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Abstract Thepaper discusses the application of hyper pop-
ulated ant colonies to the well-known traveling salesman
problem (TSP).The ant colonyoptimization (ACO)approach
offers reasonably good quality solutions for the TSP, but
it suffers from its inherent non-determinism and as a con-
sequence the processing time is unpredictable. The paper
tries to mitigate the problem by a substantial increase in the
number of used ants. This approach is called ant hyper pop-
ulation and it could be obtained by increasing the number
of ants in a single colony assigning more than one colony
to solve the same task or both. In all cases the level of non-
determinism decreases and thus the number iterations could
be reduced. Parallel implementation of the ACO makes it
possible to reduce drastically the processing time. The paper
compares two ways of implementation of the parallelism
using the sockets or the RMI—remote method invocation
mechanisms. The paper concentrates on the classical static
version of the TSP, but preliminary experiments indicate that
such an approach could be even more useful for dynamic
TPSs.

Keywords Ant colony optimization · Traveling salesmen
problem · Parallelization strategies for ACO · Ant colony
community (ACC)

1 Introduction

The aim of the paper is to discuss the problem of optimiz-
ing the performance of the ant colony optimization (ACO)
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used for the traveling salesman problem (TSP). Metaheuris-
tics such as the ACO solve a complex problem by iteratively
improving candidate solutions. They do not guarantee the
selection of an optimum or even a satisfactory near-optimal
solution. In the case of the NP-hard or even NP-complete
problems they are often the only available choice that we
have.

Usually the quality of solutions ismeasured by exclusively
by the length of the selected route. The ACOworks in a non-
deterministic way. Usually a predefined number of iterations
are executed and the best found solution is selected. The
quality of solutions improves with time, but the process is
not uniform. A high quality solution could be found after a
few thousands of iterations, but it is not uncommon that we
can have it after just a few dozens of them. Therefore, it is so
hard to tell when to stop the operation of the ACO. There is
a great incentive to prolong the execution time. The reported
experiment results look more impressive. This is certainly
possible in an university environment. It may not be the case
for the real life applications. The time needed to execute
a great number of iterations may simply not be available.
Moreover, the longer we run the ACO, the solution updates
are the less and less frequent. This demerit is evenmore acute
for the dynamic TSP. In that case the ACO may not be able
to catch up with the changing environment.

The paper addresses the problem using a drastically
increased number of ants. In what follows such ACOs are
called hyper populated Ant Colonies. They come in two fla-
vors. In the first one the ant number increases in just one
colony and in the second we have a number of cooperat-
ing colonies—the so-called ant colony community (ACC). In
both cases the results converge faster so the number of iter-
ations could be limited. The main contribution of the paper
is a detailed presentations of a model for the ACC and veri-
fication of its efficiency. The Socket mechanism was used to
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implement the model and its advantages over the competing
RMI mechanism are discussed. The complexity of interac-
tions between individual ants or even ant colonies make a
theoretical analysis extremely hard even with a number of
simplifying assumptions. Therefore, this paper demonstrates
empirically the performance and convergence aspects of the
proposed model.

The paper is organized as follows. The second Section
briefly introduces the TSP. The next one is devoted to the
ACO—ametaheuristics commonly used to solve it. This sec-
tion presents its general operational principles and the role
played by its parameters. Attempts to optimize their values
are also mentioned. It ends with the discussion of the stop-
ping conditions. In the fourth Section we provide experiment
results that justify the increase in the number of used ants.
The prolonged execution time resulting from increasing of
ant population could be mitigated by the parallel implemen-
tation of theACO. The fifth Section contains the taxonomy of
parallel ACOs and introduces the coarse-grained ACC pro-
posed in the paper. The conducted experiments, their results
with the criteria used to evaluate them are presented in the
6th Section. The paper concludes with the resume of research
work done so far and the plans for future investigation.

2 Traveling salesman problem specification

The TSP could be stated in a remarkably simple way: given
a list of cities and the distances separating them what is the
shortest possible route that visits each city exactly once and
returns to the origin city? For the first time the problem was
stated as early as in 1800’s. At that time it was treated as
a recreational puzzle, papers printed graphs and prized best
solution sent by readers. Nowadays it has many practical
implications in areas as diverse as optimizing scheduling of
a route of the drill machine used to drill holes in a printed
circuit board or minimizing material wasted in the cutting-
stock problem.

The number of all possible different routes for a graph
with n nodes is equal to (n-1)!/2. The number is estimated
by

√
2πn( ne )

n and even for relatively small values of n like
50 the value is just staggering. It is equal approximately to
3,04141E+64 which is far exceeds the mass of an observable
steady-state universe is 1,45E+53kg. This clearly calls for
heuristic solutions as the complete search is not feasible.

The TSP is now one of the established, classical problems
of Artificial Intelligence and serves as a touchstone for many
general heuristics devised for combinatorial optimization. in
1970’s it was proved to be a NP-hard problem. A recent
comparison of metaheuristics used for TSP could be found
in [1]. The paper discusses: genetic algorithms, simulated
annealing, tabu search, quantum annealing, particle swarm

optimization, harmony search, a greedy 2-opt interchange
algorithm and the last, but not the least the ACO.

In a classical statement of the problem the distances
between nodes are symmetric and do not change. This seems
to match the real life where the road structure remains rel-
atively static. Having said that we should bear in mind that
minimizing the distance is notwhatwe have really interest in.
In more practical objectives include, e.g., the traveling time
which is subject to the ever changing road conditions and
therefore is inherently dynamic. TheDynamicTSPwas intro-
duced for the first time by Psarafits [2] and various aspects
of the DTSP are now the subject of intensive study [3–5].

