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Abstract We employ themethod ofmultiple scales (two-timing) to analyse the vortex
dynamics of inviscid, incompressible flows that oscillate in time. Consideration of
distinguished limits for Euler’s equation of hydrodynamics shows the existence of
two main asymptotic models for the averaged flows: strong vortex dynamics (SVD)
and weak vortex dynamics (WVD). In SVD the averaged vorticity is ‘frozen’ into the
averaged velocity field. By contrast, inWVD the averaged vorticity is ‘frozen’ into the
‘averaged velocity + drift’. The derivation of the WVD recovers the Craik–Leibovich
equation in a systematic andquite generalmanner.We show that the averaged equations
and boundary conditions lead to an energy-type integral, with implications for stability.

Keywords Oscillating flows · Two-timing method · Distinguished limits ·
Vortex dynamics · Arnold stability

1 Introduction

Oscillating flows represent an important aspect of classical fluid dynamics and appear
in various applications in medicine, biophysics, geophysics, engineering, astrophysics
and acoustics. The term ‘oscillating flow’ usually means that the fluid motion under
consideration possesses a dominant frequency σ , which can bemaintained either by an
oscillating boundary condition, by an oscillating external force, or by self-oscillations
of a flow. All other motions in the oscillating flow are considered as ‘slow’, with the
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114 V. A. Vladimirov et al.

related time-scale Tslow � 1/σ . The scale Tslow also can be related to a boundary con-
dition, to an external force, or it may characterise a natural intrinsic motion of the fluid.
A related powerful mathematical approach is the two-timingmethod (see, for example,
Nayfeh 1973; Kevorkian and Cole 1996). In this paper we use this method, together
with the idea of distinguished limits, to provide an elementary, systematic, and justifi-
able procedure following the ideas proposed in Vladimirov (2005), Yudovich (2006),
Vladimirov (2008, 2010). The results and contents of this papermaybe summarised as:

1. The development of a new analytical approach for the description of oscillating-
in-time flows. The fluid is assumed to be inviscid and incompressible, with the
oscillations introduced via the boundary conditions.

2. The analysis of distinguished limits for the Euler equation shows the existence of
twoasymptoticmodels for the averagedflows: ‘strong’ or ‘standard’ vortex dynam-
ics (SVD), and weak vortex dynamics (WVD), the latter described by the Craik–
Leibovich equation (CLE). The CLE was originally derived for the description
of the Langmuir circulations generated by surface waves (Craik 1985; Leibovich
1983; Thorpe 2004). The derivation of the CLE demonstrates the remarkable fact
that the Reynolds stresses can be expressed solely in terms of the drift velocity.

3. In SVD the averaged vorticity is frozen into the averaged velocity, whereas in
WVD the averaged vorticity is frozen into the averaged velocity + drift velocity.
It is important that in WVD the drift velocity has the same order of magnitude as
the averaged velocity. Our derivation of the WVD and CLE is technically simpler
than previous derivations. The formulation of the problem in its natural gener-
ality shows that the area of applicability of the CLE is broader than previously
recognised. In particular, we consider flow domains that are three-dimensional
and of arbitrary shape; the oscillations are time-periodic, but their spatial structure
is arbitrary. We have also derived the averaged boundary conditions that are valid
at the average positions of the boundaries.

4. The slow time-scale is uniquely linked to the magnitude of the prescribed velocity
field at the boundary. Naturally, the higher the amplitude of velocity, the shorter
the slow time-scale.

5. The WVD and CLE contain the drift velocity. The drift usually appears as the
average velocity of Lagrangian particles (see Stokes 1847; Lamb 1932; Batchelor
1967). In our consideration, drift velocity appears naturally as the result of an
Eulerian averaging of the related PDEs without directly addressing the motions of
particles.

6. The CLE leads to an energy-type integral for the averaged flows, which allows
us to consider ‘Arnold-type’ results, such as the generalized ‘isovorticity condi-
tions’, the energy variational principle, the first and second variation of energy,
and several (nonlinear and/or linear) stability criteria for averaged flows.

