
Vietnam J Comput Sci (2018) 5:45–57
https://doi.org/10.1007/s40595-017-0100-x

REGULAR PAPER

A bat-inspired algorithm for prioritizing test cases

Muhammed Maruf Öztürk1

Received: 20 June 2017 / Accepted: 22 August 2017 / Published online: 7 September 2017
© The Author(s) 2017. This article is an open access publication

Abstract By ordering test cases, early fault detection is
focused on test case prioritization. In this field, it is widely
known that algorithm and coverage criteria focused works
are common. Previous works, which are related to test case
prioritization, showed that practitioners need a novel method
that optimizes test cases according to the cost of each test
case instead of regarding the total cost of a test suite. In this
work, by utilizing local and global search properties of a bat
algorithm, a new bat-inspired test cases prioritization algo-
rithm (BITCP) is proposed. In order to develop BITCP, test
case execution time and the number of faults were adapted
to the distance from the prey and loudness, respectively. The
proposed method is then compared with four methods which
are commonly used in this field. According to the results of
the experiment, BITCP is superior to the conventional meth-
ods. In addition, as the complexity of the code of test cases
increases, the decline in average percentage of fault detection
is less in BITCP than the other four comparison algorithms
produced.

Keywords Bat-inspired algorithm · Test case prioritization ·
Regression testing

1 Introduction

As the number of versions of a software increases, it is
expected to reduce the number of defects. To accelerate this
decline, various tests are prepared and run on software sys-
tems. As such, the check of a software version after required

B Muhammed Maruf Öztürk
muhammedozturk@sdu.edu.tr

1 Department of Computer Engineering, Faculty of
Engineering, Suleyman Demirel University, Isparta, Turkey

changes reveals whether the functions work well, and the
check has been named as the regression test. This check is
determined as exploring the presence of functional issues [1],
and regression tests can either be executed in a specific time
or planned in every version of a software [2].

Given a test suite Tn which consists of n test cases, test
execution process should be conducted in an efficient way.
This case can be called test execution effectiveness, and it
depends on execution time and faults triggered by the test
cases. The test suite is generated from a great number of test
cases where test cases should be executed in the best order.
In addition, the total cost of a test suite and individual cost
of test cases should be considered while deciding the order
of test cases [3]. Thus, the most effective test suite is desired
to be executed as soon as possible.

Using test case prioritization, which is one type of
regression tests, ordered test suites such as T3, T5 . . . T1 are
obtained from some tests Ti . . . Tn .Meanwhile, the execution
of test suite reveals faults as F1 . . . Fx . Here x is the num-
ber of faults. In the minimum time of the execution [1], it is
desired that the value of x becomes high as much as possible.
In doing so, early fault detection reduces the effort which is
required for testing.

If there is a limited test source and budget allocated for
testing, test cases are prioritized [4]. To figure out how test
cases are executed, making required inferences is important
for each version of a program. This tracing should be consid-
ered in terms of whether the test suite is correctly ordered. In
test case prioritization, which was first proposed by Wong et
al. [5], despite the method of performance evaluation is not
changing much, the methods used for deciding the order of
test cases have evolved and varied dramatically.

To perform test case prioritization, historical data are uti-
lized. However, it may not be feasible to combine historical
data with some common methods such as genetic algorithm

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40595-017-0100-x&domain=pdf

46 Vietnam J Comput Sci (2018) 5:45–57

Fig. 1 Main steps of the study

(GA) [6] due to the unstable experimental condition.As such,
local beam search (LBS) proposed by Jiang et al. produced
better APFD results than GA [7]. In this respect, this result
indicates that although GA does not show bad performance
in every experimental condition, superior methods need to
be explored in depth.

There are many works, which are algorithm-focused, that
study test case prioritization, and they include various meth-
ods that are based on particle swarm optimization (PSO)
[8], GA [9], greedy search [10], and hill climbing [11].
When these works are analyzed, it is clearly seen that these
works are focused on test suite cost rather than the individ-
ual cost of test cases. For instance, PSO has been evaluated
in terms of some coverage criteria, but it does not involve
an experiment regarding individual cost of test cases for
each iteration. The structure of GA is suitable for achiev-
ing high APFD. However, it strongly depends on observing
final result. On the other hand, greedy finds the global best
solution step by step but it requires much time and effort.
The criteria determining the cost is the total execution time
of test cases in a traditional approach. Hence, a novel tech-
nique is needed regarding the individual cost of test cases
that yields promising results in terms of APFD [12]. The
main factor affecting the cost of test case prioritization is the
computation cost of algorithms. Consequently, a newmethod
that can fill the gap is strongly needed to prioritize the test
case.

This study proposes a new test case prioritization algo-
rithm which has been developed based upon the principles
of the bat algorithm presented by Yang [13]. However, it
is quite difficult to develop a prioritization algorithm which
yields high APFD in various data sets, because the common
methods are focused on the total cost of test cases rather than
the individual cost of test cases. The main objective of the
study is to develop a novel test case prioritization algorithm
by regarding the individual cost of test cases. The echoloca-
tion behavior of bats and their decisionmechanism of finding
preys are considered while devising BITCP, and an adapta-
tion is performed to fit the notions of the test case design.
The performance of BITCP is then compared to that of ant
colony optimization (ACO), greedy search, PSO, and LBS.
The main steps of the study is shown in Fig. 1.

The paper aims at answering the following research ques-
tions: Research Question 1 (RQ1): What are the drawbacks
of the test case prioritization techniques developed so far?
ResearchQuestion 2 (RQ2):DoesBITCPproduce promising
results with respect to APFD? Research Question 3 (RQ3):
How doAPFD rates of comparison algorithm change in a test
suite? Research Question 4 (RQ4): What are the effects of
complexity of the codes on the APFD results recorded with
comparison algorithms? Research Question 5 (RQ5): Which
algorithm shows the best resistance against code complexity?
Research Question 6 (RQ6): Will BITCP be able to become
popular among researchers to be investigated further?

