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Abstract Usually dynamic properties of models can be
analysed by conducting simulation experiments. But some-
times, as a kind of prediction properties can also be found by
calculations in a mathematical manner, without performing
simulations. Examples of properties that can be explored in
such a manner are:

• whether some values for the variables exist for which no
change occurs (stationary points or equilibria), and how
such values may depend on the values of the parameters
of the model and/or the initial values for the variables

• whether certain variables in the model converge to some
limit value (equilibria) and how this may depend on the
values of the parameters of the model and/or the initial
values for the variables

• whether or not certain variables will showmonotonically
increasing or decreasing values over time (monotonicity)

• how fast a convergence to a limit value takes place (con-
vergence speed)

• whether situations occur in which no convergence takes
place but in the end a specific sequence of values is
repeated all the time (limit cycle)

Such properties found in an analytic mathematical manner
can be used for verification of the model by checking them
for the values observed in simulation experiments. If one
of these properties is not fulfilled, then there will be some
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error in the implementation of the model. In this paper some
methods to analyse such properties of dynamical models will
be described and illustrated for the Hebbian learning model,
and for dynamic connection strengths in social networks. The
properties analysed by the methods discussed cover equilib-
ria, increasing or decreasing trends, recurring patterns (limit
cycles), and speed of convergence to equilibria.

1 Introduction

Usually dynamic properties of dynamic models can be
analysed by conducting simulation experiments. But some-
times, as a kind of prediction properties can also be found by
calculations in a mathematical manner, without performing
simulations. Examples of properties that can be explored in
such a manner are:

• whether some values for the variables exist for which no
change occurs (stationary points or equilibria), and how
such values may depend on the values of the parameters
of the model and/or the initial values for the variables

• whether certain variables in the model converge to some
limit value (equilibria) and how this may depend on the
values of the parameters of the model and/or the initial
values for the variables

• whether or not certain variables will showmonotonically
increasing or decreasing values over time (monotonicity)

• whether situations occur in which no convergence takes
place but in the end a specific sequence of values is
repeated all the time (limit cycle)

Mathematical techniques addressing such questions have
been developed, starting with Poincaré [12,13]; see also[3,9,
11], and [7] for a historical perspective. Such types of prop-
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Fig. 1 Conceptual representation of an example model

erties found in an analytic mathematical manner can be used
for verification of the model by checking them for the values
observed in simulation experiments. If one of these properties
is not fulfilled, then there will be some error in the imple-
mentation of the model. This particular use of mathematical
analysis is the focus of this paper. In this paper some meth-
ods to analyse such properties of temporal-causal network
models will be described and illustrated for some example
models, including aHebbian learningmodel, and amodel for
dynamic connection strengths in social networks. The prop-
erties analysed by the methods discussed cover equilibria,
increasing or decreasing trends, and recurring patterns: limit
cycles.

To get the idea, first the general set up is discussed in
Sect. 2. This is illustrated in Sect. 3 by an analysis of a
simple example as discussed in [17], Section 2.4.1, using
sum and identity combination functions. In simulations it is
observed for this example model that when a constant stim-
ulus level occurs in the world, for each state its activation
value increases from 0 to some value that is then kept for-
ever, until the stimulus disappears: an equilibrium state. In
subsequent sections three more general examples of this type
of analysis for which equilibrium states occur are addressed:
for a scaled sum combination function (Sect. 4), for Hebbian
learning (Sect. 5), and for dynamic networks based on the
homophily principle (Sect. 6). In Sect. 7 the analysis is dis-
cussed for a case in which no equilibrium state occurs, but
instead a limit cycle pattern emerges.

2 How to verify a temporal-causal network model
by mathematical analysis

A stationary point of a state occurs at some point in time
if for this time point no change occurs: the graph is hori-
zontal at that point. Stationary points are usually maxima or
minima (peaks or dips) but sometimes also other stationary
points may occur. An equilibrium occurs when for all states

no change occurs. From the difference or differential equa-
tions describing the dynamics for a model it can be analysed
when stationary points or equilibria occur. Moreover, it can
be found when a certain state is increasing or decreasing
when a state is not in a stationary point or equilibrium. First
a definition for these notions is expressed; for example, see
[3,9,11–13].

Definition (increase, decrease, stationary point and equi-
librium) Let Y be a state

• Y has a stationary point at t if dY(t)/dt= 0
• Y is increasing at t if dY(t)/dt > 0
• Y is decreasing at t if dY(t)/dt < 0

The model is in equilibrium a t if every state Y of the model
has a stationary point at t .

To illustrate these notions, consider the example from [17],
with conceptual representation depicted here in Fig. 1, and
an example simulation shown in Fig. 2.

The systematic transformation from a conceptual repre-
sentation of a temporal-causal model (as depicted in Fig. 1)
into a numerical representation of this temporal-causalmodel
works as follows [17]:

• At each time point t each state Y in the model has a real
number value in the interval [0, 1], denoted by Y(t)

• At each time point t each state X connected to state Y
has an impact on Y defined as impactX,Y (t)= ωX,Y X(t)
where ωX,Y is the weight of the connection from X to Y

• The aggregated impact of multiple states Xi on Y at t is
determined using a combination function cY (..):

aggimpactY(t) = cY (impactX1,Y(t), . . ., impactXk ,Y(t))

= cY (ωX1,Y X1(t), . . .,ωXk ,Y Xk(t))

where Xi are the states with connections to state Y
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Fig. 2 Simulation example for
the model depicted in Fig. 1
using identity and sum
combination functions for all
states
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• The effect of aggimpactY (t) on Y is exerted over time
gradually, depending on speed factor ηY :

Y (t + �t) = Y(t) + ηY [aggimpactY(t) − Y(t)]�t

or

dY(t)/dt = ηY [aggimpactY (t)−Y(t)]

• Thus, the following difference and differential equation
for Y are obtained:

Y (t + �t) = Y(t)

+ηY [cY (ωX1,Y X1(t), . . .,ωXk ,Y Xk(t)) − Y(t)]�t

dY(t)/dt = ηY [cY (ωX1,Y X1(t), . . .,ωXk ,Y Xk(t)) − Y(t)]

For more details, see [17].
Combination functions used in this simple example are

the scaled sum function and the identity function, and all
connections have weight 1, except the connections to psa ,
which have weight 0.5.