2 Two-Timing Problem and Distinguished Limits

We study the motion of a homogeneous inviscid incompressible fluid in a time-
dependent three-dimensional domain Q(t) with oscillating boundary ∂Q(t) (see
Fig. 1), which is prescribed as
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Fig. 1 Fluid flow in the
oscillating flow domain Q(t)

Q(t)

u(x, t)

∂Q(t)

∂Q0

n(t)n0

vortex flow

F†(x†, t†) = 0. (1)

The velocity field u† = u†(x†, t†) and vorticity ω† ≡ ∇† × u† satisfy the equations

∂ω†

∂t†
+ [ω†, u†]† = 0, ∇† · u† = 0,

∇† ≡
(
∂/∂x†1 , ∂/∂x†2 , ∂/∂x†3

)
, (2)

where x† = (x†1 , x
†
2 , x

†
3) are Cartesian coordinates, t

† is time, daggers denote dimen-
sional variables, and square brackets stand for the commutator of two vector fields
[a, b] ≡ (b · ∇)a − (a · ∇)b. The kinematic boundary condition at ∂Q is

dF†/dt† = 0 at F†(x†, t†) = 0. (3)

We consider oscillating flows that possess characteristic scales of velocity and
length, together with two additional time-scales:

U †, L†, T †
fast, T †

slow. (4)

There are therefore two independent dimensionless parameters,

Tfast ≡ T †
fast/T

†, Tslow ≡ T †
slow/T †, where T † ≡ L†/U †, (5)

which represent the dimensionless time-scales. The scale Tfast characterises the given
period of oscillations; hence the dimensional and dimensionless frequencies of oscil-
lation are

σ † ≡ 1/T †
fast, σ ≡ T †/T †

fast. (6)

We choose the dimensionless independent variables as

x ≡ x†/L†, t ≡ t†/T †. (7)

The dimensionless ‘fast time’ τ and ‘slow time’ s are defined as:

τ ≡ t/Tfast = σ t, s ≡ t/Tslow ≡ St, with S ≡ T †/T †
slow. (8)
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We seek oscillatory solutions of Eq. (2) in the form

u† = U †u(x, s, τ ); (9)

the τ -dependence is 2π -periodicwhereas, in general, the s-dependence is not periodic.
Transforming Eq. (2) to dimensionless variables and using the chain rule gives

(
∂

∂τ
+ S

σ

∂

∂s

)
ω + 1

σ
[ω, u] = 0. (10)

The natural small parameter in our consideration is 1/σ . The essence of the two-timing
method is based on the assumption that the ratio Tslow/Tfast = S/σ also represents a
small parameter. As a result, Eq. (10) contains two independent small parameters, ε1
and ε2:

ωτ + ε1ωs + ε2[ω, u] = 0; ε1 ≡ S

σ
� 1, ε2 ≡ 1

σ
� 1, (11)

where the subscripts s and τ denote partial derivatives.
Then, in the two-timing method, we make the standard auxiliary (but technically

essential) assumption that the variables s and τ are (temporarily) considered to bemutu-
ally independent. Its justification can be given a posteriori after solving (11), rewriting
the solution in terms of the original variable t , and estimating the errors/residuals in
the original equation (2), also expressed in terms of t (Yudovich 2006).

Let us temporarily forget about the definitions of ε1 and ε2 in (11) and treat them
as abstract small parameters. In order to construct a rigorous asymptotic procedure
with (ε1, ε2) → (0, 0)we have to consider the various paths approaching the origin in
the (ε1, ε2)-plane. One may expect that there are infinitely many different asymptotic
solutions to (11) corresponding to different paths (the usual sequence of the limits
ε1 → 0 and then ε2 → 0, or with the order reversed, correspond to the ‘broken’ paths).
However, for (11) (as well as for many other equations) one can find a few exceptional
paths, which we shall call the distinguished limits. The notion of a distinguished limit
is imprecisely defined (see, for example, Nayfeh 1973; Kevorkian and Cole 1996),
varying between different books and papers. We suppose that a distinguished limit is
given by a path that allows us to build a self-consistent asymptotic procedure, leading
to a finite/valid solution in any approximation. No systematic procedure of finding all
possible distinguished paths is known, and so this may be regarded as still a problem
of ‘experimental mathematics’.

