
Vietnam J Comput Sci (2016) 3:71–79
DOI 10.1007/s40595-016-0058-0

REGULAR PAPER

A software reliability model with time-dependent fault detection
and fault removal

Mengmeng Zhu1 · Hoang Pham1

Received: 11 February 2016 / Accepted: 12 February 2016 / Published online: 20 April 2016
© The Author(s) 2016. This article is published with open access at Springerlink.com

Abstract The common assumption for most existing
software reliability growth models is that fault is indepen-
dent and can be removed perfectly upon detection. However,
it is often not true due to various factors including software
complexity, programmer proficiency, organization hierarchy,
etc. In this paper, we develop a software reliability model
with considerations of fault-dependent detection, imperfect
fault removal and the maximum number of faults software.
The genetic algorithm (GA) method is applied to estimate
the model parameters. Four goodness-of-fit criteria, such as
mean-squared error, predictive-ratio risk, predictive power,
and Akaike information criterion, are used to compare the
proposed model and several existing software reliability
models. Three datasets collected in industries are used to
demonstrate the better fit of the proposed model than other
existing software reliability models based on the studied cri-
teria.

Keywords Non-homogeneous Poisson process (NHPP) ·
Software reliability growth · Fault-dependent detection ·
Imperfect fault removal · The maximum number of software
faults

1 Introduction

Reliability research has been studied over the past few
decades. Also, considerable research has been done in the
hardware reliability field. The increasing significant impact
on software has shifted our attention to software reliability,

B Hoang Pham
hopham@rci.rutgers.edu

1 Department of Industrial and Systems Engineering,
Rutgers University, New Brunswick, NJ 08854, USA

owing to the fact that software developing cost and software
failure penalty cost are becoming major expenses during the
life cycle of a complex system for a company [1]. Software
reliability models can provide quantitative measures of the
reliability of software systems during software development
processes [2].Most software bugs only produce inconvenient
experiences to customers, but some may result in a serious
consequence. For instance, because of a race condition in
General Energy’s monitoring system, the 2003 North Amer-
ica blackout was triggered by a local outage. From the latest
report, Toyota’s electronic throttle control system (ETCS)
had bugs that could cause unintended acceleration. At least
89 people were killed as a result.

Software reliability is a significant measurement to char-
acterize software quality and determine when to stop testing
and release software upon the predetermined objectives [3].
A great number of software reliability models also have
been proposed in the past few decades to predict soft-
ware failures and determine the release time based on a
non-homogeneous Poisson process (NHPP). Some software
reliability models consider perfect debugging, such as [4–7];
some assume imperfect debugging [6–10]. The fault detec-
tion rate, described by a constant [4,6,11] or by learning
phenomenon of developers [3,8,12–16], is also studied in
literature. However, lots of difficulties are also generated
from model assumptions when applying software reliability
models on real testing environment. These non-significant
assumptions have limited their usefulness in the real-world
application [17]. Formost software reliabilitymodels in liter-
ature, software faults are assumed to be removed immediately
and perfectly upon detection [9,17,18]. Additionally, soft-
ware faults are assumed to be independent for simplicity
reason. Several studies including [3,19,20] incorporate fault
removal efficiency and imperfect debugging into the model-
ing consideration. Also, Kapur et al. [21] consider that the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40595-016-0058-0&domain=pdf

72 Vietnam J Comput Sci (2016) 3:71–79

delay of the fault removal efficiency depends on their criti-
cality and urgency in the software reliability modeling in the
operation phase. However, we have not seen any research
incorporate fault-dependent detection and imperfect fault
removal based on our knowledge.

Why do we need to address imperfect fault removal
and fault-dependent detection in the software development
process? Firstly, in practice, the software debugging process
is very complex [14,22]. When the software developer needs
to fix the detected fault, he/she will report to the management
team first, get the permission to make a change, and submit
the changed code to fix a fault [17]. In most cases, we assume
that the submitted fix at the first attempt is able to perfectly
remove the faults. But this perfect fault removal assumption
is not realistic due to the complexity of coding and different
domain knowledge level for the software developer, since
domain knowledge has become a significant factor in the
software development process based on the newly revisited
software environmental survey analysis [14].

