2007), Giirel (2008), Hofer and Zehnder (1994), Schwarz (2000) and Viterbo (1992).
Here the form w is usually required to be aspherical, but the manifold M is not neces-
sarily closed. The second one is the Lagrangian Conley conjecture or, more generally,
the Conley conjecture for Hamiltonians with controlled behavior at infinity on cotan-
gent bundles (see Hein 2011; Long 2000; Lu 2009, 2011; Mazzucchelli 2011) or even
some twisted cotangent bundles (see Frauenfelder et al. 2012). In this survey, however,
we focus mainly on the case of closed manifolds.

The Conley conjecture looks deceptively similar to the well-known conjecture that
every closed simply connected Riemannian manifold (e.g., S”) carries infinitely many
non-trivial closed geodesics. However, this appears to be a very different problem
than the Conley conjecture, for the latter does not distinguish trivial and non-trivial
orbits. For instance, the proof of the Lagrangian Conley conjecture for the pure kinetic
energy Hamiltonian simply detects the constant geodesics. We will further discuss the
connection between the two conjectures in Sects. 4 and 6.
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What makes the Conley conjecture difficult and even counterintuitive from a homo-
logical perspective is that there seems to be no obvious homological reason for the
existence of infinitely many simple periodic orbits. As we have already mentioned,
there is no homological growth: the Floer homology of a Hamiltonian diffeomorphism
does not change under iterations and remains isomorphic, up to a Novikov ring, to the
homology of the manifold. (In that sense, the difficulty is similar to that in proving the
existence of infinitely many non-trivial closed geodesics on, say, S” where the rank
of the homology of the free loop space remains bounded as a function of the degree.)

Ultimately, one can expect the Conley conjecture to hold for the majority of closed
symplectic manifolds. There are, however, notable exceptions. The simplest one is 2
an irrational rotation of S2 about the z axis has only two periodic orbits, which are also
the fixed points; these are the poles. In fact, any manifold that admits a Hamiltonian
torus action with isolated fixed points also admits a Hamiltonian diffeomorphism with
finitely many periodic orbits. For instance, such a diffeomorphism is generated by a
generic element of the torus. In particular, flag manifolds (hence the complex projec-
tive spaces and the Grassmannians), and, more generally, most of the coadjoint orbits
of compact Lie groups as well as symplectic toric manifolds all admit Hamiltonian
diffeomorphisms with finitely many periodic orbits. In dimension two, there are also
such examples with interesting dynamics. Namely, there exist area preserving diffeo-
morphisms of $? with exactly three ergodic measures: two fixed points and the area
form; see Anosov and Katok (1970) and, e.g., Fayad and Katok (2004). These are the
so-called pseudo-rotations. By taking direct products of pseudo-rotations, one obtains
Hamiltonian diffeomorphisms of the products of several copies of S with finite num-
ber of ergodic measures, and hence with finitely many periodic orbits. It would be
extremely interesting to construct a Hamiltonian analog of pseudo-rotations for, say,
CP2.

In all known examples of Hamiltonian diffeomorphisms with finitely many periodic
orbits, all periodic orbits are fixed points, i.e., no new orbits are created by passing
to the iterated diffeomorphisms, cf. Sect. 6. Furthermore, all such Hamiltonian dif-
feomorphisms are non-degenerate, and the number of fixed points is exactly equal to
the sum of Betti numbers. Note also that Hamiltonian diffeomorphisms with finitely
many periodic orbits are extremely non-generic; see Ginzburg and Giirel (2009¢) and
Sect. 2.2.

In any event, the class of manifolds admitting “counterexamples” to the Conley
conjecture appears to be very narrow, which leads one to the question of finding further
sufficient conditions for the Conley conjecture to hold. There are several hypothetical
candidates. One of them, conjectured by the second author of this paper, is that the
minimal Chern number N of M is sufficiently large, e.g., N > dim M. (The condition
c1(T M)|z,m) = 0 corresponds to N = 00.) More generally, it might be sufficient to
require the Gromov—Witten invariants of M to vanish, as suggested by Michael Chance
and Dusa McDuff, or even the quantum product to be undeformed. No results in these
directions have been proved to date. Note also that for all known “counterexamples”
to the Conley conjecture H, (M; Z) is concentrated in even degrees.

Another feature of Hamiltonian diffeomorphisms with finitely many periodic orbits
is that, for many classes of manifolds, the actions or the actions and the mean indices
of their simple periodic orbits must satisfy certain resonance relations of Floer homo-
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logical nature; see Chance et al. (2013), Ginzburg and Giirel (2009b), Ginzburg and
Kerman (2010) and Kerman (2012). (There are also analogs of such resonance rela-
tions for Reeb flows, which we will briefly touch upon in Sect. 4.) Although the very
existence of homological resonance relations in the Hamiltonian setting is an inter-
esting, new and unexpected phenomenon, and some of the results considered here do
make use of these relations, their discussion is outside the scope of this paper.

2.2 Results: The State of the Art

In this section, we briefly introduce our basic conventions and notation and then state
the most up-to-date results on the Conley conjecture and generic existence of infinitely
many periodic orbits for Hamiltonian diffeomorphisms.

2.2.1 Conventions and Notation

Let us first recall the relevant terminology, some of which have already been used in
the previous section. A closed symplectic manifold (M?", w) is said to be monotone
(negative monotone) if (]|, my = Ac1(T M)|z, ) for some non-negative (respec-
tively, negative) constant A and rational if ([w], m2(M)) = loZ, i.e., the integrals
of w over spheres in M form a discrete subgroup of R. The positive generator N
of the discrete subgroup (c|(T M), mp(M)) C R is called the minimal Chern num-
ber of M. When this subgroup is zero, we set N = oo. A manifold M is called
symplectic CY (Calabi-Yau) if ci(M)|z,my = 0 and symplectically aspherical if
c1(TM)|zymy = 0 = [w]lz,m)- A symplectically aspherical manifold is monotone,
and a monotone or negative monotone manifold is rational.

All Hamiltonians H considered in this paper are assumed to be k-periodic in time
(i.e., H is a function S,: X M — R, where S,i = R/kZ) and the period k is always a
positive integer. When the period & is not specified, it is equal to one, and S' = R/Z.
Weset H, = H(t, ) fort € S ,1 The (time-dependent) Hamiltonian vector field X  of
H is defined by ix, w = —d H. A Hamiltonian diffeomorphism is the time-one map,
denoted by ¢y or just ¢, of the time-dependent Hamiltonian flow (i.e., Hamiltonian
isotopy) ¢}, generated by X . It is preferable throughout this section to view ¢ as
an element, determined by ¢/,, of the universal covering of the group of Hamiltonian
diffeomorphisms. A one-periodic Hamiltonian H can also be treated as k-periodic.
In this case, we will use the notation H% and, abusing terminology, call H™ the kth
iteration of H.

In what follows, we identify the periodic orbits of H (i.e., of ¢},) with integer
period k and periodic orbits of ¢. A periodic orbit x of H is non-degenerate if the
linearized return map do|y: TyyM — Ty)M has no eigenvalues equal to one.
Following Salamon and Zehnder (1992), we call x weakly non-degenerate if at least
one of the eigenvalues is different from one and rotally degenerate otherwise. Finally,
a periodic orbit is said to be strongly non-degenerate if no roots of unity are among the
eigenvalues of d¢|, . This terminology carries over to Hamiltonians H and Hamiltonian
diffeomorphisms ¢. For instance, ¢ is non-degenerate if all its one-periodic orbits are
non-degenerate and strongly non-degenerate if all iterations ¢* are non-degenerate,
etc.
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2.2.2 Results

The following theorem is the most general variant of the Conley conjecture proved to
date.

Theorem 2.1 (Conley Conjecture) Assume that M is a closed symplectic manifold
satisfying one of the following conditions:

(CY) cit(T M)z =0,
(NM) M is negative monotone.

Then every Hamiltonian diffeomorphism ¢ of M with finitely many fixed points has
simple periodic orbits of arbitrarily large period.

As an immediate consequence, every Hamiltonian diffeomorphism of M, whether
or not the fixed-point set is finite, satisfying either (CY) or (NM) has infinitely many
simple periodic orbits. In fact, when the fixed points of ¢ are isolated, one can be even
more specific: if (CY) holds, every sufficiently large prime p occurs as the period of
a simple orbit and, moreover, one can show that there exists a sequence of integers
I; — oo such that all p’ are periods of simple orbits. Consequently, the number of
integers less than k that occur as periods of simple periodic orbits grows at least as fast
as (in fact, faster than) k/In k — C for some constant C. This lower growth bound is
typical for the Conley conjecture type results; see also Ginzburg et al. (2014) and Sect.
4 for the case of Reeb flows, and Hingston (1993) for the growth of closed geodesics
on S2. (In dimension two, however, stronger growth results have been established in
some cases; see, e.g., Le Calvez 2006; Viterbo 1992, Prop. 4.13 and also Bramham and
Hofer 2012; Franks and Handel 2003; Kerman 2012.) When M is negative monotone,
it is only known that there is a sequence of arbitrarily large primes occurring as simple
periods at least when, in addition, ¢ is assumed to be weakly non-degenerate; see Sect.
3.1.1 for the definition.

The (CY) case of the theorem is proved in Hein (2012); see also Ginzburg (2010)
and, respectively, Ginzburg and Giirel (2009b) for the proofs when M is symplectically
aspherical, and when M is rational and (CY) holds. The negative monotone case is
established in Chance et al. (2013) and Ginzburg and Giirel (2012). For both classes
of the ambient manifolds, the proof of Theorem 2.1 amounts to analyzing two cases.
When M is CY, the “non-degenerate case” of the Conley conjecture is based on
the observation, going back to Salamon and Zehnder (1992), that unless ¢ has a fixed
point of a particular type called a symplectically degenerate maximum or an SDM, new
simple periodic orbits of high period must be created to generate the Floer homology
in degree n = dim M /2. (For negative monotone manifolds, the argument is more
involved.) In the “degenerate case” one shows that the presence of an SDM fixed point
implies the existence of infinitely many periodic orbits; see Hingston (2009) and also
Ginzburg (2010). We outline the proof of Theorem 2.1 for rational CY manifolds in
Sect. 3.

Among closed symplectic manifolds M with ¢{(T M)|,(my = O are tori and
Calabi—Yau manifolds. In fact, the manifolds meeting this requirement are more
numerous than it might seem. As is proved in Fine and Panov (2013), for every finitely
presented group G there exists a closed symplectic 6-manifold M with 7 (M) = G
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and ¢ (TM) = 0. A basic example of a negative monotone symplectic manifold
is a smooth hypersurface of degree d > n 4 2 in CP"*!. More generally, a trans-
verse intersection M of m hypersurfaces of degrees dy, ..., d,, in CP"*™ is negative
monotone iff dy + - - - +d,, > n + m + 1; see Lawson and Michelsohn (1989, p. 88)
and also, for n = 4, (McDuff and Salamon 2004, pp. 429-430). A complete inter-
section M is CY whend;| + --- + d,, = n 4+ m + 1 and (strictly) monotone when
di+---+dy <n+m+ 1. Thus “almost all” complete intersections are negative
monotone. Note also that the product of a symplectically aspherical manifold and a
negative monotone manifold is again negative monotone.

As has been pointed out in Sect. 2.1, we expect an analog of the theorem to hold
when N is large. [In the (CY) case, N = co.] However, at this stage it is only known
that the number of simple periodic orbits is bounded from below by [N /n] when M>"
is rational and 2N > 3n; see Ginzburg and Giirel (2009b, Thm. 1.3).