We have considered in detail a number of different paths parametrized by

ε1 = δk and ε2 = δl with δ → 0, (12)

where k and l are integers. From our search, we have found only two distinguished
paths; these allow us to build the solutions

ε1 = δ, ε2 = δ : ωτ + δωs + δ[ω, u] = 0, (13)

ε1 = δ2, ε2 = δ : ωτ + δ2ωs + δ[ω, u] = 0. (14)
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Vortex Dynamics of Oscillating Flows 117

The solutions may be expressed as the regular series

(ω, u) =
∞∑
k=0

δk(ωk, uk), k = 0, 1, 2, . . . . (15)

The difference between the cases (13) and (14) appears in the main (zeroth order)
approximation. For (13), the averaged ‘standard’ vortex dynamics takes place in the
leading order approximation,

ω0 �= 0, u0 �= 0, (16)

subsequent approximations producing various ‘oscillatory’ and ‘mean’ corrections.
This is the case of Strong Vortex Dynamics (SVD). In contrast, for Eq. (14), the fluid
motion is purely oscillatory in the main approximation,

ω0 ≡ 0, u0 ≡ 0. (17)

Hence for the case (14) we consider only a relatively weak vorticity developing on the
backgroundwavemotion. This leads to theCraik–Leibovich equation and toWeakVor-
tex Dynamics (WVD). All other cases (12) that we have considered can be transformed
either to one of these two main cases, or else they produce inconsistent/unsolvable
systems of successive approximations, or else they lead to secular growth in s.

Equations (13) or (14) must be complemented by the boundary condition (3), with
the same ordering of small parameters. This leads respectively to:

Fτ + δFs + δu · ∇F = 0 at F(x, s, t) = 0, (18)

Fτ + δ2Fs + δu · ∇F = 0 at F(x, s, t) = 0, (19)

where the prescribed deformed oscillating boundary (1), in its dimensionless form, is
given by the exact expression

F = F0(x, s) + δ F̃1(x, s, τ ) = 0, (20)

with given functions F0 and F̃1.
In order to make analytic progress we require a number of specific assumptions.

Thus we assume that any dimensionless function f (x, s, τ ):

• is of order one, f = O(1); and that all required x-, s-, and τ -derivatives of f are
also O(1);

• is 2π -periodic in τ , i.e. f (x, s, τ ) = f (x, s, τ + 2π);
• has an average given by

〈 f 〉 ≡ 1

2π

∫ τ0+2π

τ0

f (x, s, τ ) dτ ≡ f (x, s) ∀ τ0;
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• can be split into averaged and purely oscillating parts, f (x, s, τ ) = f (x, s) +
f̃ (x, s, τ ); the tilde-functions (or purely oscillating functions) are such that 〈 f̃ 〉 =
0 and the bar-functions are τ -independent. Furthermore, we introduce the tilde-
integration which keeps the result in the tilde-class:

f̃ τ ≡
∫ τ

0
f̃ (x, s, σ ) dσ − 1

2π

∫ 2π

0

(∫ μ

0
f̃ (x, s, σ ) dσ

)
dμ. (21)

3 Weak Vortex Dynamics (WVD)

In WVD we seek the solution of Eq. (14),

ωτ + δ[ω, u] + δ2ωs = 0, δ → 0, (22)

in the form of the regular series (15). We restrict the class of possible solutions by
imposing (17).

