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Abstract
The rising of big data brings revolutionary changes tomany aspects of our lives. Huge volume of data, alongwith its complexity
poses big challenges to data analytic applications. Techniques proposed in data warehousing and online analytical processing,
such as precomputed multidimensional cubes, dramatically improve the response time of analytic queries based on relational
databases. There are some recent works extending similar concepts into NoSQL such as constructing cubes from NoSQL
stores and converting existing cubes into NoSQL stores. However, only limited attention in literature have been devoted to
precomputing structure within the NoSQL databases. In this paper, we present an architecture for answering temporal analytic
queries over big data by precomputing the results of granulated chunks of collections which are decomposed from the original
large collection. In extensive experimental evaluations on drill-down and roll-up temporal queries over large amount of data
we demonstrated the effectiveness and efficiency under different settings.

Keywords NoSQL · Data warehouse · Precompute · Temporal

1 Introduction

With the development of data-driven applications in many
aspects of our daily lives, it is worthy to praise the signifi-
cance of big data whose value has already been recognized
by both industry and academia. A significant amount of data
is being collected and analyzed to support various decision
makings, and that amount is expected to increase every year.
One of the major tasks in mining big data is to answer the
analytic queries efficiently. Analytic queries often involve
sophisticated aggregations which demand significant com-
puting powers. The huge volume of big data, along with
complexity of these queries pose a big challenge for effi-
cient processing. Aiming to tackle these challenges and to
enhance the performance of analytic query processing, the
concept of data warehouse [13] and OLAP [6] have been
introduced.

B Nigel Franciscus
n.franciscus@griffith.edu.au

Xuguang Ren
x.ren@griffith.edu.au

Bela Stantic
b.stantic@griffith.edu.au

1 Institute for Integrated and Intelligent Systems, Griffith
University, Gold Coast, QLD, Australia

Datawarehouse integrates data fromdifferent data sources
into large repositories. Data arriving into datawarehouses are
normally in denormalise multidimensional form which will
be stored into data cubes to reduce the cost of costly table
joins. A large part of modern OLAP systems are built on top
of data warehouses which are storedwith additional informa-
tion (e.g., metadata). An essential and widely used technique
in OLAP systems is precomputation where analytic results
are precomputed and materialized in the data warehouses.
When a user submits queries, the system simply retrieves the
corresponding pre-computed results and therefore efficiently
returns the final result to the user.

Previous techniques proposed in data warehouses and
OLAP systems are mainly focusing on relational data struc-
ture and relational databases. However, it is evident that
relational DBMS are struggling to handle large volume of
unstructured data as they do not scale well [20,24]. More-
over, relational DBMS are not well-equipped to handle
the new multidimensional networks [4,23,25]. The rise of
NoSQL databases [21] has attracted the attention of database
community due to its flexibility in providing schema-later
architecture and its scalability for handling huge amount of
big data. Various NoSQL databases have been chosen and
applied in many domains, which leads to more and more
data being stored in NoSQL databases. Consequently, it has
become an urgent need to process analytic queries based
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on the NoSQL databases efficiently. Some recent works are
extending the techniques of data warehouses and OLAP into
NoSQL. The work of [19] present strategies for constructing
cubes from NoSQL stores. In contrast, the work in [5] pro-
poses method to convert existing cubes into NoSQL stores.
However, there are few works focusing on the precomputing
structure dedicated to NoSQL databases.

For many modern big data applications, the complexity
of analytic tasks often require the combination of NoSQL
databases and Hadoop. NoSQL databases have been known
for its schema-less design that flexibly translate any data into
the desired format while Hadoop fills the gap of scalabil-
ity with its MapReduce framework. These two platforms
work in conjunction to achieve a large-scale interactive real-
time processing. Hadoop ecosystem is designed as a highly
fault-tolerant system for batch processing of long-running
complex jobs on very large datasets. Due to the lack of inter-
active exploration inHDFS, oftenNoSQL databases are used
as the output sink for the MapReduce process for real-time
interaction. To speed up the computation even further, an
efficient pre-computation has becoming a good alternative
[10].