Let us now turn to the question of the generic existence of infinitely many simple
periodic orbits. Conjecturally, for any closed symplectic manifold M, a C°°-generic
Hamiltonian diffeomorphism has infinitely many simple periodic orbits . This, how-
ever, is unknown (somewhat surprisingly) and appears to be a non-trivial problem. In
all results to date, some assumptions on M are required for the proof.

Theorem 2.2 (Generic existence) Assume that M*" is a closed symplectic manifold
with minimal Chern number N, meeting one of the following requirements:

(1) Hoqa(M; R) # O for some ring R,
(i) N>n+1,
(iii) M is CP" or a complex Grassmannian or a product of one of these manifolds
with a closed symplectically aspherical manifold.

Then strongly non-degenerate Hamiltonian diffeomorphisms with infinitely many sim-
ple periodic orbits form a C®°-residual set in the space of all C*°-smooth Hamiltonian
diffeomorphisms.

This theorem is proved in Ginzburg and Giirel (2009¢). In (iii), instead of explicitly
specifying M, we could have required that M is monotone and that there exists u €
Hi<2, (M) with 2n — degu < 2N and w € Hy2,(M) and « in the Novikov ring
of M such that [M] = (cu) * w in the quantum homology. We refer the reader to
Ginzburg and Giirel (2009c) for other examples when this condition is satisfied and a
more detailed discussion.

The proof of the theorem when (i) holds is particularly simple. Namely, in this case,
a non-degenerate Hamiltonian diffeomorphism ¢ with finitely many periodic orbits
must have a non-hyperbolic periodic orbit. Indeed, it follows from Floer theory that ¢
has a non-hyperbolic fixed point or a hyperbolic fixed point with negative eigenvalues.
When ¢ has finitely many periodic orbits, we can eliminate the latter case by passing
to an iteration of ¢. To finish the proof it suffices to apply the Birkhoff-Lewis—Moser
theorem, Moser (1977). (This argument is reminiscent of the reasoning in, e.g., Markus
and Meyer (1980) where the generic existence of solenoids for Hamiltonian flows is
established.) The proofs of the remaining cases rely on the fact, already mentioned in
Sect. 2.1, that under our assumptions on M the indices and/or actions of the periodic
orbits of ¢ must satisfy certain resonance relations when ¢ has only finitely many
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periodic orbits; see Ginzburg and Giirel (2009b) and Ginzburg and Kerman (2010).
These resonance relations can be easily broken by a C°°-small perturbation of ¢, and
the theorem follows.

It is interesting to look at these results in the context of the closing lemma, which
implies that the existence of a dense set of periodic orbits is C'-generic for Hamiltonian
diffeomorphisms; see Pugh and Robinson (1983). Thus, once the C*°-topology is
replaced by the C!-topology a much stronger result than the generic existence of
infinitely many periodic orbits holds—the generic dense existence. However, this is
no longer true for the C"-topology with r > dim M as the results of M. Herman
show (see Herman 1991a,b), and the above conjecture on the C°-generic existence
of infinitely many periodic orbits can be viewed as a hypothetical variant of a C*°-
closing lemma. (Note also that in the closing lemma one can require the perturbed
diffeomorphism to be C*°-smooth, but only C'-close to the original one, as long as
only finitely many periodic orbits are created. It is not clear to us whether one can
produce infinitely many periodic orbits by a C*°-smooth C'-small perturbation.)

An interesting consequence of Theorem 2.2 pointed out in Polterovich and
Shelukhin (2014) is that non-autonomous Hamiltonian diffeomorphisms (i.e., Hamil-
tonian diffeomorphisms that cannot be generated by autonomous Hamiltonians) on a
manifold meeting the conditions of the theorem form a C*°-residual subset in the space
of all C*°-smooth Hamiltonians. Indeed, when k& > 1, simple k-periodic orbits of an
autonomous Hamiltonian diffeomorphism are never isolated, and hence, in particular,
never non-degenerate.

Remark 2.3 The proofs of Theorems 2.1 and 2.2 utilize Hamiltonian Floer theory.
Hence, either M is required in addition to be weakly monotone [i.e., M is monotone
or N > n — 2; see (Hofer and Salamon 1995; McDuff and Salamon 2004; Ono 1995;
Salamon 1999) for more details] or the proofs ultimately, although not explicitly, must
rely on the machinery of multi-valued perturbations and virtual cycles [see (Fukaya
and Ono 1999; Fukaya et al. 2009; Liu and Tian 1998) or, for the polyfold approach,
(Hofer et al. 2010, 2011) and references therein]. In the latter case, the ground field
in the Floer homology must have zero characteristic.

3 Outline of the Proof of the Conley Conjecture

3.1 Preliminaries

In this section we recall, very briefly, several definitions and results needed for the
proof of the (CY) case of Theorem 2.1 and also some terminology used throughout
the paper.

3.1.1 The Mean Index and the Conley—Zehnder Index

To every continuous path ®: [0, 1] — Sp(2n) starting at ®(0) = I one can associate
the mean index A(®) € R, a homotopy invariant of the path with fixed end-points;

see Long (2002) and Salamon and Zehnder (1992). To give a formal definition, recall
first that a map A from a Lie group to R is said to be a quasimorphism if it fails
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to be a homomorphism only up to a constant, i.e., |[A(®PY¥) — A(D) — A(¥)| <
const, where the constant is independent of ® and W. One can prove that there is
a unique quasimorphism A: S~p(2n) — R which is continuous and homogeneous
[i.e., A(®%) = kA(P)] and satisfies the normalization condition: A(®g) = 2 for
Oo(1) = 2™ @ Ip,_» with t € [0, 1], in the self-explanatory notation; see Barge
and Ghys (1992). This quasimorphism is the mean index. (The continuity requirement
holds automatically and is not necessary for the characterization of A, although this is
not immediately obvious. Furthermore, A is also automatically conjugation invariant,
as a consequence of the homogeneity.)

The mean index A (®) measures the total rotation angle of certain unit eigenvalues
of ®(r) and can be explicitly defined as follows. For A € Sp(2), set p(A) = e'* € §!
when A is conjugate to the rotation by A counterclockwise, p(A) = e~'* € S when
A is conjugate to the rotation by A clockwise, and p(A) = £1 when A is hyperbolic
with the sign determined by the sign of the eigenvalues of A. Then p: Sp(2) — S!
is a continuous (but not C') function, which is conjugation invariant and equal to det
on U(1). A matrix A € Sp(2n) with distinct eigenvalues, can be written as the direct
sum of matrices A; € Sp(2) and a matrix with complex eigenvalues not lying on
the unit circle. We set p(A) to be the product of p(A;) € § L Again, p extends to
a continuous function p: Sp(2n) — S', which is conjugation invariant (and hence
p(AB) = p(BA))and restricts to det on U(n); see, e.g., Salamon and Zehnder (1992).
Finally, given a path ®: [0, 1] — Sp(2n), there is a continuous function A(#) such
that p(® (1)) = e, measuring the total rotation of the “preferred” eigenvalues on
the unit circle, and we set A(®) = (A(1) — 1(0))/2.

Assume now that the path @ is non-degenerate, i.e., by definition, all eigenvalues of
the end-point @ (1) are different from one. We denote the set of such matrices in Sp(2n)
by Sp*(2n). It is not hard to see that ® (1) can be connected to a hyperbolic symplectic
transformation by a path W lying entirely in Sp*(2n). Concatenating this path with @,
we obtain a new path ®’. By definition, the Conley—Zehnder index pcz(®) € Z of ®
is A(®’). One can show that ucz(®) is well-defined, i.e., independent of W. Further-
more, following Salamon and Zehnder (1992), let us call ® weakly non-degenerate if
at least one eigenvalue of ® (1) is different from one and totally degenerate otherwise.
The path is strongly non-degenerate if all its “iterations” ®* are non-degenerate, i.e.,
none of the eigenvalues of ® (1) is a root of unity.

The indices A and pucz have the following properties:

(CZ1) |A(DP)—pucz ()| < nfor every sufficiently small non-degenerate perturbation
® of ®; moreover, the inequality is strict when ® is weakly non-degenerate.

(CZ2) ucz(P*)/k — A(®P) as k — oo, when  is strongly non-degenerate; hence
the name “mean index” for A.

Note that with our conventions the Conley—Zehnder index of a path parame-
trized by [0, 1] and generated by a small negative definite quadratic Hamiltonian on
R is .

Let now M>" be a symplectic manifold and x: S' — M be a contractible loop. A
capping of x is amap u: D> — M such that ulg1 = x. Two cappings u and v of x
are considered to be equivalent if the integrals of ¢; (7' M) and w over the sphere u#v
obtained by attaching u to v are equal to zero. A capped closed curve X = (x, u) is, by
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definition, a closed curve x equipped with an equivalence class of a capping. In what
follows, a capping is always indicated by the bar.

For a capped one-periodic (or k-periodic) orbit X of a Hamiltonian H: S x M —
R, we can view the linearized flow d¢}, |, along x as a path in Sp(2n) by fixing a
trivialization of u*T M and restricting it to x. With this convention in mind, the above
definitions and constructions apply to x and, in particular, we have the mean index
A(x) and, when x is non-degenerate, the Conley—Zehnder index pucz(x) defined.
These indices are independent of the trivialization of u*7 M, but may depend on the
capping. Furthermore, (CZ1) and (CZ2) hold. The difference of the indices of (x, u)
and (x, v) isequal to 2 (c{ (T M), u#v). Hence, when M is a symplectic CY manifold,
the indices are independent of the capping and thus assigned to x. The terminology
we introduced for paths in Sp(2n) translates word-for-word to periodic orbits and
Hamiltonian diffeomorphisms, cf. Sect. 2.2.1.

3.1.2 Floer Homology

In this section, we recall the construction and basic properties of global, filtered and
local Hamiltonian Floer homology on a weakly monotone, rational symplectic mani-
fold (M?", w).

The action of a one-periodic Hamiltonian H on a capped loop x = (x, u) is, by
definition,

Apg(x) = —/a)+/1 H,(x(2))dt.
u S

The space of capped closed curves is a covering space of the space of contractible
loops, and the critical points of .4y on this covering space are exactly capped one-
periodic orbits of X . The action spectrum S(H) of H is the set of critical values
of Ay . This is a zero measure set; see, e.g., Hofer and Zehnder (1994). When M is
rational, S(H) is a closed and hence nowhere dense set. [Otherwise, S(H) is dense.]
These definitions extend to k-periodic orbits and Hamiltonians in the obvious way.
Clearly, the action functional is homogeneous with respect to iteration:

Ay (35 = kA (%).

Here x* stands for the kth iteration of the capped orbit x.

