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Received: 23 August 2017 / Accepted: 11 May 2018 / Published online: 24 May 2018
© The Author(s) 2018

Abstract
We address air quality (AQ) forecasting as a regression problem employing computational intelligence (CI) methods for the
Gdańsk Metropolitan Area (GMA) in Poland and the Thessaloniki Metropolitan Area (TMA) in Greece. Linear Regression
as well as Artificial Neural Network models are developed, accompanied by Random Forest models, for five locations
per study area and for a dataset of limited feature dimensionality. An ensemble approach is also used for generating and
testing AQ forecasting models. Results indicate good model performance with a correlation coefficient between forecasts and
measurements for the daily mean PM10 concentration one day in advance reaching 0.765 for one of the TMA locations and
0.64 for one of the GMA locations. Overall results suggest that the specific modelling approach can support the provision of
air quality forecasts on the basis of limited feature space dimensionality and by employing simple linear regression models.

Keywords Computational intelligence · Air pollution · Regression models · Ensemble

1 Introduction

In a recently published paper [1] we underlined the impor-
tance of air quality (AQ) forecasting in urban environmental
management as well as in contemporary smart city devel-
opment [2,3]. In the current paper we revisit and extend
our initial approach, focusing on urban AQ forecasting from
the regression point of view and incorporating an ensemble
modelling approach. For doing so, we take into account that
in the framework of smart city information systems, envi-
ronmental management plays an important role [4] and air
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pollution abatement is one of its main targets [5]. Air Qual-
ity forecasting is among the main pillars of AQ management
[6] and is materialized with the aid of appropriate AQ mod-
els. Such models are establishing a time-varying relationship
between the concentration of air pollutants at a specific time
and location c(t, x), and other parametersp(t, x) affecting the
urban atmospheric environment. Such a relationship may be
expressed with the aid of the following general function:

c(t, x) = f (p(t, x)) (1)

Here t represents time and x is the location vector corre-
sponding to physical space. In this case the vector c(t, x)
refers to concentration values of air pollutants like Nitrogen
Dioxide (NO2), Carbon Monoxide (CO), Ozone (O3) and
Particulate Matter (PM), while p(t, x) includes parameters
like wind speed, wind direction, air temperature, solar radi-
ation, air pollutant emissions, air pollutant concentrations,
land use type, land surface height, etc. The nature of function
f is dictated by the model type employed: thus, if f recon-
structs the physical and chemical relationships between the
parameters p(t, x) and values c(t, x), where x addresses the
whole area of interest in a 3-D gridded manner, then mod-
els are said to follow an analytic-deterministic approach [7],
while if f is a statistical or data-mining oriented function,
then models are said to follow a data-driven approach (as
reported in [8] and in references therein). In the latter case, x
refers to specific areas within the studied area, which usually
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correspond to AQmeasuring station locations. Thus, x is not
varying with time and is excluded, leading to an equation of
the form:

c(t) = f (p(t)) (2)

The objective of this paper is to suggest CI-based, ensemble
oriented models that are able to depict as much information
as possible from atmospheric quality data of low dimension-
ality, and to thus contribute to the scientific area of urban AQ
forecasting. For this reason we employ a variety of CI meth-
ods and we suggest and test ensemble functions f in Eqs.
(1) and (2). The geographic areas of interest are the Gdańsk
Metropolitan Area (GMA) in Poland and the Thessaloniki
Metropolitan Area (TMA) in Greece, and the parameter of
interest is the daily concentration of ParticulateMatter with a
mean aerodynamic diameter of 10µm (PM10), approx. 1/5th

of the diameter of the human hair. The specific pollutant is
able to penetrate in the bronchial part of the human lung sys-
tem [9] and is one of the most important pollutants in the
GMA [10] as well as in the TMA [11]. Air pollutant concen-
trations are addressed as numerical values. AQ forecasting
follows a twofold approach:

a) Each AQ monitoring station is treated individually, i.e.
AQmodels are developed and tested per station location.
Thus, the forecasting of the parameter of interest is per-
formed as a regression problem.

b) Regression models are being created based on ensemble
modelling principles, and are evaluated via their ability
to forecast AQ levels at different locations (i.e. at each
monitoring station).

