
Vietnam J Comput Sci (2016) 3:15–34
DOI 10.1007/s40595-015-0051-z

REGULAR PAPER

Language representability of finite place/transition Petri nets

Roberto Gorrieri1

Received: 9 May 2015 / Accepted: 8 October 2015 / Published online: 24 October 2015
© The Author(s) 2015. This article is published with open access at Springerlink.com

Abstract Finite-net multi-CCS is a CCS-like calculus
which is able to model atomic sequences of actions and,
together with parallel composition, alsomulti-party synchro-
nization. This calculus is equipped with a labeled transition
system semantics and also with an unsafe P/T Petri net
semantics, which is sound w.r.t. the transition system seman-
tics. For any process p of the calculus, the net associated
to p by the semantics has always a finite number of places,
but it has a finite number of transitions only for so-called
well-formed processes. The main result of the paper is that
well-formed finite-net multi-CCS processes are able to rep-
resent all finite, statically reduced, P/T Petri nets.

Keywords Operational semantics · Process algebra · Petri
nets

1 Introduction

Finite-state labeled transition systems (i.e., LTSswith finitely
many states and transitions) can be expressed by the CCS
[25] sub-calculus of finite-state processes, i.e., the sequen-
tial processes generated from the empty process 0, prefixing
μ.p, alternative composition p1 + p2 and a finite number
of process constants C , each one equipped with a defining

equation of the formC
def= p. More precisely, the semantics of

any finite-state CCS process is a finite-state LTS and, con-
versely, given a reduced, finite-state LTS TS, it is possible
to define a finite-state CCS process pTS such that the opera-
tional semantics for pTS generates an LTS isomorphic to TS.

B Roberto Gorrieri
roberto.gorrieri@unibo.it

1 Dipartimento di Informatica, Scienza e Ingegneria, Università
di Bologna, Mura A. Zamboni, 7, 40127 Bologna, Italy

Hence, this famous result of Milner offers a process calcu-
lus to represent, up to isomorphism, all and only finite-state
LTSs.

This paper addresses the same language representabil-
ity problem for finite labeled Place/Transition Petri nets
without capacity bounds on places. We single out a frag-
ment (called finite-net processes) of an extension of CCS
(called multi-CCS, fully described in [19]), such that not
only all processes of this fragment generate finite P/T nets,
but also for any finite (statically reduced) P/T net we can
find a term of the calculus that generates it. This solves the
open problem of providing a process calculus representing
finite P/T Petri nets, and opens interesting possibilities of
cross-fertilization between the areas of Petri nets and process
calculi. In particular, it is now possible, on the one hand, (i)
to define any (statically reduced) finite P/T net composition-
ally and (ii) to study algebraic laws for net-based behavioral
equivalences (such as net isomorphism) over such a class
of systems; on the other hand, it is now possible (iii) to
reuse all the techniques and decidability results available for
finite P/T nets [12] also for this fragment of multi-CCS, as
well as (iv) to continue the study of non-interleaving seman-
tics, typical of Petri nets (e.g., [11,27,29]), also for process
algebras (initiated in [8,28]), in particular for finite-net
multi-CCS.

Finite-net multi-CCS includes the operator α.s of strong
prefixing (in contrast to normal prefixing μ.t), which states
that the visible action α is the initial part of an atomic
sequence that continues with the sequential process s. So, by
strong prefixing, a transition can be labeled with a sequence
of visible actions. This operator, introduced in [16,17] with a
slightly different semantics, is also at the base of multi-party
synchronization, obtained as an atomic sequence of binary
CCS-like synchronizations. In finite-net multi-CCS, paral-
lel composition may occur inside the body of a recursively

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40595-015-0051-z&domain=pdf

16 Vietnam J Comput Sci (2016) 3:15–34

defined constant C ; on the contrary, the restriction operator
(νa) is not allowed in the body of C . So, a finite-net process
may be represented as (νL)t , where L is a set of actions (if
L is empty, the restriction operator is not present) and t a
restriction-free process.

Weequip our calculuswith a net semantics that, differently
from the approach by Degano et al. [8–10,28], uses unsafe
P/T nets, as done in [13,15] for a CCS sub-calculus with-
out restriction, and in [5] for the π -calculus, where however
inhibitor arcs are used to model restriction. The extension of
the approach to restriction and strong prefixing is not triv-
ial and passes through the introduction of an auxiliary set of
restricted actions i.e., actions which are only allowed to syn-
chronize. We prove that the net semantics associates a P/T
net Net(p) to any finite-net multi-CCS process p, such that
Net(p) has finitely many places; if p is well-formed, then
Net(p) has also finitely many transitions; intuitively, process
p is well-formed if the sequences that p may generate via
strong prefixing have never the possibility to synchronize.
We also provide a soundness result, i.e., p and Net(p) are
bisimilar [25]. Finally, we also prove the representability the-
orem: for any finite, statically reduced, P/T net N , we can
find a well-formed, finite-net multi-CCS process pN such
that Net(pN) and N are isomorphic.

The paper is organized as follows. Section 2 contains some
basic background on LTSs and Petri nets. Section 3 intro-
duces the process calculus called finite-net multi-CCS, its
interleaving semantics in terms of LTSs, thewell-formedness
condition on its processes, and also the concurrent read-
ers/writers example. Section 4 defines the operational net
semantics for the calculus and presents the finiteness theorem
(for any well-formed process p, Net(p) is finite) and some
examples of net construction. Section 5 provides the sound-
ness theorem (p and Net(p) are bisimilar). Section 6 proves
the language expressibility theorem, i.e., the representabil-
ity theorem mentioned above. Finally, some conclusions are
drawn in Sect. 7, together with a comparison with related
literature, in particular with the earlier version [18] of this
paper. This paper is the full version of the extended abstract
[14].

2 Background

2.1 Labeled transition systems and bisimulation

Definition 1 A labeled transition system (or LTS for short)
is a triple T S = (Q, A, →) where

• Q is the countable set of states,
• A is the countable set of labels,
• →⊆ Q × A × Q is the transition relation.

In the following q
a−→q ′ denotes (q, a, q ′) ∈→. A rooted

LTS is a pair (TS, q0) where TS = (Q, A, →) is a transition
system and q0 ∈ Q is the initial state; a rooted LTS is usually
represented as TS = (Q, A,→, q0). A path from q1 to qn+1

is a sequence of transitions q1
a1−→q2

a2−→ . . . qn
an−→qn+1.

We say that q ′ is reachable from q if there exists a path from
q to q ′. A rooted LTS (Q, A,→, q0) is reduced if all the
states in Q are reachable from the initial state q0.

Definition 2 Given two LTSs TS1 = (Q1, A, →1) and
TS2 = (Q2, A, →2) a bisimulation between TS1 and TS2 is
a relation R ⊆ (Q1 × Q2) such that if (q1, q2) ∈ R then for
all a ∈ A

• ∀q ′
1 such that q1

a−→1 q ′
1, ∃ q ′

2 such that q2
a−→2 q ′

2 and
(q ′

1, q
′
2) ∈ R

• ∀q ′
2 such that q2

a−→2 q ′
2, ∃ q ′

1 such that q1
a−→1 q ′

1 and
(q ′

1, q
′
2) ∈ R.

If TS1 = TS2 we say that R is a bisimulation on TS1. Two
states q and q ′ are bisimilar, q ∼ q ′, if there exists a bisim-
ulation R such that (q, q ′) ∈ R.

2.2 Finite place/transition Petri nets

We recall some basic notions onfinite P/TPetri nets (see, e.g.,
[7,30–32] for an introduction). We use here a non-standard
notation that better suits our needs.

Definition 3 (Multisets) LetN be the set of natural numbers.
Given a set S, a finite multiset over S is a functionm : S → N

such that dom(m) = {s ∈ S |m(s) 	= 0} is finite. The set of
all finite multisets over S, Mfin(S), is ranged over by m. A
multiset m such that dom(m) = ∅ is called empty and is
denoted with ∅, with abuse of notation. We write m ⊆ m′
if m(s) ≤ m′(s) for all s ∈ S. The operator ⊕ denotes
multiset union: (m ⊕ m′)(s) = m(s) + m′(s). The operator

 denotes multiset difference: if m′ ⊆ m, then (m
 m′)(s)
= m(s) − m′(s). The scalar product of a natural j with m
is (j · m)(s) = j · (m(s)). A finite multiset m over a finite
set S = {s1, . . . , sn} can be represented also as k1 · s1 ⊕ k2 ·
s2 ⊕ · · · ⊕ kn · sn , where k j = m(s j) ≥ 0 for j = 1, . . . , n.

Definition 4 (Finite P/T Petri nets) A labeled finite Place/
Transition Petri net is a tuple N = (S, A, T), where

• S is the finite set of places, ranged over by s (possibly
indexed),

• A is the finite set of labels, ranged over by a (possibly
indexed), and

• T ⊆ (Mfin(S)\∅) × A × Mfin(S) is the finite set of
transitions, ranged over by t (possibly indexed), such
that ∀a ∈ A ∃ t ∈ T with l(t) = a.

123

Vietnam J Comput Sci (2016) 3:15–34 17

A finite multiset over the set S of places is called a mark-
ing. Given a markingm and a place s, we say that the place s
contains m(s) tokens. Given a transition t = (m, a,m′), we
use the notation •t to denote its pre-set m (which cannot be an
empty marking), t• for its post-set m′ and l(t) for its label a.
Hence, transition t can be also represented as •t l(t)−→t•. AP/T
system is a tuple N (m0) = (S, A, T,m0), where (S, A, T) is
a P/T net and m0 is a finite multiset over S, called the initial
marking.

Our definition of T as a set of triples ensures that the
net is transition simple: for any t1, t2 ∈ T , if •t1 = •t2
and t•1 = t•2 and l(t1) = l(t2), then t1 = t2. We are also
assuming that a transition has a nonempty pre-set. These are
the only constraints we impose over the definition of P/T
net. The additional condition that A is covered by T (i.e.,
∀a ∈ A ∃ t ∈ T with label a) is just for economy.

Definition 5 (Net isomorphism) Two P/T nets N1 = (S1,
A, T1) and N2 = (S2, A, T2) are isomorphic if there exists
a bijection f : S1 → S2, homomorphically extended to
markings, such that (m, a,m′) ∈ T1 iff (f (m), a, f (m′)) ∈
T2. Two systems N1(m1) and N2(m2) are isomorphic if N1

and N2 are isomorphic by f , which, additionally, preserves
the initial markings: f (m1) = m2.