Motivated by the above findings, in this paper we present
an architecture for answering temporal analytic queries over
big data within NoSQL database, in particular document-
oriented and key-value store. As the time is an essential
dimension for most of data analytic platforms, we choose
temporal queries aspect as focus and as the starting point
of this work. Queries on this specific part of the data (e.g.,
timestamp) are costly, often requiring full scan of all key-
value pair despite for simple equality queries [17]. We plan
extend our work into other dimensions in future works. The
basic idea of proposed architecture is to divide the original
data into separated and smaller chunks and then precompute
the results for each chunk. The precomputed results are then
materialized in the NoSQL database. We process the upcom-
ing analytic queries based on the precomputed results.

1.1 Contribution

This paper is the extended version of the precomputing archi-
tecture for answering analytic queries for NoSQL databases
[11].We extend our previousworkwith further practical eval-
uations of the drill-down and roll-up temporal queries over
a large amount of data in the application perspective, specif-
ically:

1. We proposed the technique to index raw temporal data
into separated and smaller chunks based on temporal
interval.

2. We designed efficient storage structures for the precom-
puted results in the document-oriented and key-value
databases.

3. We answered three types of common query models along
with the strategies to answer each query type.

4. We conducted extensive experiments to demonstrate the
performance of proposed architecture in the real world
end-to-end applications.

1.2 Organization

The rest of the paper is organised as follows: in Sect. 2, we
give some related works; in Sect. 3, we present the details
of our precomputing architecture; in Sect. 4, we provide the
experiment results; and finally in Sect. 5 we conclude the
paper and indicate some future work.

2 Related work

In this section, we present some related work which we clas-
sify into two main categories.

(1) NoSQL database. According to a survey presented in
[12] there are more than 100 NoSQL databases developed
for various purposes. Specifically, No-SQL databases can be
classified into four classes:

(a) Key-value stores the data as key-value pairs where the
value canbe anything and is treated as opaquebinarydata,
the key is transformed into an index using a hash function.
Redis is one of the widely used key-value databases.

(b) Column-family applies an column-oriented architecture
which is contrast to the row-oriented architecture in
RDBMS. Cassandra and HBase are two most used
column-family databases.

(c) Document-database treats the document as the mini-
mum data unit and is designed deliberately for managing
document-oriented information, such as JSON, XML
documents. MongoDB is a typical document database
which is designed to handle JSON documents.

(d) Graph-database models the data as graphs and focuses
more on the relationships between data units. There are
over 30 graph database systems such as Neo4j, Titan, and
Sparksee.

In thisworkwe stored data in twoNoSQLdatabases,Mon-
goDB and Redis, which have different pros and cons and are
using entirely different mechanisms. However, we present
the query processing performance for those two databases
based on our pre-computing structure.

(2)Data warehouse and OLAP. The concept of data ware-
house and OLAP have been proposed very early aiming to
answer analytic queries efficiently. The key structure in data
warehouse is the cube which is normally stored as a denor-
malised multidimensional table in relational databases [3,7].
A large part of modern OLAP systems are built on top of
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Fig. 1 Pre-computing architecture

data warehouses and utilize the cubes when processing ana-
lytic queries [8] or time-range queries [22]. Some advances
have been made to extend OLAP into emerging data, such as
imprecise data [2], taxonomies [18], sequence [15], and text
[14]. There are some recent works extending the techniques
of data warehouses and OLAP into NoSQL. The work of
[19] present strategies for constructing cubes from NoSQL
stores. In contrast, the work in [5] gives the rules in con-
verting existing cubes into NoSQL stores. However, only
few works studying the precomputing structure deliberately
within NoSQL databases.