Moreover, the proficiency of domain knowledge has a
direct impact on the fault detection and removal efficiency
[14]. If the submitted fix cannot completely remove the
fault, the number of actual remaining errors in the software
is higher than what we estimated. These remaining faults
contained in the software, indeed, affect the quality of the
product. The company will release the software based on
the scheduled date and pre-determined software reliability
value; however, the actual quality of the software product is
not as good as what we expect. Hence, the amount of com-
plaints from the end-user may be above expectations, and
the penalty cost to fix the faults through an operation phase
will be much higher than in an in-house environment [23].
In consequence, the software organization has to release the
updated version of the software product earlier than deter-
mined, if they want to lower the fixing cost of software faults
existing in the current release. Therefore, it is plausible to
incorporate imperfect fault removal into software reliability
modeling for consideration in the long run.

Furthermore, software faults can be classified depending
on thekindof failures they induce [24]. For instance,Bohrbug
is defined as a design error and always causes a software fail-
ure when the operation system is functioning [25]. Bohrbugs
are easy to be detected and removed in the very early stage
of software developing or testing phase [26]. In contrast, a
bug that is complex and obscure and may cause chaotic or
even non-deterministic behaviors is called Mandelbug [27].
Often, Mandelbug is triggered by a complex condition [28],
such as an interaction of hardware and software, or a different
application field. Thus, it is difficult to remove or completely
remove Mandelbugs in the testing phase due to the non-
deterministic behaviors of Mandelbugs [26]. Most impor-
tantly, the detection of this type of fault is not independent
and relies on the previously detected software errors. Hence,

including fault-dependent detection is desirable in model
development. Of course, imperfect fault removal provides
more realistic explanation for this type of software faults.

What is the maximum number of software faults and why
dowe incorporate them in this study?Due to the fact that soft-
ware fault removal is not perfect in reality and new faults will
be introduced in debugging, there is always a portion of soft-
ware faults left in the software product after every debugging
effort. These non-removed software faults and newly gener-
ated faults, which are caused by the interaction of new faults
and existing faults, cumulate in the current version and will
be carried into the next phase. Hence, the maximum number
of software faults is defined in this paper, also an unknown
parameter, which can be interpreted as themaximum number
of faults that the software product can carry while under the
designed function. If the number of faults that the software
contains is larger than the maximum number, the software
product will stop the designed function.

In this paper, we propose a model with considerations of
fault-dependent detection, imperfect fault removal, the max-
imum number of software faults and logistic failure growth
to predict software failures and estimate software reliability
during the software development process.

Section 2 describes the software reliability modeling
development and the interpretation of practical application.
Section 3 states four goodness-of-fit criteria. Section 4 com-
pares the proposed model with existing software reliability
models based on the goodness-of-fit criteria described in
Sect. 3, using three datasets collected from real software
applications. Section 5 draws the conclusion of the proposed
model and points out the future research with the application
of the proposed model.

Notation N (t) The total number of software failures by
time t based on NHPP.
m(t) The expected number of software failures by time
t, i.e., m(t) = E[N (t)].
a(t) Fault content function.
L The maximum number of faults software is able to
contain.
b(t) Software fault detection rate per fault per unit of
time.
c(t) Non-removed error rate per unit of time.
λ(t) Failure intensity function.
R(x |t) Software reliability function by time x given a
mission time t .

2 Software reliability modeling

It is commonly assumed that the software failure intensity is
proportional to the remaining faults contained in the software
inmost existingNHPPmodels.Moreover, software faults are
independent and can be removed perfectly upon detection.