123

Vietnam J Comput Sci (2018) 5:45–57 47

The paper will contribute to the existing literature by
presenting the following: (1) presentation of a nature-
inspired test case prioritization algorithmwhich has not been
employed in this field previously, (2) presentation of a pro-
posed method that considers the individual cost of test cases
rather than using total cost of test suites, (3) development of
a better algorithm than traditional ones in terms of APFD by
addressing some of the issues which have been encountered
so far, and (4) presentation of a investigation of how faults
revealed by test cases change depending on the complexity
of code.

The rest of the paper has the following sections: Section 2
summarizes the related works by stressing the need for a
nature-inspired algorithm. Section 3 explains howBITCPhas
been designed in detail. Section 4 reports the data sets and
the results of the experiment. Section 5 presents the threats
to validity. Last, Sect. 6 concludes the study.

2 Background and related works

In this section, the background information of test case pri-
oritization is presented. These information comprises test
cases, test pools, prioritization, and performance evaluation
methods. Nature-inspired algorithms, which are selected for
comparison, are then explained. Finally, the need for this
study is explained by depicting the shortcomings of summa-
rized related works.

2.1 Test case prioritization

Given a test case group T1, . . . , Tn from a test pool P , n
denotes the number of test cases. In addition, possible count
of orders of a test suite Ts generated from P is as much as
n factorial. The success of the ordering can be evaluated not
only with code coverage and model coverage, but also with
some measurement methods such as APFD [14] and APXC
[11]. If a search-based optimization is preferred, the code
coverage criteria is suitable. In this study, APFD is used for
performance evaluation.

Let Ts denote a test suite and the order of Ts is Tr. The
number of test case is n. If Tr revealsm faults of F1, . . . , Fm ,
first, one should eliminate well which faults are triggered
by related test cases. Afterwards, the order of test case is
controlled with Tr. For instance, in T F1, T is the order of the
test case of Tr which induces F1. Likewise, inducing order of
each fault is computed according to Eq. (1) which evaluates
the effectiveness of Tr. Tr includes all the test cases presented
in Eq. (1). Having these information, the formula emerges as
in Eq. (1):

APFD = 1 − T F1 + T F2 + T F3 + · · · + T Fm
nm

+ 1

2n
(1)

As known from Eq. (1), the numerator of the equation should
be low so that APFD becomes high. In order to do this, the
optimal case is that one test case, which is the first in the
order, of a test suite reveals all of the faults. Due to the diffi-
culty of making such a test case, the best order of test cases
is investigated. As the value of APFD approaches one, the
success of prioritization increases.

2.2 Nature-inspired algorithms

While choosing comparison algorithms, some steps have
been done. First, similar methods have been examined in
literature. In this step, the criterion is citation count and pub-
lishing date. Some of them are not suitable for comparison
because of their working principles so they have been elimi-
nated in the second step. The most suitable methods are then
selected afterwards. For instance, LBS, which is involved in
the comparison, is not an old method that it was published in
2015 [7].

2.2.1 Ant colony optimization

Some notions such as distance and pheromone are used
for finding direction in ant colony optimization (ACO) [15]
which is a heuristic method of ants, and it also helps in
searching for foods. Ants leave pheromone at decision mak-
ing points to show way for other ants. As the ants see the
pheromone, the ants decide their directions. There is an
inverse relationship between distance and decision making.
Distance is a negative factor while making a route decision.
In contrast, pheromones lead to a better choice decision. In
a function f (x) = qa + (1/w)b where these parameters are
employed to input, if a and b are arbitrary generated val-
ues, the direction is computed by substituting pheromone
and distance for q and w, respectively. The direction is then
determined according to the obtained results. ACO has been
used in following areas before: various subfields of data min-
ing [16], real world problems [17], mathematical modeling
[18], network routing problems [19], prediction of energy
consumption [20], and software testing [21].

2.2.2 Particle swarm optimization

PSO was theoretically introduced by Eberhart and Kennedy
to solve complex numeric optimization problems [8]. This
algorithm is based on the moving behavior of bird and fish
swarms. Velocities and positions are updated for each itera-
tion in PSO. While pbest is the best values of each particle
and it is utilized for finding optimal solution, gbest is the best
solution of the group. Additionally, particles change their
velocities and next positions by regarding previous recorded
gbest . Note that gbest is recorded for every step that the best
value is expected to be found at the end of the iteration [22].

123

48 Vietnam J Comput Sci (2018) 5:45–57

PSO has been employed in many applications such as
control problem of optimization, various subfields of data
mining, network design, geotechnical engineering, and soft-
ware quality. The common feature of these areas is that each
of them needs an optimization process.

2.2.3 Greedy algorithms

One of the heuristic methods is greedy algorithm which
calculates the local optimal solution in every phase of the iter-
ation to reach global optimum solution [10]. Coin changing,
huffman encoding, and traveling salesman are the types of
greedy algorithm. Coin changing is selected for comparison
in this study, and coin changing handles with an optimiza-
tion problem by dividing it into small parts. Given an amount
of money M , it is assumed that M is divided into some
amounts as n, 2n, 5n, 50n. The main aim of coin changing
algorithm is to divide M into the minimum number of coins,
in which some cases, the optimal solution is more than one.
We selected this algorithm because it is easy to construct and
apply.

2.2.4 Local beam search

LBS was first used by Jiang ve Chan [7] in test case pri-
oritization. LBS is one of the input-based test prioritization
techniques and it was developed on the basis of adaptive
prioritization [23]. Comprising all input space along with
few test cases is the underlying goal of LBS which is key to
detectmore faults. Jiang andChan also reported that LBSwas
superior to the other similar search-based algorithms such as
greedy, two-optimal, hill climbing, and GA in terms of code
coverage criteria.

2.2.5 Bat algorithm

Bats do hunt to get their foods. The hunting method of bats
is considered as their echolocation behavior [24]. Bats have
following talents for hunting:

1. They can easily find the location of their prey;
2. bats distinguish prey and obstacles;
4. bats prefer optimal location during finding prey.