In contrast to previous work, we focus on the processing
of analytic queries for NoSQL databases where no data are
stored in relational databases. We propose an index structure
suited to answer drill-down and roll-up queries over large
amount of data within fast response time. Similar to work in
[22], we particularly focus on the temporal queries with the
time-range as the query parameter.

3 Precomputing architecture

In this section, we present design of the precomputing archi-
tecture. We first give an overview of the architecture, then
we elaborate each component, (1) Raw data indexing, (2)
Precomputed results structure and (3) Query answering.

3.1 Overview

The overview of proposed precomputing architecture is
shown in Fig. 1. It can be divided into several inter-related
components: (1) Raw data indexing, where we collect the

raw Twitter data and store them into a NoSQL database
(MongoDB) as time-indexed collections. The dotted line rep-
resents the temporal indexing structure in MongoDB where
the preprocessed results are suited to the task processing,
for example, mapreduce. (2) Precompute results structure,
where we execute analytic jobs (MapReduce based on
Hadoop) and then store the precomputed results into NoSQL
database (MongoDB1 and Redis2). (3) Query answering,
where we apply efficient strategies to answer queries by uti-
lizing the precomputed results through merging. As a case
study, we demonstrate our architecture using specific data
sources, database platforms, analytic jobs and processing
techniques in this paper, as indicated within the above paren-
theses. However, it is worth noting that our architecture is
quite flexible and can be easily extended to other use cases.
We present more details about each chosen specific ingredi-
ent.

Data source As shown in Fig. 1, we use Twitter as the
data source as a case study. Twitter is an online social net-
working service that enables users to post short 140-character
messages called "tweets". Twitter is widely used in monitor-
ing society trends and user behaviors due to its large user
pool [1]. The tweets are naturally formatted into JavaScript
Object Notation (JSON) and they include the textual content
as well as the posted time. Every tweet consists of several
attributes embedded as the property beside themain text (Fig.
2). We test the performance for Twitter dataset both with the
attributes and without the attributes.

1 MongoDB, https://www.mongodb.com/.
2 Redis, https://redis.io/.

123

https://www.mongodb.com/.
https://redis.io/.


136 Vietnam Journal of Computer Science (2018) 5:133–142

Fig. 2 Tweet structure

Database platform MongoDB is an open source NoSQL
document-store database, founded by 10gen. MongoDB
stores data in document layout consists of field-value which
can be nested as an associate arrays.Documents are serialised
in JSON andwritten internally as Binary JSON (BSON). The
Twitter data is in JSON format which is generally supported
by theMongoDB.We chooseMongoDB to store the raw data
in our case study due to its in-house flexibility. MongoDB
provides some features from relational databasemanagement
system like sorting, compound indexing and range/equal
queries. Additionally, MongoDB has its own aggregation
capability and in-house MapReduce operation. One of the
major drawbacks from MongoDB is that it does not guaran-
tee concurrency which limit the native MapReduce program
from running in multi-thread. This is due to the implemen-
tation of SpiderMonkey JavaScript engine, known for its
threadsafe. In addition, MongoDB in-house MapReduce has
poor analytic libraries compared to Hadoop. This leads us
to use Hadoop in conjunction to provide better MapReduce
computation.

We also store the end result in Redis database to compare
the end-to-end performance with MongoDB. Redis is a fast
open-source key-value store that can instantiate result from

Hadoop computing platform. Since keysmay contain strings,
hashes, lists, sets and sorted sets, Redis can be used to support
the final metrics for front end visualisation to serve data out
of Hadoop, caching the ‘hot’ pieces of data in-memory for
fast access. Combining this simple client with the power of
MapReducewill let youwrite and read data to and fromRedis
in parallel.