In Fig. 2 it can be seen that as a result of the stimulus
all states are increasing until time point 35, after which they
start to decrease as the stimulus disappears. Just before time
point 35 all states are almost stationary. If the stimulus is not
taken away after this time point this trend is continued, and
an equilibrium state is approximated. The question then is
whether these observations based on one or more simulation
experiments are in agreement with a mathematical analysis.

If it is found out that they are in agreement with the mathe-
matical analysis, then this provides some extent of evidence
that the implemented model is correct. If they turn out not
to be in agreement with the mathematical analysis, then this
indicates that probably there is something wrong, and further
inspection and correction has to be initiated.

Considering the differential equation for a temporal-
causal network model more specific criteria can be found:

dY(t)/dt = ηY [aggimpactY(t) − Y(t)]

with

aggimpactY (t) = cY (ωX1,Y X1(t), . . .,ωXk ,Y Xk(t))

and X1, . . . , Xk the states connected toward Y
For example, it can be concluded that

dY(t)/dt > 0 ⇔ ηY [aggimpactY (t) − Y(t)] > 0

⇔ aggimpactY (t) > Y(t)

⇔ cY (ωX1,Y X1(t), . . .,ωXk ,Y Xk(t)) > Y(t)

In this manner the following criteria can be found.

2.1 Criteria for a temporal-causal network model:
increase, decrease, stationary point and equilibrium

Let Y be a state and X1, . . . , Xk the states connected toward
Y . Then the following hold
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These criteria can be used to verify (the implementation
of) the model based on inspection of stationary points or
equilibria in the following two different manners. Note that
in a given simulation the stationary points that are identified
are usually approximately stationary; how closely they are
approximated depends on different aspects, for example on
the step size, or on how long the simulation is done.

2.2 Verification by checking the criteria through
substitution values from a simulation in the criteria

1. Generate a simulation
2. For a number of states Y identify stationary points with

their time points t and state values Y(t)
3. For each of these stationary points for a state Y at time

t identify the values X1(t), . . . , Xk(t) at that time of the
states X1, . . . , Xk connected toward Y

4. Substitute all these values Y(t) and X1(t), …, Xk(t) in
the criterion cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) = Y(t)

5. If the equation holds (for example, with an accuracy <

10−2), then this test succeeds, otherwise it fails
6. If this test fails, then it has to be explored were the error

can be found

This verification method can be illustrated for the example
of Figs. 1 and 2 as follows. For example, consider state psa
with numerical representation

psa(t + �t) = psa(t)

+ηpsa [ωrespondingsrss(t)

+ωamplifyingsrse(t) − psa(t)]�t

The equation expressing that a state of psa is stationary at
time t is

ωrespondingsrss(t) + ωamplifyingsrse(t) = psa(t)

At time point t = 35 (where all states are close to stationary)
the following values occur: psa(35) = 0.99903, srss(35) =
1.00000 and srse(35) = 0.99863; moreover ωresponding =
ωamplifying = 0.5. All these values can be substituted in the
above equation:

0.5 × 1.00000 + 0.5 × 0.99863 = 0.99903

0.999315 = 0.99903

It turns out that the equation is fulfilled with accuracy <

10−3. This gives some evidence that the model as imple-
mented indeed does what it was meant to do. If this is done
for all other states, similar outcomes are found. This gives
still more evidence. The step size �t for the simulation here
was 0.5, which is even not so small. For still more accurate
results it is advisable to choose a smaller step size. So, hav-
ing the equations for stationary points for all states provides a

means to verify the implemented model in comparison to the
model description. The equations for stationary points them-
selves can easily be obtained from the model description in
a systematic manner.

Note that this method works without having to solve the
equations, only substitution takes place; therefore, it works
for any choice of combination function. Moreover, note that
the method also works when there is no equilibrium but the
values of the states fluctuate all the time, according to a recur-
ring pattern (a limit cycle). In such cases for each state there
aremaxima (peaks) andminima (dips)which also are station-
ary. The method can be applied to such a type of stationary
points as well; here it is still more important to choose a
small step size as each stationary point occurs at just one
time point. In Sect. 7 it will be discussed how the approach
can be applied to such limit cycles.

There is still another method possible that is some-
times proposed; this method is applied for the case of an
equilibrium (where all states have a stationary point simul-
taneously), and is based on solving the equations for the
equilibrium values first. This can provide explicit expres-
sions for equilibrium values in terms of the parameters of the
model. Such expressions can be used to predict equilibrium
values for specific simulations, based on the choice of para-
meter values. This method provides more than the previous
method, but a major drawback is that it cannot be applied in
all situations. For example, when logistic combination func-
tions are used it cannot be applied. However, in some cases
it still can be useful. The method goes as follows.

2.3 Verification by solving the equilibrium equations
and comparing predicted equilibrium values to
equilibrium values in a simulation

1. Consider the equilibrium equations for all states Y :

cY (ωX1,Y X1(t), . . .,ωXk ,Y Xk(t)) = Y(t)

2. Leave the t out and denote the values as constants

cY (ωX1,YX1, . . .,ωXk ,YXk) = Y

An equilibrium is a solution X1, . . .,Xk of the following
set of n equilibrium equations in the n states X1, . . ., Xn

of the model:

cX1(ωX1,X1X1, . . . ,ωXn ,X1Xn) = X1

. . .

cXn(ωX1,XnX1, . . . ,ωXn ,XnXn) = Xn

3. Solve these equations mathematically in an explicit ana-
lytical form: for each state Xi a mathematical formula
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Xi = . . . in terms of the parameters of themodel (connec-
tion weights and parameters in the combination function
cXi (..), such as the steepness σ and threshold τ in a logis-
tic sum combination function); more than one solution is
possible