Some algorithms have been developed by taking inspiration
from echolocation behavior of bats. For instance, bat algo-
rithm is a nature-inspired optimization method and it was
proposed by Yang et al. [13]. Some parameters, which are
constantly updated with the moves of bats, are used in bat
algorithm [25]. These are vi , fi , xi , ri , and Ai . The character
“i” of the parameters denotes iteration. Bats move in a posi-
tion xi along with a vi . While v represents the velocity of a

bat, f is the frequency value. If velocity is divided with fre-
quency, wavelength is obtained with λ = v

f . Each bat emits
ultrasonic sound, namely pulses, to get signal from a prey.
Depending on the proximity of the target, pulse emission ri
increases and changes between 0 and 1. Having ri = 1means
that a bat is at the target. Loudness Ai can be determined as
the environmental hardship during finding prey. On the con-
trary, Ai decreases dramatically if a bat is near the prey and Ai

becomes “0” at the target. Velocity and frequency are updated
as in Eqs. (3–4) and position of a bat changes according to
these iterations.

These notions are used for deciding the right path so that
bats can find their prey as soon as possible. Moreover, as the
distance from a bat to prey increases, the related frequency
fi reduces. Pulse emission ri is [0−1], but it depends on the
wavelength emitted by a bat. The steps of the bat algorithm
can be summarized as follows:

1. Starting points and velocities are determined,
2. ri and Ai are assigned,
3. local solution is found by checking rand > ri in a specific

iteration such as 20, 50, and 100,
4. new solution is calculated by flying randomly,
5. velocities and frequencies are updated,
6. global best location is denoted by x∗ and it is found by

ordering local solutions.

It is feasible to develop a bat-inspired test case prioritization
algorithm regarding individual cost of test cases when the
structure of bat algorithm is examined in detail. Moreover,
distance, frequency, and loudness can be easily adapted to
test case notions such as execution time, number of faults,
and code coverage. This is the reason why bat algorithm has
been selected as a base method in this work to develop a
nature-inspired test case prioritization algorithm.

The bat algorithm has been used in a wide area applica-
tions; over the past 6 years, it has been used in gas tribune
optimization [26], vehicle routing problem [27], dc motor
optimization [28], and structure modeling problem [29].

2.3 Related work

This section briefly mentions the works which are directly
related to our work. The need for a bat-inspired test case pri-
oritization technique is explained by depicting the drawbacks
of related works.

ACO is one of the widely known optimization methods
among researchers. It has also been used for software quality
to address common optimization issues. For example, muta-
tion testing was combined with ACO to generate a test-input
space [30]. Thus, from the comparison including random, hill
climbing, GA, and ACO that ACO outperformed the others
in terms of mutation score. In addition, ACO has promi-

123

Vietnam J Comput Sci (2018) 5:45–57 49

nent advantages with respect to the test input generation that
gives new ideas for future works [31]. Mao et al. [32] also
created test inputs using ACO for branch coverage testing.
They tested their method on seven different programs where
simulated annealing (SA) showed better coverage perfor-
mance than PSO andGA.However, ACO is not cost effective
compared with PSO and SA in terms of execution time. Fur-
thermore, employing non-industrial data sets and gathering
them only from academic projects constitute main threats for
the study.

ACO was also applied on data flow testing [33]. How-
ever, data sets used in this field are not comprehensive and
the comparison works are not sufficient. This case creates
a constraint for applying ACO to software quality. In addi-
tion, ACO was employed on test case prioritization by Singh
et al. [34]. Although they compared ACO with common
techniques such as random and optimal order, it has not
been involved in an experiment including greedy, LBS, and
PSO yet. In addition, this study did not test a large-scale
data set. Prioritization techniques are either white-box or
black-box focused. However, a recent study reported that
using white-box or black-box focused techniques does not
greatly affect the performance of prioritization techniques
[35].

PSO has become popular as much as ACO in optimization
practitioners. A great number of studies, which employ PSO
to solve software engineering issues, are available in liter-
ature. For example, in one study, which can be considered
the first to apply PSO on software testing, the design of PSO
is suitable for structural software testing [36]. It performed
better than genetic algorithms, and this bias was corrected
by verifying testing coverage over a fitness value. Although
it has detailed information regarding PSO-GA, the work is
not comprehensive due to the lack of the comparison of sim-
ilar optimization algorithms. Improving PSO is a convenient
way to use it in generating test cases [6]. To measure the
degree of this improvement, time during the iterations was
measured, and the proposed method produced one-way and
multi-way fitness values in a shorter time than the values
recorded in PSO and GA. However, selecting two algorithms
for comparison limited the scope of the work. PSO was also
employed in GUI testing [37], and test coverage was exam-
ined in five different programs. However, an algorithm-based
comparison is needed instead of utilizing a program-based
comparison. PSO was investigated in generating test suite of
combinatorial testing [38], and PSO outperformed SA and
ACO in terms of the size of test suite and detected faults.
Some variants of PSO such as PSO + GA were applied on
test case prioritization, but the evaluation of test execution
time and APFD through one algorithm is not sufficient to
make a reliable decision [39].

Greedy algorithms Please consider rephrasing the follow-
ing sentence: Greedy algorithms may not be very effective

in selecting test cases if this case is considered as a one-way
optimization problem ...which the additional and total strate-
gies were created to cope with this problem.]may not be very
effective in selecting test cases if this case is considered as
a one-way optimization problem [40], which the additional
and total strategies were created to cope with this problem.
Additional and total strategies aim at augmenting detected
faults in terms of unit and total base of test cases. Addi-
tional strategy, which handles with test cases as unit base,
performs better than total strategy in works associated with
these two strategies [41]. Greedy-based test case prioritiza-
tion algorithm, named two-optimal, was proposed by Li et
al. [11], and this algorithm yielded better APFD results than
traditional greedy, hill climbing, and GA. However, a new
nature-inspired optimization algorithm is needed to decide
whether traditional algorithms are still up-to-date.

LBS, which is one of search-based algorithms, was
recently tested on C programs [7]. Thus, there is a need for
making new experiments to be performed on projects includ-
ing different languages. Besides, LBS should be compared
with similar randomized test case prioritization techniques
since it has randomized steps. Further LBS yielded promis-
ing results in the comparison including adaptive random test
case prioritization and GA. Therefore, these two algorithms
were not involved in the experiment of our study.