Definition 6 Given a labeled P/T net N = (S, A, T), we say
that a transition t is enabled at marking m, written as m[t〉,
if •t ⊆ m. The execution of t enabled at m produces the
marking m′ = (m
 •t) ⊕ t•, denoted by m[t〉m′. The set
of markings reachable fromm, denoted by [m〉, is defined as
the least set such that

• m ∈ [m〉 and
• if m1 ∈ [m〉 and, for some transition t ∈ T , m1[t〉m2,

then m2 ∈ [m〉.

Given a P/T system N (m0) = (S, A, T,m0), we say that
m is reachable ifm is reachable from the initial markingm0.
A P/T system N (m0) = (S, A, T,m0) is said safe if for all
m ∈ [m0〉 and for all s ∈ S we have that m(s) ≤ 1.

Definition 7 Given a P/T system N (m0) = (S, A, T,m0),
the interleaving marking graph of N (m0) is the rooted LTS
IMG(N(m0)) = ([m0〉, A,→,m0), where m0 is the initial
state and the transition relation→⊆ Mfin(S)× A×Mfin(S)

is defined by m
a−→m′ if and only if there exists a transition

t ∈ T such that m[t〉m′ and l(t) = a. The P/T systems
N1(m1) and N2(m2) are interleaving bisimilar—denoted by
N1(m1) ∼ N2(m2)—if andonly if there exists a bisimulation
R ⊆ [m1〉 × [m2〉 such that (m1,m2) ∈ R.

Definition 8 (Dynamically reduced)AP/T system N (m0) =
(S, A, T,m0) is dynamically reduced if

• ∀s ∈ S ∃m ∈ [m0〉 such that m(s) ≥ 1, and
• ∀t ∈ T ∃m,m′ ∈ [m0〉 such that m[t〉m′.

Definition 9 (Statically reduced) Given a finite P/T net N =
(S, A, T), we say that a transition t is statically enabled by
a set of places S′ ⊆ S, denoted by S′�t〉, if dom(•t) ⊆ S′.
Given two sets of places S1, S2 ⊆ S, we say that S2 is sta-
tically reachable in one step from S1 if there exists t ∈ T ,
such that S1�t〉, dom(t•) � S1 and S2 = S1 ∪ dom(t•);
this is denoted by S1

t�⇒ S2. The static reachability relation
�⇒∗ ⊆ ℘(S)fin × ℘(S)fin is the least relation such that

• S1 �⇒∗ S1 and
• if S1 �⇒∗ S2 and S2

t�⇒ S3, then S1 �⇒∗ S3.

A set of places Sk ⊆ S is the largest set statically reachable
from S1 if S1 �⇒∗ Sk and for all t ∈ T such that Sk�t〉, we
have that dom(t•) ⊆ Sk .

Given a finite P/T system N (m0) = (S, A, T,m0),
we denote by �dom(m0)〉 the largest set of places stat-
ically reachable from dom(m0), i.e., the largest Sk such
that dom(m0) �⇒∗ Sk . A finite P/T net system N (m0) =
(S, A, T,m0) is statically reduced if all the places are stati-
cally reachable from the places in the initial marking, i.e., if
�dom(m0)〉 = S.

Note that if N (m0) = (S, A, T,m0) is statically reduced,
then all the transitions in T are statically enabled by S.
Note also that if N (m0) = (S, A, T,m0) is dynamically
reduced, then it is also statically reduced. However, there
are statically reduced P/T systems that are not dynamically
reduced. For instance, the statically reduced P/T system
N (s1) = ({s1, s2, s3}, {a, b}, {(s1, a, s2), (2 · s1, b, s3)}, s1)
cannot reach dynamically place s3.

3 Finite-net multi-CCS

Now we present finite-net multi-CCS: first its syntax, then
the LTS operational semantics, followed by the definition of
well-formedness; finally, an example.

3.1 Syntax

Let L be a denumerable set of names (inputs), ranged over
by a, b, Let L be the set of co-names (outputs), ranged
over by a, b, The set L ∪ L, ranged over by α, β, . . ., is
the set of visible actions. With α we mean the complement
of α, assuming that α = α. Let Act = L∪L∪ {τ }, such that
τ /∈ L ∪ L, be the set of actions, ranged over by μ. Action
τ denotes an invisible, internal activity. Let C be a denu-
merable set of process constants, disjoint from Act, ranged
over by A, B,C, The process terms are generated by the
following abstract syntax

123

18 Vietnam J Comput Sci (2016) 3:15–34

s ::= 0 | μ.t | α.s | s + s

t ::= s | t | t | C
p ::= t | (νa)p,

wherewe are using three syntactic categories: s, to range over
sequential processes (i.e., processes that start sequentially),
t , to range over restriction-free processes, and, finally p, to
range over-restricted processes.

As for CCS [25], term 0 is the terminated process, μ.t
is a normally prefixed process where action μ is first per-
formed and then t is ready. Note that s + s′ is the sequential
process obtained by the alternative composition of sequential
processes s and s′; hence we are restricting the use of + to
so-called guarded sum. Term t | t ′ is the parallel composition
of t and t ′. (νa)p is process p where the name a is made pri-
vate by applying the restriction operator over a. Finally, C is

a process constant, equipped with a defining equation C
def= t ,

i.e., the body of a constant must be a restriction-free process.
The only new operator of the calculus is strong prefixing:
α.s is a strongly prefixed process, where α is the first action
of a transaction that continues with the sequential process s
(provided that s can complete the transaction).

We sometimes use the syntactic convention of writing
(νa)((νb)p)) as (νa, b)p. Generalizing this convention, a
finite-net multi-CCS process may be represented as (νL)t ,
where L is a set of actions (if L is empty, the restriction
operator is not present) and t is a restriction-free process.

The set P of processes contains those terms which use
finitely many constants only and are, w.r.t. the constants they
use, closed (all possess a defining equation) and guarded (for

any defining equationC
def= t , any occurrence of a constant in t

is within a normally prefixed subprocessμ.t ′ of t).Pseq is the
set of sequential processes, i.e., those of syntactic category s.
Note that the restriction operator cannot occur syntactically
in any term ofPseq. With abuse of notation,P will be ranged
over by p, q, r, . . . (hence p may denote any kind of process
terms, also sequential ones), possibly indexed.

Definition 10 For any finite-net multi-CCS process p, the
set of its sequential subterms sub(p) is defined by means
of the auxiliary function (with the same name, with abuse
of notation) sub(p,∅), whose second parameter is a set
of already known constants, initially empty, described in
Table 1.

Proposition 1 For any finite-net multi-CCS process p, the
set of its sequential subterms sub(p) is finite.

Proof By induction on the definition of sub(p,∅). The base
cases are sub(0, I) and sub(A, I) when A ∈ I . Note that
induction will end eventually because the constants that a
finite-net multi-CCS process may use are finitely many. ��

Table 1 Sequential subterms of a process

sub(0, I) = {0} sub(μ.p, I) = {μ.p} ∪ sub(p, I)
sub((νa)p, I) = sub(p, I) sub(α.p, I) = {α.p} ∪ sub(p, I)

sub(p1 + p2, I) = {p1 + p2} ∪ sub(p1, I) ∪ sub(p2, I)
sub(p1 | p2, I) = sub(p1, I) ∪ sub(p2, I)

sub(A, I) =
{

∅ A ∈ I,

sub(p, I ∪ {A}) A /∈ I ∧ A
def= p

Table 2 Operational rules [symmetric rule (Sum2) omitted]

(Pref)
μ.p

μ−→p
(Cong)

p ≡ p′ σ−→q ′ ≡ q

p
σ−→q

(Sum1)
p

σ−→p′

p + q
σ−→p′

(Par)
p

σ−→p′

p | q σ−→p′ | q
(S-Pref)

p
σ−→p′

α.p
α�σ−→p′

α � σ =
{

α if σ = τ,

ασ otherwise

(S-Res)
p

σ−→p′

(νa)p
σ−→(νa)p′

a, a /∈ n(σ)

(S-Com)
p

σ1−→p′ q
σ2−→q ′

p | q σ−→p′ | q ′
Sync(σ1, σ2, σ)

Remark 1 Note that for any processes p and q, if the sequen-
tial process p is such that p ∈ sub(q), then sub(p) ⊆ sub(q).
This is because the definition of sub(q) recursively calls itself
on all of its sequential subterms.

3.2 Operational semantics with LTSs

The operational semantics for finite-net multi-CCS is given
by the labeled transition system (P,A, −→), where the
states are the processes inP ,A = {τ }∪(L∪L)+ is the set of
labels (ranged over by σ and composed of the invisible action
τ and by sequences of visible actions), and −→ ⊆ P×A×P
is theminimal transition relation generated by the rules listed
in Table 2.

We briefly comment on the rules that are less standard.
Rule (S-pref) allows for the creation of transitions labeled
by nonempty sequences of actions. In order for α.p to make
a move, it is necessary that p be able to perform a transi-
tion, i.e., the rest of the transaction. Hence, if p

σ−→p′ then
α.p

α�σ−→p′, where the label α �σ = α if σ = τ , α �σ = ασ

otherwise. Note that α.0 cannot execute any action, as 0 is
terminated. If a transition is labeled with σ = α1 . . . αn−1αn ,
then all the actions α1 . . . αn−1 are due to strong prefixes,
while αn is due to a normal prefix (or αn is a strong prefix
followed by a normal prefix τ). Rule (S-Com) has a side-
condition on the possible synchronizability of σ1 and σ2.
Relation Sync(σ1, σ2, σ), defined by the axioms of Table 3,
holds if at least one of the two sequences is a single action, say
σ1 = α, and the other starts with the complementary action

123

Vietnam J Comput Sci (2016) 3:15–34 19

Table 3 Synchronization relation Sync

Sync(α, α, τ)

σ 	= ε

Sync(ασ, α, σ)

σ 	= ε

Sync(α, ασ, σ)

α. Note that it is not possible to synchronize two sequences.
This means that, usually, a multi-party synchronization can
take place only among one leader, i.e., the process perform-
ing the atomic sequence, and as many other components (the
servants), as is the length of the atomic sequence, where each
servant executes one visible action. This is strictly the case for
so-called well-formed processes, i.e., processes that do not
allow for the synchronizationof two sequences, not even indi-
rectly. However, more elaborate forms of synchronization
are possible, as illustrated in Sect. 3.3, for non-well-formed
processes. Rule (S-Res) is slightly more general than the cor-
responding one for CCS, as it requires that no action in σ can
be a or a.With n(σ)we denote the set of all actions occurring
in σ . Formally: n(μ) = {μ}, n(ασ) = {α} ∪ n(σ).