3 Ant colony optimization

Scientists were for a long-time puzzled by way the in which
tiny, week and blind creatures, e.g., the termites, were capa-
ble of building and operating extremely complex, city like
structures such as termite nests. The explanation was pro-
posed in late 50’ of the previous centaury by the French
biologist Pierre-Paul Grassé. He coined the term stigmergy
to describe a mechanism of indirect coordination between
agents or actions. In the real world it could produce complex,
seemingly intelligent structures, without the need for any
planning, control, or even direct communication between the
agents. The agents have very little or no memory. They lack
intelligence or even awareness of each other. What makes
them so capable is the pheromone trail that is deposited in the
environment. The extreme simplicity of ants combined with
their apparent ability to produce complex structures make
them very attractive for computer science.

The ACO technique was introduced by Dorigo in as
early as in 1992 [6]. Until now he remains one of the
key researchers in this area. His extensive and fairly recent
account of the ACO state of the art is presented in [7]. An ant
colony consists of ants which are extremely simple agents.
All they can do is to move from one node to another lay-
ing a pheromone trail on their way. They are also capable of
detecting their current position, remembering the nodes that
were already visited and sensing the direct distances from
its current position to other nodes as well as the amount of
pheromone laid upon them. The colony works in iterations.
At the start of each iteration the ants are placed randomly
on the graph. Each ant works on its own, completing a route
that connects all nodes. In each step of an iteration an ant,
sensing the distance and pheromone levels placed on routes
connecting nodes, selects the next node to visit. The iteration
stops when all cities are visited by all ants. The pheromone
matrix harvests the collective experience gained by the ants.
This general idea has many variants such as ant systems, ant
colony systems, Max–Min ant systems. They differ mainly
in exact way pheromone is deposited and the role played
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by the colony. In each case the colony remembers the BSF
(Best So Far) route, the current iteration number and the iter-
ations’ best route. The colony is responsible also for global
pheromone updating.

3.1 Operation details

The distances between the cities (nodes) are represented by
a square matrix of floating point numbers. The number of
rows or columns is denoted by N . The element in row r and
column s is denoted by δ(r, s) and is known also as a cost
measure. The matrix is symmetric so δ(r, s) = δ(s, r) and
additionally for all nodes r δ(r, r) = 0 .

The pheromone levels are stored in an another matrix
of floating point numbers which has the same size of the
distances matrix. Its elements are denoted by τ(r, s) and
are referred to as the desirability measure. The algorithm
guaranties, that allays τ(r, s) > 0. The ACO initializes all
elements of the matrix are with the same value at the begin-
ning of its work. Pheromone levels are preserved from one
iteration to another.

There are three rules that define the operation of the ACO:

• the State Transition Rule that specifies the next node an
ant selects, see Formulas 1 and 2;

• the Local Updating Rule which updates the pheromones
as an ant moves from one node to another, see Formula
3;

• theGlobalUpdatingRulewhich defines theway inwhich
the pheromones are updated when all ants have con-
structed whole route, see Formula 5.

The operation of the ACO is controlled by five parame-
ters. They are shown in the Table 1. The complexity of the
ACO operation so great that it is impossible to provide an
analytical way of selecting their optimal values. Therefore,
they are usually chosen in an experimental manner. The table
contains also their recommend used bymany researches, e.g.,
by Chirico [8].

Table 1 ACO parameter description

Name Description Suggested value

N Number of ants Number of nodes

Q0 Probability of selecting
exploitation over exploration

0.8

α Aging factor used in the global
updating rule

0.1

β Moderating factor for the cost
measure function

2.0

ρ Aging factor in the local updating
rule

0.1

An ant selects the next node using one of two possi-
ble operation modes: exploitation and exploration. In the
exploitation mode an ant works in a deterministic manner.
Staying in the r node an it selects the node t which maxi-
mizes the route quality function q f :

q f (r, t) = τ(r, t) ∗ η(r, t)β . (1)

The pheromone levels represent the collective knowledge
of all ants. The influence of the distance depends of the para-
meter β. It is greater than 1. The distance between two nodes
is always ≤ 1 therefore increasing β gives more prominence
to pheromone level. Note, that to find the next node the val-
ues of the q f (r, t) function for all possible (not yet visited)
nodes have to be calculated.

By contrast, the exploration is a non-deterministic process.
It selects the next t node with the probabilities defined by the
Formula 2:

pr(r, t) = q f (r, t)
∑

u∈A(r) q f (r, u)
(2)

The exploration algorithm prefers to choose nodes with the
highest value of the q f function but it could, with a lesser
probability, select any other available node. Their set is
denoted by A(r). Exploration is used to search for alterna-
tive solutions and to mitigate the danger of a colony being
trapped in a local minimum. The parameter Q0 specifies the
probability of selecting the exploitation mode of operation.
The selection of operation mode is done each time a node is
to be selected. As you can see the operation of the ACO is
non-deterministic. A random number generator is used both
for the selection of the operating mode and to select a node
in the exploration mode. Usually the ants are implemented
as threads and this is also introduces non-determinism.

Due to the sheer number of time-consuming floating point
operations that are necessary to select the next node the ACO
algorithm is relatively slow.

The pheromone levels are changed applying local and
global updating rules. The local updating rule is used on the
fly by each ant as it moves from one node to another. The
global updating is done by the colony after an iteration step
was completed. Let BSF (Best So Far) denote the best path
found so far by any ant and L(BSF) denote its length. The
Formula F3 defines the local updating rule:

τ(r, s) =(1 − ρ) ∗ τ(r, s) + ρ ∗ 	(r, s) (3)

where:

	(r, s)=
{
L(BSF)−1 if(r, s) ∈ global-best-tour

0 otherwise
. (4)
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Fig. 1 Schema of the ACO operation

Taking a route that does not belong to the BSF results
in decreasing the level of its pheromone. This simulates the
process of pheromone evaporation. Otherwise the range of
modification depends on the quality of the BSF solution.
The shorter it is, the more impact it has on the resulting
pheromone level. The evaporating intensity is controlled by
the parameter ρ.