123

Vietnam J Comput Sci (2016) 3:71–79 73

Table 1 Summary of software reliability models

Model name Model type MVF (m(t))

Goel–Okumoto (G–O) model
[4]

Concave m(t) = a(1 − ebt)

Delayed S-shaped model [6] S-shaped m(t) = a(1 − (1 + bt)e−bt)

Inflection S-shaped model [7] S-shaped m(t) = a(1−e−bt)

1+βe−bt

Yamada imperfect debugging
model [29]

Concave m(t) = a
[
1 − e−bt

] [
1 − α

b

] + αat

PNZ model [8] S-shaped and concave m(t) = a[(1−e−bt)(1− α
b)+αt]

1+βe−bt

Pham-Zhang model [30] S-shaped and concave m(t) = 1
1+βe−bt [(c + a)(1 − e−bt) − ab

b−α
(e−αt − e−bt)]

Dependent-parameter model
[31]

S-shaped and concave m(t) = α(1 + γ t)(γ t + e−γ t − 1)

Dependent-parameter model
with m(t0) �= 0, t0 �= 0 [32]

S-shaped and concave m(t) = m0(
γ t+1
r t0+1)e−γ (t−t0) + α(γ t + 1)[γ t − 1 + (1 − γ t0)e−γ (t−t0)]

Loglog fault-detection rate
model [18]

Concave m(t) = N (1 − e−(at
b−1))

Proposed model S-shaped and concave m(t) = β+ebt
b

L(b−c) [ebt−ect]+ 1+β
m0

ect

Therefore, a general NHPP software mean value function
(MVF) by considering time-dependent failure detection rate
is given as

m(t) = N

⎡

⎣1 − e
− t∫

0
b(x)dx

⎤

⎦ . (1)

However, nowadays, the above softwaremean value function
is not adequate to describe more complex software product.
In reality, software faults cannot be completely removedupon
detection due to the programmer’s level of proficiency and
the kind of faults. Some software faults may not appear in the
testing phase, but could manifest in the operation field. The
detection for software faults is not independent, but depends
on the previously detected errors. Debugging is an error-
removal process, as well as an error-induction process. In
other words, we can treat it as a fault-growing process, since
all the leftover (unremovable) faults cumulate in the software.
Hence, amaximumnumber of software faults are introduced.

An NHPP software reliability model, which not only con-
siders fault-dependent detection and imperfect fault removal
process, but also takes into account the maximum number of
faults in the software, is proposed in this paper. The assump-
tions for this proposed NHPP model are given as follows:

1. The software failure process is a non-homogeneous Pois-
son process (NHPP).

2. This is a fault-dependent detection process.
3. Fault detection is a learning curve phenomenon process.
4. Fault is not removed perfectly upon detection.

5. The debugging processmay introduce new errors into the
software. This is an imperfect debugging process, but the
maximum faults contained in the software is L .

6. The software failure intensity λ(t) is explained as the
percentage of the removed errors in the software product.

7. The non-removed software error rate is assumed to be a
constant.

An NHPP software reliability model with fault-dependent
detection, imperfect fault removal and the maximum number
of faults can be formulated as follows:

dm(t)

dt
= b(t)m(t)

[
1 − m(t)

L

]
− c(t)m(t). (2)

The marginal condition for the above equation is given as

m(t0) = m0, m0 > 0. (3)

Usually, the software tester performs a pre-analysis test to
eliminate the most trivial errors before officially starting the
testing phase. Thus, most of the existing models consider
m0 = 0. In this paper, we assume m0 > 0 by taking into
consideration those trivial errors.

The general solution for (2) can be easily obtained:

m(t) = e∫tt0 (b(τ)−c(τ))dτ

1
L ∫tt0 e∫τ

t0
(b(s)−c(s))dsb(τ)dτ + 1

m0

, (4)

where m(t) represents the expected number of software fail-
ures detected by time t , L denotes the maximum number of
software faults, b(t) is the fault detection rate per individual

123

74 Vietnam J Comput Sci (2016) 3:71–79

Table 2 Phase I system test data [34]

Week index Exposure time
(cumulative system
test hours)

Fault Cumulative fault

1 356 1 1

2 712 0 1

3 1068 1 2

4 1424 1 3

5 1780 2 5

6 2136 0 5

7 2492 0 5

8 2848 3 8

9 3204 1 9

10 3560 2 11

11 3916 2 13

12 4272 2 15

13 4628 4 19

14 4984 0 19

15 5340 3 22

16 5696 0 22

17 6052 1 23

18 6408 1 24

19 6764 0 24

20 7120 0 24

21 7476 2 26

fault per unit of time and c(t) represents the non-removed
error rate per unit of time.