The mean daily concentration level of PM10 one day in
advance is the target of the forecasting models under devel-
opment. This choice corresponds to the requirements posed
by relevant legislation for citizens as well as the decision
makers to be informed about the expected PM10 levels for
the next day, not to exceed 50 µg/m3 more than 35 days
per year according to the European Regulations [9,12] and
according to the World Health Organization guidelines [13].
Combustion processes, traffic and natural sources directly
emit PM10, while in some regions the mechanical degrada-
tion of the road surface and of winter tires also contributes
to its production. PM10 are part of the inhalable fraction of
PM and have adverse effects to human health [9].

The research question posed in the current paper moves
one step ahead of our previously published results [1] and
addresses (a) the ability of a low dimensionality feature space
(small number of input parameters) to support effective data-
driven models for PM10 forecasting and (b) the modelling
approach to be used in terms of algorithms and their setup
(single vs. ensemble oriented models). In addition, we make

use of an ensemble approach based on anANNmodel of sim-
ple architecture which can be applied to multiple geographic
areas, thus simplifying the ensemble approach suggested by
[14] and [15], while maintaining a performance compara-
ble to the one reported by similar studies [16], and therefore
providing with a novel approach to the problem at hand.

In the rest of the paper we firstly present the materials of
our study (Chapter 2), followed by the computational meth-
ods (Chapter 3). Then we proceed with the presentation and
the discussion of the results in Chapter 4, and we draw our
conclusion in Chapter 5.

2 Materials: area of study and datamade
available

The areas of study as well as the AQ problem addressed have
been the focus of multiple studies performed in the past.

In the case of Gdansk ANNs have been employed for AQ
forecasting in [17]. The same data set has been used for PM10

forecasting in [18] as well as for the adaptation of an AQ
forecasting model developed for Gdansk to the Thessaloniki
area [19].

The air pollution of Thessaloniki has been studied and
modeledwith the aid ofANNs [20], with special emphasis on
PM10 [21]. The similarity of the GMA as well as of the TMA
in terms of population and existence of a sea front suggest
that there might also be a similarity in the way that PM10 ori-
ented air pollution can be modeled in both areas. Moreover,
the need for the construction of data-driven models which
use a small number of input parameters, suggested that a
generalized, ensemble-based approach should be employed
for the AQmodeling in both areas of interest, these being the
novelty points of the research results at hand.

2.1 The two areas of interest

The city of Gdańsk is located on the Baltic coast in the south-
west of the bay of Gdańsk, in the northern part of Poland. It is
the capital of a tri-city metropolitan area merging with Gdy-
nia (known for its shipyards) and Sopot (a recreational resort)
and adding more than 1,000,000 residents in the GMA tak-
ing into account suburban communities also. The economy
in Gdańsk is dominated by shipbuilding, petrochemicals and
chemical industries, which are all concentrated quite close to
the city center. The majority of air pollutant emissions origi-
nate from the industrial sector, the port activities and the city
traffic [22], while the most important pollutants are PM10,
NO2 and SO2 (http://www.airqualitynow.eu).