There is one further rule, called (Cong), which makes use
of the structural congruence ≡, induced by the three axioms
in Table 4. Axioms E1 and E2 are for associativity and com-
mutativity, respectively, of the parallel operator. Axiom E3
is for unfolding and explains why we have no explicit oper-
ational rule for handling constants in Table 2: the transitions
derivable from C are those transitions derivable from the
structurally congruent term p ifC

def= p. Rule (Cong) enlarges
the set of transitions derivable from a given process p, as
the following example shows. The intuition is that, given a
process p, a transition is derivable from p if it is derivable
from any p′ obtained as a rearrangement in any order (or
association) of all of its sequential subprocesses.

Example 1 (Associativity and commutativity) Consider
(a.b.p | a.q) | b.r . The ternary synchronization among them,

(a.b.p | a.q) | b.r τ−→(p | q) | r , can take place, as proved in
Table 5, without using rule (Cong). However, if we consider

Table 4 Axioms generating the structural congruence ≡

E1 (p | q) | r = p | (q | r)
E2 p | q = q | p
E3 A = q if A

def=q

Table 5 Multi-party synchronization among three processes

the very similar process a.b.p | (a.q | b.r), then we can see
that a.b.p is able to synchronize with both a.q and b.r only
by using rule (Cong), as follows:

a.b.p | (a.q | b.r) ≡ (a.b.p | a.q) | b.r τ−→(p | q) | r ≡ p | (q | r)
a.b.p | (a.q | b.r) τ−→p | (q | r)

If we consider the slightly different variant process
(a.b.p | b.r) | a.q, we see easily that, without rule (Cong), no
ternary synchronization is possible, because Sync(ab, b, a)
does not hold. This example shows that, by using the axioms
E1 and E2, it is possible to reorder the servant subcompo-
nents (in this example, subprocesses a.q and b.r) in such a
way that the actions they offer are in the expected order by
the leader process (in this example, a.b.p).

Two processes p and q are bisimilar, p ∼ q, if there
exists a bisimulation R ⊆ P × P such that (p, q) ∈ R. The
following obvious result holds.

Proposition 2 If p ≡ q then p ∼ q.

3.3 Well-formed processes

We propose a syntactic condition on a process p, ensuring
that, during its execution, p is unable to synchronize two
atomic sequences, not even indirectly; a process satisfying
such a syntactic condition will be called well-formed. The
restriction to well-formed processes will be crucial in the
following sections.

The definition of relation Sync(σ1, σ2, σ) requires that
at least one of σ1 or σ2 be a single action; this is not
enough to prevent that two sequences may synchronize, even
if indirectly. For instance, assume we have three processes
p1 = a.b.0, p2 = a.0 and p3 = b.c.0, which may perform
the sequences ab, a, bc, respectively; then a ternary synchro-
nization is possible, because first we synchronize p1 and p2,
by Sync(ab, a, b), getting a single action b, which can be
then used for a synchronization with p3, by Sync(b, bc, c);
in such a way, the two atomic sequences ab and bc have
been synchronized, by means of the single action a. So, we
would like to mark (p1 | p2) | p3 as not well-formed. In order
to define well-formed multi-CCS processes, some auxiliary
definitions are needed.

Definition 11 (Initials for sequential processes) For any
sequential process p, I n(p) ⊆ A is the set of initials of
p, defined inductively as

In(0) = ∅ In(μ.p) = {μ}
In(α.p) = α � In(p) In(p1 + p2) = In(p1) ∪ In(p2)

where α � In(p) = {α � σ | σ ∈ In(p)}.

123

20 Vietnam J Comput Sci (2016) 3:15–34

Table 6 Names in sequences of a process

ns(0, I) = ∅ ns(p1 + p2, I) = ns(p1, I) ∪ ns(p2, I)
ns(μ.p, I) = ns(p, I) ns(p1 | p2, I) = ns(p1, I) ∪ ns(p2, I)

ns(α.p, I) = ns(p, I) ∪ {α} ∪ ⋃
σ∈In(p)∧σ 	=τ n(σ)

ns((νa)p, I) = ns(p, I)\{a, a}
ns(A, I) =

{
∅ A ∈ I,

ns(p, I ∪ {A}) A /∈ I ∧ A
def= p

Table 7 Well-formedness predicate

wf(0, I)

wf(p, I)

wf(μ.p, I)

wf(p, I) �β.β ∈ ns(α.p, I) ∧ β ∈ ns(α.p, I)

wf(α.p, I)

wf(p, I)

wf((νa)p, I)

A ∈ I

wf(A, I)

wf(p, I ∪ {A}) A
def= p A /∈ I

wf(A, I)

wf(p1, I) wf(p2, I) � β.β ∈ ns(p1, I) ∧ β ∈ ns(p2, I)

wf(p1 | p2, I) wf(p1 + p2, I)

Definition 12 (Names in sequences of a process) Let
ns(p) ⊆ L ∪ L be the set of (free) names occurring in
sequences of length two or more of p. Set ns(p) is defined by
means of the auxiliary function (with the same name, with
abuse of notation) ns(p,∅), whose second parameter is a set
of constants, where ns(p, I) is defined in Table 6.

A process p is well-formed if wf(p) holds, and wf(p)
holds if the auxiliary relation (with the samename,with abuse
of notation) wf(p,∅) holds; the auxiliary relation wf(p, I),
where the second parameter is a set of constants, is defined as
the least relation induced by the axioms and rules of Table 7.
The assumption that any process uses finitelymany constants
ensures that the well-formedness predicate is well-defined.

Example 2 Let us consider processes p1 = a.b.0, p2 = a.0
and p3 = b.c.0. Note that wf(p2), because wf(0) holds;
similarly, wf(b.0); as a consequence, wf(p1) holds, because
ns(p1) = {a, b} does not contain a pair of complementary
actions. In the same way, we can prove that wf(p3) holds,
with ns(p3) = {b, c}. We also have that wf(p1 | p2), as no
action of ns(p1) occurs complemented in ns(p2) = ∅. How-
ever, it is not the case that wf((p1 | p2) | p3), because there
exists an action, namely b, such that b ∈ ns(p1 | p2) and
b ∈ ns(p3).

To conclude this section, we comment on the well-
formedness relation: if a process is well-formed, then it is
not possible to synchronize two sequences, not even indi-
rectly. Theorem 2 will prove this fact on the net semantics.
A direct proof on the LTS semantics is reported in [19].

3.4 An example: concurrent readers and writers

In this problem, originally introduced in [6], there are two
types of processes: reader processes and writer processes.

All processes share a common file; so, each writer process
must exclude all the other writers and all the readers while
writing on the file, whilemultiple reader processes can access
the shared file simultaneously. The problem is to define a
control structure that does not deadlock or allow violations
of the mutual exclusion criteria.

Assume we have n readers and m writers and that at most
k ≤ n readers can read simultaneously. We can assume we
have k lock resources such that a reader can read if at least
one lock is available, while a writer can write if all the k locks
are available, so that it prevents all the k possible concurrent
reading operations. In a naïve CCS solution to this problem,
a deadlock may occur when two writers are competing for
the acquisition of the k locks, so that one has acquired i
locks and the other one k − i , for some 0 < i < k; in such
a situation, both writers are stuck, waiting for the missing
locks, and all the readers are not allowed to read as no lock
is available. A simple multi-ccS solution to this coordination
problem is forcing atomicity on the writer’s acquisition of
the k locks, so that either all or none are taken. To make the
presentation simple, assume that n = 4, k = 3,m = 2. Each
reader process R, each lock process L , each writerW can be
represented as follows, where action l stands for lock and u
for unlock:

R
def= l.read.u.R L

def= l.u.L W
def= l.l.l.write.u.u.u.W

The whole system CRW is defined as

CRW
def= (νl, u)(R | R | R | R |W |W | L | L | L),

where parentheses are omitted as | is associative. Note that a
writerW executes a four-way synchronization with the three
instances of the lock process L in order to get permission to
write:

CRW
τ−→(νl, u)(R | R | R | R |W ′ |W | L ′ | L ′ | L ′),

where W ′ = write.u.u.u.W and L ′ = u.L . The LTS for
CRW is finite-state. Note that, to ensure correctness, it is not
necessary to require atomicity on the release of the locks:
This choice is only done in order to have a smaller model.

4 Operational net semantics

4.1 Places and markings

The finite-net multi-CCS processes are built upon the set
L ∪ L, ranged over by α, of visible actions. We assume we
have also setsL′ = {a′ | a ∈ L} andL′ = {a′ | a ∈ L}, where
L′ ∪ L′, ranged over by α′, is the set of auxiliary restricted
actions; by definition, each restricted action α′ corresponds

123

Vietnam J Comput Sci (2016) 3:15–34 21

Table 8 Decomposition
function dec(0, I) = ∅ dec(μ.p, I) = {μ.p}

dec(γ .p, I) = {γ .p} dec(p + p′, I) = {p + p′}
dec(p | p′, I) = dec(p, I) ⊕ dec(p′, I) dec(A, I) =

{
∅ A ∈ I,

dec(p, I ∪ {A}) A /∈ I ∧ A
def= p

dec((νa)p, I) = dec(p, I){a′/a} a′ ∈ L′ is the restricted action corresponding toa

exactly to one visible action α. Set G = L ∪ L ∪L′ ∪ L′ is
ranged over by γ . The set of all actions Actγ = G ∪ {τ },
ranged over by μ (with abuse of notation), is used to build
the set of extended, finite-net multi-CCS processes Pγ . The
infinite set of places, ranged over by s, is SMCCS = Pγ

seq\{0},
i.e., the set of all sequential processes (except 0) whose pre-
fixes are in Actγ and whose strong prefixes are in G.

Function dec : Pγ × ℘(C) → Mfin(SMCCS) defines
the decomposition of extended processes into markings (see
Table 8), where the second argument is the set of already
known constants, initially empty. For simplicity sake, we
often omit the second argument when it is empty or inessen-
tial. Process 0 generates no places. The decomposition of a
sequential process p produces one place with name p. This
is the case of μ.p (where μ can be any action in Actγ),
γ .p and p + p′. Parallel composition is interpreted as mul-
tiset union; e.g., the decomposition of a.0 | a.0 produces the
marking a.0 ⊕ a.0 = 2 · a.0. The decomposition of a
restricted process (νa)p—where a ∈ L—generates the mul-
tiset obtained from the decomposition of p, to which the
substitution {a′/a} is applied; the application of the substitu-
tion {a′/a} to a multiset is performed elementwise, as shown
in the example below. Finally, a process constant A is first
unwound once (according to its defining equation) and then
decomposed, if A is not known yet.