NoSQL databases–Hadoop integration The MongoDB-
Hadoop connector3 is a plugin for Hadoop to integrate with
MongoDB as the source and/or sink instead of HDFS. Note
thatwe opt not to useHDFSdue to the the interactivity of data
exploration in MongoDB, although it is evident that reading
and writing time from Hadoop to HDFS is faster compared
with MongoDB [9]. Further, our main intention to index the
raw data is primarily for reading data from MongoDB to
Hadoop. At this time this paper is written there is no offi-
cial Redis-Hadoop connector for writing the output result to
Redis from Hadoop available. However, there are some open
source connectors that allows the integration between Redis
and Hadoop. We opt to use Jedis,4 a Java client library to
connect both platform.

Analytic jobs The precomputing architecture is designed
to process data that are sequential or based on the order.
Therefore, it is flexible to compute a variety of jobs for
both spatial and temporal data. However, we consider the
importance of temporal data since they typically have lower
granularity which may consistently create excessive seek
index problem.

Text aggregation is a widely used analytic job in many lit-
eratures. Its intuitive application is the word frequencywhich
is intensively used to detect hot topics and trends in the soci-
ety. Compared with word frequency, sometimes we are more
interested in the frequency of word-pair (co-occurrence of
two words) as it can help us to detect hidden patterns. There-
fore, we choose the job of computing word-pair frequency
in our case. That is given a set of tweets and any word-pair,
we compute the number of tweets in which this word-pair
co-occurred.

Processing techniques We choose Hadoop as the proces-
sor to execute the word-pair jobs. Hadoop is an open source
implementation of MapReduce framework. As previously
stated, althoughMongoDB ships with in-houseMapReduce,
it has poor analytic libraries compared to Hadoop. Addi-
tionally, Hadoop has better integration with other big data
platforms with its specialised cluster management such as
Zookeeper5. We later store the precomputed results into both
Redis and MongoDB.

3 MongoHadoop, http://api.mongodb.org/hadoop/.
4 Jedis, https://github.com/xetorthio/jedis.
5 Zookeeper, http://zookeeper.apache.org/.
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Fig. 3 Time interval index structure

3.2 Raw data indexing

It is evident that tremendous amount of data is difficult to
processwithout proper indexing.However indexing the high-
cardinality attribute, such as timestamp, is not suitable due
to excessive seek [22]. For example, there will be numerous
index entries if we index every specific timestamp for the
tweets, which will lead to a higher latency. To tackle this
problem, in this subsection, we introduce the technique of
time interval index inside the collection layer of MongoDB.

Specifically, tweets are grouped into a single collection
where the time of those tweets are within the same interval.
The length of the interval can be tuned based on the dataset;
it can be an hour, a day, or a month. We use the timestamp of
this time interval as the name of the corresponding indexed
collection. By utilizing the time interval index, we dramat-
ically alleviate the cost of index seeking while still be able
to support drill-down and roll-up temporal queries. Consider
the example index structure in Fig. 3, we choose a day as
the time interval. The tweets posted on the same day (shaded
box) will be grouped into the same collection. It is worth
noting that a week is a higher interval of a day; however,
we do not store a separated collection to group the tweets in
the same week. As this will dramatically increase the storage
size.

In order to support the drill-down and roll-up tempo-
ral queries, we precompute the analytic results for each
indexed collection. For example, we precompute the results
for the day collections in Fig. 3. For each time-range query,
the system will answer the query using bottom-up merging
approach. Specifically, given a time range querywhose range
ismore than 1 day,wefirst select the tweets collectionswithin
this range and load their corresponding precomputed results.
Then we merge these results to get the final results to answer
the query. By implementing this technique, we remove the

necessity to precompute/store the result for super-interval
collection such as weekly, monthly or yearly.

3.3 Precomputed results structure

Asdiscussed in the above subsection,weprecompute the ana-
lytic results for each indexed collection. In this subsection,
we study the structure to store the precompute results which
are the frequencies of word-pair in tweets. We present the
structures for two NoSQL databases: MongoDB and Redis.
For the self-completeness of this paper, we also present our
MapReduce algorithms to compute the frequencies of word-
pair.