4. Generate a simulation
5. Identify equilibrium values in this simulation
6. If for all states Y the predicted value Y from a solu-

tion of the equilibrium equations equals the value for Y
obtained from the simulation (for example, with an accu-
racy <10−2), then this test succeeds, otherwise it fails

7. If this test fails, then it has to be explored where the error
can be found

InSect. 2.3 itwill be illustrated how thismethodworks for the
example depicted in Figs. 1 and 2. In general, whether or not
the equilibrium equations can be solved in an explicit analyt-
ical manner strongly depends on the form of the combination
functions cY (. . .). In a number of specific cases explicit ana-
lytical solutions can be found. Three examples of this are
addressed in subsequent sections:

• for a (scaled) sum combination function (Sects. 3 and 4)
• for Hebbian learning (Sect. 5)
• for dynamic networks based on the homophily principle
(Sect. 6)

However, there are also many cases in which an explicit ana-
lytical solution cannot be determined, for example, when
logistic combination functions are used. In such cases equi-
libria can only be determined either by numerically solving
the equations by some numerical approximation method, or
by observing the behaviour of the model in simulation exper-
iments. But in the latter case verification is not possible,
as then only simulation results are available. An additional
drawback is that in such cases specific values for the parame-
ters of the model have to be chosen, whereas in the case of
an explicit analytical solution a more generic expression can
be obtained which depends, as a function, on the parameter
values. For example, for the cases described in Sects. 3–6
expressions can be found for the equilibrium values in terms
of the connection weights (for which no specific values are
needed at forehand).

3 Mathematical analysis for equilibrium states: an
example

Are there cases in which the types of behaviour considered
above can be predicted without running a simulation? In par-
ticular, can equilibrium values be predicted, and how they
depend on the specific values of the parameters of the model

(e.g. connection weights, speed factors)? Below, these ques-
tionswill be answered for a relatively simple example. Indeed
it will turn out that in this case it is possible to predict the
equilibrium values from the connection weights (the equilib-
rium values turn out to be independent of the speed factors,
as long as these are nonzero). As a first step, consider the
sensor state sss .
LPsssSensing a stimulus: determining values for state sss

dsss(t)/dt = ηsss [ωsensingwss(t) − sss(t)]

Having an equilibrium value means that no change occurs at
t : dsss(t)/dt = 0. As it is assumed that ηsss is nonzero, this
is equivalent to the following equilibrium equation for state
sss , withwss and sss the equilibrium values for the two states
wss and sss .

ωsensingwss = sss

In a similar manner this can be done for the other states,
resulting in the following equations:

Equilibrium Equilibrium
of state criterion
sss ωsensingwss = sss
srss ωrepresentingsss = srss
psa ωrespondingsrss+ωamplifyingsrse = ps

a
srse ωpredictingpsa = srse
esa ωexecutingpsa = esa

These are five equations with six unknowns wss , sss , srss ,
ps

a
, srse, esa ; however, the variable wss can be considered

given as it indicates the external stimulus. So the five equa-
tions can be used to find expressions for the equilibrium
values for the five other states in terms of the connection
weights and wss . Note that for the sake of simplicity here it
is assumed thatωamplifying andωpredicting are not both 1. Then
this can be solved in an explicit analytical manner as follows.
First two of them (the first two equations) are expressed in
the externally given value wss :

sss = ωsensingwss
srss = ωrepresentingsss = ωrepresentingωsensingwss

Moreover, the third and fourth equation can be solved as
follows:

ωrespondingsrss + ωamplifyingsrse = p
a

ωpredictingpsa = srse

Substituteωpredicting psa for srse in the third equation, result-
ing in the following equation in ps

a
and srss :

ωrespondingsrss + ωamplifyingωpredictingpsa = ps
a
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This can be used to express ps
a
in srss , and subsequently in

wss :

ωrespondingsrss = (1 − ωamplifyingωpredicting)psa

ps
a

= ωrespondingsrss/(1 − ωamplifyingωpredicting)

= ωrespondingωrepresenting

×ωsensingwss/(1 − ωamplifyingωpredicting)

Moreover, by the fourth equation it is found

srse = ωpredictingpsa = ωpredictingωrespondingωrepresenting

× ωsensingwss/(1 − ωamplifyingωpredicting)

Based on these, the fifth equation can be used to get an expres-
sion for esa :

esa = ωexecutingpsa = ωexecutingωrespondingωrepresenting

× ωsensingwss/(1 − ωamplifyingωpredicting)

Summarizing, all equilibrium values have been expressed in
terms of the external state wss and the connection weights:

sss = ωsensingwss
srss = ωrepresentingωsensingwss
ps

a
= ωrespondingωrepresenting

× ωsensingwss/(1 − ωamplifyingωpredicting)

srse = ωpredictingωrespondingωrepresenting

× ωsensingwss/(1 − ωamplifyingωpredicting)

esa = ωexecutingωrespondingωrepresenting

× ωsensingwss/(1 − ωamplifyingωpredicting)

For example, if the external stimulus wss has level 1 this
becomes:

sss = ωsensing

srss = ωrepresenting ωsensing

ps
a

= ωresponding ωrepresenting ωsensing/

(1 − ωamplifying ωpredicting)

srse = ωpredicting ωresponding ωrepresenting

×ωsensing/(1 − ωamplifying ωpredicting)

esa = ωexecuting ωresponding ωrepresenting

×ωsensing/(1 − ωamplifying ωpredicting)

Moreover, if all connection weights are 1, except that
ωresponding = 0.5 and ωamplifying = 0.5, as in the example
simulation shown in [17], Section 2.4.1, the values become:

sss = 1

srss = 1

ps
a

= 0.5/0.5 = 1

srse = 0.5/0.5 = 1

esa = 0.5/0.5 = 1

Indeed in the example simulation in [17], Section 2.4.1 Fig.
11 it can be seen that all values go to 1. The solution of the
equilibrium equations in terms of the connection weights
can be used to predict that when the connection weights
have different values, also these equilibrium values will
turn out different. Recall that the cases ωamplifying = 1 and
ωpredicting = 1 was excluded. In that case the combined third
and fourth equation becomes trivial, as ps

a
is lost from the

equation:

ωrespondingsrss + ωamplifyingωpredictingpsa = ps
a

ωrespondingsrss + ps
a

= ps
a

ωrespondingsrss = 0

srss = 0

Here in the last step it is assumed that ωresponding > 0. As
a consequence by the first two equations also sss and wss
are 0, and by the fourth and fifth equation also the values for
the other states. It turns out that in this case there can only
be an equilibrium if there is no stimulus at all. As soon as
there is a nonzero stimulus in this case that ωamplifying = 1
and ωpredicting = 1, the values of psa , srse and esa increase
indefinitely to larger and larger values (and in particular do
not stay within the interval [0, 1]), as can be seen from sim-
ulations. Note that there was an additional assumption made
that ωresponding > 0. If, in contrast, ωresponding = 0, then still
more possibilities for equilibria are available. For example,
in that case ps

a
and srse can have any value, but they have to

be equal due to the fourth equation, but this value is indepen-
dent of the values ofwss , sss and srss , as there is no nonzero
connection between these parts of the graph. So, this would
not be a very relevant case.

The analysis above can also be done to find out whether
or not the activation level of a state is increasing. As a first
step, again consider the sensor state sss .
LPsssSensing a stimulus: determining values for state sss

dsss(t)/dt = ηsss [ωsensingwss(t) − sss(t)]
sss(t + �t) = sss(t) + ηsss [ωsensingwss(t) − sss(t)]�t

The activation value increases mean

dsss(t)/dt > 0 or sss(t + �t) > sss(t)

123



Vietnam J Comput Sci (2016) 3:207–221 213

This is equivalent to:

ωsensingwss(t) − sss(t) > 0

This in turn is equivalent to the criterion that the impact on
sss is higher than the current activation value:

ωsensingwss(t) > sss(t)

For example, when wss(t) = 1 and ωsensing = 1, then the
criterion ωsensing wss(t) > sss(t) indicates the activation of
state sss will increase as long as it did not reach the value 1
yet. This gives as additional information that the equilibrium
value 1 of sensor state sss is attracting: the value goes in that
direction as long as it was not reached.

In a similar manner this can be done for the other states,
thus obtaining the following criteria:

State is increasing if and only if
sss ωsensingwss(t) > sss(t)
srss ωrepresentingsss(t) > srss(t)
psa ωrespondingsrss(t) + ωamplifyingsrse(t) > psa(t)
srse ωpredictingpsa(t) > srse(t)
esa ωexecutingpsa(t) > esa(t)

4 Mathematical analysis for equilibrium states:
scaled sum combination function

The approach described above can be applied easily for the
case of a scaled sum combination function ci (. . .) for each
state Xi ; such a scaled sum function ssumλi (. . .)with scaling
factor λi is defined as

ssumλi (V1, . . . , Vk) = (V1 + · · · + Vk)/λi

Suppose the differential equation for some state Xi connected
to states X j is given by

dXi/dt = ηi [aggimpacti (X1, . . . , Xk) − Xi ]

where

aggimpacti (X1, . . . , Xk) = ci (ω1,i X1, . . . ,ωk,i Xk)

= ssumλi (ω1,i X1, . . . ,ωk,i Xk)

= (ω1,i X1 + · · · + ωk,i Xk)/λi

with ω j,i the specific weights for the connections from X j

to Xi . In this case the following holds:

Increasing Xi : Xi (t + �t) > Xi (t)

⇔ (ω1,i X1(t) + · · · + ωk,i Xk(t))/λi > Xi (t)

Equilibrium of Xi : Xi (t + �t) = Xi (t)

⇔ (ω1,i X1(t) + · · · + ωk,i Xk(t))/λi = Xi (t)

Decreasing Xi : Xi (t + �t) < Xi (t)

⇔ (ω1,i X1(t) + · · · + ωk,i Xk(t))/λi < Xi (t)

In particular, the equilibrium equations for the states Xi are

(ω1,1X1+ · · · + ωk,1Xk)/λ1 = X1

· · ·
(ω1,kX1+ · · · + ωk,kXk)/λk = Xk

Thismeans that in an equilibrium state the valueXi for a state
Xi may be a weighted average of the equilibrium values X j
for the states X j , in particular when

λi = ω1,i + · · · + ωk,i

Note that always at least one solution exists: when all are 0.
But it is usually more interesting to know whether nonzero
solutions exist.

The equilibrium equations are equivalent to

ω1,1X1+ · · · + ωk,1Xk = λ1X1

· · ·
ω1,kX1+ · · · + ωk,kXk = λkXk

or

(ω1,1 − λ1)X1 + ω2,1X2 + · · · + ωk,1Xk = 0

.....

ω1,iX1 + · · · + ωi−1,iXi−1 + (ωi,i − λi )Xi

+ωi+1,iXi+1 + · · · + ωk,iXk = 0

.....

ω1,kX1 + · · · + ωk−1,kXk−1 + (ωk,k − λk)Xk = 0

In general these linear equilibrium equations can be solved
analytically, which in principle can provide symbolic expres-
sions for the equilibrium values of Xj in terms of the
connection weights ω j,i and the scaling factor λi . However,
for more than two states (k > 2) such expressions may tend
to become more and more complex, but this depends on the
number of these ω j,i which are nonzero, i.e. how many con-
nections between the states exist. For example, if all states
have only one incoming and one outgoing connection (a cas-
cade or loop), then these equations can easily be solved. In
some cases no nonzero solution exists. This happens, for
example, when the values of the parameters are such that
two of the equations in a sense contradict each other, as in
the equations X1 − 2X2 = 0 and X1 − 3X2 = 0.
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In some cases some properties of equilibrium values
can be derived. For well-connected temporal-causal network
models based on scaled sum functions with as scaling factor
the sum of the weights of the incoming connections it can be
derived that all states have the same equilibrium value.

Definition 1 A network is called strongly connected if for
every two nodes A and B there is a directed path from A to
B and vice versa.