We assume that, in decomposing (νa)p, the choice of
the restricted name is fixed by the rule that associates
to a visible action a its unique corresponding restricted
action a′. As a process is of the form (νL)t with L =
{a1, a2, . . . , an}, it can be first translated to the restriction-
free process t{a′

1/a1} . . . {a′
n/an} (shortened as t{L ′/L}, for

L ′ = {a′
1, . . . , a

′
n} ⊆ L′), and then decomposed to obtain

a multiset. Function dec essentially performs this decom-
position, by removing the restriction (which can occur only
externally, by syntactic definition) andby replacing thebound
names in L with the corresponding restricted names in L ′.

Proposition 3 For any restriction-free t ∈ P , dec((νL)t) =
dec(t{L ′/L}).

This means that we can restrict our attention to restriction-
free processes built over Actγ , as a restricted process (νL)t
inP is mapped via dec to the samemarking of the restriction-
free process t{L ′/L} in Pγ .

Example 3 Consider the (non-well-formed) finite-net multi-
CCS process p = (νa)p′, where p′ = (a.0 | (a.a.0 | a.0)).

Then,

dec(p) = dec(p′){a′/a} = dec(a.0 | (a.a.0 | a.0)){a′/a}
= (dec(a.0) ⊕ dec(a.a.0 | a.0)){a′/a}
= (dec(a.0) ⊕ dec(a.a.0) ⊕ dec(a.0)){a′/a}
= (a.0 ⊕ a.a.0 ⊕ a.0){a′/a}
= a′.0 ⊕ a′.a′.0 ⊕ a′.0
= dec(a′.0 | a′.a′.0 | a′.0),

where a′ is the corresponding restricted name in L′.

Function dec is well-defined because the constants a
process may use are finitely many. This also ensures the fol-
lowing fact.

Proposition 4 For any p ∈ Pγ , dec(p) is a finite multiset
of places.

Of course, function dec is not injective, because it consid-
ers the parallel operator as commutative, associative, with 0
as neutral element. In fact, dec((p | q) | r) = dec(p | (q | r)),
dec(p | q) = dec(q | p), dec(p | 0) = dec(p), etc. However,
contrary to the decomposition functions in [8,28], one can
prove that our dec is surjective. Take any finite multiset of
places m = k1 · s1 ⊕ · · · ⊕ kn · sn , for n ≥ 0 (m = ∅ if
n = 0), where each si ∈ SMCCS, for i = 1, . . . , n. Then,
process p = sk11 | · · · | sknn , where s1 = s and sn+1 = s | sn ,
is such that dec(p) = m. We can be even more demanding
and prove that function dec is surjective even if we restrict
ourselves to processes in P .

Proposition 5 Function dec : P → Mfin(SMCCS) is sur-
jective.

Proof Take any finite multiset of places m = k1 · s1 ⊕
· · · ⊕ kn · sn , for n ≥ 0 (m = ∅ if n = 0), where each
si ∈ SMCCS, for i = 1, . . . , n. It is possible to find a sub-
stitution ρ = {a1, . . . , ak/a′

1, . . . , a
′
k} (with a′

i ∈ L′ and
ai ∈ L) such that, for all i = 1, . . . , n, pi = siρ and
pi ∈ Pseq. Take process p = (νa1a2 . . . ak)(p

k1
1 | · · · | pknn),

assuming that no restriction is present if k = 0 and that,
if n = 0, (pk11 | · · · | pknn) = 0. It is easy to observe that
dec(p) = m. ��

123

22 Vietnam J Comput Sci (2016) 3:15–34

4.2 Properties of places and markings

We now list some useful properties of places and markings.
First, we extend the definition of sequential subterm of a
process p to a set of places S. The goal is to prove that
the sequential subterms of dom(dec(p)) are essentially the
same sequential subterms of p. This property will be useful
in proving (Theorem 3) that each place statically reachable
fromdom(dec(p)) is a sequential subterm of p (up to a possi-
ble renaming of bound names to the corresponding restricted
names), so that, since sub(p) is finite for any p (Proposi-
tion 1), the set of all the places statically reachable from
dom(dec(p)) is finite as well.

Definition 13 Function sub(−), defined over finite-net
multi-CCS processes in Definition 10, can be extended to
a finite set S of places (i.e., of sequential processes) as fol-
lows: sub(∅) = ∅ and sub(S) = ⋃

s∈S sub(s).

Proposition 6 For any finite set of places S1 and S2, if S1 ⊆
sub(S2), then sub(S1) ⊆ sub(S2).

Proof By induction on the cardinality of S1, using Remark
1. ��
Proposition 7 For any set of places S, S ⊆ sub(S).

Proof For any sequential process s, Definition 10 ensures
that s ∈ sub(s); hence, the thesis follows trivially. ��
Proposition 8 If p is restriction-free, then sub(dom(dec(p))
⊆ sub(p) , while if p = (νL)t , then sub(dom(dec(p))) ⊆
sub(p){L ′/L}. Hence, for any p, |sub(p)| ≥
|sub(dom(dec(p))|.
Proof By induction on the definitions of sub(p, I) and
dec(p, I).

The first base case is when p = 0; in such a case
sub(0, I) = {0}; as dec(0, I) = ∅, the thesis follows triv-
ially. The second base case is when p = A and A ∈ I ; in
such a case, sub(A, I) = ∅; as dec(A, I) = ∅, the thesis fol-
lows trivially. The other simple case is when p is sequential
(and not 0); in such a case, dec(p, I) = {p} and the thesis
follows trivially.

Now the inductive cases. If p = p1 | p2, then sub(p, I) =
sub(p1, I) ∪ sub(p2, I) and sub(dom(dec(p, I))) =
sub(dom(dec(p1, I)) ∪ sub(dom(dec(p2, I)); by induction,
we have that sub(dom(dec(pi , I)) ⊆ sub(pi , I), for i =
1, 2; hence, the thesis follows trivially. If p = A, with

A /∈ I and A
def= t , then sub(A, I) = sub(t, I ∪ {A})

and dec(A, I) = dec(t, I ∪ {A}); by induction, we have
sub(dom(dec(t, I ∪ {A})) ⊆ sub(t, I ∪ {A})), and so
sub(dom(dec(A, I)) ⊆ sub(A, I), as required. Finally, if
p = (νL)t , then sub(p, I) = sub(t, I), while
sub(dom(dec((νL)t, I))) = sub(dom(dec(t, I){L ′/L})) =

sub(dom(dec(t, I))){L ′/L}; by induction, we have that
sub(dom(dec(t, I)) ⊆ sub(t, I), and therefore also
sub(dom(dec(t, I))){L ′/L} ⊆ sub(t, I){L ′/L}, from which
the thesis follows. ��

Now we want to extend the definition of well-formed
processes to sets of places. To this aim, we define a notion
of well-behaved set of places, which will be useful in the
next section in proving that any transition statically enabled
by a well-behaved set S is such that no synchronization of
sequences is possible (Theorem 2); first, we prove that a
well-formed process p generates a marking dec(p) such that
dom(dec(p)) is well-behaved (Theorem 1).

Definition 14 Function ns(−) of Definition 12 is defined
over a set S of places as ns(S) = ns(S,∅), where ns(S, I) =⋃

s∈S ns(s, I) and ns(∅, I) = ∅.
Lemma 1 If p is restriction-free, then ns(p, I) =
ns(dom(dec(p, I)), I).

Proof By induction on the definitions of ns(p, I) and
dec(p, I). The proof is very similar to that of Proposition
8, hence omitted. ��
Definition 15 (Well-behaved) A set of places S is well-
behaved if there exist no β ∈ G such that β ∈ ns(S) and
β ∈ ns(S).

Theorem 1 If p is well-formed, then dom(dec(p)) is well-
behaved.

Proof By induction on the proof of wf(p, I). The first base
case is p = 0, and the thesis trivially holds. The second base
case is when p = A and A ∈ I ; in such a case, wf(A, I)
holds and dom(dec(A, I)) = ∅, hence the thesis trivially
holds.

Now the inductive cases. If p = μ.p′, then wf(p, I)
holds only if wf(p′, I) holds. By induction, we have
that dom(dec(p′, I)) is well-behaved. Hence, also
dom(dec(μ.p′, I)) is well-behaved, as ns(dom(dec(μ.p′,
I)), I) = ns({μ.p′}, I) = ns(μ.p′, I) = ns(p′, I) and
ns(p′, I) = ns(dom(dec(p′, I)), I) by Lemma 1.

If p = α.p′, then wf(p, I) holds if there exists no β ∈ G
such that β ∈ ns(p, I) and β ∈ ns(p, I); by Lemma 1,
ns(p, I) = ns(dom(dec(p, I)), I), and so the thesis follows
trivially.

If p = p1 + p2, then wf(p, I) holds only if wf(p1, I)
and wf(p2, I) hold and, additionally, there exists no β ∈ G
such that β ∈ ns(p1, I) and β ∈ ns(p2, I). By induction,
we have that dom(dec(pi , I)) is well-behaved, for i = 1, 2;
so, there exists no β ∈ G such that β ∈ dom(dec(pi , I))
and β ∈ dom(dec(pi , I)), for i = 1, 2. By Lemma 1,
ns(dom(dec(pi , I)), I) = ns(pi , I) for i = 1, 2, and so
there exists no β ∈ G such that β ∈ ns(pi , I) and β ∈

123

Vietnam J Comput Sci (2016) 3:15–34 23

Table 9 Rules for net
transitions [symmetric rule
(sum2) omitted] (pref)

{μ.p} μ−→dec(p)
(sum1)

{p} σ−→m

{p + p′} σ−→m

(s-pref)
{p} σ−→m

{γ .p} γ�σ−→m
(s-com)

m1
σ1−→m′

1 m2
σ2−→m′

2

m1 ⊕ m2
σ−→m′

1 ⊕ m′
2

Sync(σ1, σ2, σ)

Table 10 The proof of a net
transition

ns(pi , I), for i = 1, 2. Therefore, dom(dec(p1 + p2, I)) =
{p1 + p2} is well-behaved, too, because ns(p1 + p2, I) =
ns(p1, I) ∪ ns(p2, I), and then there exists no β ∈ G such
that β ∈ ns(p1 + p2, I) and β ∈ ns(p1 + p2, I), as required.
The case when p = p1 | p2 is similar to the above, hence
omitted.

If p = (νa)p′, then wf(p, I) holds only if wf(p′, I)
holds. By induction, we have that dom(dec(p′, I)) is well-
behaved. It is easy to see that dom(dec(p′, I)){a′/a} is
well-behaved too, as the substitution replaces action a with a
new name a′ not in use. Hence, as dom(dec(p′, I)){a′/a} =
dom(dec(p′, I){a′/a}) = dom(dec(p, I)), also dom(dec
(p, I)) is well-behaved.