BAT is a new algorithm relative to the PSO and GA that
few works, which are associated with software testing, have
studied it. One of them is Srivasta et al.’s work [42] which
includes a method combined with BAT algorithm in predict-
ing test effort. Their findings indicate that the bat-inspired
method produces close results to the real effort values when
it is compared with the methods recorded with PSO and
TPA (tests point analysis). Although literature includes some
works including the bat-inspired method to the handle with
combinatorial testing, there is not any bat-inspired method
which has been developed to prioritize test cases. Summary
of the related works is presented in Table 1. According to the
data of this table, Singh et al.’s work seems to be the first to
have applied ACO on test case prioritization. However, the
data set used in their experiment is not a large-scale one. In
addition, Kaur et al. provide valuable results which do not
support their hypothesis with a comprehensive experiment,
and the experiment of prioritizing test cases is evaluated using
different coverage based analyzes in Zhang et al.’s work. The
main constraint of their work is to utilize the total cost for
a test suite rather than the individual cost during the exe-
cution. Despite Li et al.’s work has a detailed analysis for
two-optimal with various evaluation parameters, it needs to
be validated with some coverage analysis except for code
coverage. Although Jiang et al.’s study has rich content in
terms of the comparison of their technique in various pro-
grams, it was only tested for code coverage. Panichella et al.
also proposed a multi-objective GA that has a great diver-

123

50 Vietnam J Comput Sci (2018) 5:45–57

Table 1 Summary of the works
which are most closely related
with our work

Method Experimental design Approach References

ACO Yes Test suite focused Singh et al. [34]

PSO Yes Test suite focused Kaur and Bhatt [39]

Total + additional strategies Yes Test suite focused Zhang et al. [41]

Two-optimal (greedy) Yes Test suite focused Li et al. [11]

Adaptive random Yes Test suite focused Jiang and Chan [23]

GA Yes Test suite focused Panichella et al. [9]

BITCP Yes Test case focused Proposed method in the study

sity mechanism. Interestingly, bat-inspired techniques give
tips to creating a similar mechanism. Table 1 shows that the
common works consider the text suite cost instead of the
individual cost of test cases.

3 Bat-inspired test case prioritization

The experiment in this study focuses on developing a nature-
inspired prioritization algorithm which is able to overwhelm
commonmethods.BITCPhasbeen inspiredbybat algorithm.
Consequently, the rules and restrictions of test case prioriti-
zation should be considered to adapt the bat algorithm, which
originates from the echolocation behavior of bats. First, the
test suite is created by selecting a specific number of test
cases from test case pools. The reason why the selection is
required in this case is that the effort allocated for test pro-
cesses is planned. The population of bat algorithm is devised
as equal as to the number of test cases. The steps of BITCP
is seen in Algorithm 1, and two parameters of test cases are
adopted to the bat algorithm, test execution time and the
number of faults. First, distances x1, . . . , xn are determined
as directly proportional to the test case execution times, and
the frequencies f1, . . . , fn of bats are inversely proportional
to the distances. Wavelengths are computed depending on
the velocity and frequency of bats as in Eq. (2). The pulse
emission r , which is linked to target proximity, has values
between 0 and 1. Similar to the frequency, pulse emission
increases as distance reduces. This way, BITCP assigns r to
a value between 0 and 1 by looking the distance from the
prey. A vector, namely r A, combines the pulse emission r
and loudness A. In BITCP, A values are determined by look-
ing the number of faults of related test cases, and a sorting
is done in A to make a local solution first of list. This list is
then assigned to a new vector as rANew = xStar(rA) after-
wards. Then xStar(rA) arranges the population by taking r A
in order to change its sequences. To this end, the pulse emis-
sion and loudness are considered. In this process, high values
have the greatest priority. Once the first ordering change has
been completed, the following steps start. The loop has a spe-
cific iteration t that computes the different values presented

in Eq. (4) are done. While minMax[0].I tem2 records the
index of highest frequency, minMax[0].I tem1 records the
index of lowest frequency, and these values calculate fi as
in Eq. (3). The function generateBeta() generates numbers
between 0 and 1, randomly. vi denotes the velocities of bats,
pop includes the first values of the population, and r ANew
has the values of new population that rely on frequencies and
velocities. rand() compares r j with numbers which are ran-
domly generated between 0 and 1. If the generated number
is greater than r j , x∗ is computed by utilizing pulse emis-
sion and loudness. Otherwise, r j is increased and loudness
a j is reduced. In the end of the iteration, sorted test suite is
obtained according to the best solution values.

λ = v

f
(2)

fi = fmin + (fmax − fmin)β (3)

vi = vi + (xi − x∗) fi (4)

4 Case study

4.1 Data sets

Five different data sets have been used for evaluating BITCP,
and these data sets have been retrieved from GitHub repos-
itory.1 Data sets presented in Table 2 consist entirely of
mathematical projects. In this table, Cyclomatic Complexity,
v(g), shows the complexity level of a software. If v(g) > 10,
the related software is defect-prone. Additionally, experi-
mental test pool was created with the PEX tool [43]. PEX
is a white-box test case generation tool which was developed
for .NET which is one of the widely known web develop-
ment frameworks. It investigates potential faults by trying all
the accessible paths of a program. As such, possible faults
are presented with their input values. PEX can conveniently

1 https://github.com/riyadparvez/data-structures-csharp
https://github.com/open-epicycle/Epicycle.Math-cs
https://github.com/Philip-Trettner/GlmSharp
https://github.com/marcusanth/ProjectEuler
https://github.com/FlorianRappl/YAMP.