Theglobal updating function is evoked after each iteration,
It changes the pheromone level on all routs in the graph. The
Formula 5 specifies the level modification:

τ(r, s) =(1 − α) ∗ τ(r, s) + α ∗ 	(r, s). (5)

The Formula 5 is very much like the Formula 3, the only
difference is that it evaporation intensity is controlled by still
another parameter α. For α = 1 the ACO has no memory
of previous results. With consecutive numbers of iterations
the value of 	(r, s) increases and therefore ACO favors
exploration at start of its work and later the found solution
become more and more stable as the exploitation becomes
more prominent.

The initial values of the pheromone level for all paths (τ0)
of a network with n nodes are not parameterized and are
calculated using the Formula 6:

τ0 = 2n
∑

δ(r, s)
. (6)

The operation of an ant colony is shown on the Fig. 1. The
end of work condition usually tests the total number of com-
pleted iterations or checks if no shortening of the BSF route
has been reported over a predefined number of iterations.

3.2 ACO Optimization

Although the operation of each ant is simple their interplay
is complex. Therefore, the selection of the values for the
parameters from the Table 1 is not possible in any analytic
manner. The paper [9] reports that their strikingly different
values could lead to solutions of similar quality. What makes
the process evenmore complex is the non-deterministic char-
acter of the ACO. The solutions found for the same static
graph and the same set of parameter values could differ even
after many thousands of iterations.

The recommended parameter values have round values
like 0.8 or 2.0. This gives rise to an assumption that they
are not optimal. Various attempts to identify values offer-
ing better results were described, e.g., in [10] or [11]. They
include algorithms inspired by evolutionary programming
(EP), simulated annealing (SA) or a statistical analysis of a
large collection of gathered results. The results are not quite
satisfactory. It possible to find values that lead to better results
than the results achieved with recommended values, but it
was not possible to correlate them to the properties of the
environment. In each particular case has to be treated indi-
vidually and the optimization of parameters values requires
time-consuming experiments.

The route length is not the only quality measure. The
other one is the execution time. In the study reported in this
paper we examine the way in which the number of used ants
and their organization impacts the processing time and route
length.

3.3 Stopping Problem

Nomatter what the parameter values are used the processing
has to be stopped at same point of time. When to stop is a
question that is rarely raised in the discussion of the ACO.
The frequency of changes of the BSF route lessens as the
number of iterations increases. This means that the compu-
tational effort needed to execute subsequent iterations is less
and less profitable. This is clearly visible on the Fig. 2 which
illustrates the typical performance of an ACO.
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Fig. 2 The performance of a standard version of ACO [18]

Fig. 3 The cumulative gain in
consecutive iterations for
colonies with the number of ants
in the range from 30 to 1000
[18]
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The jigsaw upper line represents the best solution for con-
secutive iterations. There seems to be no clear pattern in its
behavior. This makes extremely hard to predict the quality
of the solution which the next iteration delivers. The lower,
while spikes mark iterations for which there was a change in
the BSF route length and their height is proportional to the
shortening of L(BSF). They are more predictable. With the
increasing number of iterations the spikes are less and less
frequent. Note also that in the above example almost half
of the processing time was not productive at all. There was
no spike and hence no shortening of the BSF path after the
iteration number 547.

To have a deeper insight into the performance of ACO we
introduce the Cumulative Gain defied by the Formula 7. It
describes the how much the solutions improve.

CG(i) =
(

R∑

r=0

(len(r, 0) − len(r, i))

)

/R (7)

where R is the number of runs, i is the iteration number,
len(r, i) is the BSF route length for the iteration i in the test
run number r.

The Fig. 3 shows what impact the different sizes of an Ant
Colony have on the Cumulative Gain.

The cumulative gain is the measure of the shortening of
route not of its length. Therefore, the best performer (disre-
garding complexity of operation) is the colonywith 1000 ants
represented by the lower, dotted line. The sooner the values
converge the better. Over populating the colonies offers a rea-
sonable solution to the stopping problem. The routes length
converge faster and there is much less incentive to extend the
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Table 2 Observed average BSF route for varying colony populations,
number of iterations, number of runs 30

Ant colony size BSF fixed size BSF normalized

30 1.82 [1000] 1.80 [1666]

50 1.81 [1000] 1.81 [1000]

80 1.80 [1000] 1.80 [625]

120 1.80 [1000] 1.85 [417]

150 1.79 [1000] 1.80 [333]

1000 1.78 [1000] 1.78 [50]

number of iterations. Note that in the above example for the
1000 ant colony there is hardly any improvement after the
320 iteration.

4 Increasing the number of ants

Many experiments have proven that the standard values of
parameters provide a stable and reasonable good perfor-
mance over awide spectrumof input data. The recommended
number of ants is equal to the number of nodes. For that rea-
son the solution proposed in the paper keeps their standard
values and studies the impact that the changes in the num-
ber of ants have on the performance of the ACO. The Fig. 1
suggests that the increase in the population size could be
offset by the decrease in the number of iterations that are
necessary to obtain stable and reasonably good results. In
particular we are interested in using ant numbers that sub-
stantially exceed the recommended values. There are two
ways in which the number is increased: single colony and
multi-colony approaches.

Experiments conducted on a matrix with 50 nodes are
reported in the Table 2 confirm that it is really possible to ben-
efit from that phenomena. The Table shows average values
of the BSF for different sizes of colony and varying number
of iterations. The number of iterations is shown in square
brackets. The iteration numbers in the BSF normalized col-
umn ware selected in such a way as to preserve the same the
computational complexity of each raw.

The over populating of a single ant colony does not offer
a significant reduction in route length. The middle column
contains the route lengths obtained after 1000 iterations for
all colonies. The slight decrease in route length, e.g., for
the colony of size 1000 does not compensate the 20-fold
increase in processing time. Observe, however, that the last
column with the normalized values for the BSF. Increasing
if the ant’s number is compensated by lowering the number
of iterations. For the hugely overpopulated colony with 1000
ants the number of iterations is as small 50. The decrease in
the BSF is not impressive, but the small number of iterations
paves the way for parallel implementation of the ACO.

In the multi-colony approach the ants are distributed over
more than one colony. Their number in a single colony could
also exceed regular values as well. Using many colonies
working in parallel brings up two problems:

• The necessary communication overhead must not dimin-
ish the advantages of speed up due to parallelism.