The city of Thessaloniki faces an oval harbor bay and
stands on a rising ground at the heart of a long gulf which
is formed by the peninsula of Chalcidice. Various munici-
palities surround the city while an industrial zone is located
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Table 1 The Air Quality monitoring stations used for the current study
in GMA and TMA

GMA stations AMI (Gdańsk-Śródmieście), AM2 (Gdańsk-Stogi),
AM3 (Gdańsk-Nowy Port), AM4
(Gdynia-Pogórze), AM5 (Gdańsk-Szadółki)

TMA stations Egnatia, Martiou, Lagkada, Eptapyrgiou, Malakopi

in the north-west of its outskirts. The TMA is the second
largest urban agglomeration in Greece accounting for more
than 1,000,000 inhabitants, with a considerable accumula-
tion of urban traffic as well as industrial activities. The TMA
is characterized by high pollution levels especially related to
PM10 while O3 appears to be high in suburban locations of
the area and NO2 levels are still high in dense urban areas in
association with traffic [11].

2.2 The atmospheric quality data

In both the GMA and in the TMA a number of AQ monitor-
ing stations operate (9 and 17 respectively), which routinely
record concentration values of basic pollutants as well as the
variation of meteorological parameters. As not all pollutants
are recorded at all stations, and in order to focus on the pol-
lutant of interest (PM10), we decided to select five stations
from each area of interest (included in Table 1), that were
able to provide with PM10 concentrations as well as mete-
orological data, in order to come up with data sets that are
identical in terms of the parameters they include. In order to
deal with the non-negligible frequency of missing data, we
selected data from the year 2013 which contained only daily
PM10 concentrations as well as information for air tempera-
ture and relative humidity.

As a result and for each station, the same atmospheric
parameters were used for the modelling and forecasting
process: the model input or feature vector x included five
parameters, namely PM10 concentration of the current day as
well as temperature and relative humidity of the current day,
complemented by the day and the month of the year. The tar-
get parameter to be forecasted ywas the PM10 concentration
of the next day. A summary of the basic statistical character-
istics of the parameters involved in our study is included in
Table 2.

3 Computational methods

The forecasting of the numerical value of PM10 concentration
levels for the next day was the goal set for the development
of relevant forecasting models. For this reason, we made use
of the available datasets for each AQ monitoring station to
develop individual (per station) AQ forecasting models.

3.1 Algorithms for single stationmodel creation

The algorithms applied were selected based on computa-
tional experiments employing various CI methods, which
were conducted with the aid of Matlab (www.mathworks.
com) as well as of the WEKA computational environment
[23]. On this basis, we chose the following three algorithms
as the basis for AQ model development:

(i) Linear Regression (LR). Here the relationship between
the forecasted parameter and the input parameters are
described by an equation of the form:

y = x · β + ε (3)

where x is the input vector, β is the slope vector and ε the
error vector. The slope vector is commonly calculated via the
least square method, thus:

β̂ = (x′ · x)−1 · x′ · y (4)

(ii) Artificial Neural Networks (ANNs). In ANNs the input
vector x for each neuron k, is weighted with the aid of
a weighting vector wk , and the result is summed (taking
into account any bias) and then fed into a transfer function
f to produce the overall output vector yk :

yk = f (wT
k · x) (5)

The training of the ANN aims at reducing the error ek
between the model output yk and the actual (real) value
observed dk , which here is the PM10 concentration of the
next day for each station.

ek = ‖yk − dk‖ (6)

This error reduction is based on a number of methods all
of which aim at recalculating the initial weights so that the
overall network error isminimized. In the case of the gradient
descent method (which is the simples of all but nevertheless
representative of the way that the weights are recalculated),
the relationship between the updated and the initialweighting
vector for all neurons k of the ANN, is given by:

w(t + 1) = w(t) − a(t)g(t) (7)

Here t and t + 1 denote the initial and the updated weights,
while the error term is described by:

g(t) = JT(t) · e(t) (8)

where JT is the (transposed) Jacobian and e(t) is the overall
error vector [1].
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Table 2 Basic statistics for the
AQ and meteorological
parameters available for each
station at GMA and TMA

Datasets PM10 (in µg/m3) Temperature (in ◦C) Humidity (%)