For a Hamiltonian H: S! x M — R and ¢ = @pn, we denote by HF () or, when
the action filtration is essential, by HFia’ b)(H ) the Floer homology of H, where a
and b are not in S(H). We refer the reader to, e.g., McDuff and Salamon (2004) and
Salamon (1999) for a detailed construction of the Floer homology and to Ginzburg
and Giirel (2009b) for a treatment particularly tailored for our purposes. Here we only
mention that, when H is non-degenerate, Hka“’ b) (H) is the homology of a complex
generated by the capped one-periodic orbits of H with action in the interval (a, b)
and graded by the Conley—Zehnder index. Furthermore, HF, (¢) = Hy1, (M) ® A,
where A is a suitably defined Novikov ring. As a consequence, HF,,(¢) # 0 when M
is symplectic CY. (For our purposes it is sufficient to take Z; as the ground field.)
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When x is an isolated one-periodic orbit of H, one can associate to it the so-called
local Floer homology HF, (x) of x. This is the homology of a complex generated
by the orbits x; which x splits into under a C°°-small non-degenerate perturbation.
The differential 9 is defined similarly to the standard Floer differential, and to show
that 3> = 0 it suffices to prove that the Floer trajectories connecting the orbits x;
cannot approach the boundary of an isolating neighborhood of x. This is an immediate
consequence of Floer (1989, Thm. 3); see also McLean (2012) for a different proof.
The resulting homology is well defined, i.e., independent of the perturbation. The local
Floer homology HF, (x) carries only a relative grading. To have a genuine Z-grading
it is enough to fix a trivialization of 7 M |,. In what follows, such a trivialization will
usually come from a capping of x, and we will then write HF,(x). Clearly, the grading
isindependent of the capping when ¢ (T M) |, m) = 0. Hence, in the symplectic (CY)
case, the local Floer homology is associated to the orbit x itself. With relative grading,
the local Floer homology is defined for the germ of a time-dependent Hamiltonian
flow or, when x is treated as a fixed point, of a Hamiltonian diffeomorphism. The local
Floer homology is invariant under deformations of H as long as x stays uniformly
isolated.

Example 3.1 When x is non-degenerate, HF,(x) = Z; is concentrated in degree
ncz(x). When x is an isolated critical point of an autonomous C 2_small Hamiltonian
F (with trivial capping), the local Floer homology is isomorphic to the local Morse
homology HM,., (F, x) of F atx (see Ginzburg 2010), also known as critical modules,
which is in turn isomorphic to H,({F < ¢} U {x}, {F < c}), where F(x) = c. The
isomorphism HF, (x) = HM..4, (F, x) is a local analog of the isomorphism between
the Floer and Morse homology groups of a C2-small Hamiltonian; see Salamon and
Zehnder (1992) and references therein.

Let us now state three properties of local Floer homology, which are essential for
what follows.
First of all, HF,.(x) is supported in the interval [A(x) — n, A(X) 4 n]:

supp HE,(¥) C [AX) — n, A®) + 1], @3.1)

i.e., the homology vanishes in the degrees outside this interval. Moreover, when x
is weakly non-degenerate, the support lies in the open interval. These facts readily
follow from (CZ1) and the continuity of the mean index.

Secondly, the local Floer homology groups are building blocks for the ordinary
Floer homology. Namely, assume that for ¢ € S(H) there are only finitely many
one-periodic orbits x; with Ay (X;) = c¢. Then all these orbits are isolated and

HE( O (H) = (D HF. (%),

when M is rational and € > 0 is sufficiently small. Furthermore, it is easy to see that,
even without the rationality condition, HF; (¢) = 0 when all one-periodic orbits of H
are isolated and have local Floer homology vanishing in degree .

Finally, the local Floer homology enjoys a certain periodicity property as a function
of the iteration order. To be more specific, let us call a positive integer k an admissible
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iteration of x if the multiplicity of the generalized eigenvalue one for the iterated
linearized Poincaré return map d¢*|, is equal to its multiplicity for dg|,. In other
words, k is admissible if and only if it is not divisible by the degree of any root of
unity different from one among the eigenvalues of dg|, . For instance, when x is totally
degenerate (the only eigenvalue is one) or strongly non-degenerate (no roots of unity
among the eigenvalues), all k € N are admissible. For any x, all sufficiently large
primes are admissible. We have

Theorem 3.2 (Ginzburg and Giirel 2010) Let x be a capped isolated one-periodic
orbit of a Hamiltonian H: S' x M — R. Then x* is also an isolated one-periodic
orbit of H* for all admissible k, and the local Floer homology groups of X and x*
coincide up to a shift of degree:

HFE, (%) = HF,,, (X) for some sy.

Furthermore, limg_. oo Sx/k = A(X) and s = kA(X) for all k when x is totally
degenerate. Moreover, when HF,, A (z)(X) # O, the orbit x is totally degenerate.

The first part of this theorem is an analog of the result from Gromoll and Meyer
(1969) for Hamiltonian diffeomorphisms. One can replace a capping of x by a
trivialization of 7' M|, with the grading and indices now associated with that triv-
ialization. The theorem is not obvious, although not particularly difficult. First, by
using a variant of the Kiinneth formula and some simple tricks, one can reduce
the problem to the case where x is a totally degenerate constant orbit with triv-
ial capping. [Hence, in particular, A(x) = 0]. Then we have the isomorphisms
HF,(x) = HM,4,(F, x), where F: M — R, near x, is the generating function of
@, and HF, (x¥) = HM,,(kF, x) = HM,, (F, x). Thus, in the totally degenerate
case, s = 0, and the theorem follows; see Ginzburg and Giirel (2010) for a complete
proof. [The fact that x* is automatically isolated when k is admissible, reproved in
Ginzburg and Girel (2010), has been known for some time; see Chow et al. (1981).]

As a consequence of Theorem 3.2 or of Chow et al. (1981), the iterated orbit xKis
automatically isolated for all & if it is isolated for some finite collection of iterations k
(depending on the degrees of the roots of unity among the eigenvalues). Furthermore,
it is easy to see that then the map k + HF, (x*) is periodic up to a shift of grading,
and hence the function k — dim HF,.(¥*) is bounded.

An isolated orbit x is said to be homologically non-trivial if HF,(x) # 0. (The
choice of trivialization along the orbit is clearly immaterial here.) These are the orbits
detected by the filtered Floer homology. For instance, a non-degenerate orbit is homo-
logically non-trivial. By Theorem 3.2, an admissible iteration of a homologically
non-trivial orbit is again homologically non-trivial. It is not known if, in general, an
iteration of a homologically non-trivial orbit can become homologically trivial while
remaining isolated.

We refer the reader to Ginzburg (2010) and Ginzburg and Giirel (2009b, 2010) for
a further discussion of local Floer homology.

As we noted in Sect. 2.2, the proof of the general case of the Conley conjecture for
symplectic CY manifolds hinges on the fact that the presence of an orbit of a particular
type, a symplectically degenerate maximum or an SDM, automatically implies the
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existence of infinitely many simple periodic orbits. To be more precise, an isolated
periodic orbit x is said to be a symplectically degenerate maximum if HF, (x) # 0
and A(x) = 0 for some trivialization. This definition makes sense even for the germs
of Hamiltonian flows or Hamiltonian diffeomorphisms. An SDM orbit is necessarily
totally degenerate by the “moreover” part of (3.1) or Theorem 3.2. Sometimes it is
also convenient to say that an orbit is an SDM with respect to a particular capping. For
instance, a capped orbit x is an SDM if it is an SDM for the trivialization associated
with the capping, i.e., HF, (x) # 0 and A(x) = 0.

Example 3.3 Let H: R — R be an autonomous Hamiltonian with an isolated
critical point at x = 0. Assume furthermore that x is a local maximum and that all
eigenvalues (in the sense of, e.g., Arnold 1989, App. 6) of the Hessian d>H (x) are
equal to zero. Then x (with constant trivialization or, equivalently, trivial capping) is
an SDM of H. For instance, the origin in R? is an SDM for H(p, q) = p* + ¢* or
H(p,q) = p*> +¢*, but not for H(p, q) = ap* + bg* forany a # 0 and b # 0.

Remark 3.4 There are several other ways to define an SDM. The following conditions
are equivalent (see Ginzburg and Giirel 2010, Prop. 5.1):

e the orbit x is a symplectically degenerate maximum of H;

e HF, (k%) # 0 for some sequence of admissible iterations k; — 00;

e the orbit x is totally degenerate, HF, (x) # 0 and HF, (&) # 0 for at least one
admissible iteration k > n + 1.

3.2 The Non-Degenerate Case of the Conley Conjecture

The following proposition settling, in particular, the non-degenerate case of the Con-
ley conjecture for symplectic CY manifolds is a refinement of the main result from
Salamon and Zehnder (1992). It is proved in Ginzburg (2010) and Ginzburg and Giirel
(2009b), although the argument given below is somewhat different from the original
proof.

Proposition 3.5 Assume that ¢1(T M)|z,(m) = 0 and that ¢ = @y has finitely many
fixed points and none of these points is an SDM. (This is the case when, e.g., ¢ is weakly
non-degenerate.) Then ¢ has a simple periodic orbit of period k for every sufficiently
large prime k.

The key to the proof is the fact that HF,, (¢*) # 0 for all k and that, even when
®|zymy # 0, the condition ¢1 (T M)|,m) = 0 guarantees that all recappings of every
orbit have the same mean index and the same (graded) local Floer homology.

Proof First, note that when k is prime, every k-periodic orbit is either simple or the
k-th iteration of a fixed point. For every isolated fixed point x, we have three mutually
exclusive possibilities:

e A(x) #0,
e A(x) = 0and HF,(x) =0,
o A(x) = 0but HF,(x) # 0.
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Here we are using the fact that M is CY, and hence the indices are independent of
the capping. The last case, where x is an SDM, is ruled out by the assumptions of the
proposition.

In the first case, HF, (x¥) = O when k| A(x)| > 2n, and hence x cannot contribute to
HF, (¢*) when k is large. In the second case, HF,, (xK) = HF, (x) = 0forall admissible
iterations by Theorem 3.2. In particular, x again cannot contribute to HF,, (¢*) for all
large primes k. It follows that, under the assumptions of the proposition, HF,, (¢*) = 0
for all large primes k unless ¢ has a simple periodic orbit of period k. O

Remark 3.6 Although this argument relies on Theorem 3.2 which is not entirely trivial,
a slightly different logical organization of the proof would enable one to utilize a
much simpler of version of the theorem; see Ginzburg (2010) and Ginzburg and Girel
(2009b).

With Proposition 3.5 established, it remains to deal with the degenerate case of the
Conley conjecture, i.e., the case where ¢ has an SDM. We do this in the next section;
see Theorem 3.8.

Remark 3.7 When M is negative monotone and ¢ has an SDM fixed point, the degener-
ate case of Theorem 2.1 follows from Theorem 3.8, just as for CY manifolds. However,
the non-degenerate case requires a totally new proof. The argument relies on the sub-
additivity property of spectral invariants; see Chance et al. (2013) and Ginzburg and
Giirel (2012) for more details.

3.3 Symplectically Degenerate Maxima

In this section, we show that a Hamiltonian diffeomorphism with an SDM fixed point
has infinitely many simple periodic orbits. We assume that M is rational as in Ginzburg
and Giirel (2009b). The case of irrational CY manifolds is treated in Hein (2012).

Theorem 3.8 (Ginzburg and Giirel 2009b) Let ¢ = ¢y be a Hamiltonian diffeo-
morphism of a closed rational symplectic manifold M, generated by a one-periodic
Hamiltonian H. Assume that some iteration ¢*0 has finitely many ko-periodic orbits
and one of them, x, is an SDM.

(1) Then ¢ has infinitely many simple periodic orbits.
(i1) Moreover, ¢ has simple periodic orbits of arbitrarily large prime period if, in
addition, ko = 1 and @|zy ) = 0 or c1 (M) |z, (my = 0.

This theorem is in turn a consequence of the following result.