(1 − m(t)
L) indicates the proportion of available resources

that can be used in the future, which can also be inter-
preted as the proportion of software faults detected in every

debugging effort. b(t)m(t)
[
1 − m(t)

L

]
is the percentage of

detected dependent errors by time t . c(t)m(t) represents the

non-removed errors by time t . Hence, b(t)m(t)
[
1 − m(t)

L

]
−

cm(t) represents the proportion of the removed errors in the
software by time t . λ(t) = dm(t)

dt is the failure intensity func-
tion for the whole software system by time t .

Assume that fault detection is a learning process which
can be addressed in Eq. (5) and non-removed rate c(t) is a
constant,

b(t) = b

1 + βe−bt
, b > 0, β > 0, (5)

c(t) = c, c > 0. (6)

Substitute (5) and (6) into (4), we obtain

m(t) = β + ebt

b
L(b−c)

[
ebt − ect

] + 1+β
m0

ect
. (7)

Table 3 Phase II system test data [34]

Week index Exposure time
(cumulative system
test hours)

Fault Cumulative fault

1 416 3 3

2 832 1 4

3 1248 0 4

4 1664 3 7

5 2080 2 9

6 2496 0 9

7 2912 1 10

8 3328 3 13

9 3744 4 17

10 4160 2 19

11 4576 4 23

12 4992 2 25

13 5408 5 30

14 5824 2 32

15 6240 4 36

16 6656 1 37

17 7072 2 39

18 7488 0 39

19 7904 0 39

20 8320 3 42

21 8736 1 43

The software reliability function within (t, t + x) based on
the proposed NHPP is given by

R(x |t) = e−[m(t+x)−m(t)]. (8)

Table 1 summarizes the features and mean value function of
the proposed model and existing models.

3 Parameter estimation and goodness-of-fit criteria

We apply the genetic algorithm (GA) to obtain the parame-
ter estimates of the proposed model and other models as
mentioned in Table 1. To compare the goodness of fit for
all models, we apply four criteria in this paper described as
follows. The mean-squared error (MSE) refers to the mean
value of the deviation between the prediction value and the
observation value as follows:

MSE =
∑n

i=1(m̂(ti) − yi)2

n − N
,

where m̂(ti) represents the estimated expected number of
faults detected by time t; yi represents the observation value;

123

Vietnam J Comput Sci (2016) 3:71–79 75

Table 4 Parameter estimation
and comparison (Phase I system
test data)

Model name MSE PRR PP AIC Parameter estimate

Goel–Okumoto (G–O) 5.944 1.818 8.165 66.211 â = 62.0395
b̂ = 0.0243

Delayed S-shaped 1.609 14.546 0.981 64.230 â = 44.221
b̂ = 0.1007

Inflection S-shaped 0.709 1.714 0.512 63.938 â = 27.247
b̂ = 0.269
β̂ = 17.255

Yamada imperfect debugging 2.602 0.840 0.757 66.710 â = 1.8643
b̂ = 0.25
α̂ = 0.8418

PNZ Model 2.479 2.954 0.690 68.611 â = 1.5556
b̂ = 0.3239
α̂ = 0.9689
β̂ = 0.9999

Pham-Zhang model 3.429 1.982 1.187 70.617 â = 13.394
b̂ = 0.2671
α̂ = 0.5113
β̂ = 9.0131
ĉ = 12.0336

Dependent-parameter model 15.741 287.191 3.768 77.541 α̂ = 0.0872
γ̂ = 0.9523

Dependent-parameter model
with m0 �= 0, t0 �= 0

13.477 2.136 1.189 77.621 α̂ = 6206
γ̂ = 0.0048
t0 = 1
m0 = 1

Loglog fault-detection rate
model

71.241 11.736 15.475 93.592 N̂ = 15.403
â = 1.181
b̂ = 0.567

Proposed model 0.630 0.408 0.526 65.777 m̂0 = 1
L̂ = 49.7429
β̂ = 0.2925
b̂ = 0.6151
ĉ = 0.292

and n and N are the number of observations and the number
of parameters, respectively.

The predictive-ratio risk (PRR) represents the distance of
the model estimates from the actual data against the model
estimates and is defined as [33]:

PRR =
n∑

i=1

(
m̂(ti) − yi

m̂(ti)

)2

.