If p = A, with A /∈ I and A
def=q, thenwf(A, I) holds only

if wf(q, I ∪ {A}) holds. By induction, dom(dec(q, I ∪{A}))
is well-behaved. Since dec(A, I) = dec(q, I ∪ {A}), also
dom(dec(A, I)) is well-behaved. ��

4.3 Net transitions

Let Aγ = {τ } ∪ G+, ranged over by σ with abuse of nota-
tion, be the set of labels, and let →⊆ Mfin(SMCCS) ×
Aγ × Mfin(SMCCS), be the least set of transitions gener-
ated by the axiom and rules in Table 9, where in a transition
m1

σ−→m2, m1 is the pre-set, σ is the label and m2 is the
post-set.

Axiom (pref) states that if one token is present in the place
μ.p then a μ-labeled transition is derivable from marking
{μ.p}, producing the marking dec(p). This holds for any μ,
i.e., for the invisible action τ , for any visible action α as well
as for any restricted action α′. In rule (s-pref), γ ranges over
visible actionsα and restricted onesα′. This rule requires that
the premise transition {p} σ−→m be derivable by the rules,
starting form the sequential process p. Rule (sum1) and its
symmetric (sum2) are as expected: the transition from place
p + p′ are those from places p and p′, as both p and p′
are sequential. Finally, rule (s-com) explains how synchro-

nization takes place: it is needed that m1 and m2 perform
synchronizable sequences σ1 and σ2, producing σ ; here we
assume that Sync has been extended also to restricted actions
in the obvious way, i.e., a restricted action α′ can be syn-
chronized only with its complementary restricted action α′
or with a sequence beginning with α′. As an example, net
transition {a.b′.p, a.q, b′.r} τ−→dec(p) ⊕ dec(q) ⊕ dec(r)
is derivable (see Table 10).

Transitionswith labels containing restricted actions should
not be taken in the resulting net, as we accept only transitions
labeled on A = {τ } ∪ (L ∪ L)+. However, they are useful
in producing acceptable transitions, as two complementary
restricted actions can synchronize, producing a τ -labeled
transition or shortening the synchronized sequence: e.g., in

the example above, the derivable transition {b′.p} b′−→dec(p)
is not an acceptable transition because its label is not in A,
while {a.b′.p, a.q, b′.r} τ−→dec(p) ⊕ dec(q) ⊕ dec(r) is
so. Hence, the P/T net for finite-net multi-CCS is the triple
NMCCS = (SMCCS,A, TMCCS), where the set TMCCS =
{(m1, σ,m2) | m1

σ−→m2 is derivable by the rules and σ ∈
A} is obtained by filtering out those transitions derivable by
the rules such that no restricted name α′ occurs in σ .

4.4 Properties of net transitions

Some useful properties of net transitions are listed here. First,
given a transition t = (m1, σ,m2), derivable by the rules in
Table 9, we show that the marking m2 generates subterms
that are already present in the marking m1.

Proposition 9 Let t = m1
σ−→m2 be a transition deriv-

able by the rules in Table 9. Then, sub(dom(m2)) ⊆
sub(dom(m1)).

Proof By induction on the proof of t . ��
Lemma 2 Let t = m1

σ−→m2 be a transition derivable by
the rules in Table 9. Then, ns(dom(m2)) ⊆ ns(dom(m1)).

123

24 Vietnam J Comput Sci (2016) 3:15–34

Proof By induction on the proof of t . ��

Proposition 10 If t = m1
σ−→m2 is derivable by the

rules and dom(m1) is well-behaved, then dom(m2) is well-
behaved.

Proof By Lemma 2, we know that ns(dom(m2)) ⊆
ns(dom(m1)). Therefore, if dom(m1) is well-behaved, then
dom(m2) is well-behaved, too. ��
Corollary 1 If S1 is well-behaved and S1 �⇒∗ Sk, then Sk
is well-behaved.

Proof By induction on the static reachability relation �⇒∗ .
The base case is S1 �⇒∗ S1 and it is trivial. The inductive
case is S1 �⇒∗ Sk−1

t�⇒ Sk . By induction we can assume
that Sk−1 is well-behaved. Let t = m1

σ−→m2 be a tran-
sition in TMCCS. The set ns(Sk−1) is ns(Sk−1\dom(m1)) ∪
ns(dom(m1)). The set ns(Sk) is ns(Sk−1)∪ns(dom(m2)). By
Lemma 2, we have ns(dom(m2)) ⊆ ns(dom(m1)). There-
fore, ns(Sk) = ns(Sk−1) ∪ ns(dom(m2)) ⊆ ns(Sk−1) ∪
ns(dom(m1)) = ns(Sk−1); hence, also Sk is well-
behaved. ��

Now we want to prove that when a transition m
σ−→m′,

whose label σ 	= τ , involves in its proof some sequence of
length greater than one, then the names of σ are all contained
in ns(dom(m)).

Lemma 3 If t = (m, σ,m′) is derivable by the rules of
Table 9, and either |σ | ≥ 2 or σ 	= τ and there exists
a transition label σ ′ in its proof tree with |σ ′| ≥ 2, then
n(σ) ⊆ ns(dom(m)).

Proof By induction on the proof of transition t . If m =
{μ.p}, then, by axiom (pref), t = (m, μ, dec(p)). This
case is vacuous as the only transition label in the proof
tree is μ. If m = {γ .p}, then t = (m, σ,m′) is deriv-
able only if ({p}, σ ′,m′) is derivable, with σ = γ � σ ′.
If |σ ′| ≥ 2, then induction can be applied to conclude
that n(σ ′) ⊆ ns(dom({p}))) = ns({p}) = ns(p); hence,
n(σ) = {γ } ∪ n(σ ′) ⊆ {γ } ∪ ns(p). Since ns(m) =
ns({γ .p}) = ns(γ .p) and {γ } ∪ ns(p) ⊆ ns(γ .p), the thesis
n(σ) ⊆ n(m) follows trivially. If |σ ′| = 1, then two further
subcases are possible: either σ ′ = τ or σ ′ = γ ′; in the former
subcase, this is possible only if p, being sequential, has per-
formed a prefix τ via (pref), so that no transition label in the
proof tree is longer than one, hence this subcase is vacuous;
in the latter subcase, σ = γ γ ′ and n(σ) ⊆ ns(γ .p), because
γ ′ ∈ In(p).

If m = {p1 + p2}, then t = (m, σ,m′) is derivable only if
({p1}, σ,m′) or ({p2}, σ,m′) are derivable. W.l.o.g., assume
that ({p1}, σ,m′); then, if the hypothesis holds for this
premise, by induction, we have n(σ) ⊆ ns({p1}) = ns(p1).

Since ns(p1) ⊆ ns(p) = ns(m), the thesis follows by transi-
tivity.

If t is derived by rule (s-com), then m = m1 ⊕ m2,
m′ = m′

1 ⊕ m′
2 and transitions t1 = (m1, σ1,m′

1) and
t2 = (m2, σ2,m′

2) are derivable, with Sync(σ1, σ2, σ). As by
hypothesisσ 	= τ , thenσ1 orσ2 must be of length greater than
one.W.l.o.g., assume |σ1| ≥ 2. Since Sync(σ1, σ2, σ), neces-
sarily n(σ) ⊆ n(σ1). By induction, n(σ1) ⊆ ns(dom(m1));
as ns(dom(m1)) ⊆ ns(dom(m1 ⊕ m2)), the thesis follows
by transitivity. ��
Proposition 11 If t = (m, γ,m′) is derivable by the rules
of Table 9 by using rule (s-com), then γ ∈ ns(dom(m)).

Proof By induction on the proof of t . If rule (s-com) occurs in
the proof of t , then m cannot be a sequential process. There-
fore, the first rule must be (s-com), and so m = m1 ⊕ m2,
m′ = m′

1 ⊕ m′
2, t1 = (m1, σ1,m′

1) and t2 = (m2, σ2,m′
2)

are derivable, with Sync(σ1, σ2, γ). So, σ1 or σ2 must be a
sequence of length greater than one, and so by Lemma 3, it
follows that γ ∈ ns(dom(m)). ��
Theorem 2 If t = (m, σ,m′) is derivable by the rules and
dom(m) is well-behaved, then the proof of t never synchro-
nizes two sequences, not even indirectly.

Proof By induction on the proof of t . If m is a singleton,
then rule (s-com) is never used, and so no synchroniza-
tion of sequences is possible. Otherwise, the first rule must
be (s-com), and so m = m1 ⊕ m2, m′ = m′

1 ⊕ m′
2,

t1 = (m1, σ1,m′
1) and t2 = (m2, σ2,m′

2) are derivable, with
Sync(σ1, σ2, σ). As dom(m) is well-behaved, so are also
dom(m1) and dom(m2); therefore, by induction, we know
that in the proofs of transitions t1 and t2 two sequences are
never synchronized. So, it remains to prove that the thesis
holds for the resulting σ . By definition of Sync, if σ = τ ,
then both σ1 and σ2 are complementary actions, say σ1 = γ

and σ2 = γ . If both t1 and t2 are derived by using rule
(s-com), then t synchronizes two sequences, even if indi-
rectly; however, this is not possible, because Proposition 11
would ensure that γ ∈ ns(dom(m1)) and γ ∈ ns(dom(m2)),
contradicting that dom(m1 ⊕ m2) be well-behaved. There-
fore, t1 or t2 is derived without using rule (s-com) and so
no synchronization of sequences is produced. By definition
of Sync, if σ 	= τ , then either σ1 or σ2 is a sequence of
length greater than one; w.l.o.g. assume that |σ1| ≥ 2 and
σ2 = γ . By Lemma 3, n(σ1) ⊆ ns(dom(m1)), in particular,
γ ∈ ns(dom(m1)). If t2 is derived by using rule (s-com), then
Proposition 11 would ensure that γ ∈ ns(dom(m2)), contra-
dicting that dom(m1 ⊕ m2) bewell-behaved. Therefore, t2 is
derivedwithout using rule (s-com) and so no synchronization
of sequences is produced. ��
Remark 2 By the proof of the prop above, it is clear that
any transition t = m1

σ−→m2 derivable from a well-behaved

123

Vietnam J Comput Sci (2016) 3:15–34 25

set of places dom(m1) is such that in the proof tree for t ,
whenever rule (s-com) is used with premise transitions t1
and t2, at least one of the two, say t1 w.l.o.g., is such that
•t1 is a singleton and l(t1) is a single action in Actγ . That is,
any derivable transition t from a well-behaved set of places
dom(m1) is such that one sequential process s ∈ dom(m1)

acts as the leader of the multi-party synchronization, while
the other sequential components contribute eachwith a single
action, acting as servants.

4.5 The reachable subnet Net(p)

The P/T system associated to p ∈ Pγ is the subnet of NMCCS

statically reachable from the initial marking dec(p).We indi-
cate with Net(p) such a subnet.