Min Max Mean Std Min Max Mean Std Min Max Mean Std

AM1 6 92 20.55 10.48 −11.1 24.5 8.03 7.93 48 100 81.56 11.00

AM2 6 66 21.45 10.57 −11.1 24.5 7.41 7.77 48 100 82.00 10.88

AM3 3 79 16.90 10.14 −11.1 24.5 7.71 7.95 48 100 81.73 11.00

AM4 0 61 16.97 10.20 −11.1 24.5 7.82 7.92 48 100 81.65 10.97

AM5 0 55 15.01 8.35 −11.1 24.5 7.82 7.92 48 100 81.65 10.97

Egnatia 18 131 48.21 19.67 1.6 31.4 18.14 7.48 29 88 59.17 13.43

Martiou 9 113 34.44 18.69 1.3 31 18.13 7.58 33 87 60.80 13.00

Lagkada 20 244 57.04 32.62 0.8 31.6 18.01 7.76 33 89 60.56 13.39

Eptapyrgiou 8 135 28.90 18.03 −0.7 30.1 16.88 7.45 31 94 60.07 15.34

Malakopi 7 119 29.18 17.41 0.1 29.7 16.91 7.48 31 89 61.39 14.56

In this specific case a MultiLayer Perceptron Network
with a feed-forward architecture and a back propagation
training method was used, with an input layer consisting 5
nodes (i.e. all the input parameters per station), an output
layer consisting of only one node (the PM10 concentration
of the next day) and a hidden layer with 10 nodes. The sig-
moid function is employed as the transfer function while the
gradient descent algorithm is used for minimizing the error
function.

(iii) Random Forests (RF), an ensemble method origi-
nating from the Decision Tree family of algorithms [24]
that has shown high capacity to effectively model atmo-
spheric parameters of interest [1]. The method creates
N subsets of the input vector x using random selection
with replacement, each subset containing 2/3 of the ini-
tial data, while the remaining data are used to estimate
error and variable importance. Then for each subset, a deci-
sion tree is created with the aid of an arbitrary number

of nodes, where for each node the splitting is based on
a (randomly) selected subset of L attributes that optimize
a target function (best split criterion). In our case L =
int[log2(Number of attributes) + 1]. Each of the aforemen-
tioned random trees had an unlimited number of levels and
nodes. The prediction created by each tree is averaged and

thus the ensemble-based overall prediction of the RF (here
the PM10 concentration of the next day) is generated. A pseu-
docode for this method based on http://dataaspirant.com/ is
presented below:
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The prediction is then made on the basis of an ensemble
of results based on voting for each one of the trees generated.

3.2 Ensemblemodels

In addition to the above approach, we investigated the possi-
bility to develop ensemble-based models to be common for
all monitoring stations. More specifically:

1. A single ensemble model was created for each one of the
two areas of interest, and then applied to all individualAQ
monitoring stations for the same area (local ensemble).

2. The ensemble created in the one of the geographic areas
was applied to each one of AQmonitoring stations of the
other geographic area (foreign ensemble).

3. Both local and foreign ensembles are combined to gener-
ate a cross ensemble model, which is then applied to each
one of the AQ monitoring stations for both geographic
areas of interest.

The aforementioned approach was materialized for both LR
and ANN models as follows:

1. Local ensemble: In the case of LR, the parameters of the
slope vector β of the ensemble model were calculated as
weighted mean values of the parameters of each one of
the individual LR models, and the local ensemble model
was then applied to all stations. In the case of the ANN
models, the weights of the individual models were used
for the calculation of the weighted mean value of the
weights of the local ensemble model. In both cases, the
weightedmeanswere calculated on the basis of the corre-
lation coefficients of each one of themodels participating
in the ensemble, as resulting from their application to the
monitoring station for which they were developed.

2. Foreign ensemble: the calculation was done exactly as in
the case of the local ensemble, yet making use of the for-
eign individual model slope vectors (for LR) and weights
(for ANN) instead of the local individual model charac-
teristics.