Theorem 3.9 (Ginzburg and Giirel 2009b) Assume that (M 2t ) is closed and ratio-
nal, and let X be an SDM of H. Set ¢ = Ap (x). Then for every sufficiently small € > 0
there exists k. such that

HF X KA (B £ 0 for all k > ke and some 8 with0 < 8 <. (3.2)
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For instance, to prove case (ii) of Theorem 3.8 when M is CY it suffices to observe
that no kth iteration of a fixed point can contribute to the Floer homology in degree
n+ 1 for any action interval when & is a sufficiently large prime and ¢ has finitely many
fixed points. When w|,m) = 0, the argument is similar, but now the action filtration
is used in place of the degree. The proof of case (i) is more involved; see Ginzburg
and Giirel (2009b, Sect. 3) where some more general results are also established.

It is worth pointing out that although Theorem 3.9 guarantees the existence of

capped simple k-periodic orbits y with action close to k¢ = Ay (&%), we do not
claim that the orbits y are close to x* or even intersect a neighborhood of x. In general,
essentially nothing is known about the location of these orbits and hypothetically a
small neighborhood of x may contain no periodic orbits at all. However, as is proved
in Yan (2014), the orbit x is in a certain sense an accumulation point for periodic orbits
when, e.g., M = T2,
Outline of the proof of Theorem 3.9 Composing if necessary ¢}, with a loop of Hamil-
tonian diffeomorphisms, we can easily reduce the problem to the case where X is a
constant one-periodic orbit with trivial capping; see Ginzburg and Giirel (2009b, Prop.
2.9 and 2.10). Henceforth, we write x rather than x and assume that d H,(x) = 0 for
all ¢.

The key to the proof is the following geometrical characterization of SDMs:

Lemma 3.10 (Ginzburg 2010; Hingston 2009) Let x be an isolated constant one-
periodic orbit for a germ of a time-dependent Hamiltonian flow ¢',;. Assume that x
(with constant trivialization) is an SDM. Then there exists a germ of a time-dependent
Hamiltonian flow q);( near x such that the two flows generate the same time-one map,
i.e., px = @y, and K; has a strict local maximum at x for every t. Furthermore, one
can ensure that the Hessian d*K,(x) is arbitrarily small. In other words, for every
n > 0 one can find such a Hamiltonian K, with |d*K; (x)| < n.

Remark 3.11 Strictly speaking, contrary to what is stated in Ginzburg and Giirel
(2009b, Rmk. 5.9, 2010, Prop. 5.2), this lemma is not quite a characterization of
SDMs in the sense that it is not clear if every x for which such Hamiltonians K, exist
is necessarily an SDM. However, in fact, K, can be taken to meet an additional require-
ment ensuring, in essence, that the 7-dependence of K; is minor. With this condition,
introduced in Hingston (2009, Lemma 4) as that K is relatively autonomous (see also
Ginzburg 2010, Sect. 5 and 6), the lemma gives a necessary and sufficient condition
for an SDM.

Outline of the proof of Lemma 3.10 The proof of Lemma 3.10 is rather technical, but
the idea of the proof is quite simple. Set ¢ = ¢p. First, note that all eigenvalues of
doly: TyM — T, M are equal to one since x is totally degenerate. Thus by applying
a symplectic linear change of coordinates we can bring d¢|, arbitrarily close to the
identity. Then ¢ is also C!-close to id near x. Let us identify (M x M, & (—w))
near (x, x) with a neighborhood of the zero section in 7*M near x, and hence the
graph of ¢ with the graph of dF for a germ of a smooth function F near x. The
function F is a generating function of ¢. Clearly, x is an isolated critical point of F
and d*F (x) = O(ldglx — 1))
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Furthermore, similarly to Example 3.1, we have an isomorphism
HF..(x) = HM,1, (F, x),

and thus HM», (F, x) # 0. It is routine to show that an isolated critical point x of
a function F is a local maximum if and only if HM», (F, x) # 0. The generating
function F is not quite a Hamiltonian generating ¢, but it is not hard to turn F into
such a Hamiltonian K, and check that K, inherits the properties of F. O

Returning to the proof of Theorem 3.9, we apply the lemma to the SDM orbit
x and observe that the local loop ¢}, o (gp%)_l has zero Maslov index and hence is
contractible. It is not hard to show that every local contractible loop extends to a global
contractible loop; see Ginzburg (2010, Lemma 2.8). In other words, we can extend
the Hamiltonian K, from Lemma 3.10 to a global Hamiltonian such that px = ¢, not
only near x but on the entire manifold M.

With this in mind, let us reset the notation. Replacing H by K but retaining the
original notation, we can say that forevery n > 0 there exists a Hamiltonian H such that
® Y = ¢;

e x is a constant periodic orbit of H, and H; has an isolated local maximum at x for
all ;
o ||d?H;(x)| < nforall z.

Furthermore, we can always assume that all such Hamiltonians H are related to each
other and to the original Hamiltonian via global loops with zero action and zero Maslov
index. Thus, in particular, c = Ag(x) = H(x) is independent of the choice of H
above, and all Hamiltonians have the same filtered Floer homology. Therefore, it is
sufficient to prove the theorem for any of these Hamiltonians H with arbitrarily small
Hessian d2 H (x).

To avoid technical difficulties and illuminate the idea of the proof, let us asume that
d*H (x) = 0 and, of course, that H; has, as above, a strict local maximum at x for all
t. This case, roughly speaking, corresponds to an SDM x with dg|, = id.

To prove (3.2) for a given € > 0, we will use the standard squeezing argument, i.e.,
we will bound H from above and below by two autonomous Hamiltonians H4 as in
Fig. 1 and calculate the Floer homology of k H.

In a Darboux neighborhood U of x, the Hamiltonians H are rotationally symmet-
ric. The Hamiltonian Hy is constant and equal to ¢ near x on a ball of radius r and
then sharply decreases to some ¢’ which is close to ¢ and attained on the sphere of
radius R. Then, after staying constant on a spherical shell, H increases to some value
¢4, to accommodate H, and becomes constant. The radii 7 < R depend on €; namely,
we require that 7 R> < €. The Hamiltonian H_ is a bump function decreasing from
its maximum c at x to a large negative value c_. Thus we have

Hy>H>H_.

We require H_ to have a strict maximum at x with d 2H_(x) = 0. Then the local Floer

homology of Hik is equal to Z; and concentrated in degree n, i.e., x is also an SDM
for H_ and all its iterations.
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Fig. 1 The functions H+

Now, for any a < b outside S(H*) and S (Hik), we have the maps

HF Y (H) — HF@? (H*)  HE@?) (H™)

induced by monotone homotopies, where HFf,fl’ b (Hik) = HFia’ b) (kHi) since H.

are autonomous Hamiltonians. Therefore, it is sufficient to prove that the map

HF YR (ki) — HE 49 (kp) 3.3)
is non-zero for some 4 in the range (0, €).

To this end, let us assume first that Hy, as above, are functions on R%" constant
outside a neighborhood of x = 0. The filtered Floer homology of H is still defined
for any interval (a, b) not containing c+. Moreover, a decreasing homotopy H* from
H, to H_ through functions constant outside a compact set induces a map in Floer
homology even when the value of H* at infinity passes through (a, b). Then we have
an isomorphism

Zr = HE K4 (kHy) = HEYS K49 (kn_) = 2, (34)
when £ is sufficiently large and § > 0 is sufficiently small. Namely, & is so large that
k(c — ¢’y >  R?. This is the origin of the requirement k > k. Then the homology of
k Hy is generated by the periodic orbit closest to x, and § is chosen so that k¢ + § is
smaller than the action of kK H_ on this orbit.

The isomorphism (3.4) is established by a straightforward analysis of periodic
orbits and easily follows from the calculation carried out already in Ginzburg and
Giirel (2004). It is based on two facts: that

ZZ o~ HFE[kC—(S, kc+36) (kH+) i HF’(/lkC—(S,kC-i-(S) (kH_) ~ Zz
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is an isomorphism when § > 0 is small and that HFff;f’) (kH+) = 0 for every

sufficiently large interval (a, b) containing k¢ and contained in (kc_, kcy).

It remains to transplant this calculation from R?” to a closed manifold M. The key
to this is the fact that the action interval in question is sufficiently small. This enables
one to localize a calculation of filtered Floer homology by essentially turning action
localization to spatial localization. A general framework for this process, developed in
Ginzburg and Giirel (2009b), is as follows. Let S be a shell in M, i.e., a region between
two hypersurfaces and bounding a contractible domain V in M. (To be more precise, V
is bounded in M by a connected component of S and S NV = ¢. The contractibility
assumption can be significantly relaxed.) Furthermore, let F be a Hamiltonian which
we require to be constant on the shell. For any interval / = («, 8) not containing
F|s, consider the subspace of the Floer complex generated by the orbits of F in V
with cappings also contained in V. If necessary, we perturb F in V to make sure that
the orbits with action in / are non-degenerate. Then there exists a constant €(S) > 0
such that, when |I| =  — a < €(S), this subspace of the Floer complex is actually
a subcomplex and, moreover, a direct summand. [This is an immediate consequence
of the fact that a holomorphic curve crossing S must have energy bounded away from
zero by some constant €(S).] Furthermore, continuation maps respect this decompo-
sition as long as the Hamiltonians remain constant on S. (However, the value of the
Hamiltonians on § can enter the interval / during the homotopy.) Let us denote the
resulting Floer homology by HF.(F; V).

We apply this construction to H4 with S being the spherical shell where Hy = ¢’
and V being the ball of radius R enclosed by this shell. (Hence we also need H_ to
be constant outside V.) As a consequence, (3.4) turns into an isomorphism

Zp = HEXE 44O (ks v) S HERGP K (kp_; v) 2 2,

entering the map (3.3) as a direct summand. Hence (3.3) is also non-zero.

The general case where we only have ||d 2H (x)| < nishandledin asimilar way, but
the construction of H+ is considerably more involved and the choice of the modified
Hamiltonians H requires more attention; see Ginzburg (2010) and Ginzburg and Girel
(2009b). O

Interestingly, no other proof of the Conley conjecture is known for general sym-
plectic manifolds. A more conceptual or just plain different argument may shed new
light on the nature of the phenomena considered here and is likely to have other appli-
cations. [For the torus, a different proof is given in the original work Hingston (2009)
and then in Mazzucchelli (2013). However, it is not clear to us how to translate that
proof to symplectic topological language.]

Remark 3.12 The part of the proof that does not go through when M is irrational is
the last step, the localization. The difficulty is that the action spectrum is dense in this
case, and necessarily some of the recappings of degenerate trivial orbits of F in S have
actions in /. Thus it is not obvious how to define the Floer homology localized in V.
This problem is circumvented in Hein (2012) by considering the Hamiltonians which
have a slight slope in S rather than being constant. With this modification, the local-

@ Springer



318 V. L. Ginzburg, B. Z. Giirel

ization procedure goes through, although the underlying reason for the localization is
now different; see Hein (2012) and Usher (2009).

4 Reeb Flows
4.1 General Discussion

The collection of all closed symplectic manifolds breaks down into two classes: those
for which the Conley conjecture holds and those for which the Conley conjecture
fails. Of course, the non-trivial assertion is then that, as we have seen, the former
class is non-empty and even quite large. The situation with closed contact manifolds
is more involved even if we leave aside such fundamental questions as the Weinstein
conjecture and furthermore focus exclusively on the contact homological properties
of the manifold.