The equations for successive approximations show that the zeroth order approx-
imation of (22) is ω̃0τ = 0; its unique solution (within the tilde-class) is ω̃0 ≡ 0.
Together with (17) it shows that the full vorticity vanishes,

ω0 ≡ 0, (23)

which means that the velocity field at leading order is purely oscillatory and potential.
Then, similarly, the equation of the first order approximation of (22) yields ω̃1τ = 0.
Its unique solution (within the tilde-class) is ω̃1 ≡ 0, while the mean valueω1 remains
undetermined. We write this symbolically as

ω̃1 ≡ 0, ω1 = ?. (24)

The second order approximation that takes into account both (23) and (24) is

ω̃2τ = −[ω1, ũ0], (25)

which after the use of tilde-integration (21) yields

ω̃2 = [̃uτ
0,ω1], ω2 = ?. (26)

The third order approximation that takes into account both (23) and (24) is

ω̃3τ + ω1s + [ω2, ũ0] + [ω1, u1] = 0. (27)

Its average (barred) part is

ω1s + [ω1, u1] + 〈[ω̃2, ũ0]〉 = 0, (28)
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Vortex Dynamics of Oscillating Flows 119

which can be transformed with the use of (26) and the Jacobi identity to

ω1s + [ω1, u1 + V 0] = 0, (29)

V 0 ≡ 1

2
〈[̃u0, ũτ

0]〉. (30)

It can be seen that if ũ0 is solenoidal then the drift velocity V 0 is also solenoidal, i.e.
∇ · V 0 = 0.

After dropping subscripts and bars in u1 and ω1, Eq. (29) can be used as the WVD
model for the evolution of the averaged vorticity:

ωs + [ω,w] = 0, where w ≡ u + V 0, (31)

which shows that the averaged vorticity is frozen into the ‘velocity+ drift’. This result
is known as the Craik–Leibovich equation (CLE) (see, for example, Craik 1985). The
derivation of the CLE here is much simpler technically than previous derivations, and
minimises the number of assumptions needed (e.g. those on the flow geometry). We
should emphasize that the drift velocity here is not considered to be small; it is of
the same order of magnitude as the Eulerian averaged velocity. Equation (31) may be
integrated (in space) as

us + (u · ∇)u + ω × V 0 = −∇ p, ∇ · u = 0, (32)

where p is a function of integration (a modified pressure) and the second equation
follows from the continuity equation in (2).

Next, we should derive the averaged kinematic boundary condition for (18)–(20).
Following similar steps to those used when deriving (22)–(31) leads to the averaged
equation

F0s + w · ∇F0 = 0, w ≡ u + V 0. (33)

When the averaged boundary does not depend on s, it is given by the equation

F = F0(x) + δ F̃1(x, τ ) = 0, (34)

and (33) gives the averaged ‘no-leak’ condition:

w · n0 = 0 at F0(x) = 0, (35)

where n0 is the main approximation to the unit normal to ∂Q,

n(x, s, τ ) = −∇F/|∇F | = n0(x, s) + εñ1(x, s, τ ) + · · · . (36)

Of course, for the averaged velocity the ‘no-leak’ condition (35) corresponds to the
presence of a leak:

u · n0 = −V 0 · n0 at ∂Q0. (37)
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The effective boundary ∂Q0 for this averaged flow is given by the equation
F0(x, s) = 0; it means that the boundary conditions are prescribed not at the real
boundary, but at its averaged position. Equations (31), (32) and (33) or (37) form the
closed model describing the averaged WVD flow.

The drift velocity V 0 is to be calculated from (30), where ũ0 represents the solution
of the previous approximation, ũ0τ = −∇ p̃0 and ∇ · ũ0 = 0, together with the
boundary condition F̃1τ + ũ0 · ∇F0 at F0 = 0.

4 Alternative Scaling for the Slow Time

It is possible to find alternative scalings for the slow time scale s, while respecting
the constraints given by the distinguished limits (13), (14). The slow time is defined
in such a way that intervals of order one in s correspond to changes of order one in
the physical fields. In the SVD the mean velocity (16) is O(1), and so we must have
s = t . Physically, this means that in order to transport an admixture a dimensionless
distance of order one, we need a dimensional time of order one. In the WVD the mean
velocity (17) is O(δ). Then advection with u0 = O(δ) requires the slow time-scale
s = δ t (for s = 1 the interval of the original ‘physical’ time is 1/δ).