MongoDB structure In MongoDB, we use a separate col-
lection to store the results of each indexed collection. Each
result collection contains a list of frequency results for word-
pairs. The format of each frequency result for any word-pair
is in the following document format:

[_id, word1, word2, f requency]
where _id is created automatically by MongoDB if not spec-
ified, word1 and word2 are the words in this word-pair and
the frequency is the number of tweets in which this word-pair
co-occurred. Consider the example in Fig. 4, the name of the
result collection is in timestamp label 1475118067000 (29
Sep 2016). The hello and world co-occurred in 100 tweets
which are posted on the day of 29 Sep 2016.

Redis structureRedis is an in-memory key-value database.
We use a combination of timestamp and the word-pair as the
key and the frequency as the value. The format is given as
follows:

[t imex_word1_word2 : f requency]
Redis support searching based on key pattern, thus, we

can quickly lock down to the corresponding set of records
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Fig. 4 MongoDB result structure

Fig. 5 Redis result structure

when given a specific timestamp and/or word-pair. Aswe can
see in the example in Fig. 5, the hello and world co-occurred
in 100 tweets which are posted on 1475118067000(29 Sep
2016) while they co-occurred in 60 tweets which are posted
on 1474315055000(19 Sep 2016).

Nowwegive ourMapReduce algorithm for computing the
frequencies of word-pairs, as shown in Algorithms 1 and 2.
We take the twitter collections and a pre-fixed index interval
P as input inmapAlgorithm 1.We first extract the timestamp
Ti (Line 1) and message (Line 2) information from the tweet.
Thenwe compute the index stampby running amodular com-
putation from Ti on P (Line 3). In Line 4, we tokenize and
clean the text message to get a set of meaningful words. After
that, for each word-pair with a preserved order, we record its
appearance by 1. The reduce Algorithm 2 is straightforward
to understand which sums up the frequencies for each word-
pair.

Algorithm 1: Mapword−pair

Input: A tweet Tw within the collections, index
interval P

1 Timestamp Ti ← ExtractT ime(Tw)
2 Tokenizer Tx ← ExtractText(Tw)
3 IndexStamp IndTi �← Ti/P �
4 Tokenizer Tokx ← TokenizeClean(Tx)
5 for each token tx ∈ Tokx do
6 for each token t′x ∈ Tx do
7 if strCompare(tx, t′x) ¿ 0 then
8 Key ← Ti tx t′x
9 context.write(Key, one)

10 end
11 end
12 end

Algorithm 2: Reduceword−pair

Input: Key, List values
1 sum ← 0
2 for each value val ∈ values do
3 sum += value
4 end
5 context.write(Key, sum)

The complexity of the MapReduce algorithm is O(N ×
M2) where N is the number of tweets and M is the number
of meaningful word in each tweet.

3.4 Query answering

In above subsections, we presented the indexing strategy and
the structures to store the precomputed results. Now we are
ready to study the process of answering user queries. We
classify the user queries into three types: (1) Single selectivity
query, (2) Drill-down query, (3) Roll-up query as we can see
in the following models:
1. Single selectivity query
QUERY data WHERE t ime = Tx WITH Gra(Tx ) = Φ.
2. Drill-down query
QUERY data WHERE t ime = Tx , t ime = Ty AND
Ty-Tx < Φ WITH Gra(Tx , Ty) < Φ.
3. Roll-up query
QUERY data WHERE t ime = Tx , t ime = Ty AND
Ty-Tx > Φ WITHGra(Tx , Ty) > Φ ORGra(Tx , Ty) = Φ ′
IF Gra(Tx , Ty) = Φ ′.