It is noticeable that the PRR value will assign a larger penalty
to a model which has underestimated the cumulative number
of failures.

The predictive power (PP) measures the distance of the
model estimates from the actual data against the actual data,
which is defined as [34]:

PP =
n∑

i=1

(
m̂(ti) − yi

yi

)2

.

To compare the model’s ability in terms of maximizing the
likelihood function while considering the degrees of free-
dom, Akaike information criterion (AIC) is applied.

AIC = −2 log |MLF| + 2 ∗ N ,

where N represents the number of parameters in the model
and MLF is the maximum value of the model’s likelihood
function.

For all four goodness-of-fit criteria described above, the
smaller the value, the better is the goodness of fit for the
software reliability model.

4 Model evaluation and comparison

4.1 Software failure data description

Telecommunication system data reported by Zhang in 2002
[34] are applied to validate the proposed model. System test

123

76 Vietnam J Comput Sci (2016) 3:71–79

Table 5 Parameter estimation
and comparison (Phase II
system test data)

Model name MSE PRR PP AIC Parameter estimate

Goel–Okumoto (G–O) 6.607 0.687 1.099 74.752 â = 98295
b̂ = 5.2E − 8

Delayed S-shaped 3.273 44.267 1.429 77.502 â = 62.3
b̂ = 2.85E − 4

Inflection S-shaped 1.871 5.938 0.895 73.359 â = 46.6
b̂ = 5.78E − 4
β̂ = 12.2

Yamada imperfect
debugging

4.982 4.296 0.809 78.054 â = 1.5
b̂ = 1.1E − 3
α̂ = 3.8E − 3

PNZ Model 1.994 6.834 0.957 75.501 â = 45.99
b̂ = 6.0E − 4
α̂ = 0
β̂ = 13.24

Pham-Zhang model 2.119 6.762 0.952 77.502 â = 0.06
b̂ = 6.0E − 4
α̂ = 1.0E − 4
β̂ = 13.2
ĉ = 45.9

Dependent-parameter model 43.689 601.336 4.530 101.386 α̂ = 3.0E − 6
γ̂ = 0.49

Dependent-parameter model
with m0 �= 0, t0 �= 0

35.398 2.250 1.167 87.667 α̂ = 890996
γ̂ = 1.2E − 6
t0 = 832
m0 = 4

Loglog fault-detection rate
model

219.687 13.655 4.383 114.807 N̂ = 231.92
â = 1.019
b̂ = 0.489

Proposed model 1.058 0.163 0.144 68.316 m̂0 = 3
L̂ = 59.997
β̂ = 0.843
b̂ = 0.409
ĉ = 0.108

data consist of two phases of test data. In each phase, the sys-
tem records the cumulative number of faults by each week.
356 system test hours were observed in each week for Phase
I data, as shown in Table 2; 416 system test hours were
observed in each week for Phase II data, as shown in Table 3.
Parameter estimate was carried out by the GA method. To
provide a better comparison of our proposed model with the
other existing models, we analyzed Phase I as well as Phase
II system test data in this section.

4.2 Model comparison

In the proposed model, when t = 0, the initial number of
faults in the software satisfies 0 < m0 ≤ y1, where y1 is the
number of observed failures at time t = 1; at the same time,
m0 must be an integer. The interpretation of this constraint is
that the software tester often completes pre-analysis to elim-
inate trivial errors existing in the software before officially
starting testing. The cause of these trivial errors could be

human mistakes or other simple settings. Since we consider
the maximum number of faults that the software is able to
contain in the modeling, these eliminated trivial errors will
be counted into the total number of faults.

Tables 4 and 5 summarize the results of the estimated
parameters and corresponding criteria value (MSE, PRR, PP,
AIC) for the proposedmodel and other existingmodels. Both
two-phase system test data present as an S-shaped curve;
therefore, existing models such as Goel–Okumoto model is
not able to perfectly capture the characteristic of the two
system test datasets.