Definition 16 Let p be a process in Pγ . The P/T net sys-
tem statically associated to p is Net(p) = (Sp, Ap, Tp,m0),
where m0 = dec(p) and

Sp = �dom(m0)〉 computed in NMCCS,

Tp = {t ∈ TMCCS | Sp�t〉}
Ap = {σ ∈ A | ∃t ∈ Tp such that l(t) = σ }.

The following three propositions present facts that are
obviously true by construction of the net Net(p) associated
to a finite-net multi-CCS process p.

Proposition 12 For any p ∈ P , Net(p) is a statically
reduced P/T net.

Proposition 13 If dec(p) = dec(q), then Net(p) = Net(q).

Proposition 14 For any t ∈ P , let Net(t) = (S, A, T,m0).
Then, for any n ≥ 1, Net(tn) = (S, A, T, n · m0), where
t1 = t and tn+1 = t | tn.

For any (νL)t ∈ P , let Net((νL)t) = (S, A, T,m0).
Then, for any n ≥ 1, Net((νL)(tn)) = (S, A, T, n · m0).

Definition 16 suggests a way of generating Net(p) with
an algorithm based on the inductive definition of the static
reachability relation (see Definition 9): start by the initial
set of places dom(dec(p)), and then apply the rules in Table
9 in order to produce the set of transitions (labeled on A)
statically enabled at dom(dec(p)), as well as the additional
places statically reachable bymeans of such transitions. Then
repeat this procedure from the set of places statically reached
so far. The problems with this algorithm are two:

• the obvious halting condition is “until no new places are
statically reachable”; of course, the algorithm terminates
if we know that the set Sp of places statically reachable
from dom(dec(p)) is finite; additionally,

• at each step of the algorithm, we have to be sure that
the set of transitions derivable from the current set of
statically reachable places is finite.

We are going to prove these two facts: (i) Sp is finite for
any p ∈ P , and (ii) for any well-formed process p, and for
any set of places S, statically reachable from dom(dec(p)),
the set of transitions statically enabled at S is finite.

Theorem 3 For any p ∈ P , let Net(p) = (Sp, Ap, Tp,m0)

be defined as in Definition 16. Then, set Sp is finite.

Proof We prove, by induction on the static reachability rela-
tion �⇒∗ , that any set Si of places, statically reachable from
dom(m0), is a subset of sub(dom(m0)). This is enough as,
by Proposition 8, we know that |sub(p)| ≥ |sub(dom(m0))|;
moreover, by Proposition 1, sub(p) is finite and so the thesis
follows trivially.

The base case is dom(m0) �⇒∗ dom(m0). By Proposition
7, we have the required dom(m0) ⊆ sub(dom(m0)).

Now, let us assume that Si is a set of places stati-
cally reachable from dom(m0) and let t = m1

σ−→m2

be such that Si
t�⇒ Si+1. By induction, we know that

Si ⊆ sub(dom(m0)). So, we have to prove that the new
places reached via t are in sub(dom(m0)). Note that since
dom(m1) ⊆ Si , it follows that dom(m1) ⊆ sub(dom(m0))

and also that sub(dom(m1))) ⊆ sub(dom(m0)), by Propo-
sition 6. By Proposition 7, we have that dom(m2) ⊆
sub(dom(m2); by Proposition 9, we have that
sub(dom(m2)) ⊆ sub(dom(m1)); by transitivity, dom(m2)

⊆ sub(dom(m0)), and so Si+1 = Si ∪ dom(m2) ⊆
sub(dom(m0)), as required.

Summingup, anyplace statically reachable fromdom(m0)

is a (possibly, one-time renamed) sequential subterm of p.
As by Proposition 1, sub(p) is finite, then also Sp (the largest
set of places statically reachable from dom(m0)) is finite.

��
We now want to prove that for any well-formed finite-net

multi-CCS process p, and for any set of places S ⊆ SMCCS,
statically reachable from dom(dec(p)), the set of transitions
statically enabled at S is finite. Some auxiliary definitions
and results are necessary. Given a single place s ∈ S, by
s � t we mean that transition t = ({s}, σ,m) is derivable by
the rules in Table 9, hence with σ ∈ Aγ .

Lemma 4 Set Ts = {t | s � t} is finite, for any s ∈ SMCCS.

Proof By induction on the structure of the sequential process
s and then by induction on the rules in Table 9.

Given a finite set of places S ⊆ SMCCS, let T1 be
⋃

s∈S Ts ,
i.e., the set of all transitions, with a singleton preset in S,
derivable by the rules with labeling in Aγ . Set T1 is finite,

123

26 Vietnam J Comput Sci (2016) 3:15–34

being the finite union (as S is finite) of finite sets (as Ts is
finite for any s).

If p is well-formed, then dom(dec(p)) is well-behaved
by Theorem 1. If S is statically reachable from dom(dec(p)),
then S iswell-behavedbyCorollary 1.Let k ∈ Nbe the length
of the longest label of any transition in T1. Remark 2 explains
that if a multi-party transition t is derivable by the rules from
the well-behaved set dom(•t) ⊆ S, then its proof contains
k+1 synchronizations at most, each one between a transition
(labeled with a sequence) and a singleton-preset transition
(labeled with a single action). Therefore, the set of all the
transitions statically enabled at a well-behaved set S can be
defined by means of a sequence of sets Ti of transitions, for
2 ≤ i ≤ k + 1, where each transition t ∈ Ti has a preset •t
composed of i tokens, as follows:

Ti = {(m1 ⊕ m2, σ,m′
1 ⊕ m′

2) |
∃σ1∃γ.(m1, σ1,m

′
1) ∈ Ti−1,

(m2, γ,m′
2) ∈ T1,Sync(σ1, γ, σ)}

Note that T2 is finite, because T1 is finite; inductively, Ti+1,
for 2 ≤ i ≤ k is finite, because Ti and T1 are finite. The
set TS of all the transitions statically enabled at S is {t | t ∈⋃k+1

i=1 Ti ∧ l(t) ∈ A}, where only transitions labeled on A
are considered. TS is finite, being a finite union of finite sets;
therefore, we have the following result.

Proposition 15 If S ⊆ SMCCS is a well-behaved, finite set
of places, then set TS of all the transitions enabled at S is
finite.

Example 4 Consider the non-well-formed process p =
(νa)(a.0 | (a.a.0 | a.0)), discussed in Example 3. We have
that dec(p) = a′.0 ⊕ a′.a′.0 ⊕ a′.0, which is not
well-behaved because a′ ∈ ns(dom(dec(p))) and a′ ∈
ns(dom(dec(p))). It is easy to observe that transition t1 =
a′.0 ⊕ a′.a′.0 ⊕ a′.0 τ−→∅ is derivable, because first we
synchronize a′a′ with a′, yielding a′, which is then syn-
chronized with a′, yielding τ . However, the occurrence of
action a′ produced by the first synchronization may be
used to synchronize an additional sequence a′a′, yield-
ing a′ again. Therefore, it is not difficult to see that also
tn = a′.0 ⊕ n · a′.a′.0 ⊕ a′.0 τ−→∅, is statically enabled
at dom(dec(p)), for any n ≥ 1. Hence, the set of transitions
statically enabled at dom(dec(p)) is infinite.

Theorem 4 For any well-formed, finite-net multi-CCS
process p, Net(p) = (Sp, Ap, Tp, dec(p)) is a finite P/T
net.

Proof If p is well-formed, then dom(dec(p)) is well-
behaved, by Theorem 1, and finite, by Proposition 4.
By Proposition 15, set Tdom(dec(p)) is finite. Let S1 be
the set of places dom(dec(p)) ∪ ⋃

t∈Tdom(dec(p))
dom(t•). If

inc.(dec.0 |B)

dec.0

inc

dec

Fig. 1 The finite P/T system for a semi-counter

S1 = dom(dec(p)), then Sp = dom(dec(p)) and Tp =
Tdom(dec(p)). Otherwise, repeat the step above for S1; in fact,
S1 is a finite set of places, because dom(dec(p)) is finite, set
Tdom(dec(p)) is finite and each transition has a finite post-set;
moreover, S1 is well-behaved by Corollary 1. By repeating
the step above for S1, we compute a new finite set TS1 of
transitions statically enabled at S1, and a new finite set S2 of
places statically reachable from S1 via the transitions in TS1 ;
if S2 = S1, then Sp = S1 and Tp = TS1 . Otherwise, repeat
the step above for S2. This procedure will end eventually
because, by Theorem 3, we are sure that Sp is a finite set.

��
Example 5 (Semi-counter) A semi-counter, i.e., a counter
that cannot test for zero, can be described by the finite-net

multi-CCS process B
def= inc.(dec.0 | B). Net(B) is the net

(SB, AB , TB,m0)we are going to construct, where the initial
marking m0 is dec(B) = {inc.(dec.0 | B)}. Then, the only
enabled transition is

t1 = {inc.(dec.0 | B)} inc−→{dec.0, inc.(dec.0 | B)}

and the set S1 of places statically reachable in one step from
dom(m0) is S1 = {dec.0, inc.(dec.0 | B)}. From S1, besides

transition t1 above, also transition t2 = {dec.0} dec−→∅ is
derivable, which however does not add any new reachable
place. So, S1 is the set SB , {t1, t2} is the set TB and {inc, dec}
is the set AB . The resulting net Net(B) is outlined in Fig. 1.

��

Example 6 (1/3 Semi-counter) For the well-formed process

p = (νc)A, where A
def= inc.(A | (c.c.dec.0 + c.0)), three

occurrences of inc are needed to enable one dec. Net(p)
is the net (Sp, Ap, Tp,m0) we are going to construct,
where the initial marking m0 is dec(p) = dec((νc)A) =
dec(A){c′/c} = {inc.(A | (c.c.dec.0 + c.0))}{c′/c} = {s1};
place s1 is inc.(A{c′/c} | (c′.c′.dec.0 + c′.0)), where the new
constant A{c′/c} is obtained by applying the substitution

{c′/c} to the body of A: A{c′/c}
def= inc.(A{c′/c} | (c′.c′.dec.0+

c′.0)). Now, only transition t1 = {s1} inc−→{s1, s2} is deriv-
able from dom(m0) = {s1}, where s2 = c′.c′.dec.0 + c′.0
is a new statically reachable place. Note that s2 can pro-

duce two transitions in Ts2 , namely t ′ = {s2} c′c′dec−→ ∅ and

123

Vietnam J Comput Sci (2016) 3:15–34 27

Table 11 The proof of a net
transition, where
s2 = c′.c′.dec.0 + c′.0

t ′′ = {s2} c′−→∅, but both are not labeled with a sequence
inA. However, these transitions can be composed by means
of rule (s-com), as shown in Table 11, to produce transition

t2 = 3 · s2 dec−→∅, which does not add any new reachable
place. So, Sp = {s1, s2} and Tp = {t1, t2}.