Lemma 1 Let a temporal-causal network model be given
based on scaled sum functions:

dY/dt = ηY [�X,ωX,Y>0ωX,Y X/�X,ωX,Y>0ωX,Y − Y ]

Then the following hold.

(a) If for some state Y at time t for all states X connected
toward Y it holds X(t) ≥ Y(t), then Y(t) is increasing at
t : dY(t)/dt ≥ 0; if for all states X connected toward
Y it holds X(t) ≤ Y(t), then Y(t) is decreasing at t :
dY(t)/dt ≤ 0.

(b) If for some state Y at time t for all states X connected
toward Y it holds X(t) ≥ Y(t), and at least one state X
connected toward Y exists with X(t) > Y(t) then Y(t) is
strictly increasing at t :dY(t)/dt > 0. If for some state
Y at time t for all states X connected toward Y it holds
X(t) ≤ Y(t), and at least one state X connected toward
Y exists with X(t) < Y(t) then Y(t) is strictly decreasing
at t : dY(t)/dt < 0.

Proof of Lemma 1 (a) From the differential equation for
Y(t)

dY/dt = ηY [�X,ωX,Y>0ωX,Y X/�X,ωX,Y>0ωX,Y − Y ]
= ηY [�X,ωX,Y>0ωX,Y X

− �X,ωX,Y>0ωX,Y Y ]/�X,ωX,Y>0ωX,Y

= ηY [�X,ωX,Y>0ωX,Y (X − Y )]/�X,ωX,Y>0ωX,Y

it follows that dY(t)/dt ≥ 0, so Y(t) is increasing at t .
Similar for decreasing.

(b) In this case it follows that dY(t)/dt > 0, so Y(t) is strictly
increasing. Similar for decreasing. ��

Theorem 1 (convergence to one value) Let a strongly con-
nected temporal-causal network model be given based on
scaled sum functions:

dY/dt = ηY [�X,ωX,Y>0ωX,Y X/�X,ωX,Y>0ωX,Y − Y ]

Then for all states XandY the equilibrium valuesX andY are
equal:X = Y. Moreover, this equilibrium state is attracting.

Proof of Theorem 1 Take a state Y with highest value Y.
Then for all states X it holds X ≤ Y. Suppose for some state
X connected toward Y it holds X < Y. Take a time point t
and assume Z(t) = Z for all states Z . Now apply Lemma
1b) to state Y . It follows that dY(t)/dt < 0, so Y(t) is not in
equilibrium for this valueY. This contradicts that thisY is an
equilibrium value for state Y . Therefore, the assumption that
for some state X connected toward Y it holds X < Y can-
not be true. This shows that X = Y for all states connected
toward Y.Now this argument can be repeated for all states
connected toward Y instead of X . By iteration every other
state in the network is reached, due to the strong connectivity
assumption; it follows that all other states X in the temporal-
causal network model have the same equilibrium value X as
Y. From Lemma 1b) it follows that such an equilibrium state
is attracting: if for any state the value is deviating it will move
to the equilibrium value. ��

5 Mathematical analysis for equilibrium states:
Hebbian learning

It can also be analysed from the difference or differential
equation when a Hebbian adaptation process (e.g. [2,4–
6,8,15,16]) has an equilibrium and when it increases or
decreases. More specifically, assume the following dynamic
model (also see [5]) for Hebbian learning for the strength ω

of a connection from a state X1 to a state X2 with maximal
connection strength 1, learning rate η > 0, and extinction
rate ζ ≥ 0 (here X1(t) and X2(t) denote the activation levels
of the states X1 and X2 at time t ; sometimes the t is left out
of Xi(t) and simply Xi is written)

ω(t + �t) = ω(t) + [ηX1(t)X2(t)(1 − ω(t)) − ζω(t)]�t

dω(t)/dt = ηX1X2(1 − ω(t)) − ζω(t)

Note that also for the states X1 and X2 equations may be
given, but here the focus is on ω.

From the expressions for ω it can be analysed when each
of the following cases occurs:

Increasing ω : dω(t)/dt > 0

⇔ ηX1X2(1 − ω(t)) − ζω(t) > 0

Equilibrium of ω : dω(t)/dt = 0

⇔ ηX1X2(1 − ω(t)) − ζω(t) = 0

Decreasing ω : dω(t)/dt < 0

⇔ ηX1X2(1 − ω(t)) − ζω(t) < 0
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5.1 Analysis of increase, decrease or equilibrium for
Hebbian learning without extinction

To keep things a bit simple for a first analysis, for the special
case that there is no extinction (ζ = 0), this easily leads to
the following criteria

Increasing ω : ηX1X2(1 − ω(t)) > 0

⇔ ω(t) < 1 and both X1 > 0 and

X2 > 0

Equilibrium of ω : ηX1X2(1 − ω(t)) = 0

⇔ ω(t) = 1 or X1 = 0 or X2 = 0

Decreasing ω : ηX1X2(1 − ω(t)) < 0

this is never the case, as always Xi ≥ 0

and ω(t) ≤ 1

So, in case that there is no extinction, the only equilibrium is
when ω = 1, and as long as this value was not reached yet
and both X1 > 0 and X2 > 0, the value of ω increases: the
equilibrium is attracting. Note that when X1 = 0 or X2 = 0,
also an equilibrium for ω can be found: no (further) learning
takes place; the value of ω stays the same independent of
which value it has, so in this case any value is an equilibrium
value. In simulations this indeed can be observed: as long as
both X1 > 0 and X2 > 0 the value of ω keeps on increasing
until it reaches 1, but if X1 = 0 or X2 = 0 then ω always
stays the same.

5.2 Analysis of increase, decrease or equilibrium for
Hebbian learning with extinction

As a next step this analysis is extended to the casewith extinc-
tion ζ > 0. In this case the analysis requires slightly more
work; here for convenience the t is left out of the expressions.