For Phase I system test data, the estimated parameters
are m̂0 = 1, L̂ = 49.7429, β̂ = 0.2925, b̂ = 0.6151, ĉ =
0.292. As seen in Table 4, MSE and PRR values for the
proposed model are 0.630 and 0.408, which are the smallest
among all ten models listed here. Inflection S-shaped model
has the smallest PP value. However, the PP value for the
proposed model is 0.526, which is only slightly higher than
0.512. Moreover, the PRR value for the inflection S-shaped
model is much higher than that of the proposed model. The

123

Vietnam J Comput Sci (2016) 3:71–79 77

Fig. 1 Comparison of actual
cumulative failures and
cumulative failures predicted by
software reliability models
(Phase I system test data)

0

5

10

15

20

25

30

35

0 5 10 15 20

Actual Cum. Failures

Proposed Model

G-O

Delayed S-shaped

Inflec�on S-shaped

Yamada imperfect
debugging

PNZ

Pham-Zhang

Depedent parameter

Fig. 2 Comparison of actual
cumulative failures and
cumulative failures predicted by
software reliability models
(Phase II system test data)

0

10

20

30

40

50

60

0 5 10 15 20

Actual Cum.
Failures

Proposed Model

G-O

Delayed S-shaped

Inflec�on S-
shaped

Yamada imperfect
debugging

PNZ

Pham-Zhang

AIC value for the proposed model is 65.777, which is just
slightly higher than the smallest AIC value, 63.938. Thus,
we conclude that the proposed model is the best fit for Phase
I system test data compared with the other nine models in
Table 1. Figure 1 shows the comparison of actual cumulative
failures and cumulative failures predicted by ten software
reliability models.

For Phase II system test data, the estimated parameters are
m̂0 = 3, L̂ = 59.997, β̂ = 0.843, b̂ = 0.409, ĉ = 0.108.
The proposedmodel presents the smallestMSE, PRR, PP and
AIC value in Table 5. Thus, we conclude that the proposed
model is the best fitting for Phase II test data among all other

models in Table 1. Figure 2 plots the comparison of the actual
cumulative failures and cumulative failures predicted by ten
software reliability models.

Moreover, the proposed model provides the maximum
number of faults contained in software, for instance, L = 60
for Phase II test data. Assume that the company releases soft-
ware at week 21, 43 faults will be detected upon this time
based on the actual observations; however, the fault may not
be perfectly removed upon detection as discussed in Sect. 2.
The remaining faults shown in the operation field, mostly,
are Mandelbugs [27]. Given the maximum number of faults
in the software, it is very helpful for the software developer

123

78 Vietnam J Comput Sci (2016) 3:71–79

Table 6 Comparison of G-O, Zhang–Teng–Pham model and the proposed model using tandem computer software failure data

Testing time (weeks) CPUhours Defects found Predicted total
defects by G-O

Predicted total
defects by Zhang–
Teng–Pham model

Predicted total
defects by proposed
model

1 519 16 – – –

2 968 24 – – –

3 1430 27 – – –

4 1893 33 – – –

5 2490 41 – – –

6 3058 49 – – –

7 3625 54 – – –

8 4422 58 – – –

9 5218 69 – – –

10 5823 75 98 74.7 75.5

11 6539 81 107 80.1 80.8

12 7083 86 116 85.2 85.1

13 7487 90 123 90.1 88.5

14 7846 93 129 94.6 91.2

15 8205 96 129 98.9 93.2

16 8564 98 134 102.9 94.7

17 8923 99 139 106.8 95.8

18 9282 100 138 110.4 96.6

19 9641 100 135 111.9 97.2

20 10,000 100 133 112.2 97.6

Predicted MSE 1359.222 82.66 10.120

Predicted AIC 149.60 186.468 169.667

Predicted PRR 0.756 0.041 0.007

Predicted PP 1.395 0.050 0.006

to better predict the remaining errors and decide the release
time for the next version.