123

https://github.com/riyadparvez/data-structures-csharp
https://github.com/open-epicycle/Epicycle.Math-cs
https://github.com/Philip-Trettner/GlmSharp
https://github.com/marcusanth/ProjectEuler
https://github.com/FlorianRappl/YAMP

Vietnam J Comput Sci (2018) 5:45–57 51

Algorithm 1 BITCP algorithm
Determine distances of bats as execution times of test cases t1, ..., tn
fi the frequency of related ti is in inverse relation f1, ..., fn
Initialize bat population with xi , vi
Assign ri and Ai by looking the frequencies and faultness (rA)
minMax=fMinMax(f)
rANew = xStar(rA);
while t<number of iteration do

for j=0 to length(fn) do
f requency[k] = f requency[minMax[0].I tem1] + (f requency[minMax[0].I tem2] − f requency[MinMax[0].I tem1]) ∗

generateBeta()

vi = vi + (pop[j].I tem1 − r ANew[0].I tem1)
R=rand()
if R >= r j then

rANew = xStar(rANew);
else

increase r j reduce a j
end if

end for
Return the list including bats ranked by test case execution time and the number of faults

end while

Table 2 Details of experimental data sets

Name Description Cyclomatic
complexity

Class
coupling

LOC Number of
test cases

Percentage of
test cases

Language

Data-structures-csharp A library for all the data
structures in C#

150 29 507 110 5 C#

Epicycle.math Epicycle .NET math
library

2450 238 4443 890 14 C#

GlmSharp Math library for small
vectors and matrices

3100 350 5400 910 22 C#

ProjectEuler Functions solving euler
equations

54 29 250 20 4 C#

YAMP Math parser 5355 366 12,097 2400 55 C#

extract data from mathematical projects and it can also be
used as a .NET extension. To provide a compatibility, the
projects cloned with Team Foundation Server are selected
where the programming language is C#.

Additionally, test pool has been created as directly propor-
tional to the number of test cases. Due to its highest number
of test cases, YAMP, which is one of the experimental data
set, constitutes 55% of the test pool. The main reason why
execution times and faults revealed by test cases have been
recorded during the use of PEX is that BITCP adapts them
to the bat algorithm. Although experimental data sets are
derived from mathematical projects, all their properties are
quite different except programming languages. Project web
sites are given at the bottom of this page. Consequently, this
variety has enriched the experiment. In spite of using open-
source data sets in such experiment is feasible, having one
type of programming languages threats the results for the
comprehensiveness. On the other hand, cloning projects in
to Team Foundation Server and working with PEX acceler-
ated the experiment, remarkably.

Experimental data sets generally have the following faults:
nullReferenceException,pathBoundsExceeded,divideByZero,
overflowException, indexOutOfRangeException, and object-
NotToReference. Exceptionally, some faults such asnotEqual
and Nan have also been encountered during the experiment.
The number of faults changes depending on the size of the
project. However, 45, 52, 58, 7, 80 are number of faults
for data-structures-csharp, epicycle.math, GlmSharp, Pro-
jectEuler, YAMP, respectively.

4.2 Experimental environment

Experimental environment of this study was Windows 7,
64-bit, Intel Xenon 3.1Ghz server with 16 GB RAM.
BITCP has been designed with Visual Studio development
environment along with C#. The framework including the
code of BITCP, APFD measurement module, and other
details can be accessed via https://github.com/marcusanth/
Bat-inspired-test-case-prioritization. Additionally, test case
and fault information are given to this framework to per-

123

https://github.com/marcusanth/Bat-inspired-test-case-prioritization
https://github.com/marcusanth/Bat-inspired-test-case-prioritization

52 Vietnam J Comput Sci (2018) 5:45–57

form an evaluation analysis of prioritization. Consequently,
an exterior library was not needed during the design. To val-
idate APFD results of the comparison algorithms, one-way
ANOVA and effect size measure have been performed with
R package. Since computation complexity is an important
target of the prioritization, the experiment also involves mea-
suring prioritization time of comparison algorithms.

4.3 Results

This section answers the research questions of the paper pre-
sented in Sect. 1.

RQ1: Test case prioritization techniques developed so far
have some shortcomings. First, as detected in the
experiment, they have unreasonable prioritization
times. Second, they show poor ability to regard indi-
vidual cost of a test case rather than total cost of a test
case. Third, prioritization requires adaptable parame-
ters. However, the parameters of traditional methods
are not much suitable to be adapted.

RQ2: APFD values of five algorithms are demonstrated on
five different data sets in Fig. 2. These figures show
that BITCP, having values which are close to 0.9, is
better than the others. LBSproduced distinctiveAPFD
results that are close to 0.8. Although greedy, ACO,
and PSO yielded close results to each other, greedy
has the highest APFD among them.

RQ3: Initially, a test suite is selected from the test pool
to compare the performances of prioritization tech-
niques. These techniques are discussed by investigat-
ing the changes of APFD in the test suite. The results
of APFD obtained from a randomly selected test suite
are observed in Figs. 3, 4, 5, 6 and 7. In these figures,
x records the ratio of executed test cases and y gives
the average percentage of detected faults. According
to these results, PSO shows the worst performance,
since it could detect roughly 50% of faults when 60%
of test cases was executed. ACO, PSO, and Greedy
yielded close results (49, 48, 47%, respectively), but
the bestwasACOamong them in terms ofAPFD.LBS
performs better than these three algorithms, because
it could detect 60% of faults when 2% of the test suite
was executed. Regardless of the size of the data sets,
test case-based adaptation in bat algorithm has led to
a drastic increment in performance that BITCP
detected 89% of faults. In addition, 80% of faults
was detected when 2% of test suite has been com-
pleted. The most important point affecting the success
of BITCP is that the first test cases of test suite find
a great amount of faults as demonstrated as in Fig. 7.
Such figures are crucial to determine how the algo-
rithm works.

Fig. 2 Mean APFD box plots of all algorithms on all data sets

Fig. 3 APFD of ant colony algorithm for an arbitrary test suite

Fig. 4 APFD of particle swarm optimization for an arbitrary test suite

RQ4: With regard to the comparison algorithms, Figs. 8, 9,
10, 11 and 12 demonstrate how APFD changes as the
complexity of the codes increases where test cases are
generated. In these figures, x records complexity and y
shows percentage of faults detected. Additionally, the
area between dashed and straight line is the deviation

123

Vietnam J Comput Sci (2018) 5:45–57 53

Fig. 5 APFD of greedy algorithm for an arbitrary test suite

Fig. 6 APFD of local beam search for an arbitrary test suite

Fig. 7 APFD of BITCP algorithm for an arbitrary test suite

region of the curve. Circles denote the general dis-
tribution of the data, and curves of these figures also
indicate the results of Spearman analysis. Spearman
analysis examines the monotonic relation of two vari-
able groups. According to this analysis, rs gives the
degree of monotonic relation for two variable groups.
Having rs which is close to ±1 means that there is a
strong monotonic relation.