• The lack or reduction of cooperation of ants from differ-
ent colonies must have not much effect upon the quality
of the resulting solution.

The first problem could be analyzed theoretically. Let us
assume that the colony is implemented by a number of node
computers andonehost computer that coordinates theirwork.
The operation of a parallel colony is characterized by the fol-
lowing factors:

• n – the number of ants.
• k – the number of node computers.
• m – the number of chunks of data.
• ti – time required to process one chunk of data by one

ant.
• td – time necessary to transmit data to and from the host
and a node.

• tc - time for the establishing the initial connection
between the host and a node.

A parallel implementation reduces the processing time
only if the number of node computers satisfies the inequity:

k >
nti

nti − td − tc
m

(8)

and

nti − td − tc
m

> 0 (9)

For a continues mode of operation which is typical for
dynamic environments the value of tc/m is negligible. What
is really required is that the local one node processing time
is less than the time necessary to transmit the necessary data.

The study on the second phenomena is for more complex
and is delayed until the Sect. 6. This Section describes the
details of the proposed approach and interprets the obtained
experimental results. The following Sect. 5 describes related
work on parallel implementations of the ACO.

5 Parallel implementations of ACO

No matter what is the number of used ants, the ACO meta-
heuristic needs relatively long time to provide a solution.
Therefore, the first attempts to shorten the processing time
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by parallel implementation of the ACO were presented just
a few years after the its introduction. The ACO depends on
cooperation of individual ants. The main problem is: in what
way to preserve some level of their cooperation in a parallel
environment.

5.1 Performance measures

The efficient, algorithmic solutions for many complex real
life problems are not known. Solving NP-hard optimization
problems is compute-intensive. Therefore, often we have to
resolve to parallel implementations. The reasons for that are
twofold [12]. First they take benefit of using several com-
puting elements to speed up the processing. Second we may
introduce new exploration patterns that are not workable for
the sequential implementations. In parallel algorithms that
require a close cooperation between individual agents there
is a need for specially designed hardware that can support
it. Therefore, the parallel ACO is mainly implemented on
traditional supercomputers, clusters of workstations, multi-
core processors and grid environments and recently graphics
processing units [13].

The most common metrics used to evaluate the perfor-
mance of parallel algorithms are the speed up (sm) and the
efficiency (em). The speed up indicates how much faster a
parallel algorithm is than its corresponding sequential algo-
rithm. In the case of non-deterministic implementations the
mean values are used, see Formula 10 and

Sm = T1
Tm

(10)

or for non-deterministic case

Sm = E [T1]

E [Tm]
(11)

where T1 and Tm denote the execution time of sequential
algorithm and its parallel version using m processors.

The efficiency is the normalized version of the speed up
and is introduced to enable the comparison of implementa-
tions using non-identical computing platforms.

em = Sm
m

. (12)

There are two factors that usually restrict the value of em to
values less than 1. First is the well-known Amdahl’s law [14]
which limits the performance of any parallel application by
the sequential part of the code. The second is the communi-
cation time overhead which could be quite considerable even
on a specialized hardware. There were, however, reports, that
for some specific problems, taking into advantage special-
ized hardware architecture and dedicated algorithm design it
is possible to achieve the values of em >1 [15].

In the paper [12] we have a comprehensive, up to date
taxonomy of parallel ACO. The taxonomy consists of two
broad categories: Master-slave model and Cellular model.

5.2 Taxonomy of parallel ACO

5.2.1 Master-slave model

This is a strictly a hierarchical parallel model in which a
master process manages the global information including,
e.g., the pheromone matrix or best-so-far solution. It also
controls the slave processes that are responsible performing
the actual search of the solution space. The model has three
subcategories. The classification criterion is the granularity
level that is the amount of work performed by each slave
process.

• Coarse-grain master-slave model. The master manages
the pheromone matrix and the interaction with the slaves
is based on complete solutions. Each slave has one or
more ants, and they compute complete solutions which
are then communicated back to the master. The master
can receive just one or many solutions from a slave. It
selects the best solution or merges them.

• Medium-grainmaster-slavemodel. The key feature is the
domain decomposition. The slave processes solve work
on each sub-problem independently. The master process
is responsible for managing the overall problem informa-
tion and constructing a complete solution from the partial
solutions reported by the slaves.

• Fine-grain master-slave model. The model requires the
parallel evaluation of solution elements. The slaves per-
form minimum granularity tasks, e.g., selecting the next
node. It is characterized by the frequent communications
between the master and the slaves.

5.2.2 Cooperative models

In this group the colonies cooperate directly without the need
of a master.

• Cellular model. The model uses follows the guidelines
specified by the diffusion model employed in cellular
evolutionary algorithm. A single colony is structured in
small neighborhoods. Each one has its own pheromone
matrix. The trail pheromone update in each matrix con-
siders only the solutions constructed by the ants in its
neighborhood. The model uses overlapping neighbor-
hoods. This makes it possible to spread gradually high
quality solutions from the place of their origin to other
neighborhoods.
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Table 3 Characteristics of the models in the new taxonomy [12]

Model Population organization # Colonies # Pheromone matrices Communication frequency

Coarse-grain master-slave Hierarchical, non-cooperative One One Medium

Medium-grain master-slave Hierarchical, non-cooperative One One Medium-high

Fine-grain master-slave Hierarchical One One High

Cellular Structured, cooperative One Many Medium

Parallel independent runs Distributed, non-cooperative Several Several Zero

Multi-colony Distributed, cooperative Several Several Low

Hybrids Hierarchical D/P D/P D/P

• Parallel independent runs model. The cooperation
between colonies is not required. Several sequential
ACOs are concurrently executed on a set of processors.
The individual ACO can use identical or different para-
meters. The executions are completely independent.

• Multi-colony model. Several colonies explore in this
model the search space using their own pheromonematri-
ces. The colonies periodically exchange information.