The new formal small parameter δ, introduced to describe the distinguished limit,
can be related to the fast time scale 1/σ in a number of different ways. It is instructive
to rewrite Eq. (22) as

σωτ + 1

σα
ωs + σβ [ω, u] = 0, σ → ∞, (38)

with constants α and β. In order to make (22) coincide with (38) we require

β = (1 − α)/2, δ = 1/σ (α+1)/2. (39)

Equations (38), (39) can be interpreted in the followingway: the related slow time-scale
is s = t/σα (where α > −1, which means that s is a ‘slow’ variable in comparison
with τ ) and the velocity is σβu, not u.

This transformation allows one to vary the slow time-scale. Consider, for example,
the case when [instead of (20)] the boundary is prescribed as

F = F0(x, t) + δ F̃1(x, t, τ ) = 0, (40)

which can appear in many practical applications. In this case the slow time-scale s = t
is prescribed by the boundary condition; in fact we have α = 0 in (39) (and so for
WVD we have the same time scales as for SVD) namely

τ = σ t, s = t. (41)

However, if this is to be the correct scaling in the WVD then we must have β = 1/2,
so that the velocity at the boundary is O(

√
σ), not O(1); also, from (39), the small

parameter of the decomposition should be chosen as δ = 1/
√

σ . Another interesting
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possibility corresponds to α = β = 1/3. In this case, s = t/ 3
√

σ , δ = σ−2/3 and the
velocity is 3

√
σu. Although such an asymptotic scaling may look exotic, it would be

required if the particular slow time-scale s = t/ 3
√

σ were prescribed by the boundary
conditions. The original case (11), which corresponds to an O(1) velocity, corresponds
to α = 1 and β = 0. The general tendency is physically natural: to shorten the
slow time-scale (decreasing α), one needs to increase the amplitude of the boundary
oscillations (increasing β) (see Eq. (39)).

5 Stokes Drift and Langmuir Vortices

In order to connect the abovemodel equations (31) with classical areas of fluid dynam-
ics, let us show that for a plane surface wave V 0, from (30), gives the classical Stokes
drift and that this then leads to an understanding of the nature of Langmuir vortices.

The dimensional solution for a plane potential travelling gravity wave is

u†0 = U †ũ0, ũ0 = exp(k†z†)

(
cos(k†x† − τ)

sin(k†x† − τ)

)
,

where U † = k†g†a†/σ † with σ †, a†, and g† the dimensional frequency, spatial wave
amplitude, and gravity (see Stokes 1847; Lamb 1932; Debnath 1994). Then Eq. (30)
yields

ũ0 = ez
(
cos(x − τ)

sin(x − τ)

)
, V 0 = e2z

(
1
0

)
.

The dimensional version is

V
†
0 = U 2k†

σ † e2k
†z†

(
1
0

)
, (42)

which agrees with the classical expression for the drift velocity (Lamb 1932; Debnath
1994; Batchelor 1967). To obtain (42) one should take into account that the transfor-
mation to the physical formula for drift includes a move from the slow time s = t/σ
to the physical time t .

The structure of the CLE andWVD can be seen as a relatively passive alteration of
the original Euler equations, since we still have frozen-in vorticity dynamics. How-
ever, the additional terms (which contain the drift velocity) make a qualitative change
to the properties of the solutions. One example of such a new property is related to the
Langmuir circulations (see Fig. 2). In order to illustrate such a qualitative change, let
us consider the class of translationally invariant averaged flows. Let the zeroth approx-
imation (23) take the form of a plane potential travelling gravity wave with the drift
velocity (30). LetCartesian coordinates (x, y, z)be such thatV 0 = (U, 0, 0),U = e2z ,
u1 = (u, v, w), where all components are x-independent (translationally-invariant).