First of all, there is a class of contact manifolds for which every Reeb flow has
infinitely many simple closed orbits because the rank of the contact or symplectic
homology grows as a function of the index or of some other parameter related to
the order of iteration. This phenomenon is studied in, e.g., Colin and Honda (2013),
Hryniewicz and Macarini (2015) and McLean (2012) and the results generalize and
are inspired by a theorem from Gromoll and Meyer (1969), establishing the existence
of infinitely many closed geodesics for manifolds whose free loop space homology
grows. (A technical but important fact closely related to Theorem 3.2 and underpinning
the proof is that the iterates of a given orbit can make only bounded contributions to the
homology; see Ginzburg and Giirel (2010), Gromoll and Meyer (1969), Hryniewicz
and Macarini (2015) and McLean (2012) for various incarnations of this result.) By
Vigué-Poirrier and Sullivan (1976), Abbondandolo and Schwarz (2006), Salamon and
Weber (2006) and Viterbo (1999), among contact manifolds in this class are the unit
cotangent bundles ST*M whenever r1(M) = 0 and the algebra H*(M; Q) is not
generated by one element, and some others; Colin and Honda (2013), Hryniewicz
and Macarini (2015) and McLean (2012). As is already pointed out in Sect. 2.1,
this homologically forced existence of infinitely many Reeb orbits has very differ-
ent nature from the Hamiltonian Conley conjecture where there is no homological
growth.

Then there are contact manifolds admitting Reeb flows with finitely many closed
orbits. Among these are, of course, the standard contact spheres and, more generally,
the pre-quantization circle bundles over symplectic manifolds admitting torus actions
with isolated fixed points; see Giirel (2015, Example 1.13). Note that the class of such
pre-quantization circle bundles includes the Katok—Ziller flows, i.e., Finsler metrics
with finitely many closed geodesics on S” and on some other manifolds; see Katok
(1973) for the original construction and also Ziller (1983). Another important group
of examples also containing the standard contact spheres arises from contact toric
manifolds; see Abreu and Macarini (2012). These two classes (pre-quantization circle
bundles and contact toric manifolds) overlap, but do not entirely coincide. Although
this is not obvious, Reeb flows with finitely many periodic orbits may have non-trivial
dynamics, e.g., be ergodic; see Katok (1973).
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Finally, as is shown in Ginzburg et al. (2014), there is a non-empty class of con-
tact manifolds for which every Reeb flow (meeting certain natural index conditions)
has infinitely many simple closed orbits, although there is no obvious homological
growth—the rank of the relevant contact homology remains bounded. One can expect
this class to be quite large, but at this point such unconditional existence of infinitely
many closed Reeb orbits has only been proved for the pre-quantization circle bundles
of certain aspherical manifolds; see Theorem 4.1. The proof of this theorem is quite
similar to its Hamiltonian counterpart.

This picture is, of course, oversimplified and not even close to covering the entire
range of possibilities, even on the homological level. For instance, hypothetically,
the Reeb flows for overtwisted contact structures have infinitely many simple closed
orbits, but where should one place such contact structures in our “classification”? [See
Eliashberg (1998) and Yau (2006) for a proof of the existence of one closed orbit in
this case.]

One application of Theorem 4.1 is the existence of infinitely many simple periodic
orbits for all low energy levels of twisted geodesic flows on surfaces of genus g > 2
with non-vanishing magnetic field; see Sect. 5.

Just as in the Hamiltonian setting, the mean indices or the actions and the mean
indices of simple periodic orbits of Reeb flows must, in many instances, satisfy certain
resonance relations when the number of closed orbits is finite. The mean index reso-
nance relations for the standard contact sphere were discovered by Viterbo in Viterbo
(1989), and the Morse—Bott case for geodesic flows was considered in Rademacher
(1989). Viterbo’s resonance relations were generalized to non-degenerate Reeb flows
on a broad class of contact manifolds in Ginzburg and Kerman (2010). These resonance
relations resemble the equality between two expressions for the Euler characteristic
of a closed manifold: the homological one and the one using indices of zeroes of a
vector field. The role of the homological expression is now taken by the mean Euler
characteristic of the contact homology of the manifold, introduced in van Koert (2005),
and the sum of the indices is replaced by the sum of certain local invariants of simple
closed orbits. The degenerate case of the generalized Viterbo resonance relations was
studied in Ginzburg and Goren (2015), Hryniewicz and Macarini (2015) and Long
et al. (2014) and the Morse—Bott case in Espina (2014). There are also variants of
resonance relations involving both the actions and the mean indices; see Giirel (2015)
and also Ekeland (1984) and Ekeland and Hofer (1987).

Leaving aside the exact form of the resonance relations, we only mention here some
of their applications. The first one, in dynamics, is a contact analog of Theorem 2.2:
the generic existence of infinitely many simple closed orbits for a large class of Reeb
flows; see Ginzburg and Giirel (2009¢) and also Ekeland (1984), Rademacher (1994)
and Hingston (1984) for related earlier results. Another application, also in dynamics,
is to the proof of the existence of at least two simple closed Reeb orbits on the standard
contact S3. This result is further discussed in the next section; see Theorem 4.3. (We
refer the reader to Giirel (2015) for some other applications in dynamics.) Finally, on
the topological side, the resonance relations can be used to calculate the mean Euler
characteristic, Espina (2014).
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4.2 Contact Conley Conjecture

Consider a closed symplectic manifold (M, w) such that the form w or, to be more
precise, its cohomology class [w] is integral, i.e., [w] € H? (M;Z)/ Tor.Letmw: P —
M be an S'-bundle over M with first Chern class —[w]. The bundle P admits an S'-
invariant 1-form o such that dog = 7*w and ag(Ry) = 1, where Ry is the vector field
generating the S'-action on P. In other words, when we set ! = R/Z and identify
the Lie algebra of § I with R, the form o is a connection form on P with curvature
. (Note our sign convention.)

Clearly, o is a contact form with Reeb vector field Ry, and the connection dis-
tribution & = ker o is a contact structure on P. Up to a gauge transformation, &
is independent of the choice of «g. The circle bundle P equipped with this contact
structure is usually referred to as a pre-quantization circle bundle or a Boothby—Wang
bundle. Also, recall that a degree two (real) cohomology class on P is said to be
atoroidal if its integral over any smooth map T2 — P is zero. (Such a class is nec-
essarily aspherical.) Finally, in what follows, we will denote by f the free homotopy
class of the fiber of 7.

The main tool used in the proof of Theorem 4.1 stated below is the cylindrical
contact homology. As is well known, to have this homology defined for a contact form
« on any closed contact manifold P one has to impose certain additional requirements
on the closed Reeb orbits of «. (See Bourgeois 2009; Eliashberg et al. 2000 and
references therein for the definition and a detailed discussion of contact homology.)
Namely, following Ginzburg et al. (2014), we say that a non-degenerate contact form
o is index—admissible if its Reeb flow has no contractible closed orbits with Conley—
Zehnderindex 2 —n or2—n =1, where dim P = 2n+ 1. In general, « or its Reeb flow
is index—admissible when there exists a sequence of non-degenerate index—admissible
forms C!-converging to a.

This requirement is usually satisfied when (P, ) has some geometrical convexity
properties. For instance, the Reeb flow on a strictly convex hypersurface in R*” is
index—admissible, Hofer et al. (1998). Likewise, as is observed in Benedetti (2014),
the twisted geodesic flow on a low energy level for a symplectic magnetic field on a
surface of genus g > 2 is index—admissible; see Sect. 5 for more details. Finally, let
us call a closed Reeb orbit x non-degenerate (or weakly non-degenerate, SDM, etc.)
if its Poincaré return map is non-degenerate (or, respectively, weakly non-degenerate,
SDM, etc.), cf. Sect. 2.2.1. (The Poincaré return map is the map, or rather the germ of
amap, ¥ — ¥ defined on a small cross section at x(0) and sending a point z € X to
the first intersection of the Reeb orbit through z with X.)

Theorem 4.1 (Contact Conley conjecture, Ginzburg et al. 2014) Assume that

(1) M is aspherical, i.e., 7, (M) = 0 for all r > 2, and
(i) ¢1(¢) € H2(P; R) is atoroidal.

Let o be an index—admissible contact form on the pre-quantization bundle P over
M, supporting &. Then the Reeb flow of o has infinitely many simple closed orbits
with contractible projections to M. Assume furthermore that the Reeb flow has finitely
many periodic orbits in the free homotopy class § of the fiber and that these orbits are
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weakly non-degenerate. Then for every sufficiently large prime k the Reeb flow of o
has a simple closed orbit in the class f*, and all classes §* are distinct.

It follows from Theorem 4.1 and the discussion below that, when the Reeb flow of
o is weakly non-degenerate, the number of simple periodic orbits of the Reeb flow
of « with period (or equivalently action) less than a > 0 is bounded from below by
Co-a/lna — Cy, where Cy = inf a(Rp) and Cy depends only on . As mentioned in
Sect. 2.2, this is a typical lower growth bound in the Conley conjecture type results.
Note also that the weak non-degeneracy requirement here plays a technical role and
probably can be eliminated.

The key to the proof of Theorem 4.1 is the observation that, as a consequence of (i),
all free homotopy classes ¥, k € N, are distinct and hence give rise to an N-grading of
the cylindrical contact homology of (P, «). (In fact, it would be sufficient to assume
that [w] is aspherical and w1 (M) is torsion free; both of these requirements follow
from (i).) This grading plays essentially the same role as the order of iteration in the
Hamiltonian Conley conjecture. With this observation in mind, the proof of the weakly
non-degenerate case is quite similar to its Hamiltonian counterpart. [Condition (ii) is
purely technical and most likely can be dropped.]

To complete the proof, one then has to deal with the case where the Reeb flow of
o has a simple SDM orbit, i.e., a simple isolated orbit with an SDM Poincaré return
map. This is also done similarly to the Hamiltonian case, but there are some nuances.

Consider a closed contact manifold (P?"*!, ker o) with a strong symplectic filling
(W, w), i.e., W is a compact symplectic manifold such that P = 0W with w|p = do
and a natural orientation compatibility condition is satisfied. Let ¢ be a free homotopy
class of loops in W.

Theorem 4.2 (Ginzburg et al. 2013, 2014) Assume that the Reeb flow of « has a
simple closed SDM orbit in the class ¢ and one of the following requirements is met:

o W is symplectically aspherical and ¢ = 1, or
o wis exact and c\(TW) = 0in HX(W; Z).

Then the Reeb flow of o has infinitely many simple periodic orbits.

This result is a contact analog of Theorem 3.8. Theorem 4.1 readily follows from
the first case of Theorem 4.2 where we take the pre-quantization disk bundle over M
as W. [Here we only point out that (W) = ma(M) = 0 since M is aspherical and
refer the reader to Ginzburg et al. (2014) for more details.]

The proof of Theorem 4.2 uses the filtered linearized contact homology. To be more
specific, denote by Hka“’ 2 (o; W, ¢*) the linearized contact homology of (P, &) with
respect to the filling (W, w) for the action interval (a, b) and the free homotopy class
ok, graded by the Conley—Zehnder index. Set A = A(x) and ¢ = A(x) where x is the
SDM orbit from the theorem. Similarly to the Hamiltonian case (cf. Theorem 3.9),
one first shows that, under the hypotheses of the theorem, for any € > 0 there exists
ke € N such that

HC{ 6 K49 (g W, %) # 0 for all k > ke and some & < e. .1
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Theorem 4.2 is a consequence of (4.1) (see Ginzburg et al. 2014), although the
argument is less obvious than its Hamiltonian counterpart for, say, symplectic CY
manifolds.