• Hybrid models. Some papers describe algorithms that
feature characteristics frommore thanoneparallelmodel.
This may include approaches that combine master-slave
models or that introduce hierarchical structure into the
basic model.

The basic features of the taxonomy are summarized in the
Table 3. The D/P abbreviation stands for depending on pro-
posal.

5.3 Examples of fine-grain implementations of ACO

The approach taken in this study is an example of coarse-
grain master-slave model. We think, however, that is instruc-
tive to confront it with two fine-grain approaches. Thismakes
apparent the consequences of using a particular model.

In the implementationproposedbyRandall andLewis [16]
each ant is assigned to a separate processor. It is therefore
extremely fine-grained implementation. The client works in
a loop in which it receives the pheromone matrix form the
server, selects the next node and passes back the choice to
the server. This involvesmassive data exchange. The problem
of it is not only just amount of the data, but also frequency
of data synchronization. The ants are allowed to modify the
pheromonematrix at the same time. In traditional approaches
the synchronization of matrix access by different threads is
done, e.g., by the standard lockmechanism of Java. The locks
are part of the core of the JVM and therefore they are very
efficient. The synchronization of different processes if much
more time consuming. There are two drawbacks of the solu-
tion. The number of ants is limited by the available hardware.
In the experiment their number was in the range from 2 to 8.

Table 4 Comparing the efficiency (Sm) ofmessage passing and sharing
of memory for parallel ACO’s [17]

Node number Number of processors

Message passing

2 3 4 5 6 7 8

318 0.60 0.48 0.36 0.32 0.27 0.22 0.20

442 0.71 0.54 0.48 0.44 0.38 0.33 0.29

657 0.83 0.65 0.58 0.58 0.54 0.47 0.41

Shared memory

318 0.83 0.80 0.77 0.73 0.69 0.66 0.60

442 0.86 0.82 0.81 0.80 0.76 0.75 0.69

657 0.87 0.87 0.85 0.82 0.80 0.77 0.77

All papers advocate more numerous ant colonies and some
of them describe even the advantages of overpopulating of
the colonies. The second is long time necessary to synchro-
nize numerous modifications of the pheromone matrix. To
communicate the processors use the messages.

The solution proposed by Delisle et al. [17] eliminates
some on the above deficiencies by relaxing the onerous
pheromone matrix update. In this solution each client looks
for the route separately updating the pheromones levels
locally. Only after completing the route it is passed to the
server. The server is responsible for finding the best solu-
tion, preforming the global pheromone level update and
sending the results to the clients. Each client can host sev-
eral ants. Best results, both in the terms of speed up and
the solution quality were obtained with the value of 40—
the maximal number of ants being allocated to a processor.
The communication is based on sheared memorymodel. The
Table 4 compares the efficiency measured by Sm of the two
approaches.

The results speak clearly for the second approach. In all
reported cases the efficiency lowers with increasing number
of processors and increases with the number of nodes. The
shared memory approach is superior to message passing on
every instance. The difference is remarkably high for the
lowest number of nodes and eight processers. Note also that
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the efficiency raises significantly with the increase of node
number.

The communication overhead and need for synchroniza-
tion of pheromone matrix could severely limit the benefits of
parallelization. In the first from above examples the size of
transferred data is small, but it is very frequent. The second
approachmakes the transfer less frequent, but the size of data
increases. It is well known that memory sharing is the fastest
way of communication between processes. The size of data
is not critical factor. The impact of synchronizing read-write
access to common memory has more severe impact.

The low level approaches described above have two defi-
ciencies. The necessity of frequent updates diminishes the
speed up factor and they require dedicated hardware. The
hardware configurations are hardly scalable and are not pop-
ular. On the other hand they duplicate or closely mimic the
operation of a single colony. Therefore, they can directly
exploit the extensive research work on the ACO area.

5.4 Coarse-grain implementation

In a contrast to the fine-grainedmodels the coarse-grainmod-
els communicate less frequently. They can be implemented
on a number of different types of standard computers. This is
the approach taken in this paper. It has two advantages. The
structure of the implementation is flexible, could adopt itself
to needs or changing environment. Computers with different
processing power could cooperate easily. It even enables us
to harvest the spare computer power which is available for
free on almost all computers. Up to date multicore proces-
sors have processing power exceeding that of mainframes
frommid-90’s. Computers working in a typical network have
processor utilization less than 5%most all the time. The rest
is consumed by the idle process of operating system and thus
is available for free.

The implementation uses the Socketsmechanism. It keeps
permanent connection between two processes until one of
them closes it or stops operation. They communicate over
network addresses. This ensures a great deal of flexibility as
we are not constrained by the physical structure of a com-
puter. The processes could be run on one computer using
local host address or over a network. The socket stream-based
mode of operation used in the experiments ensures reliable
transfer of data on the physical level.

In a previous work the communication between the server
and clients used the Java RemoteMethod Invocationwhich is
a relatively high levelmechanism [18]. It offers the developer
many advantages. Once the connection has been established
the code for handling local and remote objects is almost iden-
tical. This gives the developer full compiler support. The
implementation and debugging of network programs are not
much different from traditional programming. The complex-
ity of organizing the data flow is handled by the compiler.

Table 5 Time necessary to perform basic operations for the RMI and
sockets

Operation RMI network Sockets

Local server Network server

Initialization if the
connection

1.30 s 0.75 s 0.45 s

Passing parameter
(one double value)

0.01 s 0.01 s 0.23 s

Passing distance
matrix (50 Nodes)

1.60 s 0.03 s 0,26 s

Using the RMI is therefore most beneficial when the inter-
action pattern is complex.

The RMI enable us to have a parallel implementation with
just one remote colony object that resides on a server and
hosts the distance and pheromone matrixes. The individual
ants could be located on client computers. Once the connec-
tion between processes has been established the source code
for such an implementations differs not much from its orig-
inal, sequential version. The RMI could be easily used for
fine-grained parallelization approaches.