Increasing ω : ηX1X2(1 − ω) − ζω > 0
⇔ ηX1X2 − ηX1X2ω − ζω > 0
⇔ ηX1X2 − (ζ + ηX1X2)ω > 0

⇔ (ζ + ηX1X2)ω < ηX1X2

⇔ ω <
ηX1X2

ζ+ηX1X2

⇔ ω < 1
1+ζ/(ηX1X2)

(when both X1 > 0 and X2 > 0)

Note that when X1 = 0 or X2 = 0, the value ofω is never
increasing. Similarly the following criteria can be found.

Equilibrium of ω : ηX1X2(1 − ω) − ζω = 0

⇔ ω = ηX1X2

ζ + ηX1X2
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Fig. 3 Hebbian learning for η = 0.4, ζ = 0.08, �t = 0.1, and activa-
tion levels X1 = 1 and X2 = 1 Equilibrium value 0.83 (dotted line)

⇔ ω = 1

1 + ζ/η(X1X2)

(when both X1 > 0 and X2 > 0)

ηX1X2(1 − ω) − ζω = 0

⇔ ω = 0

(when X1 = 0 or X2 = 0, and

ζ > 0)

Decreasing ω : ηX1X2(1 − ω) − ζω < 0

⇔ ω >
ηX1X2

ζ + ηX1X2

⇔ ω >
1

1 + ζ/(ηX1X2)

(when both X1 > 0 and X2 > 0)

ηX1X2(1 − ω) − ζω < 0

⇔ always

(when X1 = 0 or X2 = 0, and

ζ > 0,ω > 0)

In this more general case with extinction, depending on the
values of X1 and X2 there may be a positive equilibrium
value (when both X1 > 0 and X2 > 0) but when ζ > 0 this
value is< 1. Also 0 is an equilibrium value (when X1 = 0 or
X2 = 0). This looks similar to the case without extinction.
Moreover, as before, the value ofω increases when it is under
the positive equilibrium value and it decreases when it is
above this value (it is an attracting equilibrium); for example
patterns, see Figs. 3 and 4.

Note that this time this positive equilibrium value (indi-
cated by the dotted line) is lower than 1. It may be close to
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Fig. 4 Hebbian learning for η = 0.4, ζ = 0.08, �t = 0.1, and acti-
vation levels X1 = 0.6 and X2 = 0.6 Equilibrium value 0.64 (dotted
line)

1, but when ζ > 0 it never will be equal to 1. In fact the
maximal value of this equilibrium is when both X1 = 1 and
X2 = 1, in which case the equilibrium value is

1

1 + ζ/η

For example, forη = 0.4, ζ = 0.02, and X1 = 1 and X2 = 1,
the positive equilibrium value for ω is about 0.95. Another
example is η = 0.4, ζ = 0.08, and X1 = 1 and X2 = 1,
in which case the equilibrium value is 0.83. The graphs in
Fig. 2 show what happens below this equilibrium and above
it. If for the same settings for η and ζ , the activation levels
are lower (X1 = 0.6 and X2 = 0.6), then the equilibrium
value is lower too (0.64), and the learning is much slower, as
is shown in Fig. 3.

So, it is found that the positive equilibrium value occurs
for X1 > 0 and X2 > 0, and in that case this equilibrium
is attracting. In contrast, the equilibrium value 0 does not
occur for X1 > 0 and X2 > 0, but it does occur for X1 =
0 or X2 = 0, in which case no positive equilibrium value
occurs. In this case pure extinction occurs: ω is attracted by
the equilibrium value 0; this pattern is different from the case
without extinction. For an example of such a pure extinction
process, see Fig. 5. Note that, given the lower value of the
extinction rate ζ , the extinction process takes a much longer
time than the learning process.

5.3 How much activation of X1 and X2 is needed to let ω

increase?

Fromadifferent angle, another question that canbe addressed
is for a given value ofω, how high the value X1X2 should be

0.00

0.20

0.40

0.60

0.80

1.00

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75

Fig. 5 Pure extinction for η = 0.4, ζ = 0.08,�t = 0.1, and activation
levels X1 = X2 = 0; equilibrium value 0

to let ω become higher. This can be determined in a similar
manner as follows:

Increasing ω : ω <
1

1 + ζ/(ηX1X2)

⇔ (1 + ζ/ηX1X2)ω < 1

⇔ 1 + ζ/(ηX1X2) < 1/ω

⇔ ζ/(ηX1X2) < 1/ω − 1 = (1 − ω)/ω

⇔ 1/(X1X2) <
η

ζ
(1 − ω)/ω

⇔ X1X2 >
ζ

η
ω/(1 − ω)

So, for activation levels X1 and X2 with X1X2 >
ζ
ηω/(1−

ω), further learning takes place, and below this value extinc-
tion dominates and will decrease the level of ω.

6 Mathematical analysis for equilibrium states:
dynamic network connections

The connections between agents in a social network may
change over timebased on thehomophily principle: the closer
the states of the interacting agents, the stronger the con-
nections of the agents will become. This principle may be
formalized with as a general template

dωA,B/dt = ηA,B[cA,B(XA, XB,ωA,B) − ωA,B]

for some combination function cA,B(V1, V2,W ) for which it
is assumed that cA,B(V1, V2,0) ≥ 0 and cA,B(V1, V2,1) ≤ 1.
The example used in this section is

cA,B(V1, V2,W ) = W + (τ 2A,B − (V1 − V2)
2)W (1 − W )

In this case

dωA,B/dt = ηA,B(τ 2A,B − (XA − XB)2)ωA,B(1 − ωA,B)
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In this section it is analysed which equilibrium values ωA,B
can occur for ωA,B(t) and when ωA,B(t) is increasing or
decreasing.