3. Cross ensemble: the parameters of the local and the for-
eign ensemblemodelswere averaged in order to calculate
the parameters of the cross ensemble models.

3.3 Model validation

In order to validate the results of the PM10 predictions, it
is important to make use of as many of the available data as
possible for the training as well as for the testing phase. For
this reason we followed a 10-fold cross validation procedure
[25] for each one of the individualmodels developed: we ran-
domly divided the initial dataset into 10 equal subsets. Then
9 out of these datasets were used for training the model,
while the 10th one was used for testing, This process was
repeated 10 times, each time leaving a different subset out of
the training phase and using it for the test phase. The overall
model results are the mean values of the statistical indices of
the 10 models developed. Concerning the ensemble models,
these were defined on the basis of the (pre-existing) individ-
ual models per algorithm used, and therefore no additional
model validation was used.

Model results were evaluated based on the following sta-
tistical indices:

(a) Pearson’s correlation coefficient r that describes the
degree of linear relationship between forecasted and real
PM10 concentration values.

(b) Mean Absolute Error (MAE), which is a measure of the
mean absolute distance between forecasted and real val-
ues.

(c) RootMeanSquaredError (RMSE),which is the square of
the Mean Square Error and expresses the standard devi-
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Table 3 Correlation coefficient (r), Mean absolute error (MAE) and Root mean square error (RMSE) for three models per monitoring station
concerning the forecast of the mean daily PM10 concentration one day in advance

Datasets Random forest ANN (Multilayer perceptron) Linear Regression (Multivariate)

r MAE RMSE r MAE RMSE r MAE RMSE

AM1 0.530 6.441 8.947 0.226 8.244 12.168 0.545 6.380 8.767

AM2 0.456 7.322 9.843 0.361 8.202 10.696 0.479 7.206 9.599

AM3 0.401 6.105 7.785 0.233 7.528 10.572 0.406 6.758 9.306

AM4 0.601 6.007 8.235 0.427 7.379 9.787 0.641 5.581 7.821

AM5 0.592 4.853 6.821 0.301 5.373 7.400 0.607 4.754 6.690

Egnatia 0.664 10.381 14.710 0.506 12.610 16.671 0.693 9.935 14.118

Martiou 0.731 8.791 12.715 0.563 11.771 15.788 0.732 8.851 12.666

Lagkada 0.713 15.157 22.989 0.571 17.996 25.590 0.728 15.050 22.391

Eptapyrgiou 0.742 7.497 12.000 0.587 11.633 16.229 0.720 8.057 12.390

Malakopi 0.723 7.871 12.014 0.617 9.829 14.753 0.742 7.800 11.639

ation of the differences between forecasted and actual
values.

4 Results and discussion

Based on the model calculations performed as described in
Chapter 3, the Pearson’s correlation coefficient r accompa-
nied by theMeanAbsolute Error and the RootMean Squared
Error were calculated for the three models developed and for
each one of the ten AQ monitoring stations for which data
were available (Table 3).

Results suggest that the algorithm leading to the best
(highest) correlation coefficient between forecasted and
monitored values is LR, with an r ranging from 0.406 for
station AM3 up to 0.641 for station AM4 for the GMA. Con-
cerning the TMA, LR is again the best algorithm in terms of
the highest correlation coefficient achieved, with an r value
ranging from 0.72 for Eptapyrgiou station up to 0.742 for
the Malakopi station. The RF algorithm can be ranked as
2nd, achieving correlation coefficients very close to the ones
receivedwith the aid of LR (and surpassing it for the Eptapyr-
giou station), while in some cases leading to the best (lower)
MAE (like in the AM3, Martiou and Eptapyrgiou stations)
and to the best (lower) RMSE (like in the AM3 and in the
Eptapyrgiou stations). LR is a simple algorithmof linear logic
generally consideredweak in depictingnonlinear phenomena
like the ones involved in AQ problems, and usually perform-
ing more poorly when compared with algorithms like ANNs
orRF [1]. The success of the specific algorithm inour case has
to do with the limited number of atmospheric quality param-
eters being available in all studied areas and stations (low
number of features), thus leading to the (possible) exclusion
of nonlinear dependencies from the available dataset, and

dictating persistence as the main mechanism affecting the
forecast of PM10 levels one day in advance [26].