The analysis of one-way ANOVA of APFD yielded from
five algorithms is seen in Table 3. Having p < 0.05 proves

Fig. 8 Complexity-fault analysis of ant colony optimization (Spear-
man rs = −0.7)

Fig. 9 Complexity-fault analysis of PSO (Spearman rs = −0.8)

Fig. 10 Complexity-fault analysis of greedy (Spearman rs = −0.1)

that the difference between selected algorithms is significant.
However, in such analyses, it is also required to measure the
degree of this difference. To measure this degree, effect size
measure has been used in the study. If delta estimate of this
analysis is close to ±1, it means that there is a great differ-
ence among the groups. The results of effect size measure
are presented in Table 4. Delta estimate of BICTP is ±1
supporting the bias that BITCP has produced worthwhile
results.

123

54 Vietnam J Comput Sci (2018) 5:45–57

Fig. 11 Complexity-fault analysis of LBS (Spearman rs = −0.96)

Fig. 12 Complexity-fault analysis of BITCP (Spearman rs = −0.48)

RQ5: There is a monotonic decreasing relation between
two variable groups, and rs obtained from the Spearman is
negative. The values generated by the algorithms, which are
close to −1, can be considered as they are devoid of resis-
tance against the complexity. Figure 8 shows the relation
between the complexities and detected faults of test cases.
ACO is seen in Fig. 8. Because rs = −0.7 that there is a
strong monotonic decreasing relation between two variables,

and the Spearman analysis of PSO (rs = −0.8) is presented
in Fig. 9 where the monotonic relation is greater than the
result recorded in ACO. Spearman analysis of greedy algo-
rithm is as shown in Fig. 10. Here the deviation in relation
curves and the distribution of circles are the lowest relative
to the other algorithms, while the degree of monotonic rela-
tion is highest (rs = −0.1). This means that greedy is the
worst algorithm in terms of showing resistance against the
complexity. The second worst one is LBS, whose analysis
is presented in Fig. 11. Figure 12 indicates that the decrease
in percentage of detected faults is remarkably minimal in
BITCP as the complexity increases. The slope of the curve is
smaller than the other curves. In this respect, rs = −0.48 of
BITCP proves the highest resistance against the complexity.
The results of Spearmanmay not be sufficient to make a bias,
because the data sets used in the experiment were retrieved
from the projects coded with the same programming lan-
guage. However, the experiment produced consistent results
that may help explain future studies. The results demonstrate
how the nature-inspired algorithm can adapt to prioritize test
cases.

RQ6: There is not any work using a bat-inspired method
to prioritize test cases. So this work has been developed
based on first version of bat algorithm. Figures 13 and
14 present prioritization times of BITCP and other results
recorded in terms of millisecond. Whereas Fig. 13 includes
all the algorithms, Fig. 14 encompasses similar and better
ones. The figures show that PSO and ACO have highest
prioritization times. On the other hand, BITCP produced
the lowest prioritization time among the comparison algo-
rithms. This case may lead to attract interest of researchers.
The time used for the comparison was recorded with 20
test cases which were randomly selected before the exe-
cution of prioritization algorithms. This means that much
more experiments should be performed to validate the
bias.

Table 3 One-way ANOVA
results of APFD values
produced by comparison
algorithms

ANOVA SS DF MS F P value

Treatment (between columns) 10.03 4 2.508 F(4, 258) = 1319 P < 0.0001

Residual (within columns) 0.4905 258 0.001901

Total 10.52 262

Table 4 Delta estimate values
of one-way ANOVA with 95%
confidence interval

Greedy-ACO Greedy-PSO Greedy-LBS Greedy-BITCP ACO-PSO ACO-LBS

0.2 (small) 0.92 (large) 0.8 (large) −1 (large) 0.1733333 (small) 0.7 (large)

ACO-BITCP PSO-LBS LBS-BITCP PSO-BITCP

−1 (large) 0.7 (large) 0.5 (medium) 1 (large)

123

Vietnam J Comput Sci (2018) 5:45–57 55

Fig. 13 Prioritization performances of all algorithms in terms of time.
The most unstable algorithm is PSO that its performance does not
depend the number of iteration in which the iteration range is 8–13.
LBS, Greedy, and BITCP seem to have the best results with regard to
the stability

Fig. 14 A closer view of the prioritization time results

5 Threats to validity

This section enhances the depth of the article by discussing
the threats of experiment which could occur within the scope
of the BITCP algorithm. These threats are explained depend-
ing on the sequence of the steps of the experiment.

Selecting GitHub repository for gathering experimen-
tal data sets is so important, because GitHub has become
immensely popular among the practitioners due to its usage
properties. However, selected data sets consist of mainly
projects which havemathematical functions. To alleviate this
problem, different scale projects are selected. The values of
the complexity of these projects are also different. To the
best of our knowledge, the experimental data sets have not
been used in prioritizing test cases previously. In addition,
employing different data sets is prominent to enhance the
reliability of investigating the success of the algorithms such
as ACO, PSO, and greedy. On the other hand, the experi-
ment does not include widely known data sets used for test
case prioritization (grep, flex, and bash [44]). Repeating the
same data sets for each experiment creates a vicious cycle.

To break this vicious cycle, unconventional data sets have
been selected. Therefore, the test pool has been generated
with PEX, and its paper [43] is one of the highest cited in
this field.

ACO, PSO, greedy, and LBS are selected to compare
with BITCP in the experiment. Rather than involving genetic
algorithm and random optimization, LBS is selected since
search-based algorithms have recently yielded promising
APFD results [7]. This bias is not generalizable; conse-
quently, genetic algorithms may produce better results in
some cases. Thus, an improved method based on genetic
algorithm is better than its basic structure [9].

Test execution times and defect proneness of test cases
have been adapted to bat algorithmwhile developing BITCP.
However, parameters used in BITCP can be extended with
other metrics including depth of inheritance (DIT), weighted
methods per class (WMC), and complexity of the codes. In
doing so, the experiment becomesmore comprehensive.Data
used for the experiment are restricted to software projects
coded with C#. Therefore, it is ambiguous regarding how the
method behaves with common data sets such as Grep and
Flex.