The RMI approach looks attractive at first, but it is less
useful when it comes to an actual implementation. The time
necessary for a remote procedure call to fetch a double value
is approximately equal to 0.39ms even when the client and
the server reside on the samemachine. In contrast fetching the
same value from a local object is equal to 0,001785ms so it is
two orders of magnitude faster. Calling a methods with a sin-
gle double parameter to on network object ismuch slower—it
takes 10ms, see Table 5. The passing of a pheromone matrix
takes almost 2 s.

The RMI mechanism makes it possible to have a straight-
forward implementation of a fine-grained parallel ant colony,
but the performance of such a solution is poor. The access to
pheromone matrix is many orders of magnitude slower than
for traditional thread-based sequential implementations. For
the coarse-grained parallel implementation the communica-
tion burden is not prohibitive. Transmitting a whole matrix
takes a few seconds, but a colony needs a few minute to
process it.

In the case of the coarse-grained parallel implementation
of the ACC the data flow pattern is straightforward and it
could be implemented without using remote objects. All
we need is pure data transfer. That functionality is offered
by sockets. The low level socket mechanism provides a
connection-oriented service. The protocol used for transmis-
sion is the TCP. The Community uses stream-based sockets
to establish a connection between two processes. While it
is in place, data flow between the processes in continuous
streams.

Unlike the RMI the sockets do not provide remote objects
and offers only means for data transfer. The programmer
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Table 6 Time necessary for the sockets to transfer a given number of
floating point numbers (in milliseconds)

Connection type Number of doubles Mean time Std. dev. Rate

Local 100 11.13 6.48 8.98

1200 34.99 7.054 34.31

4900 136.31 12.35 35.95

19800 511.37 96.89 38.72

Network 100 228.75 12.55 0.44

1200 261.27 39.37 4.59

4900 342.85 31.13 14.29

19800 726.55 330.26 27.25

is solely responsible for ensuring the correctness of data
flow that is making sure that both the server and the client
expect the same type of data. As the real life communica-
tion between a server and a client requires many types of
messages being transferred and this may sound prohibitive.
Fortunately enough the JVM supports the transfer of any
serializable object what makes the task less daunting. Using
serialized objects by the socket mechanism does not mean
that we have access to objects methods. Only the data are
transferred.

The data in the Table 5 show the difference in performance
between the RMI an Sockets. The RMI is optimized for para-
meter passing what is common for method evocation, but are
less efficient for passing large amounts of data.

The time that is necessary for initializing connection is
shorter than for the RMI, but this is not crucial as it happens
only once. The sockets mechanism is optimized for transfer-

ring large blocks of data over the network as is clearly visible
from the measurements that are shown in the Table 6. The
transfer rate steadily increases with the size of data being
transmitted and for the largest block there is not much dif-
ference between local and network transfer.

In the traditional client—server mode of operation thin
clients call a server for performing complex calculations or to
obtain data from a centralized database. In the parallel imple-
mentation of the ACO the configuration is reversed. The bulk
of computations is done by the clients. The obtained results
are passed to the server which is responsible for evaluat-
ing the individual solutions obtained by the clients, selecting
solutions to propagate and sending tasks to servers. The kind
of task depends on the granularity level of parallelization.

The server is a multi-threaded process with each thread
being attached to a unique client. The number of threads is
limited only by the memory available on the server. For a
computer with 12Gb of memory is no limit to their num-
ber from the practical point of view. Usually a client colony
works on a dedicated computer as a separate process. It is
also possible to locate a few of clients running on a single
machine.

5.5 Presentation of ant colony community

The ACC consists of a number of colonies controlled by a
server. The initial version of the ACC was presented in [18].
The older version of the ACC used the RMI mechanism and
its structure was rigid. In an apparent contrast to its predeces-
sor the structure of the ACC presented here uses Sockets and
its structure is highly flexible. It could change at runtime.

Fig. 4 An example of an ant
colony community
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Table 7 The message passing
between a server and a client
colony

Community server operation Ant colony client operation Remarks

Stop if work is accomplished The stopping criteria are described
in Sect. 3.3

← Register client A separate thread is created to
handle the client. Register data
include: client identifier and
location, current time. They are
stored in a server’s registry

Initialization data→ Colony operational parameters
distance matrix specification

Loop data → Using data from server the client
creates an ant colony and starts
its operation

Community best so far solution
[distance matrix][pheromone
matrix]

←Found solution Distance of the best path, sequence
of visited nodes, [pheromone]
matrix

Result Integration

The colonies could run a single computer,manycomputers
in a local network or on computers on internet servers. It
is possible also to have any combination of this locations.
An exemplary structure with four computers and five Ant
Colonies is presented on the Fig. 4.

The CS (community server) awaits for calls from ACCs
(ant colony clients). TheCS after receiving a request from the
ACC, registers it in its repository and creates a separate thread
for handling data transmission. In the next step the CS passes
parameters and data to the appropriate ACC. Depending on
the type of Community Server the data can contain distance
matrix, pheromonematrix aswell as previously found routes.
After that, the CS waits for the a solution from any ACC.
The ACC in turn after receiving data from the CS a colony
creates a local ant colony and feeds it with the data from the
server and then starts it operation. An Ant Colony produces
solution and passes it to ACC which transmits it further to
the Community server.

The descried above structure is relatively simple and at the
same time robust and flexible. The complex task of finding
solutions is separated from the rest of the implementation.
Replacing one type of an ant colony by another is relatively
simple. The communication process is initiated by an Ant
Colony Client and the Community adopts itself automati-
cally to different processing power or connection transfer
rate. The “slower” clients, hosted, e.g., on a remote Internet
server are just less frequently assigned tasks by the Colony
Server. Even dropping out of a computer from the Commu-
nity does not disintegrate its operations. The processing just
slows down as more tasks are allocated to the remaining
clients. The ACCs are separate processes. To obtain reliable
measurements of the execution time they were started by a
cron-like utility during the tests. A single computer can host
manyACCs.Wehave found that runningmore than sixACCs

on a computer without a SSD drains the recourses of a typical
personal computer.