Then the component form of (32) is
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Fig. 2 Langmuir circulations are mathematically similar to the Rayleigh-Taylor instability of inversely
stratified fluid

us + vuy + wuz = 0,

vs + uvy + wvz −Uuy = −py,

ws + vwy + wwz −Uuz = −pz,

vy + wz = 0,

which can be rewritten (see Vladimirov 1985a, b) as

vs + vvy + wvz = −Py − ρ�y, (43)

ws + vwy + wwz = −Pz − ρ�z,

vy + wz = 0,

ρs + uρx + vρy = 0,

where ρ ≡ u, � ≡ U = e2z and P is a new modified pressure. One can see that
Eq. (43) are mathematically equivalent to the system of equations for an incom-
pressible stratified fluid in the Boussinesq approximation. The effective ‘gravity field’
g = −∇� = (0, 0,−2e2z) is non-homogeneous, which makes the analogy with the
‘standard’ stratified fluid incomplete. Nevertheless, longitudinal vortices should nat-
urally appear in (43) as a Rayleigh-Taylor type instability of an inversely stratified
equilibrium corresponding to (u, v, w) = (u(z), 0, 0) with any increasing function
u(z) ≡ ρ(z) (see Fig. 2).

6 Energy Variational Principle and Arnold Stability

The ‘energy’ integral for the averaged motion can be written as:

E = E(s) = 1

2

∫

Q
(u + V 0)

2dx = const. (44)
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One can show, by virtue of (32), that its s-derivative can be written as

dE

ds
= −

∫

Q

(
p + u2

2

)
(u + V 0) · n0 dx = 0, (45)

which is zero owing to (35).
According to (32), vorticity is frozen into u + V 0. We may then use a slightly

modified Arnold isovorticity condition (Arnold and Khesin 1999) in its differential
form,

uθ = f × ω + ∇α, div u = 0, div f = 0 in Q0; (46)

(u + V 0) · n0 = 0, f · n0 = 0 at ∂Q0;

where u(x, θ) is the unknown function, f = f (x, θ) is an arbitrary given solenoidal
function, θ is a scalar parameter along an isovortical trajectory, and subscript θ denotes
a partial derivative. The functionα(x, θ) is to be determined from the condition∇·u =
0. The initial data at θ = 0 for u(x, θ) in (46) corresponds to a steady flow

u(x, 0) = U(x), ω(x, 0) = �(x), (47)

where U(x) and �(x) represent the steady solutions (∂/∂s = 0) of (31) and (32) with
the no-leak boundary conditions (35).

Differentiation of E with respect to θ produces the first variation

Eθ

∣∣∣
θ=0

=
∫

Q0

f (� × W) dx = 0, W ≡ U + V 0, (48)

which vanishes for any solenoidal function f by virtue of the equations of motion and
the boundary conditions for steady flow. This equality gives us the variational prin-
ciple: any steady flow represents a stationary point on the isovortical sheet. The only
difference from Arnold’s classical result is the boundary conditions in the definition
of the isovorticity sheet (46).

The calculation of the second variation yields:

Eθθ

∣∣∣
θ=0

=
∫

Q0

(
|uθ |2 + (W × f ) · ωθ

)
θ=0

dx, (49)

where W ≡ U + V 0. This is analogous to Arnold’s result; expression (49) shows
that the stationary point of the energy functional in the three-dimensional case always
represents a saddle point.

However, the stability conditions can be obtained for steady plane flows in the
case when a stream function 
(x1, x2) for the combined velocity W(x1, x2) can be
introduced asW1 = ∂
/∂x2,W2 = −∂
/∂x1. For the plane flow the second variation
(49), combined with the standard Casimir integral containing an arbitrary function of
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vorticity (Arnold and Khesin 1999) takes the form

Eθθ

∣∣∣
θ=0

=
∫

Q0

(
|uθ |2 − d


d�
ω2

θ

)

θ=0
dx1dx2, (50)

where ω(x, θ) and �(x) are the x3-components of the full vorticity and the steady
vorticity at θ = 0, and the functional dependence 
 = 
(�) characterises the plane
steady flow under consideration. Then, similarly to the Arnold cases, the inequalities
with two positive (or two negative) constants C−, C+ satisfying

C− < −d


d�
< C+ (51)

give both sufficient linear and nonlinear stability conditions for the positively (and
negatively) defined energy-casimir functional. One should take into account that these
stability conditions determine stability with respect to arbitrary perturbations, not only
isovortical ones. However, this part of the analysis is similar to Arnold’s well-known
results of 1966 (see Arnold and Khesin 1999) and is not presented here.