In the case of the ensemble approach used (local, for-
eign and cross ensembles), the results of the two algorithms
employed (LR and ANN) are presented in Table 4. The
optimum ensemble approach is selected on the basis of the
highest correlation coefficient achieved and taking in paral-
lel with the lowest possible error metric values (MAE and
RMSE). On this basis the local ensemble achieves the best
results, followed by the cross ensemble and leaving the for-
eign ensemble last. The result may be attributed to the ability
of the local ensemble to better represent the dependencies
between the modelled parameter (mean daily PM10 concen-
tration for the next day) and the parameters of the feature
space (input parameters). In terms of algorithms employed,
LR is always better in comparison to ANNs. Concerning the
areas of study r, values range from 0.505 (station AM2) up
to 0.64 (station AM4) for the GMA, while r values range
from 0.710 (station Egnatia) up to 0.765 (station Malakopi)
for the TMA. The value range of the correlation coefficient
achieved for the TMA corresponds to a value range of the
coefficient of determination (which is actually the correla-
tion coefficient squared) between 0.504 (for Egnatia) and
0.585 (for Malakopi), which are better in comparison to the
values achieved for the TMA but for two different stations,
as reported by [27] and [28].

By comparing ensembles with the local models, it is evi-
dent that in the case of LR-based models, the local ensemble
provides with a better performance in comparison to the local
models for all GMA stations with the exception of AM4,
while in the case of the TMA local ensembles outperform
local models for three out of five stations (Lagkada, Eptapyr-
giou and Malakopi). In the case of ANN modes, both the
local ensemble and the local models perform almost equally
in terms of correlation coefficient values achieved.
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15 5 Conclusions

In this paper, we address the problem of air quality fore-
casting for two different geographical areas of interest, the
GMA and the TMA, by employing a regression approach,
making use of a limited dimension feature space, and target-
ing at the forecast of the mean daily PM10 concentration of
the next day. We initially develop location specific models
by employing ANNs, LR and RF, and achieving correlation
coefficients between 0.406 and 0.641 for the GMA stations,
and between 0.693 and 0.742 for the TMA stations. The best
performance was provided by the LR models, followed by
the RF and the ANN models. In addition, we developed and
tested three types of ensemble models per area, namely the
local, the foreign and the cross ensemblemodels. Their appli-
cation proved the local ensemble models to be the superior
for both ANNs and LR algorithms. These results indicate
that even when the feature space is of limited dimensional-
ity, the best individualmodel outperforms the commonmodel
for all the monitoring stations, making use of the ensemble
principle, and employing the recalculation of weights in a
simple LR model. This suggests that city authorities may
develop effective AQmodels by targeting their investment in
AQ monitoring to the parameters of interest, a vast feature
space not being necessary for the success of the modelling
approach.

In terms of geographic area of interest, models for the
GMA present with a lower overall performance in compari-
son to TMA models, regardless of the algorithm employed.
Taking into account that in both areas the same features were
made available and used for the development of the relevant
models, this result indicates the importance of additional fea-
ture space parameters (reflecting atmospheric mechanisms)
in order to further improve modelling performance. When
coming to the choice of algorithms for the development of
AQ models, the superiority of LR-based models in our study
supports the finding that in the case of feature spaces of low
dimension, the basic mechanisms which influence the qual-
ity of the atmospheric environment are persistence and linear
dependencies. This result is of use for those wishing apply
AQ models in the frame of an urban environmental manage-
ment system, having a low-dimension feature space available
for model deployment.
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