In the abovemodels, we useΦ to denote the interval when
we index the raw data (as mentioned in Sect. 3.2). The func-
tionGra(Tx , Ty) is to decide the granularity of the parameter
time T intuitively, for example,Gra (12AM 15 Sep 2016) =
hour and forGra (15 Sep 2016) = day.Accordingly,Single
Selectivity query aims to query the data falling into a single
indexed data collection. Drill-down query aims to query the
data which are a subset of a single indexed collection. Roll-
up query aims to query the data involves multiple indexed
collections. We use the parent interval collection Φ ′ when
the interval given in the roll-up query matches Ty-Tx = Φ ′.
Consider the following example where each one query cor-
responds to one query type respectively.
1. Word-pair frequency on 02/April/2016.
2. Word-pair frequency from 9:00pm of 08/April/2016 to
11:00pm of 08/April/2016.
3. Word-pair frequency from 18/April/2016 to
28/April/2016.

1. The time is trivial to answer the single selectivity query,
asweonly need to navigate to the corresponding result collec-
tion ofMongoDB (set of records of Redis) by the timestamp.
2. To answer the drill-down query, we need to navigate to
the corresponding indexed data collection, fetch the tweets
falling into the time range and then execute the word-pair job
onto the filtered tweets. The time of this process depends on
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the complexity of the analytic job to be executed and can be
very slow if size of the fetched tweets is large. 3. To answer
the roll-up query, we need to merge multiple result collec-
tions in MongoDB (sets of records in Redis) falling into the
time range. This process is similar to the table-join in the
relational database. Since the weekly interval partially cov-
ers some of the daily interval (18 April 2016–24 April 2016),
we select the respective weekly collection and the rest of the
daily collections until 28 April 2016.

Algorithm 3: MergeResults
Input: Multiple precomputed results T = {T1 . . . Tn}
Output: final result R

1 HashMap H ← ∅
2 for each collection Tk ∈ T do
3 for each document w ∈ Tk do
4 if w.word1 w.word2 is not in H then
5 H(w.word1 w.word2) ← w.frequency
6 end
7 else
8 H(w.word1 w.word2) ←

H(w.word1 w.word2) + w.frequency
9 end

10 end
11 end
12 Result R ← JSON(H)
13 return R

We present a basic algorithm to merge multiple result
MongoDB collections in the wordpair job, as shown in
Algorithm 3. As we can see in the merging algorithm, the
algorithm takesmultiple results as input and output theword-
pair result R. A hashmap H is used to temporarily save
the frequency(value) of the word_pair (key) (Line 1). The
algorithm iterates through each collection and visits each
document inside the collection (Line 2 to 10). For each doc-
ument, if there is no such word_pair in the hashmap, we
add a new word_pair to the hashmap (Line 4 to 6). If there
is already one, we just add up the frequency (Line 7 to 9).
The above algorithm can be very fast if we tune the index
interval properly. The merging algorithm for Redis is similar
to Algorithm 3, we omit it here.

It is worth noting that a larger interval leads to a larger doc-
ument collection. Many queries will fall into the drill-down
type.When the number of tweets in one indexed collection is
large, it will increase the time to answer a drill-down query.
In contrast, a smaller interval will lead to many result col-
lections(sets). Many queries will fall into the roll-up type.
Excessive merge will increase the time to answer a roll-up
query. Therefore, it is a trade-off between the performance
of drill-down and roll-up when tuning the index interval.

4 Experiments

Our architecture has already demonstrated its effectiveness
within a practical HumanSensor project [11]. In this section,

Fig. 6 Document level processing time

Fig. 7 Collection merging

we present our experiment results so as to study the response
time of the query answering under different data settings.We
describe the result of the core processing inside the database
and the end-to-end processing time from back-end to front-
end.

4.1 Dataset and environment

The twitter data in our experiment were downloaded though
the public API provided by Twitter. We wrapped 5 datasets
which contains 200 × 103, 400 × 103, 600 × 103, 800 ×
103 and 1 million tweets, respectively. For each dataset, we
indexed data according to a day interval. Bigger dataset will
lead to more indexed collections and more documents within
each collection. We synthetically generated three query sets
for each query type, each of which contains 100 queries.
The process of answering selectivity query and roll-up query
utilized the precomputed results in MongoDB and Redis,
thus we report the average response time of these two types
for MongoDB and Redis respectively. As drill-down query
only involves indexed data collections which are stored in
MongoDB, we simply report the the average response time
for it.