4.6 The CRW example

Let us consider process CRW of Sect. 3.4. The net associ-
ated to CRW is Net(CRW) = (SCRW, ACRW, TCRW,m0) we
are going to construct, where the initial marking is m0 =
dec(CRW) = dec((νl, u)(R | R | R | R |W |W | L | L | L))

= dec(R | R | R | R |W |W | L | L | L){l ′/ l}{u′/u} = 4 ·
rd ⊕ 3 · lk ⊕ 2 · wr , where rd = l ′.read.u′.R′

(with R′def= l ′.read.u′.R′), lk = l
′
.u′.L ′ (with L ′def= l ′.u′.L ′)

and wr = l ′.l ′.l ′.write.u′.u′.u′.W ′ (with W ′def= l ′.l ′.l ′.write.
u′.u′.u′.W ′).

One of the two possible initial transitions is wr ⊕ 3 ·
lk

τ−→wr ′ ⊕ 3 · lk′, where wr ′ = write.u′.u′.u′.W ′ and
lk′ = u′.L ′. After such a transition, no reader can read, as
all the locks are busy. The other possible initial transition
is rd ⊕ lk

τ−→rd ′ ⊕ lk′, where rd ′ = read.u′.R′. From
place wr ′, one transition is derivable, namely wr ′ write−→wr ′′,
where wr ′′ = u′.u′.u′.W ′. From place rd ′, one transition is

derivable, namely rd ′ read−→rd ′′, where rd ′′ = u′.R′. Finally,
two further transitions are derivable: rd ′′ ⊕ lk′ τ−→rd ⊕ lk
and wr ′′ ⊕ 3 · lk′ τ−→wr ⊕ 3 · lk. The resulting P/T Petri
net Net(CRW) is depicted in Fig. 2.

5 Soundness

In this section, we prove that the operational net semantics is
sound w.r.t. the operational LTS semantics: for any process
p ∈ P , the LTS rooted in p is bisimilar to the rooted LTS
IMG(Net(dec(p))). First, some auxiliary lemmata.

Lemma 5 Transition t = (m, σ,m′) is derivable by the rules
in Table 9 if and only if transition t ′ = (m{a′/a}, σ {a′/a},
m′{a′/a}) is derivable by the rules.

τrd

lk

τ

read

τ

3

3
wr

rd wr

write

3

τ

3

wrlkrd

Fig. 2 The net for the concurrent readers/writers problem

Proof By induction on the proof of t . ��
Lemma 6 Let t1 = (m1, σ,m′

1) be derivable by the rules in
Table 9, and let p be a process such that dec(p)[t1〉dec(p′).
If p ≡ q, then there exists a transition t2 = (m2, σ,m′

2) such
that dec(q)[t2〉dec(q ′), with q ′ ≡ p′.

Proof By induction on the proof of q ≡ p and then on the
proof of t1. The base cases are the three axioms in Table 4.
For axiom E1 (associativity), we have that dec(p | (q | r)) =
dec(p) ⊕ dec(q) ⊕ dec(r) = dec((p | q) | r), so that tran-
sition t2 is exactly t1. Similarly, dec(p | q) = dec(p) ⊕
dec(q) = dec(q | p) and dec(A) = dec(q) if A

def=q. So,
for the base cases, the thesis follows trivially. For substitu-
tivity of prefixing, we assume that p = μ.p1, q = μ.q1 and
p1 ≡ q1; in such a case, t1 = ({μ.p1}, μ, dec(p1)) is the
only transition enabled at dec(p); the required transition t2
is ({μ.q1}, μ, dec(q1)). For substitutivity of strong prefixing,
we assume that p = α.p1, q = α.q1 and p1 ≡ q1; in such
a case, t1 = ({α.p1}, α � σ ′, dec(p′

1)) is derivable if t ′1 =
({p1}, σ ′, dec(p′

1)) is derivable; by induction, as p1 ≡ q1,
there exists transition t ′2 = ({q1}, σ ′, dec(q ′

1)), with p′
1 ≡ q ′

1;
then, by (s-pref), also transition t2 = ({α.q1}, α�σ ′, dec(q ′

1))

is derivable, as required. For substitutivity of choice, we
assume that p = p1 + p2, q = q1 + q2 and pi ≡ qi , for i =

123

28 Vietnam J Comput Sci (2016) 3:15–34

1, 2; in such a case, t1 = ({p1+ p2}, σ, dec(p′
1)) is derivable

if (w.l.o.g., we assume p1 moves) t ′1 = ({p1}, σ, dec(p′
1)) is

derivable by (sum1); by induction, as p1 ≡ q1, there exists
transition t ′2 = ({q1}, σ, dec(q ′

1)), with p′
1 ≡ q ′

1; then, by
(sum1), also transition t2 = ({q1 + q2}, σ, dec(q ′

1)) is deriv-
able, as required.

For substitutivity of parallel composition, we assume
that p = p1 | p2, q = q1 | q2, pi ≡ qi for i =
1, 2, and dec(p)[t1〉dec(p′). We have three subcases: (i)
dec(p1)[t1〉dec(p′

1), with p′ = p′
1 | p2; or (ii) dec(p2)[t1〉

dec(p′
2), with p′ = p1 | p′

2; or (iii) neither of the pre-
vious two cases, i.e., •t1 is not contained in dec(p1) or
dec(p2). In the first case, by induction (since p1 ≡ q1), there
exists t2 such that dec(q1)[t2〉dec(q ′

1), with p′
1 ≡ q ′

1, and
so dec(q)[t2〉dec(q ′

1 | q2), with q ′
1 | q2 ≡ p′

1 | p2; the second
case is symmetric, hence omitted.

In the third case, there exist two transitions, say t ′1 and
t ′2, with l(t ′1) = σ1, l(t ′2) = σ2 and Sync(σ1, σ2, σ), such
that, by rule (s-com), t1 is t ′1|t ′2 = (•t ′1 ⊕ •t ′2, σ, t ′1

• ⊕ t ′2
•
).

By using the three axioms of the structural congruence ≡
at the top level only (that we know can be used safely),
we can find two processes p1, p2 such that p ≡ p1 | p2,
dec(p1)[t ′1〉dec(p′

1), dec(p2)[t ′2〉dec(p′
2). Since p ≡ q, we

can find two processes q1, q2 such that q ≡ q1 | q2 and
pi ≡ qi for i = 1, 2. Then, induction can be applied to
conclude that there exist two transitions t ′′1 and t ′′2 such that
dec(q1)[t ′′1 〉dec(q ′

1), dec(q2)[t ′′2 〉dec(q ′
2), with p′

i ≡ q ′
i for

i = 1, 2. So, by rule (s-com), transition t2 = t ′′1 |t ′′2 =
(•t ′′1 ⊕ •t ′′2, σ, t ′′1

• ⊕ t ′′2
•
) is derivable; hence, dec(q) =

dec(q1) ⊕ dec(q2)[t2〉dec(q ′
1 | q ′

2), with q
′
1 | q ′

2 ≡ p′
1 | p′

2 ≡
p′.

For substitutivity of restriction, we assume that p =
(νa)p1, q = (νa)q1, p1 ≡ q1, and dec(p)[t1〉 dec(p′),
with l(t1) = σ and a, ā /∈ n(σ). Since dec(p) =
dec(p1){a′/a}, t1 has the form (m1{a′/a}, σ,m′

1{a′/a}),
and t ′1 = (m1, σ,m′

1) is derivable by Lemma 5; more-
over, dec(p1)[t ′1〉dec(p′

1), with dec(p′) = dec(p′
1){a′/a}

= dec((νa)p′
1). By induction, as p1 ≡ q1, there exists t ′2 =

(m2, σ,m′
2) such that dec(q1)[t ′2〉dec(q ′

1), with q ′
1 ≡ p′

1.
By Lemma 5, also t2 = (m2{a′/a}, σ,m′

2{a′/a}) is deriv-
able, with dec(q) = dec(q1){a′/a} [t2〉 dec(q ′

1){a′/a} =
dec((νa)q ′

1), where (νa)q ′
1 ≡ (νa)p′

1 as required. ��

Proposition 16 For any process p ∈ P , if p
σ−→p′ then

there exist t ∈ Tp and p′′ ≡ p′ such that dec(p)[t〉dec(p′′)
with l(t) = σ .

Proof The proof is by induction on the proof of p
σ−→p′.

The base case is axiom (Pref), hence p = μ.q, σ = μ

and p′ = q. The thesis follows by noting that axiom (pref)

ensures that dec(p) = {μ.q} μ−→dec(q) = dec(p′) is in Tp.

If rule (S-pref) is the last rule used to derive p
σ−→p′, then

p = α.q, q
σ ′−→p′ and σ = α � σ ′. The inductive hypothe-

sis on the premise of rule (S-pref) ensures that there exist a
transition t = (m, σ ′,m′) and a process p′′ ≡ p′ such that
dec(q)[t〉dec(p′′)with l(t) = σ ′. Since q must be sequential,
then m = dec(q) = {q} and m′ = dec(p′′). Hence the the-
sis follows by rule (s-pref): t = ({q}, σ ′, dec(p′′)) implies

dec(p) = {α.q} α�σ ′−→dec(p′′).
If rule (Sum1) is the last rule applied to derive transition

p
σ−→p′, then p = p1 + p2 and p1

σ−→p′. The inductive
hypothesis on the premise of rule (Sum1) ensures that there
exist a transition t = (m, σ ′,m′) and a process p′′ ≡ p′ such
that dec(p1)[t〉dec(p′′)with l(t) = σ . Since p1 is sequential,
m = dec(p1) = {p1} and m′ = dec(p′′). Hence, the thesis
follows by rule (sum1): t implies dec(p1 + p2)

σ−→dec(p′′).
Symmetrically, if (Sum2) is the last rule applied.

If rule (Par1) is the last rule used to derive p
σ−→p′,

then p = p1 | p2 and p1
σ−→p′

1. The inductive hypoth-
esis on the premise of (Par1) ensures that there exist a
transition t = (m1, σ,m′

1) and a process p′′
1 ≡ p′

1 such
that dec(p1)[t〉dec(p′′

1) with l(t) = σ . Hence, the the-
sis then follows by additivity: dec(p1 | p2) = dec(p1) ⊕
dec(p2)[t〉dec(p′′

1)⊕ dec(p2) = dec(p′′
1 | p2),with p′′

1 | p2 ≡
p′
1 | p2. Symmetrically, if rule (Par2) is the last rule applied.