The proof of (4.1) given in Ginzburg et al. (2013) follows the same path as the
proof of Theorem 3.9. Namely, we squeeze the form « between two contact forms
a4 constructed using the Hamiltonians H4 near the SDM orbit, calculate the relevant
contact homology for e+ (or rather a direct summand in it), and show that the map
in contact homology induced by the cobordism from ¢ to @— is non-zero. This map
factors through HC,&’ZIE’; f”+€)(a; W, ¢k ), and hence this group is also non-trivial.

Note that Theorem 4.2 as stated, without further assumptions on ¢, affords no
control on the free homotopy classes of the simple orbits or their growth rate. A related
point is that, at the time of this writing, there seems to be no satisfactory version of
Theorem 4.2 which would not rely on the existence of the filling W. The difficulty
is that without a filling one is forced to work with cylindrical contact homology to
prove a variant of (4.1), but then it is not clear if the forms w4+ can be made index—
admissible without additional assumptions on « along the lines of index—positivity.
Such a filling—free version of the theorem would, for instance, enable one to eliminate
the weak non-degeneracy assumption in the growth assertion in Theorem 4.1. Another
serious limitation of Theorem 4.2 is that the SDM orbit is required to be simple. This
condition, which is quite restrictive but probably purely technical, is used in the proof
in a crucial way to construct the forms o.

Another application of Theorem 4.2 considered in Ginzburg et al. (2013) (and also
in Ginzburg and Goéren 2015; Liu and Long 2013) is the following result originally
proved in Cristofaro-Gardiner and Hutchings (2012).

Theorem 4.3 The Reeb flow of a contact form o supporting the standard contact
structure on S° has at least two simple closed orbits.

In fact, a much stronger result holds. Namely, every Reeb flow on a closed three-
manifold has at least two simple closed Reeb orbits. This fact is proved in Cristofaro-
Gardiner and Hutchings (2012) using the machinery of embedded contact homology
and is outside the scope of this survey. The idea of the proof from Ginzburg et al. (2013)
is that if a Reeb flow on the standard contact S> had only one simple closed orbit x,
this orbit would be an SDM, and, by Theorem 4.2, the flow would have infinitely many
periodic orbits. Showing that x is indeed an SDM requires a rather straightforward
index analysis with one non-trivial ingredient used to rule out a certain index pattern.
In Ginzburg et al. (2013), this ingredient is strictly three-dimensional and comes from
the theory of finite energy foliations (see Hofer et al. 1995, 1996). The argument in
Ginzburg and Goren (2015); Liu and Long (2013) uses a variant of the resonance
relation for degenerate Reeb flows proved in Ginzburg and Géren (2015) and Long
et al. (2014). Theorem 4.2 can also be applied to give a simple proof, based on the
same idea, of the result from Bangert and Long (2010) that any Finsler geodesic flow
on $2 has at least two closed geodesics; see Ginzburg and Goren (2015). [Of course,
this fact also immediately follows from Cristofaro-Gardiner and Hutchings (2012).]

Interestingly, no multiplicity results along the lines of Theorem 4.3 have been
proved in higher dimensions without restrictive additional assumptions on the contact
form. Conjecturally, every Reeb flow on the standard contact sphere S~ ! has at least
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n simple closed Reeb orbits. This conjecture has been proved when the contact form
comes from a strictly convex hypersurface in R?* and the flow is non-degenerate or
2n < 8; see Long and Zhu (2002), Long (2002) and Wang (2013) and references
therein. In the degenerate strictly convex case, the lower bound is |n/2] + 1. Without
any form of a convexity assumption, it is not even known if a Reeb flow on the standard
contact S° must have at least two simple closed orbits. It is easy to see, however, that a
non-degenerate Reeb flow on the standard S>"~! has at least two simple closed orbits;
see, e.g., Giirel (2015, Rmk. 3.3).

We conclude this section by pointing out that the machinery of contact homology
which the proof of Theorem 4.1 relies on is yet to be fully put on a rigorous basis.

5 Twisted Geodesic Flows

The results from Sect. 4 have immediate applications to the dynamics of twisted
geodesic flows. These flows give a Hamiltonian description of the motion of a charge
in a magnetic field on a Riemannian manifold.

To be more precise, consider a closed Riemannian manifold M and let o be a
closed 2-form (a magnetic field) on M. Let us equip T*M with the twisted symplectic
structure w = wg + 7*o, where wy is the standard symplectic form on 7*M and
w: T*M — M is the natural projection, and let K be the standard kinetic energy
Hamiltonian on 7*M arising from the Riemannian metric on M. The Hamiltonian
flow of K on T*M governs the motion of a charge on M in the magnetic field o and is
referred to as a twisted geodesic or magnetic flow. In contrast with the geodesic flow
(the case o = 0), the dynamics of a twisted geodesic flow on an energy level depends
on the level. In particular, when M is a surface of genus g > 2, the example of the
horocycle flow shows that a symplectic magnetic flow need not have periodic orbits on
all energy levels. Furthermore, the dynamics of a twisted geodesic flow also crucially
depends on whether one considers low or high energy levels, and the methods used to
study this dynamics further depend on the specific properties of o, i.e., on whether o
is assumed to be exact or symplectic or, when M is a surface, non-exact but changing
sign, etc.

The existence problem for periodic orbits of a charge in a magnetic field was first
addressed in the context of symplectic geometry by V.I. Arnold in the early 80s; see
Arnold (1986, 1988). Namely, Arnold proved that, as a consequence of the Conley—
Zehnder theorem, Conley and Zehnder (1983a), a twisted geodesic flow on T? with
symplectic magnetic field has periodic orbits on all energy levels when the metric is flat
and on all low energy levels for an arbitrary metric, Arnold (1988). It is still unknown
if the latter result can be extended to all energy levels; however it was generalized to
all surfaces in Ginzburg (1987).

Example 5.1 Assume that M is a surface and let 0 = f dA, where dA is an area
form. Assume furthermore that f has a non-degenerate critical point at x. Then it is
not hard to see that essentially by the inverse function theorem the twisted geodesic
flow on a low energy level has a closed orbit near the fiber over x.

Since Arnold’s work, the problem has been studied in a variety of settings. We refer
the reader to, e.g., Ginzburg (1994) for more details and references prior to 1996 and
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to, e.g., Asselle and Benedetti (2014), Abbondandolo et al. (2014), Contreras et al.
(2004), Ginzburg et al. (2014) and Kerman (1999) for some more recent results and
references.

Here we focus exclusively on the case where the magnetic field form o is symplectic
(i.e., non-vanishing when dim M = 2), and we are interested in the question of the
existence of periodic orbits on low energy levels. In this setting, in all dimensions, the
existence of at least one closed orbit with contractible projection to M was proved in
Ginzburg and Giirel (2009a) and Usher (2009).

Furthermore, when o is symplectic, we can also think of M as a symplectic sub-
manifold of (T*M, ) and K as a Hamiltonian on 7*M attaining a Morse—Bott
non-degenerate local minimum K = 0 at M. Thus we can treat the problem of the
existence of periodic orbits on a low energy level P. = {K = €} as a generalization
of the classical Moser—Weinstein theorem (see Moser 1976; Weinstein 1973), where
an isolated non-degenerate minimum is replaced by a Morse—Bott non-degenerate
minimum and the critical set is symplectic. This is the point of view taken in Kerman
(1999) and then in, e.g., Ginzburg and Giirel (2004, 2009a). To prove the existence of
a periodic orbit on every low energy level one first shows that almost all low energy
levels carry a periodic orbit with mean index in a certain range depending only on
dim M and having contractible projection to M; see, e.g., Ginzburg and Giirel (2004)
and Schlenk (2006). This fact does not really require M to be symplectic; it is suffi-
cient to assume that o # 0. Then a Sturm theory type argument is used in Ginzburg
and Giirel (2009a) and Usher (2009) to show that long orbits must necessarily have
high index, and hence, by the Arzela—Ascoli theorem, every low energy level carries
a periodic orbit. At this step, the assumption that the Hessian d2K is positive definite
on the normal bundle to M becomes essential, cf. Ginzburg and Giirel (2004, Sect.
2.4).

There are also multiplicity results. Already in Arnold (1986, 1988), it was proved
that when M = T? and o is symplectic, there are at least three (or four in the non-
degenerate case) periodic orbits on every low energy level Pc. Furthermore, Arnold
also conjectured that the lower bounds on the number of periodic orbits are governed
by Morse theory and Lusternik—Schnirelmann theory as in the Arnold conjecture
whenever o is symplectic and € > 0 is small enough. These lower bounds were then
proved for surfaces in Ginzburg (1987).

For the torus the proof is particularly simple. Let us fix a flat connection on P, =
T2 x S'. When € > 0 is small, the horizontal sections are transverse to X k., and
one can show that the resulting Poincaré return map is a Hamiltonian diffeomorphism
T? — T?; see, e.g., Ginzburg (1987) and Levi (2003). Now it remains to apply the
Conley—Zehnder theorem. Note that this argument captures only the short orbits, i.e.,
the orbits in the homotopy class of the fiber. Likewise, the proof for other surfaces in
Ginzburg (1987) captures only the orbits that stay close to a fiber and wind around
it exactly once. In higher dimensions, however, it is not entirely clear how to define
such short orbits. The difficulty arises from the fact that 4K has several “modes”
in every fiber, and the modes can vary significantly and bifurcate from one fiber
to another. Furthermore, the Weinstein—Moser theorem provides a hypothetical lower
bound which is different from the one coming from the Arnold conjecture perspective;
see Kerman (1999). Without a distinguished class of short orbits to work with, one
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is forced to consider all periodic orbits and, already for M = T2, use the Conley
conjecture type results in place of the Arnold conjecture. Hypothetically, as is observed
in Ginzburg and Giirel (2009a), every low energy level should carry infinitely many
simple periodic orbits, at least when (M, o) is a symplectic CY manifold. This is still
a conjecture when dim M > 2, but in dimension two the question has been recently
settled in Ginzburg et al. (2014). Namely, we have

Theorem 5.2 (Ginzburg et al. 2014) Assume that M is a surface of genus g > 1 and
o is symplectic. Then for every small € > 0, the flow of K has infinitely many simple
periodic orbits on Pe with contractible projections to M. Moreover, assume that the
flow has finitely many periodic orbits in the free homotopy class | of the fiber. Then
for every sufficiently large prime k there is a simple periodic orbit in the class {*, and
all such classes are distinct.

When M = T2, the theorem immediately follows from Arnold’s cross section
argument once one uses the Conley conjecture for T> (proved in Franks and Handel
2003) instead of the Conley—Zehnder theorem; see Ginzburg and Giirel (2009a). When
g > 2, Theorem 5.2 (almost) follows from Theorem 4.1 since P has contact type and
the flow is index—admissible as observed in Benedetti (2014). The part that is not a
consequence of Theorem 4.1 is the existence of a simple periodic orbit in the class f* for
a large prime k without any non-degeneracy assumptions. This is proved by applying
the second case of Theorem 4.2 to the disjoint union P. U Pr, where E is large, with the
filling W formed by the part of 7*M between these two energy levels, and ¢ = f. The
proof of Theorem 5.2 heavily relies on the machinery of cylindrical contact homology
via its dependence on Theorem 4.1. Note, however, that in the present setting one might
be able to circumvent foundational difficulties by using automatic transversality results
from Hutchings and Nelson (2014). Alternatively, one could work with the linearized
contact homology or the equivariant symplectic homology for the filling W, entirely
avoiding foundational problems in the latter case.