Our experiments were conducted on a cluster with 20
nodes, each node is equipped with quad core Intel(R)
Core(TM) i5-2400 CPU @ 3.10 GHz with 4GB RAM. We
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Fig. 8 Single selectivity

Fig. 9 Drill-down

used Hadoop (version 2.6.0), MongoDB (version 3.2.9) and
Redis (version 3.0.1).

4.2 Results and analysis

Figure 6depicts the processing time to read a single collection
in MongoDB. We measured different number of documents
varying from thousand to million level. The result shows that
MongoDB performs scan in a linear scale. For ten thousand
documents, it takes approximately a second to read and for
a million it takes up to 18 s. To compute the time range, we
merge the result for each affected collection. Tomergemulti-
ple collections, we use a join function which takes the value
of each key, mapping them into hashmap, then group into
final result. Figure 7 represents the multi-collection process-
ing time. We calculate two different size of collections, one
million and ten thousand respectively. For each collection
involves in the merging process, the time takes to compute
is increasing linearly. For collections at a million document
level, the merging cost takes approximately 6 s per collec-
tion. However, when the number of document per collection
is small, the merging cost is trivial. In practical, keeping low
number document will benefit the overall processing. Results
suggest that dividing large collection into several partitions
greatly benefit the entire processing time.

The results of processing single selectivity query are given
in Fig. 8. As we can see, the time cost of answering selec-
tivity query almost keeps constant if precomputed results are
stored inMongoDB.While it depicts a linear incrementwhen
utilizing the precomputed results stored in Redis. The reason
for this phenomena is due to the storage structure of results
inMongoDB and Redis. ForMongoDB, we saved the results
of an indexed data collection in a separated collection. Given

Fig. 10 Roll-up

Fig. 11 End-to-end processing tasks

Fig. 12 Front-end vs back-end processing

a result collection name, the time to locate the correspond-
ing collection is a hash-search which are trivial and almost
constant. While the results of an indexed data collection for
Redis are spread into the KEY. The internal pattern search of
Redis takes a linear time in terms of the number of KEYS.

Figure 9 presents the results of answering drill-down
query. As discussed in Sect. 3.4, the time cost by answer-
ing drill-down query depends on the size of the indexed data
collection and the complexity of the analytic job. As we can
see in Fig. 9, the time experience a linear increment in terms
of the size of datasets. Note that, it takes linear time to execute
word_pair job.

The results of processing roll-up queries were given in
Fig. 10. Both the time cost for MongoDB and Redis demon-
strates an sharper increment in terms of the size of the

123



Vietnam Journal of Computer Science (2018) 5:133–142 141

Table 1 Average end-to-end query processing time with and without precomputing

Query Type Without precomputing (second) With precomputing (second)

FIND (sentiment_score = negative) where time = 07/07/17 4 3

FIND (sentiment_score = negative) AND (location near 153.3,-27)
where time = 07/07/17

32 7

FIND (sentiment_score = negative) AND (location near 153.3,-27)
AND (topic = food AND shop) where time = 07/07/17

140 9

FIND (sentiment score = negative) AND (location near 153.3,-27)
AND (topic = food AND shop) where time > 07/07/17 AND time
< 09/07/17

187 12

FIND (sentiment_score = negative) AND (location near 153.3,-27)
AND (topic = food AND shop) where time = 07/07/17 OR time =
09/07/17

195 11

FIND (sentiment score = negative) AND (location near 153.3,-27)
AND (topic = food AND shop) where time > 07/07/17 AND time
< 09/07/17 OR time > 08/08/17 AND time < 10/10/17

220 24

datasets. This is because of the merging process is similar
to the table-join of the relational database whose time con-
sumption may grow quickly when the data size gets bigger.
However, through a proper tune of the index interval, we can
achieve a reasonable response time in practice. The Mon-
goDB shows a slightly better performance than Redis, this
shares the same reason when answering selectivity query.
It takes more time for Redis to assemble the precomputed
results for a given indexed collection.