The processing endswhen the stopping condition has been
met. This happens when the server has already received a
specified number of solutions or the predefined processing
time has elapsed. The stopping criteria and their substantia-
tion are described in the Sect. 3.3. In either case the server
breaks connection to all clients what eventually leads to
killing all processes that are executed on the client side.

The Table 7 shows the operation synchronization of the
Community Server and Client. The elements enclosed in [ ]
are optional. The operations written in bold are performed in
a loop, separate for each client.

6 Analysis of ACC operation

To evaluate the performance of the proposed solution a num-
ber of experiments were performed.

6.1 Experimental setup

The experiments were run on a network of four computers
with codenames from Ca to Cd. All of them have mini-
mum 4Gb of memory. They were equipped with different
processors. The Ca computer was the fastest one. It had Intel
i7-4700MQ 2.4GHz 2.4Ghz. The Cc with processor Inter
Core2Quad D6600 computer was the slowest one. The dif-
ference in computing power had an impact on the structure
of the communities.

Each colony runs as a separate process. All of the comput-
ers were powerful enough to host many of them. The data in
the Table 8 show how efficient it could be. The table shows
the time used to run various number of an ACO tasks simul-

123



114 Vietnam J Comput Sci (2016) 3:103–117

Table 8 The efficiency of hosting many colonies on a single computer
with a SSD drive

Number of colonies Total time Time per colony

1 81 81.0

2 83 41.5

3 86 28.7

4 89 22.2

5 100 20.0

6 115 19.8

Table 9 Structure of ant communities

Code Number of ant colonies Computer/colony number

A 1 Cb /1

B 3 Ca/3

C 7 Ca/4; Cb/3

D 12 Ca/6; Cb/4; Cd/2

taneously on the computer Cc. Running simultaneously five
colonies has increased the processing time by mere 25%
from 81 to 100 seconds. This means that the time per colony
has dropped fourfold. For greater number colonies the time
per colony increases due to memory swapping and frequent
context switching. The data reported in the Table 8 refer to a
computer equippedwith a SSDdrive. For computerswith tra-
ditional hard disk drives the time per colony starts to increase
for smaller number of colonies.

During the tests reported in this table the computer run
only ant colony applications. The processor power was fully
utilized. This kind of performance could not be sustained
if a computer runs any other resource demanding a or an
interactive application. This is not a serious limitation as
the processor workload of computers in a typical network
exceeds single digit values only occasionally. The ant colony
application could be started if the processor workload does
not exceed a predefined value.

It turned out that assigning many colonies to slower com-
puters, although technically possible has resulted in a notable
drop in quality of obtained results. The allocation of colonies
to computers was done according to the rule of a thumb and
was not the result of any optimization process. The aim of
the study was to measure the relationship between the num-
ber of Ant Colonies and the achieved route length and not
to optimize the Ant Communities structure. The structure of
the used communities used in the experiment is presented in
the next Table 9. The last column shows the computers and
the maximal number of ant colonies that they could host.
The Cd computer was used as a server. The Cb computer,
ranked in the middle according to processor power was used
for reference purposes.

Table 10 Ranking of communities, an example

Community Len(CxTk) PRV(Cx , Tk) RV(Cx )

1 2 3 4 5 1 2 3 4 5

C1 2.4 2.1 3.0 2.3 2.1 1 2 0 0 2 5

C2 2.5 1.9 2.2 2.1 2.7 0 3 2 2 1 8

C3 2.1 2.4 1.9 2.2 1.8 3 0 3 1 3 10

C4 2.3 2.2 2.6 1.9 2.8 2 1 1 3 0 7

In the study only one server was used, but it is possible to
build a more complex, multilayer structure in which lower
layer server pass found solutions to a server located higher
in the structure hierarchy.

6.2 Evaluating the efficiency of the TSP ACO

The TSP had started as a recreational puzzle and the solu-
tions were assessed according to one criteria: the length of
route. This simplistic approach is not sufficient when we try
to evaluate ACO algorithms used for solving the problem.
There are several reasons for that:

• As stated in the Sect. 3.1 the exploitation mode of work
uses random function to select the next node. The selec-
tion of the mode of work is also controlled by a random
function. As the result the ACO is non-deterministic by
nature. The same algorithm working with identical set of
parameters and processing the same distance matrix pro-
duces usually different results every time it is activated.
We must therefore consider not a single result, but their
arithmetic mean, other statistical measures could be also
considered.

• A single solution, even a very good one, is not a deci-
sive factor in evaluating a Community. It is very much
possible that the next found solution will be not as good.

• Measuring the performance using mean values is not
entirely justified due to the dispersion of results obtained
in consecutive runs.

• For parallel implementations the computational com-
plexity should be augmented or even replaced by duration
of execution.

• It is important not only what solution was found, but also
howmay iterationswe executed. It is true for both parallel
and sequential implementations. For the dynamic TSP
good quality solutions must be found quickly enough to
catch up with the changing distances matrix.

Bearing all this in mind all these above factors we have
decided to propose a more complex schema for ranking Ant
Colony Communities. The process respects the following
principles:

123



Vietnam J Comput Sci (2016) 3:103–117 115

• To evaluate a communitywe run test it several times using
the same distance matrix.

• Instead of using mean of route lengths we used ranks of
route lengths.

• Two criteria for stopping the run are used:

• Equal complexity—the computational complexity
measured by the number of node selection operations
is the same for all Colonies. The time needed to find a
solution could be different and depends on the archi-
tecture of the Community.

• Equal time—the clock time given to all Colonies
is the same. The complexity of operation could be
different and it is the sum of the complexities of indi-
vidual Colonies that make up a Community.

Let Len(Cxk) denote the length of the best route length
found by the Community x in the k-th run.

The process of ranking the communities starts the calcu-
lation of PRV(Cx Tk)—Partial Ranking Value for each test
run and each community, see the Formula 13. To rank the
Communities we use the PR(Cx ) which is sum their ranking
values of their tasks, see the Formula 14.