The standard approach is to derive an inequality or equa-
tion from the differential equation by putting dωA,B(t)/dt =
0, dωA,B(t)/dt ≥ 0 or dωA,B(t)/dt ≤ 0. For this case this
provides

Increasing ωA,B dωA,B(t)/dt ≥0

⇔ ηA,B(τ 2A,B − (XA − XB)2)

× ωA,B(1 − ωA,B) > 0

Equilibrium of ωA,B dωA,B(t)/dt = 0

⇔ ηA,B(τ 2A,B − (XA − XB)2)

× ωA,B(1 − ωA,B) = 0

Decreasing ωA,B dωA,B(t)/dt ≤0

⇔ ηA,B(τ 2A,B − (XA − XB)2)

× ωA,B(1 − ωA,B) < 0

For ωA,B = 0 or ωA,B = 1 the middle condition is fulfilled.
This means that ωA,B = 0 and ωA,B = 1 are equilibrium
values.Nowassume 0< ωA,B < 1. ThenωA,B(1−ωA,B) >

0, and therefore this factor can be left out, and the same
applies to ηA,B > 0; this results in:

Increasing ωA,B τ 2A,B − (XA − XB)2 > 0

⇔ |XA − XB | < τA,B

Equilibrium of ωA,B τ 2A,B − (XA − XB)2 = 0

⇔ |XA − XB | = τA,B

Decreasing ωA,B τ 2A,B − (XA − XB)2 < 0

⇔ |XA − XB | > τA,B

This shows that for cases that |XA − XB | < τA,B the con-
nection keeps on becoming stronger until ωA,B becomes in
equilibrium at 1. Similarly for cases that |XA − XB | > τA,B

the connection keeps on becoming weaker until ωA,B comes
in equilibrium at 0. This implies that the equilibriaωA,B = 0
andωA,B = 1 can both become attracting, but under different
circumstances concerning the values of XA and XB .

In exceptional situations it could be the case that |XA −
XB | = τA,B in which case ωA,B is also in equilibrium, with
ωA,B having any value. So in principle the equilibrium equa-
tion has three solutions

ωA,B = 0 or ωA,B = 1 or

|XA − XB | = τA,B and ωA,B has any value

The analysis above can also be done for similar but slightly
more complex variants of the model, of which the quadratic
variant is described in [14]:

cA,B(V1, V2,W ) = W + Pos(ηA,B(τA,B − |V1 − V2|))(1 − W )

− Pos(−ηA,B(τA,B − |V1 − V2|))W
cA,B(V1, V2,W ) = W + Pos(ηA,B(τ 2A,B − (V1 − V2)

2))(1 − W )

− Pos(−ηA,B(τ 2A,B − (V1 − V2)
2))W

cA,B(V1, V2,W ) = W + Pos(ηA,B (0.5 − 1/(1

+e−σ A,B(|V1−V2|−τ A,B))))(1 − W )

− Pos(−ηA,B(0.5 − 1/(1 + e−σ A,B(|V1−V2|−τ A,B)))W

where Pos(x) = (|x | + x)/2, which returns x when x is pos-
itive and 0 when x is negative. These models make that the
approaching of the boundaries 0 and 1 of the interval [0, 1]
of ω is slow, thus making ω not cross these boundaries, but
ω departing from the neighbourhood of these boundaries is
not slow. In [14] an analysis and example simulations can
be found using the second, quadratic model. As part of the
analysis, there it is also shown that different equilibrium val-
uesXA andXB have a distance of at least τA,B , which implies
that at most 1/τA,B clusters can emerge.

7 Mathematical analysis for behaviour ending up
in a limit cycle pattern

Sometimes the values of the states of amodel do not end up in
an equilibrium value, but instead keep on fluctuating all the
time, and after some time they do this according to a repeated
pattern, called a limit cycle; for example, see [3,9,11–13].
The example model shown in Figs. 1 and 2 can be extended
to show such behaviour; see Fig. 6. In this case it is assumed
that action a directs the person (e.g. his or her gaze) away
from the stimulus s, so that after (full) execution of a stimulus
s is not sensed anymore. This type of behaviour can occur
as a form of emotion regulation to down-regulate a stressful
emotion triggered by s. The effect of this is as follows. The
presence of stimulus s leads to high activation levels of sensor
state and sensory representation for s, and subsequently for
the preparation state and execution state of action a. But then
the action leads to its effect in the world which is suppression
of the sensor state for s. As a consequence the sensor state and
sensory representation for s, and also the preparation state
and execution state of action a get low activation levels. The
effect is that there is no suppression of sensing the stimulus
anymore and, therefore, all activation levels become high
again. And so it goes on and on, forever (see also Fig. 8).
At a longer timescale this type of pattern may also occur
in so-called on-again-off-again relationships. This type of
behaviour can be achieved by the following additions to the
example model (see Fig. 6):
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Fig. 6 Simple example model incorporating suppression of sensing

• a connection from the execution state esa of a to theworld
state wse for effect e of action a

• a connection from this world state wse for e to the sensor
state sss of s

• a combination function for the sensor state sss of s that
models that wse makes that s is not sensed

The aggregation used for sss is modelled by the follow-
ing combination function csss (V1, V2), where V1 refers to the
impact ωwss ,sss wss(t) from wss on sss and V2 to the impact
ωwse,ssswse(t) from wse on sss :

csss (V1, V2) = V1(1 + V2)

Since the connection weight ωwse,sss is chosen negative (it
is a suppressing link), for example -1, this function makes
the sensing of stimulus s inversely proportional to the extent
wse(t) of avoidance; e.g. sensing s becomes 0 when avoid-
ance e is 1, and V1 when avoidance e is 0. According to this
combination function the difference and differential equation
for sss are as follows:

sss(t + �t) = sss(t)

+ηsss [ωwss ,ssswss(t)(1 − ωwse,ssswse(t)) − sss(t)]�t

dsss/dt = ηsss [ωwss ,ssswss(t)(1 − ωwse,ssswse

(t)) − sss(t)]

The combination functions for all states with only one con-
nection toward it are the identity function, except for esa in
which case the advanced logistic function alogisticσ,τ (. . .) is
used. The combination function for psa is also the advanced
logistic function alogisticσ,τ (. . .).

In Fig. 8 an example simulation with the model depicted
in Fig. 7 clearly shows how a limit cycle pattern emerges,
with period 18.5.

Here all connection weights are 1, except the weight of the
suppressing connection from wse to sss , which is -1. More-
over, the steepness σ and threshold τ for psa are 4 and 0.9,
respectively, and for esa they are 40 and 0.7. The step size
�t was 0.1 and the speed factors η for esa and wse were 0.4,
and for the other (internal) states η was1.