4.3 Practical scenario

When the choice of an optimal execution plan is not criti-
cal, MongoDB is shown to be a viable alternative compared
to relational databases [16]. We implement the precomput-
ing system in a real-world social media analysis project, the
HumanSensor. We use Twitter dataset as the main source
for analytic tasks. Each tweet size is approximately 3 kB
which is stored in MongoDB collection with each collection
indexed in a per-day timestamp. Tweets carry some informa-
tion such as text, GPS location, and the time posted. Based on
these attributes, we define some sub-tasks tomonitor public’s
opinion, urban activities, and topic modelling with the time
interval as the parameter. Figure 11 represents the main idea
of the system where the first query is divided into sub-tasks
which will be queried according to temporal information.

Opinion mining is measured through the sentiment anal-
ysis which calculates the "good and bad" based on the
sentiment score. The process itself relies purely on the tweet
(text) which is segmented based on supervised learning.
Urban activities on the other hand is determined by the GPS
location provided in the tweet attributes (see Fig. 2). We
visualise each location point as the heatmap to determine the
density of urban movements. By visualising the location, we
can predict the traffic congestion towards a certain period
of time. Lastly, the topic modelling is used to capture the

trending topic of people’s interest in a certain period. By
combining these three aspects we can easily understand the
general point of view of a certain region.

The main problem of this complex big data analytic is
the processing efficiency of collecting raw data into the
final front-end visualisation. Normally, the process will go
through several steps such as data cleaning, segmentation,
clustering, and score weighting. There are two ways of pro-
cessing data in a typical real world application, first is to
directly grab raw data and then process them in the appli-
cation layer (front-end). Second is by processing data in the
database (back-end) and then send the result to the appli-
cation. Both ways are acceptable, however, when data size
is increasing, the application processing becomes a major
bottleneck. As an example, in our use case we use NodeJS6

as the front-end application where Fig. 12 depicts the two
processes described above. The dotted line indicates the raw
data are processed in the application layer.

Finally, wemeasure the end-to-endmetrics of information
retrieval starting from user query to the sub-tasks processing
within the database in real-time. Table 1 shows the aver-
age processing time of the end-to-end platforms for various
NoSQL query-based. We measure the query on a total of
one million tweets. Compared to the traditional processing
without the precomputation, the overall time is reduced from
minutes to seconds. When the query complexity increase,
the processing time grows exponentially due to additional
MapReduce processing task which is further affected by net-
work bandwidth cost. On the other hand, the precomputing
depends on the number of collections since it only has to
scan collections that fall into the query. With the precom-
puting architecture, we are able to speed-up the temporal
merging which enables the real-time processing for complex
task over big data.

6 Node.js, https://nodejs.org/en/.
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5 Conclusion

We presented a precomputing architecture suitable for
NoSQL databases in particular MongoDB and Redis to
answer temporal analytic queries. Within the architecture,
we proposed indexing techniques, results storage structures
as well as query processing strategies. Based on proposed
architecture we are able to efficiently answer drill-down and
roll-up temporal queries over large amount of data with fast
response time. Through integration in real project running in
Big data and Smart Analytics lab at Griffith University and
experimental performance study we proved the effectiveness
of our architecture and demonstrated its efficiency under dif-
ferent settings. We also showed that document-based store
can outperform key-value store when the data fit in the mem-
ory. Considering future works it would be interesting to
consider include extending the precomputed results over spa-
tial data and to enable distributed join for merging functions,
which will enable parallel join and hopefully reduce time
threshold per collection.
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