4.3 Software failure data from a tandem computer
project

Wood [35] provides software failure data including four
major releases of software products at Tandem Comput-
ers. Eight NHPP models were studied in Wood [35] and
it was found that the G-O models provided the best per-
formance in terms of goodness of fit. By fitting our model
into the same subset of data, from week 1 to week 9, we
predict the cumulative number of faults from week 10 to
week 20, and compare the results with the G-O model and
Zhang–Teng–Pham model [3]. Table 6 describes the pre-
dicted number of software failures from each model. The
AIC value for the proposed model is not the smallest AIC
value present in Table 6; however, we still conclude that
the proposed model is the best fit for this dataset, since the
other three criteria (MSE, PRR and PP) indicate that the
proposed model is significantly better than other models.

The GA method is applied here to estimate the parameter.
Parameter estimates for the proposed model are given as
m̂0 = 3, L̂ = 181, β̂ = 0.5001, b̂ = 0.602, ĉ = 0.274.

5 Conclusions

In this paper, we introduce a new NHPP software reliability
model that incorporates fault-dependent detection and imper-
fect fault removal, along with the maximum number of faults
contained in the software. In light of the proficiency of the
programmer, software faults classification, and programming
complexity, we consider software fault-dependent detection
and imperfect fault removal process. To our knowledge, how-
ever, not many researches have been done on estimating the
maximum number of faults that can be carried in a software.
We estimate the maximum number of faults in the software
considering fault-dependent detection and imperfect fault
removal to provide software measurement metrics, such as
remaining errors, failure rate and software reliability. Hence,
when to release the software and how to arrangemulti-release

123

Vietnam J Comput Sci (2016) 3:71–79 79

for a software product will be addressed in future research,
since we have obtained themaximum number of faults in this
study.

OpenAccess This article is distributed under the terms of theCreative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Pham, H.: Software reliability and cost models: perspectives, com-
parison, and practice. Eur. J. Oper. Res. 149(3), 475–489 (2003)

2. Pham, H., Zhang, X.: NHPP software reliability and cost models
with testing coverage. Eur. J. Oper. Res. 145, 443–454 (2003)

3. Zhang, X., Teng, X., Pham, H.: Considering fault removal effi-
ciency in software reliability assessment. In: IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans,
vol. 33, no. 1, pp. 114–120 (2003)

4. Goel, A.L., Okumoto, K.: Time-dependent error-detection rate
model for software reliability and other performance measures.
IEEE Trans. Reliab. 28(3), 206–211 (1979)

5. Hossain, S.A., Dahiya, R.C.: Estimating the parameters of a non-
homogeneous Poisson-processmodel for software reliability. IEEE
Trans. Reliab. 42(4), 604–612 (1993)

6. Ohba, M., Yamada, S.: S-shaped software reliability growth
models. In: International Colloquium on Reliability and Maintain-
ability, 4th, Tregastel, France, pp. 430–436 (1984)

7. Ohba, M.: Inflection S-shaped software reliability growth model.
Stochastic Models in Reliability Theory, pp. 144–162. Springer
(1984)

8. Pham,H.,Nordmann, L., Zhang,X.:A general imperfect-software-
debugging model with S-shaped fault-detection rate. IEEE Trans.
Reliab. 48(2), 169–175 (1999)

9. Xie, M., Yang, B.: A study of the effect of imperfect debugging on
software development cost. IEEE Trans. Softw. Eng. 29(5), 471–
473 (2003)

10. Pham, H., Zhang, X.: An NHPP software reliability model and its
comparison. Int. J. Reliab. Qual. Saf. Eng. 4(3), 269–282 (1997)

11. Pham, L., Pham, H., et al.: Software reliability models with time-
dependent hazard function based on Bayesian approach. IEEE
Trans. Syst. Man Cybern. Part A Syst. Hum. 30(1), 25–35 (2000)

12. Pham, H., Wang, H.: A quasi-renewal process for software reli-
ability and testing costs. In: IEEE Transaction on Systems, Man
and Cybernetics, Part A: Systems and Humans, vol. 31, no. 6, pp.
623–631 (2001)

13. Jones, C.: Software defect-removal efficiency. Computer 29(4),
94–95 (1996)

14. Zhu, M., Zhang, X., Pham, H.: A comparison analysis of environ-
mental factors affecting software reliability. J. Syst. Softw. 109,
150–160 (2015)

15. Pham, H., Pham, D.H., Pham, H.: A new mathematical logistic
model and its applications. Int. J. Inf. Manag. Sci. 25(2), 79–99
(2014)