PRV(CxTk) =
N∑

i=1

{
1 : ifLen(CxTk) < Len(CiTk)

0 : otherwize
}

(13)

where N is the number of communities.

RV(Cx ) =
M∑

i=1

PRV(CxTi ) (14)

where M is the number of test runs.
The process of ranking of Communities is illustrated by

the Table 10.
The equal complexity criteria do not need much justifica-

tion. It is well established in the computer science. It does
not mean that it should be the only one used. Two Com-
munities could have similar ranking values, but could differ
substantially in their processing time. In this case the physical
structure of a community does not have here any importance.

The equal time criteria are used to select aCommunity that
is most likely to find the best solution in a given period of

time. On many occasions the processing time is more impor-
tant than the difference in route length. For Dynamic TSPs
a Community has to find solutions fast enough to adopt to
changes in the route matrix. The proposed solution scales
very easily and so adding more Colonies could sufficiently
seed up the processing.

6.3 The experiment results

During the experiments we ranked Ant Communities using
both using the Equal Distances criteria and Equal Time crite-
rion. The Communities used in an experiment are identified
by their code (upper case letter) that refers to their struc-
ture (see Table 9) and an optional index that differentiates
between distinct set of parameters: ant number and iteration
number.

6.3.1 Equal complexity criterion

The reference community (code name A) consisted of one
colony with standard set of operational parameters with 50
ants and iteration number of 800. All the other communities
have preserved the level of computational complexity: the
lower values of iteration number were compensated by the
increase in the number of colonies and the number of ants in
a colony. The actual number of used colonies could be lower
that the maximal possible values.

The Table 11 shows the ranking of Communities accord-
ing the Equal Complexity criterion. The good performance of
the Standard Colony comes not as a surprise. Its parameters
were carefully chosen after running many experiments and
are not manually selected as in the case of the other Commu-
nities. Judging the performance of the Standard Community
presented in the first row we should not forget that it is much
slower than the rest of colonies. The winner, although not a
clear one, is the Community B which doubles the number
of colonies and keeps relatively large number of iterations.
It looks like the iteration number close to 400 is required to
achieve acceptable results. Further decreasing of the number
of iterations could not be offset by the increase of number of
Ants.

Table 11 Ranking of
communities according the
equal complexity criterion

Comm. code Colony num. Ant num. Iter. # 1 2 3 4 5 6 7 9 8 10 RV

A 1 50 800 5 5 3 5 3 4 0 1 4 1 31

B 2 50 400 1 0 5 3 5 5 4 4 1 5 33

C 2 100 200 0 3 1 0 1 1 3 2 3 0 14

D1 4 50 200 4 1 2 1 0 2 1 3 5 3 22

D2 8 50 100 2 2 0 2 4 3 2 5 2 1 23

D3 8 75 67 3 4 3 4 2 0 5 0 0 4 25
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Table 12 Ranking of
Communities according the
Equal Time criterion

Comm. code Iter. no. Ant no. Colony no. 1 2 3 4 5 6 7 8 9 10 RV

A 800 50 1 0 1 3 0 0 3 0 1 0 0 8

B 350 50 3 1 3 4 3 3 1 4 4 2 4 29

C 350 50 7 5 5 5 5 5 5 5 2 4 4 45

D1 100 50 12 3 4 1 4 4 3 3 3 4 3 32

D2 50 100 12 4 2 0 1 2 0 1 4 3 2 19

D3 100 100 12 2 0 1 2 1 2 2 0 1 1 12

6.3.2 Equal time criterion

In the Equal Time test the structure of the Communities has
a great impact on the achieved results. As a reference value
we have used the time span necessary for the Cb computer to
complete standard run (800 iterations, 50 ants). During the
test all colonies were activated at the same time and were
allowed to run for the mentioned above time span. After that
they were stopped and the best found solution was recorded.
Runningmore colonies on a single computer slows the execu-
tion and therefore the number of iterations was lowered from
400 to 350. This was to enable an Ant colony to complete
a task within the allowed time period. That percussion mea-
sure was needed for the test runs with relative large number
of iterations.

The allocation of colonies to computers was done accord-
ing to the rule of a thumb and was not the result of any
optimization process. The aim of the study was to measure
the relationship between the number of Ant Colonies and the
achieved route length and not to optimize the Ant Commu-
nities structure.

The achieved results are presented in the Table 12. The
performance looks strikingly different from the previous test.
The StandardA community is this time the looser. The differ-
ence between the B and C is not a surprise, increasing almost
twice the number of Colonies has to result in better solutions.
What is, however, worth noting is the performance of the D1

community. It has a relatively small number of ants, very
small amount of iterations and still it the occupies the sec-
ond position in the ranking. This means that each test takes
short time to accomplish. This makes the community a good
choice for dynamic TSP.

7 Conclusions and future work

The paper presents initial studies in the performance of
Ant Communities. An Ant Community is a coarse-grained
parallel implementation of the ACO algorithm. An Ant com-
munity has a very flexible structure and the server could
coordinate the work of practically any number of individual
colonies located upon one or many servers. It uses low level

Socket mechanism and is implemented in Java. Both of the
features guarantee a fast data transfer. The TSP is a compu-
tational demanding process and completion of a typical task
could well take almost a minute. Therefore, it allows us to
locate many Colonies on one computer or spread them over
local or global network and the change the amount of data
being transferred between the server and client computers.

The experiments were done with a coarse-grained parallel
implementation. The flexible structure of the Ant Commu-
nity and relatively short transmission overhead allows us to
manipulate the granularity level. Further study on that area
are necessary. The obtained results show that the Communi-
ties could improve the basic, static performance of the TSP
ACO. They also provide many clues that they will be much
more useful for the dynamic version of the TSP. The tests
described in [18], although were obtained using a different
approach and implementation technology, also support such
a claim.

The ACC was used to coordinate the work of standard
Ant Colonies. It is, however, possible to apply the ACC to
other related problems, in particular more specific versions
of the ACO. Any success on that area would be a proof of
the validity of the Ant Colony Communities idea.
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ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
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