Bat algorithm has been improved by some researchers
several times. On the other hand, themethod presented in this
paper has been improved based on first algorithm proposed
by Yang et al. [13]. This creates a threat for the validity of the
paper. However, none of them was for prioritizing test cases.
Further, using a basic method could facilitate adapting it to
perform prioritization. Thus, the way used in this study may
be employed for its improved versions.

Last, by using statistical methods such as ANOVA and
effect size measure, the difference of comparison algorithms
were investigated with respect to the APFD results. The
degree of this difference was discussed as well. Hence, the
most similar and different algorithms have been detected.

6 Conclusion and future remarks

In this paper, a new nature-inspired test case prioritization
algorithm, namely BITCP, is proposed by considering the
basic steps of bat algorithm. While devising the algorithm,
some properties such as test execution time and code defec-
tiveness are adapted to notions of the algorithm. Promising
results have been obtained after applying the method on five
different data sets.

BITCP yielded the highest APFD results among the com-
parison algorithms, and it has the best complexity-percentage
of fault detection correlation. LBS is better than ACO, PSO,
and greedy as in the work which was first employed in test
case prioritization. In addition, LBS cannot cope with the
complexity, since it produced worse results (rs = −0.96)
than the results obtained with ACO rs = −0.7 and PSO

123

56 Vietnam J Comput Sci (2018) 5:45–57

rs = −0.8. It was detected in the experiment that the most
similar algorithms are ACO and PSO in terms of closeness
of their results.

BITCP, which was developed by considering the individ-
ual cost of test cases, has the potential to be an alternative
to create test-suite cost focused methods. To validate the
generality of the method, it is necessary to develop new
nature-inspired methods for comparing with BITCP.

Predicting faults before the execution of test cases is dif-
ficult because this requires some tips to construct test case
prioritization methods. The use of different metrics such as
WMC and DIT could support the robustness of prioritization
techniques. From the point of the perspective of developers,
this issue can be addressed by revising the main steps of
BITCP.

To date, this work is the first to use bat echolocation
behavior in test case prioritization. Therefore, future works
may extend the scope of BITCP. To make improvements on
the working structure of BICTP regarding the properties of
code metrics which give tips to faults, the success of the
algorithm will be tested on the data retrieved from the repos-
itories including projects coded with various programming
languages.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Rothermel, G., Untch, R.H., Chengyun, C., Harrold, M.J.: Priori-
tizing test cases for regression testing. IEEE Trans. Softw. Eng. 27,
929948 (2001)

2. Leung, H.K.N., White, L.: A cost model to compare regression
test strategies. In: Proceedings of Conference on Software Main-
tenance, pp. 201–208. IEEE Comput. Soc. Press (1991)

3. Hao, D., Zhang, L., Mei, H.: Test-case prioritization: achievements
and challenges. Front. Comput. Sci. 10, 769777 (2016)

4. Huang, R., Chen, J., Towey, D., Chan, A.T.S., Lu, Y.: Aggregate-
strength interaction test suite prioritization. J. Syst. Softw. 99, 3651
(2015)

5. Wong, W.E., Horgan, J.R., London, S., Agrawal, H.: A study of
effective regression testing in practice. In: Proceedings The Eighth
International Symposium on Software Reliability Engineering, pp.
264–274. IEEE Comput. Soc. (1997)

6. Huang, M., Zhang, C., Liang, X.: Software test cases generation
based on improved particle swarm optimization. In: Proceedings
of 2nd International Conference on Information Technology and
Electronic Commerce, p. 5255. IEEE (2014)

7. Jiang, B., Chan, W.K.: Input-based adaptive randomized test case
prioritization: a local beam search approach. J. Syst. Softw. 105,
91–106 (2015)

8. Eberhart, R., Kennedy, J.: A new optimizer using particle swarm
theory. In: Proceedings of the Sixth International Symposium on
Micro Machine and Human Science. MHS95, p. 3943 (1995)

9. Panichella, A., Oliveto, R., Penta, M.Di, De Lucia, A.: Improving
multi-objective test case selection by injecting diversity in genetic
algorithms. IEEE Trans. Softw. Eng. 41, 358–383 (2015)

10. Edmonds, J.: Matroids and the greedy algorithm. Math. Program.
1, 127–136 (1971)

11. Li, Z., Harman, M., Hierons, R.M.: Search algorithms for regres-
sion test case prioritization. IEEE Trans. Softw. Eng. 33, 225–237
(2007)

12. Solanki, K., Singh, Y., Dalal, S.: Test case prioritization: an
approach based on modified ant colony optimization (m-ACO).
In: 2015 International Conference on Computer, Communication
and Control (IC4), p. 16. IEEE (2015)

13. Yang, X.-S.: A new metaheuristic bat-inspired algorithm. In:
Nature Inspired Cooperative Strategies for Optimization (NICSO
2010), p. 6574. (2010)

14. Elbaum, S., Rothermel, G., Kanduri, S.,Malishevsky, A.G.: Select-
ing a cost-effective test case prioritization technique. Softw. Qual.
J. 12, 185210 (2004)

15. Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization
by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern.
Part B 26, 1941 (1996)

16. Parpinelli, R.S., Lopes, H.S., Freitas, A.A.: Data mining with an
ant colony optimization algorithm. IEEE Trans. Evol. Comput. 6,
321332 (2002)

17. Bell, J.E., McMullen, P.R.: Ant colony optimization techniques for
the vehicle routing problem. Adv. Eng. Inform. 18, 4148 (2004)

18. Blum, C., Sampels, M.: An ant colony optimization algorithm for
shop scheduling problems. J.Math.Model. Algorithms 3, 285–308
(2004)

19. Wang, J., Osagie, E., Thulasiraman, P., Thulasiram, R.K.: HOP-
NET: a hybrid ant colony optimization routing algorithm formobile
ad hoc network. Ad Hoc Netw. 7, 690–705 (2009)