For this simulation an analysis of the stationary points has
been performed for the maxima and minima in the final stage
for all states. Recall from Sect. 2 that the equation expressing
that a state Y is stationary at time t is

aggimpactY(t) = Y (t)

which is equivalent to

cY (ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)) = Y (t)

For example, for state psa the combination function is the
sum function, so the aggregated impact is

aggimpactY (t) = ωrespondingsrss(t) + ωamplifyingsrse(t)

Then the stationary point equation expressing that state psa
is stationary at time t is

ωrespondingsrss(t) + ωamplifyingsrse(t) = psa(t)

It is this equation that has been checked for the minima and
maxima for each of the states in the final stage of the sim-
ulation. The results are shown in Table 1. Here both for the
maxima and for the minima the first rows show the time
points at which the stationary point occurs. The next row
(state value) shows the values of the right-hand side of the
above equation, followed by rows (aggregated impact) show-
ing the left-hand sides of this equation, and then a row with
the absolute deviation between the values in the two rows
above it.
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Fig. 7 Example simulation showing a limit cycle

Table 1 Overview of the
outcomes of a mathematical
analysis for stationary points in
a limit cycle

wse sss srss srse psa esa

Maxima

Time point 69.9 61.4 62.2 65.8 64.6 68.3

State value 0.86700 0.85401 0.83455 0.93859 0.94754 0.93975

Aggregated impact 0.86105 0.85001 0.83325 0.93713 0.94703 0.94012

Absolute deviation 0.00595 0.00400 0.00131 0.00146 0.00051 0.00037

Minima

Time point 60.6 52.2 53.0 57.1 56.1 59.4

State value 0.12553 0.14993 0.16699 0.29153 0.27012 0.04400

Aggregated impact 0.13033 0.15168 0.16689 0.29480 0.27159 0.04317

Absolute deviation 0.00480 0.00175 0.00009 0.00327 0.00147 0.00083

It turns out that the stationary point equations are fulfilled
with an average accuracy over all states and stationary points
of 0.002 and a maximal accuracy of 0.006, which both is
< 10−2. This provides evidence that the implemented model
is correct in comparison to the model description. In Table 1
the more specific numbers are shown for the different states.
For the maxima the average deviation is 0.00226, and the
maximal absolute deviation is 0.00595 (which occurs for
state wse). For the minima the average absolute deviation
is 0.00204, and the maximal absolute deviation is 0.00480
(which again is for state wse). Taken minima and maxima
together, the overall average absolute deviation is 0.00215,
and the maximal absolute deviation is 0.00595 (for the max-
ima of state wse).

As another type example of the emergence of limit cycle
behaviour, consider that in a realistic context stimuli can be
present for some time, but also may be absent for certain
periods according to fixed periods, for example, day/night
rhythms.As an example, forHebbian learning, for activations
based on stimuli that return from time to time an analysis can
be made about when there is enough stimulation over time

to achieve or maintain a value for the weight ω of some con-
nection. As an example, see the pattern in Fig. 7, where the
upper graph shows the levels of both X1 and X2 (alternat-
ing between 0 and 1) and the lower graph shows how due to
these activation periods, the periods of learning (d1 = 5 time
units) and pure extinction (d0 = 15 time units) alternate. It
turns out that there is a form of convergence not to one spe-
cific value of ω, but to a recurring pattern that repeats itself;
this is a specific case of a limit cycle, in this case induced by
environmental fluctuations.

8 Discussion

In this paper it was discussed howmathematical analysis can
be used to find out some properties of a model. An advan-
tage is that this is done without performing simulations. This
advantage makes that it can be used as an additional source
of knowledge, independent of a specific implementation of
the model. By comparing properties found by mathematical
analysis and properties observed in simulation experiments
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Fig. 8 Limit cycle for d1 = 5
(learning), d0 = 15 (pure
extinction), and
η = 0.2, ζ = 0.04 Equilibrium
value 0.83,
ωmax = 0.72,ωmin =0.39
(dotted lines) 0
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some form of verification can be done. If a discrepancy is
found, for example, in the sense that the mathematical analy-
sis predicts a certain property but some simulation does not
satisfy this property, this can be a reason to inspect the imple-
mentation of the model carefully (and/or check whether the
mathematical analysis is correct). Having such an option can
be fruitful during a development process of a model, as to
acquire empirical data for validation of a model may bemore
difficult or may take a longer time.

The techniques used for such mathematical analysis were
adopted from [3,9,11–13]. In this literature many more tech-
niques can be found than those covered in the current paper,
for example, for the convergence speed (e.g. [10]) for attract-
ing equilibria, but also for other types of properties. For
example, there is underlying theory that proves the existence
of certain patterns, for example, theorems from Poincaré
(1881–1882) and Bendixson (1901) that state that under cer-
tain circumstances for two-dimensional systems (described
by only two differential equations) limit cycles will occur.
These are beyond the scope of this paper.

Mathematical analysis is not always easy or feasible. For
example, linear equilibriumequations (for example, obtained
when using scaled sum combination functions) in principle
can be solved analytically in a generic form, thereby obtain-
ing expressions for the equilibrium values in terms of the
parameters of themodel, but equilibrium equations involving
logistic functions cannot be solved in such a manner. Never-
theless, for such cases often specific instances can be solved.
Moreover, as discussed in Sect. 2, verification of a model
does not depend on finding explicit analytical solutions of
the equilibrium equations. For verification it is already suffi-
cient if the equilibrium equations have been identified, which
is always possible from the difference or differential equa-
tions. Then for each simulation trace observed equilibrium

values can be substituted in these equations and by this it
is checked whether they satisfy the equations. Therefore, in
general, mathematical analysis still can add some value, in
addition to systematic simulation experiments. However, a
limitation is that although verification is always possible,
prediction is not. For prediction without having any simula-
tion, it is needed to find explicit analytical solutions of the
equilibrium equations, and in many realistic models this is
not feasible.
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