Finally, we note that for plane WVD flows we have derived sufficient stability
conditions that differ from the classical ones only by replacing the streamfunction for
the velocity field U by the streamfunction for the combined velocity W . Therefore
an important conclusion for the stability of the plane WVD flows is that virtually
any plane steady flow can be made stable by the choice of the ‘proper’ field of drift
velocity.

7 Discussion

Our main achievement in this paper is a significant simplification of the derivation of
the Craik–Leibovich equation (CLE). Its most known derivation (Craik 1985) is per-
formed with the use of the Generalized LagrangianMean theory (GLM) (see Andrews
andMcIntyre 1978; Craik 1985; Buhler 2009) and further theoretical studies are often
performed in GLM terms (Holm 1996). In contrast, here we introduce the CLE in
its natural simplicity and generality and use only the standard Eulerian description,
making our derivation much more accessible.

Examples of oscillating flows are not restricted by a deformed domain as in Fig. 1;
they can be extended to many oscillating flows that appear in practical applications,
such as oscillating or rotating rigid bodies, moving pistons and acoustics (Vladimirov
and Ilin 2013); some of these cases are illustrated in Fig. 3.

The two small parameters that we have used represent two ratios of three time-
scales. It should be noted that in the derivation of CLE we have not used the amplitude
as a small parameter. The main field of velocity oscillations ũ0 is of dominant order
and so is not small. Nevertheless, the oscillatory spatial amplitude of material particles
and the related spatial amplitude of the deformation of the boundary ∂Q(t) are both
small.

It is instructive to derive the averaged equations of the second approximation
(while the CLE (29) appears in the first approximation). This appears as the linearized
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(b) Oscillating pistons in U - tube.
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(c) Rotating rigid body
(d) Acoustic wave

(a) Oscillating solid
fluid

fluid

fluid

fluid

Fig. 3 Various practically important examples of weak vortex dynamics in a fluid that undergoes externally
imposed oscillations

equation at the first approximation and contains an additional ‘force term’ depending
on the previous approximations. It means that some additional instabilities are pos-
sible, beyond classical instabilities of the linearized problem. This raises interesting
questions about the meaning of linearization and its non-uniqueness.

It is remarkable that the same CLE (29) describes theWVD in the case of acoustics
(see Vladimirov and Ilin 2013), when ũ0 represents a given acoustic wave that satisfies
the wave equations and cannot be solenoidal. An important qualitative addition of the
‘acoustical CLE’ is that the drift velocity can be an arbitrary solenoidal function. It
gives greater general significance to studies of the CLE, since an arbitrary solenoidal
function V 0, Eq. (30), now has a practical meaning.

A viscous term can be straightforwardly added to the right hand side of the CLE
(see Craik 1985). Our derivation (22)–(30) shows that in order to accommodate such
an addition the dimensionless viscosity (or the inverse Reynolds number) should be
of order δ3.

The same analysis as above is valid for stratified fluids in the Boussinesq approxi-
mation where the generalization of the CLE is straightforward (see Craik 1985). At the
same time, the analogy with stratification (43) discussed earlier leads to Richardson-
type stability criteria even in the case of the CLE for homogeneous fluid.

The CLE is Hamiltonian as is immediately clear from its form. This question was
considered by Holm (1996) for the CLE in the GLM form introduced by Andrews and
McIntyre (1978), Craik (1985), Buhler (2009), which is somewhat different from ours.
However, the investigation of the Hamiltonian structure of our equations is beyond
the scope of this paper. Similarly, it would be of interest to study the possibility of a
finite-time vorticity singularity for the CLE.

A generalization of the CLE andWVD has been obtained for MHD by Vladimirov
(2013). In this case the drift velocity appears in both the equation for the advection of
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vorticity and the equation for the advection of magnetic field. Similar results restricted
to kinematic MHD have also been obtained in Vladimirov (2010) and Herreman and
Lesaffre (2011). There remains the challenge of developing a self-consistent theory
of the full MHD equations (Moffatt 1978), which may be viewed as a complementary
approach to that of Courvoisier et al. (2010).
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