20. Duran Toksar, M.: Ant colony optimization approach to estimate
energy demand of Turkey. Energy Policy 35, 3984–3990 (2007)

21. Huaizhong, L., PengLam,C.:An ant colony optimization approach
to test sequence generation for statebased software testin. In: Fifth
International Conference on Quality Software (QSIC05), pp. 255–
264. IEEE (2005)

22. Yang,Q., Tian, J., Si,W.: An improved particle swarmoptimization
based on difference equation analysis. J. Differ. Equ.Appl. 23(1-2),
135–152 (2017)

23. Jiang, B., Zhang, Z., Chan, W.K., Tse, T.H.: Adaptive random test
case prioritization. In: 2009 IEEE/ACM International Conference
on Automated Software Engineering, pp. 233–244. IEEE (2009)

24. Yang, X.S.: Bat algorithm for multi-objective optimisation. Int. J.
Bio-Inspired Comput. 3(5), 267–274 (2011)

25. Wang, G.G., Chu, H.E., Mirjalili, S.: Three-dimensional path plan-
ning for UCAV using an improved bat algorithm. Aerosp. Sci.
Technol. 49, 231–238 (2016)

26. Lemma, T.A., Hashim, F.B.M.: Use of fuzzy systems and bat algo-
rithm for energy modeling in a gas turbine generator. In: 2011
IEEE Colloquium on Humanities, Science and Engineering, pp.
305–310. IEEE (2011)

27. Zhou, Y., Luo, Q., Xie, J., Zheng, H.: A Hybrid Bat Algorithm
with Path Relinking for the Capacitated Vehicle Routing Prob-
lem. In: Yang XS., Bekdaş G., Nigdeli S. (eds) Metaheuristics and
Optimization in Civil Engineering, pp. 255–276. Springer, Cham
(2016)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Vietnam J Comput Sci (2018) 5:45–57 57

28. Bora, T.C., dos Coelho, L.S., Lebensztajn, L.: Bat-inspired opti-
mization approach for the brushless DC wheel motor problem.
IEEE Trans. Magn. 48, 947–950 (2012)

29. Hasanebi, O., Teke, T., Pekcan, O.: A bat-inspired algorithm for
structural optimization. Comput. Struct. 128, 7790 (2013)

30. Ayari, K., Bouktif, S., Antoniol, G.: Automatic mutation test input
data generation via ant colony. In: Proceedings of the 9th annual
conference on Genetic and evolutionary computation—GECCO
07, p. 1074. ACM Press, New York (2007)

31. Biswas, S.,Kaiser,M.S.,Mamun, S.A.:ApplyingAntColonyOpti-
mization in software testing to generate prioritized optimal path and
test data. In: 2015 International Conference on Electrical Engineer-
ing and Information Communication Technology (ICEEICT), p.
16. IEEE (2015)

32. Mao, C., Xiao, L., Yu, X., Chen, J.: Adapting ant colony optimiza-
tion to generate test data for software structural testing. Swarm
Evol. Comput. 20, 23–36 (2015)

33. Ghiduk, A.S.: A new software data-flow testing approach via ant
colony algorithms. Univ. J. Comput. Sci. Eng. Technol. 1, 6472
(2010)

34. Singh, Y., Kaur, A., Suri, B.: Test case prioritization using ant
colony optimization. ACM SIGSOFT Softw. Eng. Notes 35, 1
(2010)

35. Henard, C., Papadakis,M., Harman,M., Jia, Y., Le Traon, Y.: Com-
paring white-box and black-box test prioritization. In: Proceedings
of the 38th International Conference on Software Engineering—
ICSE 16, pp. 523–534. ACM Press, New York (2016)

36. Windisch, A., Wappler, S., Wegener, J.: Applying particle swarm
optimization to software testing. In: Proceedings of the 9th Annual
Conference on Genetic and Evolutionary Computation—GECCO
07, p. 1121. ACM Press, New York (2007)

37. Rauf, A., Aleisa, A.E.: PSObased automated test coverage analysis
of event driven systems. Intell. Autom. Soft Comput. 21, 491–502
(2015)

38. Ahmed, B.S., Zamli, K.Z.: A variable strength interaction test
suites generation strategy using particle swarm optimization. J.
Syst. Softw. 84, 2171–2185 (2011)

39. Kaur, A., Bhatt, D.: Hybrid particle swarm optimization for regres-
sion testing. Int. J. Comput. Sci. Eng. 3, 1815–1824 (2011)

40. Yoo, S., Harman, M.: Pareto efficient multi-objective test case
selection. In: Proceedings of the 2007 international symposium
on Software testing and analysis—ISSTA 07, p. 140. ACM Press,
New York (2007)

41. Zhang, L., Hao, D., Zhang, L., Rothermel, G., Mei, H.: Bridging
the gap between the total and additional test-case prioritization
strategies. In: 2013 35th International Conference on Software
Engineering (ICSE), pp. 192–201. IEEE (2013)

42. Srivastava, P.R., Bidwai, A., Khan, A., Rathore, K., Sharma, R.,
Yang, X.S.: An empirical study of test effort estimation based on
bat algorithm. Int. J. Bio Inspired Comput. 6, 57 (2014)

43. Tillmann, N., De Halleux, J.: PexWhite box test generation for
.NET. In: International conference on tests and proofs, pp. 134–
153 (2008)

44. Do, H., Elbaum, S., Rothermel, G.: Supporting controlled experi-
mentation with testing techniques: an infrastructure and its poten-
tial impact. Empir. Softw. Eng. 10, 405–435 (2005)

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

123

	A bat-inspired algorithm for prioritizing test cases
	Abstract
	1 Introduction
	2 Background and related works
	2.1 Test case prioritization
	2.2 Nature-inspired algorithms
	2.2.1 Ant colony optimization
	2.2.2 Particle swarm optimization
	2.2.3 Greedy algorithms
	2.2.4 Local beam search
	2.2.5 Bat algorithm

	2.3 Related work

	3 Bat-inspired test case prioritization
	4 Case study
	4.1 Data sets
	4.2 Experimental environment
	4.3 Results

	5 Threats to validity
	6 Conclusion and future remarks
	References