Two difficulties arise in extending Theorem 5.2 to higher dimensions. One is that the
energy levels do not have contact type, and hence the standard contact or symplectic
homology techniques are not applicable. This difficulty seems to be more technical
than conceptual: using Sturm theory as in Ginzburg and Giirel (2009a) one can still
associate to a level a variant of symplectic homology generated by periodic orbits on
the level. A more serious obstacle is the lack of filtration by the free homotopy classes
§k, which plays a central role in the proof.

There seems to be no reason to expect Theorem 5.2 to hold for $2. However, no
counterexamples are known. For instance, let us consider the round metric on $2 and
a non-vanishing magnetic field o symmetric with respect to rotations about the z axis.
The twisted geodesic flow on every energy level is completely integrable. It would be
useful and illuminating to analyze this flow and check if it has infinitely many periodic
orbits on every (low or high) energy level.

It is conceivable that for any magnetic field, every sufficiently low energy level
carries infinitely many periodic orbits. For exact magnetic fields on closed surfaces
this is proved for almost all low energy levels in Abbondandolo et al. (2014) by meth-
ods from the “classical calculus of variations”; see, e.g., Asselle and Benedetti (2015)
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for related results and further references. It would be extremely interesting to under-
stand this phenomenon of “almost existence of infinitely many periodic orbits” from a
symplectic topology perspective and generalize it to higher dimensions. Furthermore,
even in dimension two, no examples of magnetic flows with finitely many periodic
orbits on arbitrarily low energy levels are known. For instance, it is not known if the
completely integrable twisted geodesic flow on S? with an exact S'-invariant magnetic
field o has infinitely many periodic orbits on only almost all low energy levels or in
fact on all such levels. (Note that the Katok—Ziller flows from Katok 1973; Ziller 1983
correspond to high energy levels.)

6 Beyond the Conley Conjecture
6.1 Franks’ Theorem

Even when the Conley conjecture fails, the existence of infinitely many simple periodic
orbits is, as we have already seen, a generic feature of Hamiltonian diffeomorphisms
(and Reeb flows) for a broad class of manifolds. There is, however, a different and
more interesting, from our perspective, phenomenon responsible for the existence of
infinitely many periodic orbits. The starting point here is a celebrated theorem of
Franks.

Theorem 6.1 (Franks 1992, 1996) Any Hamiltonian diffeomorphism ¢ of S* with at
least three fixed points has infinitely many simple periodic orbits.

In fact, the theorem, already in its original form, was proved for area preserving
homeomorphisms. This aspect of the problem is outside the scope of the paper, and
here we focus entirely on smooth maps. Furthermore, in the setting of the theorem,
there are also strong growth results; see Franks and Handel (2003), Le Calvez (2006)
and Kerman (2012) for this and other refinements of Theorem 6.1. The proof of
the theorem given in Franks (1992, 1996) utilized methods from low—dimensional
dynamics. Recently, a purely symplectic topological proof of the theorem was obtained
in Collier et al. (2012); see also Bramham and Hofer (2012) for a different approach.
Outline of the proof from Collier et al. (2012) Arguing by contradiction and passing if
necessary to an iteration of ¢, we can assume that ¢ has finitely many periodic points,
that all these points are fixed points and that there are at least three fixed points.
Applying a variant of the resonance relations from Ginzburg and Kerman (2010)
combined with Theorem 3.8 and a simple topological argument, it is not hard to see
that there must be (at least) two fixed points x and y with irrational mean indices and at
least one point z with zero mean index. Note that, since dim S§2 =2, the points x and
y are elliptic and strongly non-degenerate, and z is either degenerate or hyperbolic.

In the former case, we glue together two copies of S2 punctured at y and z by insert-
ing narrow cylinders at the seams as in Arnold (1989, App. 9). As a result, we obtain
a torus T2, and the Hamiltonian diffeomorphism ¢ gives rise to an area preserving
map : T> — T2. This map is not necessarily a Hamiltonian diffeomorphism, but
it is symplectically isotopic to id and its Floer homology HF.. () is defined. Hence,
either HF, (1) = 0 or HF. (/) = H, 4+ (T?) when v is Hamiltonian. Now one shows
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that, roughly speaking, any of the points x* € T? corresponding to x represents a
non-trivial homology class of degree different from 0 and £1, which is impossible.
When z is a hyperbolic point, we use the points x and y to produce the torus, and
again a simple Floer homological argument leads to a contradiction. Indeed, for a
sufficiently large iteration of ¥, each elliptic point has large Conley—Zehnder index,
since Theorem 3.8 rules out SDM points, and each hyperbolic point has even index.
Moreover, hyperbolic points give rise to non-trivial homology classes (cf. Ginzburg
and Giirel 2009¢c, Thm. 1.7). Thus HF.(¥) # 0 but HF;(¥) = 0, which is again
impossible. (Alternatively, one can just apply Theorem 6.2 below to deal with this
case.) |

6.2 Generalizing Franks’ Theorem

Even though all proofs of Franks’ theorem are purely low-dimensional, it is tempting to
think of the result as a particular case of a more general phenomenon. For instance, one
hypothetical generalization of Franks’ theorem would be that a Hamiltonian diffeo-
morphism with more than necessary non-degenerate (or just homologically non-trivial
in the sense of Sect. 3.1.2) fixed points has infinitely many periodic orbits. Here more
than necessary is usually interpreted as a lower bound arising from some version of
the Arnold conjecture. For CPP", the expected threshold is n + 1 and, in particular, it
is 2 for $2 as in Franks’ theorem, cf. Hofer and Zehnder (1994, p. 263).

However, this conjectural generalization of Franks’ theorem seems to be too restric-
tive, and from the authors’ perspective it is fruitful to put the conjecture in a broader
context. Namely, it appears that the presence of a fixed point that is unnecessary from
a homological or geometrical perspective is already sufficient to force the existence
of infinitely many simple periodic orbits. Let us now state some recent results in this
direction.

Theorem 6.2 (Ginzburg and Giirel 2014) A Hamiltonian diffeomorphism of CP" with
a hyperbolic periodic orbit has infinitely many simple periodic orbits.

Here, clearly, the hyperbolic periodic orbit is unnecessary from every perspective.
In contrast with Franks’ theorem and the Conley conjecture type results, at the time
of writing, there are no growth results in this setting. The theorem actually holds for a
broader class of manifolds M, and the requirements on M can be stated purely in terms
of the quantum homology of M; see Ginzburg and Giirel (2014, Thm. 1.1). Among the
manifolds meeting these requirements are, in addition to CP", the complex Grassman-
nians Gr(2; N), Gr(3; 6) and Gr(3; 7); the products CP" x P2 and Gr(2; N) x P,
where P is symplectically aspherical and d < m in the former case and d < 2 in the
latter; and the monotone products CP" x CIP™. There is also a variant of the theorem
for non-contractible hyperbolic orbits, which is applicable to, for example, the product
CP™ x P24 Note also that the generalization of Franks’ theorem to CP”, at least for
non-degenerate Hamiltonian diffeomorphisms, would follow if one could replace in
Theorem 6.2 a hyperbolic fixed point by a non-elliptic one.

Another result fitting into this context is the following.
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Theorem 6.3 (Giirel 2014) Let ¢: R — R?" be a Hamiltonian diffeomorphism
generated by a Hamiltonian equal to a hyperbolic quadratic form Q at infinity (i.e.,
outside a compact set) such that Q has only real eigenvalues. Assume that ¢ has finitely
many fixed points, and one of these points, x, is non-degenerate (or just isolated and
homologically non-trivial) and has non-zero mean index. Then ¢ has simple periodic
orbits of arbitrarily large period.

As a consequence, regardless of whether the fixed-point set is finite or not, ¢ has
infinitely many simple periodic orbits. In this theorem the condition that the eigenval-
ues of O are real can be slightly relaxed. Conjecturally, it should be enough to require
O to be non-degenerate and x to have mean index different from the mean index of the
origin for Q. However, hyperbolicity of Q is used in an essential way in the proof of
the theorem. Also, interestingly, in contrast with Franks’ theorem, the requirement that
x is homologically non-trivial is essential and cannot be omitted, even in dimension
two. As an easy consequence of Theorem 6.3, we obtain

Theorem 6.4 (Giirel 2014) Let ¢ : R*" — R?" where 2n = 2 or 2n = 4, be a Hamil-
tonian diffeomorphism generated by a Hamiltonian equal to a hyperbolic quadratic
form Q at infinity as in Theorem 6.3. Assume that ¢ is strongly non-degenerate and
has at least two (but finitely many) fixed points. Then ¢ has simple periodic orbits of
arbitrarily large period.

In the two-dimensional case, a stronger result is proved in Abbondandolo (2001,
Thm. 5.1.9). In the setting of Theorems 6.3 and 6.4, one can be more precise about
which simple periods occur. Namely, for a certain integer m > 0, starting with a
sufficiently large prime number, among every m consecutive primes, there exists at
least one prime which is the period of a simple periodic orbit. Thus, as in many other
results of this type, we have the lower growth bound const - k/ Ink.

Theorem 6.2 and, with some extra work, Theorem 6.3 imply the case of Franks’
theorem where ¢ is assumed to have a hyperbolic periodic orbit, e.g., when ¢ is non-
degenerate. Furthermore, it is conceivable that one could prove Franks’ theorem as a
consequence of Theorem 6.2. Such a proof would certainly be of interest, but it would
most likely be much more involved than the argument in Collier et al. (2012).

Let us now turn to non-contractible orbits. Recall that for a (time-dependent)
Hamiltonian flow (p%, generated by a Hamiltonian H: S' x M — R there is a one-
to-one correspondence between the one-periodic orbits of ¢}, and the fixed points of
¢ = @pg. Furthermore, as is easy to see from the proof of the Arnold conjecture, the
free homotopy class of an orbit x is independent of the Hamiltonian generating the
time-one map ¢. Thus the notion of a contractible one-periodic orbit (or even a “con-
tractible fixed point”) of ¢ is well-defined. Of course, the same applies to k-periodic
orbits.

On a closed symplectic manifold M a Hamiltonian diffeomorphism need not have
non-contractible one-periodic orbits. Indeed, the Hamiltonian Floer homology van-
ishes for any non-trivial free homotopy class when M is compact, since all one-periodic
orbits of a C?-small autonomous Hamiltonian are its critical points (hence con-
tractible). Thus, from a homological perspective, non-contractible periodic orbits are
totally unnecessary.
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To state our next result, recall that a symplectic form @ on M is said to be atoroidal
if for every map v: T? — M, the integral of w over v vanishes. We have

Theorem 6.5 (Giirel 2013) Let M be a closed symplectic manifold equipped with an
atoroidal symplectic form w. Assume that a Hamiltonian diffeomorphism ¢ of M has
a non-degenerate one-periodic orbit x with homology class [x] # 0inH{(M; Z)/ Tor
and that the set of one-periodic orbits in the class [x] is finite. Then, for every suffi-
ciently large prime p, the Hamiltonian diffeomorphism ¢ has a simple periodic orbit
in the homology class p|[x] and with period either p or p’, where p’ is the first prime
greater than p.

Thus the number of simple non-contractible periodic orbits with period less than
or equal to k, or the number of distinct homology classes represented by such orbits,
is bounded from below by const - k/In k. An immediate consequence of the theorem
is that ¢ has infinitely many simple periodic orbits with homology classes in N[x]
whether or not the set of one-periodic orbits (in the class [x]) is finite. Moreover, in
this theorem, as in Theorem 6.3, the non-degeneracy condition can be relaxed and
replaced by the much weaker requirement that x is isolated and homologically non-
trivial. Finally, in both theorems, the orbit x need not be one-periodic; the theorems
(with obvious modifications) still hold when x is just a periodic orbit.