16. Fang, C.-C., Chun-Wu, Y.: Effective confidence interval estimation
of fault-detection process of software reliability growth models. J.
Syst. Sci (2015). doi:10.1080/00207721.2015.1036474

17. Ho, S.L., Xie, M., Goh, T.N.: A study of the connectionist mod-
els for software reliability prediction. Comput. Math. Appl. 46(7),
1037–1045 (2003)

18. Pham, H.: Loglog fault-detection rate and testing coverage soft-
ware reliability models subject to random environments. Vietnam
J. Comput. Sci. 1(1), 39–45 (2014)

19. Zhang, X., Pham, H.: Software field failure rate prediction before
software deployment. J. Syst. Softw. 79(3), 291–300 (2006)

20. Zhang, X., Jeske, D.R., Pham, H.: Calibrating software reliability
models when the test environment does not match the user envi-
ronment. Appl. Stoch. Models Bus. Ind. 18(1), 87–99 (2002)

21. Kapur, P.K., Gupta, A., Jha, P.C.: Reliability analysis of project and
product type software in operational phase incorporating the effect
of fault removal efficiency. Int. J. Reliab. Qual. Saf. Eng. 14(3),
219–240 (2007)

22. Lyu, M.R.: Handbook of Software Reliability Engineering. vol.
222, IEEE computer society press (1996)

23. Grottke, M., Trivedi, K.S.: Fighting bugs: Remove, retry, replicate,
and rejuvenate. Computer 40(2), 107–109 (2007)

24. Grottke, M., Trivedi, K.S.: A classification of software faults. J.
Reliab. Eng. Assoc. Jpn. 27(7), 425–438 (2005)

25. Shetti, N.M.: Heisenbugs and Bohrbugs: Why are they different.
Techn. Ber. Rutgers, The State University of New Jersey (2003)

26. Alonso, J., Grottke, M., Nikora, A.P., Trivedi, K.S.: An empiri-
cal investigation of fault repairs and mitigations in space mission
system software. In: 2013 43rd Annual IEEE/IFIP International
Conference on Dependable Systems and Networks (DSN), pp. 1–8
(2013)

27. Vaidyanathan, K., Trivedi, K.S.: Extended classification of soft-
ware faults based on aging. In: IEEE International Symposium on
Software Reliability Engineering, ISSRE (2001)

28. Carrozza, G., Cotroneo, D., Natella, R., Pietrantuono, R., Russo,
S.: Analysis and prediction of mandelbugs in an industrial soft-
ware system. In: IEEE Sixth International Conference on Software
Testing, Verification and Validation, pp. 262–271 (2013)

29. Pham, H.: A new software reliability model with Vtub-shaped
fault-detection rate and the uncertainty of operating environments.
Optimization 63(10), 1481–1490 (2014)

30. Chang, I.H., et al.: A testing-coverage software reliability model
with the uncertainty of operating environments. Int. J. Syst. Sci.
Oper. Logist. 1(4), 220–227 (2014)

31. Yamada, S., Tokuno, K., Osaki, S.: Imperfect debugging models
with fault introduction rate for software reliability assessment. Int.
J. Syst. Sci. 23(12), 2241–2252 (1992)

32. Pham, H.: An imperfect-debugging fault-detection dependent-
parameter software. Int. J. Autom. Comput. 4(4), 325–328 (2007)

33. Pham, H., Deng, C.: Predictive-ratio risk criterion for selecting
software reliabilitymodels. In: Proceedings of the 9th International
Conference on Reliability and Quality in Design, pp. 17–21 (2003)

34. Pham, H.: System Software Reliability. Springer (2007)
35. Wood, A.: Predicting software reliability. Computer 29(11), 69–77

(1996)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1080/00207721.2015.1036474

	A software reliability model with time-dependent fault detection and fault removal
	Abstract
	1 Introduction
	2 Software reliability modeling
	3 Parameter estimation and goodness-of-fit criteria
	4 Model evaluation and comparison
	4.1 Software failure data description
	4.2 Model comparison
	4.3 Software failure data from a tandem computer project

	5 Conclusions
	References