Among the manifolds meeting the requirements of Theorem 6.5 are, for instance,
closed Kdhler manifolds with negative sectional curvature and, more generally, any
closed symplectic manifold with [@]|z,m) = 0 and hyperbolic 71 (M). Furthermore,
Hamiltonian diffeomorphisms having a periodic orbit in a non-trivial homology class
exist in abundance. It is plausible that a C!-generic, or even C*°-generic, Hamiltonian
diffeomorphism has an orbit in a non-trivial homology class when the fundamental
group (or the first homology group) of M is large enough; see Tal (2013) for some
possibly relevant results for surfaces. However, as is easy to see, already for M = T2, a
fixed Hamiltonian diffeomorphism need not have non-contractible periodic orbits (e.g.,
@ for a small bump function H), and even C*°-generically one cannot prescribe the
homology class of an orbit in advance; Ginzburg and Giirel (2015) and Giirel (2013).

Hypothetically, one can expect an analog of the theorem to hold when the condition
that w is atoroidal is omitted or relaxed, e.g., replaced by the requirement that (M, w)
is toroidally monotone. We refer the reader to Ginzburg and Giirel (2015) for some
further results in this direction.

The proofs of all these theorems are based on the same idea that an unnecessary
periodic orbit is a seed creating infinitely many periodic orbits. In Theorems 6.3
and 6.5 the argument is that, roughly speaking, the change in filtered Floer homology,
for a carefully chosen action range (and/or degree), between different iterations of ¢
requires new simple periodic orbits to be created. The proof of Theorem 6.2 relies on
a result, perhaps of independent interest, asserting that the energy needed for a Floer
connecting trajectory of an iterated Hamiltonian to approach a hyperbolic orbit and
cross its fixed neighborhood cannot become arbitrarily small: it is bounded away from
zero by a constant independent of the order of iteration. Then the product structure in
quantum homology is used to show that there must be Floer connecting trajectories
with energy converging to zero for some sequence of iterations unless new periodic
orbits are created.
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6.3 Reeb Flows, Symplectomorphisms and All That

The conjectures discussed in Sect. 6.2 have obvious analogs for Reeb flows and sym-
plectomorphisms.

6.3.1 Reeb Flows Revisited

Justlike Hamiltonian diffeomorphisms, Reeb flows with “unnecessary” periodic orbits
can be expected to have infinitely many simple periodic orbits. However, at the time
of this writing, there is little evidence supporting this conjecture, and all the rele-
vant results are three-dimensional. The most notable one is a theorem, proved in
Hofer et al. (1998), asserting that the Reeb flow on a strictly convex hypersurface
in R* has either two or infinitely many periodic orbits. In fact, more generally,
this is true for the so-called dynamically convex contact forms on S3. Conjec-
turally, this “two-or-infinitely-many” alternative should hold for all contact forms
supporting the standard contact structure on S3, which could be thought of as a three-
dimensional analog of Franks’ theorem; see Hofer et al. (2003) for some other related
results.

The existence of infinitely many closed geodesics on $? also fits perfectly into
the framework of this conjecture; see Bangert (1993) and Franks (1992) and also
Hingston (1993) and Hingston (1997) and the references therein for the original argu-
ment. Indeed, the classical Lusternik—Schnirelmann theorem asserts the existence of
at least three closed geodesics on S2, i.e., at least one more than is necessary from the
Floer—theoretic perspective, cf. Katok (1973) and Ziller (1983). The geodesic flow on
s2 interpreted as a Reeb flow on the standard contact R]P’3, should then have infinitely
many simple (i.e., non-iterated) closed orbits or, in other words, infinitely many geo-
metrically distinct closed geodesics on S2. In fact, one can reprove the existence of
infinitely many closed geodesics in exactly this way using the variant of the Lusternik—
Schnirelmann theorem from Grayson (1989) as the starting point and then the results
from Hryniewicz et al. (2014) and Ginzburg et al. (2013) on the symplectic side of the
problem; see the latter reference for more details.

Finally, another aspect of this question is related to the so-called perfect Reeb flows.
Let us call a non-degenerate Reeb flow on a contact manifold perfect if the differential
in the contact homology complex vanishes for some choice of the auxiliary data,
cf. Bourgeois et al. (2007). (Thus this definition depends on the type of the contact
homology used.) For instance, a Reeb flow is perfect (for every auxiliary data) when
all closed orbits have Conley—Zehnder index of the same parity; we refer the reader
to Giirel (2015) for numerous examples of perfect Reeb flows. One can think of non-
perfect Reeb flows as those with unnecessary periodic orbits. In Giirel (2015) an upper
bound on the number of simple periodic orbits of perfect Reeb flows is established for
many contact manifolds under some (minor) additional assumptions. For $>"~!, as
expected, the upper bound is n. However, in general, it is not even known if a perfect
Reeb flow on the standard contact $2*~!, 217 — 1 > 5, must have finitely many simple
periodic orbits or, if it does, whether this number is independent of the flow. [For § 3
this is proved in Bourgeois et al. (2007) and reproved in Giirel (2015).]
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6.3.2 Symplectomorphisms

For symplectomorphisms, the problem of the existence of infinitely many periodic
orbits breaks down into several phenomena in the same way as for Reeb flows, although
even less is known. Namely, as in Sect. 4.1, we can, roughly speaking, single out three
types of behavior of symplectomorphisms. First of all, some manifolds (such as CIP" or
tori or their products) admit symplectomorphisms with finitely many periodic orbits or
even, in some instances (e.g., T>"), without periodic orbits. Here a non-obvious fact is
that a surface X, of genus ¢ > 1 admits a symplectic (autonomous) flow with exactly
|2 — 2g| fixed points and no other periodic orbits; see, e.g., Katok and Hasselblatt
(1995, Chap. 14) and, in particular, Exercise 14.6.1 and the hint therein.

Then there are symplectomorphisms ¢ such that the rank of the Floer homology
HF,(¢¥) over a suitable Novikov ring A grows with the order of iteration k. The Floer
homology groups of symplectomorphisms have been studied for close to two decades
starting with Dostoglou and Salamon (1994) and Lé and Ono (1995), and the literature
on the subject is quite extensive (particularly so for symplectomorphisms of surfaces);
we refer the reader to, e.g., Cotton-Clay (2010) and Fel’shtyn (2012) and references
therein for recent results focusing specifically on the growth of the Floer homology.
Let us assume here, for the sake of simplicity, that M is symplectically aspherical or
monotone and that the Floer homology HF, (¢¥) is defined. Similarly to the results in
Gromoll and Meyer (1969), Hryniewicz and Macarini (2015) and McLean (2012), we
have

Proposition 6.6 Let ¢: M — M be a symplectomorphism of a closed symplectic
manifold M such that the sequence rk » HF,, (¢%) is unbounded. Then ¢ has infinitely
many simple periodic orbits. Moreover, every sufficiently large prime occurs as a
simple period when the number of fixed points of ¢ is finite and tk » HF . (¢*) — oo.

Proof The proposition is obvious and well known when ¢ is strongly non-degenerate.
(See Cotton-Clay 2010; Fel’shtyn 2012 for more specific and stronger results.) The
degenerate case follows from the fact that the dimension of the local Floer homology
of an isolated periodic orbit remains bounded as a function of the order of iteration,
as a consequence of Theorem 3.2. O

Example 6.7 Let X be a closed surface and ¥: ¥ — X be a symplectomorphism
such that rkp HF*(I/fk) — o00. This is the case, for instance, when the Lefschetz
number L (%) grows; such symplectomorphisms exist in abundance. [Proposition
6.6 applies to v, but in this case a simpler argument is available: when L(y%) — oo
the assertion immediately follows from the Shub—Sullivan theorem, (1974).] Let P
be a symplectically aspherical manifold with x(P) = 0, such as P = T?", and
¢: PxX — P x X beHamiltonianisotopicto (id, /). Thentk , HF, ((pk) — ooand,
by the proposition, ¢ has infinitely many simple periodic orbits. However, L(¢*) = 0,
and, moreover, a symplectomorphism in the smooth or symplectic isotopy class of
(id, ¥) need not have periodic orbits at all when, e.g., P = T2,

Thirdly, there are symplectomorphisms with infinitely many simple periodic orbits,
but no homological growth. Here, of course, we have the Hamiltonian Conley conjec-
ture as a source of examples. The authors tend to think that there should be other classes
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of symplectomorphisms of this type, but no results to this account have so far been
proved. One class of symplectomorphisms which might be worthwhile to examine is
that of symplectomorphisms of X, x P symplectically isotopic to id and with flux
vanishing on H; (P), where X, is a surface of genus g > 2 and P is symplectically
aspherical and not a point.

Finally, one can expect the presence of an unnecessary fixed or periodic point to
force a symplectomorphism to have infinitely many simple periodic orbits. However,
now the situation is more subtle, less is known, and there is a counterexample to
this general principle. A prototypical (and simple) result of this type is that a non-
degenerate symplectomorphism of T2 symplectically isotopic to id has infinitely many
simple periodic orbits, provided that it has one fixed or periodic point; see Ginzburg
and Giirel (2009c, Thm. 1.7). In other words, we have the following “zero or infinitely
many” alternative: a non-degenerate symplectomorphism of T isotopic to i d has either
no periodic orbits or infinitely many periodic orbits. It is interesting, however, that
the non-degeneracy condition cannot entirely be omitted, although it can probably be
relaxed. Namely, it is easy to construct a symplectic vector field on T? with exactly one
(homologically trivial) zero and no periodic points; see Ginzburg and Giirel (2009c,
Example 1.10). (No similar results or counterexamples for tori T2, 2n > 4, are
known.) There are also analogs of Theorem 6.2 for symplectomorphisms, Batoréo
(2015a,b), applicable to manifolds such as CP" x P>, where P is symplectically
aspherical and m < n.

Note in conclusion that when discussing symplectomorphisms in the homological
framework, it would make sense to ask the question of the existence of infinitely many
periodic orbits while fixing the class of symplectomorphisms Hamiltonian isotopic to
each other. The reason is that Floer homology is very sensitive to symplectic isotopy but
is invariant under Hamiltonian isotopy. Above, however, we have not strictly adhered
to this point of view and mainly focused on the properties of the ambient manifolds.
As just one implication of that viewpoint and to emphasize the difference with the
Hamiltonian setting, let us point that one may expect the C*°-generic (or even C*-
generic for a large k) existence of infinitely many periodic orbits to break down for
symplectomorphisms with a fixed flux; cf. Herman (1991a,b).

Remark 6.8 In this survey, we have just briefly touched upon the question of the
existence of infinitely many periodic orbits for Hamiltonian diffeomorphisms and
symplectomorphisms of open manifolds and manifolds with boundary. (In this case,
one, of course, has to impose some restrictions on the behavior of the map near infinity
or on the boundary.) Such symplectomorphisms naturally arise in applications and in
physics. For instance, the billiard maps and the time-one maps describing the motion
of a particle in a time-dependent conservative force field and/or exact magnetic field
are in this class. We are not aware of any new phenomena happening in this setting,
and our general discussion readily translates to such maps. For instance, Hamiltonian
diffeomorphisms of open manifolds can exhibit the same three types of behavior as
symplectomorphisms of closed manifolds or Reeb flows. (After all, a geodesic flow is
a Hamiltonian flow on the cotangent bundle.) To the best of our knowledge, there are
relatively few results of symplectic topological nature concerning this class of maps;
see Sect. 2.1 for some relevant references.
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