If rule (S-Com) is the last rule used to derive p
σ−→p′,

then p = p1 | p2, p′ = p′
1 | p′

2, p1
σ1−→p′

1, p2
σ2−→p′

2 and
Sync(σ1, σ2, σ). The inductive hypothesis on the premises
of (S-Com) ensures that there exist two transitions, t1 and
t2, and two processes, p′′

1 ≡ p′
1 and p′′

2 ≡ p′
2, such that

dec(p1)[t1〉dec(p′′
1)with l(t1) = σ1, and dec(p2)[t2〉dec(p′′

2)

with l(t2) = σ2. Hence, by rule (s-com), t1 and t2 imply
transition t1|t2 = (•t1 ⊕ •t2, σ, t1• ⊕ t2•); note that
we are sure that the executability of t1 and t2 on their
respective markings ensures that also the compound tran-
sition t1|t2 is executable on the union of the two markings,
i.e., dec(p1) ⊕ dec(p2)[t1|t2〉dec(p′′

1) ⊕ dec(p′′
2). Hence:

dec(p1 | p2)[t1|t2〉dec(p′′
1 | p′′

2), with p′′
1 | p′′

2 ≡ p′
1 | p′

2.

If rule (S-Res) is the last rule used to derive p
σ−→p′, then

p = (νa)p1, p′ = (νa)p′
1, p1

σ−→p′
1 and a, ā /∈ n(σ). The

inductive hypothesis on the premise of rule (S-Res) ensures
that there exist a transition t = (m, σ,m′) and a process p′′

1 ≡
p′
1 such that dec(p1)[t〉dec(p′′

1) with l(t) = σ . Note that
dec((νa)p1) = dec(p1){a′/a} for a′ restricted. Note also
that, by Lemma 5, if t is derivable by the net rules, then also
transition t ′ = (m{a′/a}, σ,m′{a′/a}) is derivable by the net
rules. Therefore, since m{a′/a} ⊆ dec(p1){a′/a}, we have
that dec((νa)p1) = dec(p1){a′/a} [t ′〉 dec(p′′

1){a′/a} =
dec((νa)p′′

1), with (νa)p′′
1 ≡ (νa)p′

1.

If rule (Cong) is the last rule used to derive p
σ−→p′, then

p ≡ q, q
σ−→q ′ and q ′ ≡ p′. The inductive hypothesis on the

premise ensures the existence of a transition t ′ = (m′, σ,m′′)

123

Vietnam J Comput Sci (2016) 3:15–34 29

and a process q ′′ ≡ q ′ such that dec(q)[t ′〉dec(q ′′) with
l(t ′) = σ . By Lemma 6, there exists a transition t , with
l(t) = σ , such that dec(p)[t〉dec(p′′) and p′′ ≡ q ′′, hence,
by transitivity, p′′ ≡ p′. ��

Proposition 17 For any process p ∈ P , if there exists t ∈ Tp

such that dec(p)[t〉dec(p′) with l(t) = σ , then p
σ−→p′.

Proof By induction on the definition of dec(p, I) and then
by induction on the proof of t . The base cases are empty.
The first base case is dec(0, I) = ∅ and so no transition t
is enabled. Similarly, the second base case is p = A, with
A ∈ I (hence, dec(A, I) = ∅). The other cases follow.

dec(μ.q, I) = {μ.q}. By axiom (pref), the only deriv-
able transition is t = ({μ.q}, μ, dec(q)). By axiom (Pref),

μ.q
μ−→q, and so the thesis follows trivially.

dec(α.q, I) = {α.q}. By rule (s-pref), a transition t =
({α.q}, α � σ ′, dec(q ′)) is derivable only if a transition t ′ =
({q}, σ ′, dec(q ′)) is derivable. The inductive hypothesis on

the premise t ′ of the rule (s-pref) ensures that q σ ′−→q ′. By
rule (S-Pref), α.q

α�σ ′−→q ′, as required.
dec(p1 + p2, I) = {p1 + p2}. By rule (sum1), transition

t = ({p1 + p2}, σ, dec(p′)) is derivable only if transition
t ′ = ({p1}, σ, dec(p′)) is derivable. The inductive hypothesis
on the premise t ′ of the rule (sum1) ensures that p1

σ−→p′.
By rule (Sum1), p1 + p2

σ−→p′, as required. Symmetrically,
if rule (sum2) is used.

dec(p1 | p2, I) = dec(p1, I) ⊕ dec(p2, I). Given a tran-
sition t , with l(t) = σ , such that dec(p1 | p2, I)[t〉dec(p′),
three cases are possible. If t is enabled at dec(p1, I) and
so dec(p1, I)[t〉dec(p′

1), then p′ = p′
1 | p2 and, by induc-

tion, we know that p1
σ−→p′

1. Hence the thesis follows
by rule (Par). Symmetrically, if t is enabled at dec(p2).
The third case is when transition t is such that •t is not
contained in dec(p1, I) or in dec(p2, I). In such a case,
there exist two transitions, say t1 and t2, with l(t1) = σ1,
l(t2) = σ2 and Sync(σ1, σ2, σ), such that, by rule (s-com), t
is t1|t2 = (•t1 ⊕ •t2, σ, t1• ⊕ t2•). Themarkingdec(p1, I) ⊕
dec(p2, I) can be equivalently represented as dec(q1, I) ⊕
dec(q2, I) such that p1 | p2 ≡ q1 | q2, dec(q1, I)[t1〉dec(q ′

1)

and dec(q2, I)[t2〉dec(q ′
2). Then, induction can be applied

to conclude that q1
σ1−→q ′

1 and q2
σ2−→q ′

2; hence, by rule (S-

Com), alsoq1 | q2 σ−→q ′
1 | q ′

2 is derivable, and by rule (Cong),

p1 | p2 σ−→q ′
1 | q ′

2, as required.
dec((νa)p1, I) = dec(p1, I){a′/a}. A transition t ,

with l(t) = σ ∈ A and a, ā /∈ n(σ), is such that
dec(p1, I){a′/a}[t〉dec(p′

1){a′/a} if transition t has the form
(m{a′/a}, σ,m′{a′/a}); so transition t ′ = (m, σ,m′) is
derivable by Lemma 5 and dec(p1, I)[t ′〉dec(p′

1). By induc-

tion, we have p1
σ−→p′

1, and so by rule (S-Res), also

(νa)p1
σ−→(νa)p′

1 is derivable, as required.

dec(A, I) = dec(p, I ∪{A}) if Adef= p and A /∈ I . Then, if
there exists t , with l(t) = σ , such that dec(A, I)[t〉dec(p′),
then also dec(p, I ∪ {A})[t〉dec(p′). By induction, we can
assume that transition p

σ−→p′ is derivable. Hence, by rule
(Cong), also A

σ−→p′ is derivable, too. ��
We are now ready to state the soundness theorem: the

interleaving marking graph associated to Net (p) is bisimilar
to the LTS rooted in p.

Theorem 5 (Soundness) For any process p ∈ P , p ∼
dec(p).

Proof If the relation R = {(p, dec(q)) | p, q ∈ P ∧ p ≡ q}
is a bisimulation, then the thesis follows trivially, as p ≡ p.
On the one hand, if p

σ−→p′, then, by Proposition 16, there
exist a transition t , with l(t) = σ , and a process p′′, with
p′′ ≡ p′, such that dec(p)[t〉dec(p′′), and (p′, dec(p′′)) ∈
R. On the other hand, if dec(q)[t〉dec(q ′), with l(t) = σ ,
then, by Proposition 17, we have q

σ−→q ′; as p ≡ q, by rule
(Cong), p

σ−→q ′, and (q ′, dec(q ′)) ∈ R, as required.

6 A process term for any finite P/T net

In this section we address the following problem: given a
finite, statically reduced, P/T Petri net system N (m0), labeled
on L∪ {τ }, can we single out a finite-net multi-CCS process
pN (m0) such that Net(pN (m0)) and N (m0) are isomorphic?
The answer to this question is positive; hence, finite-net
multi-CCS can represent all finite, statically reduced, P/T
Petri nets, up to net isomorphism.

The translation from nets to processes we are going to
present defines a constantCi in correspondence to each place
si ; the definition of the constant Ci contains an addend com-
posed of a new bound name yi , which is used in order to
distinguish syntactically all the constants bodies, so that no
fusion of two constants to the same place is possible when
applying the reverse step from the generated process term to
its associated net (see Example 8). Moreover, the translation
considers a bound name x j

i for each pair (si , t j), where si is
a place and t j is a transition; such bound names are used to
synchronize all the components participating in transition t j .

The constantCi , associated to place si , has a summand c ji for
each transition t j , which may be 0 when si is not in the pre-
set of t j . Among the many places in the pre-set of t j , the one
with minimal index (as we assume that places are indexed)
plays the role of leader of the multi-party synchronization
(i.e., the process performing the atomic sequence of inputs
x j
i to be synchronized with single outputs x̄ j

i performed by
the other servant participants).

Definition 17 Let N (m0) = (S, A, T,m0)—with S =
{s1, . . . , sn}, A ⊆ L ∪ {τ }, T = {t1, . . . , tk}, and l(t j) = a j

123

30 Vietnam J Comput Sci (2016) 3:15–34

for j = 1, . . . , k—be a finite P/T net system. Function
INet(−), from finite P/T net systems to well-formed, finite-
net multi-CCS processes is defined as

INet(N (m0)) = (νL)(C1| · · · |C1︸ ︷︷ ︸
m0(s1)

| · · · |Cn| · · · |Cn︸ ︷︷ ︸
m0(sn)

)

where L = {y1, . . . , yn} ∪ {x11 , . . . , x1n , x21 , . . . , x2n , . . . ,
xk1 , . . . , x

k
n }, and each Ci has a defining equation

Ci
def= c1i + · · · + cki + yi .0

where each c ji , for j = 1, . . . , k, is equal to

• 0, if si /∈ •t j ;
• a j .� j , if •t j = {si };
• x j

i .0, if
•t j (si) > 0 and •t j (si ′) > 0 for some i ′ < i (i.e.,

si is not the leader for the synchronization on t j);

• x j
i+1. · · · .x j

i+1︸ ︷︷ ︸
•t j (si+1)

. · · · . x j
n . · · · .x j

n︸ ︷︷ ︸
•t j (sn)

.a j .� j , if •t j (si) = 1

and si is the leader of the synchronization (i.e., •t j (si ′) >

0 for no i ′ < i , while •t j (si ′) > 0 for some i ′ > i);

• x j
i .0 + x j

i . · · · .x j
i︸ ︷︷ ︸

•t j (si)−1

. x j
i+1. · · · .x j

i+1︸ ︷︷ ︸
•t j (si+1)

. · · · . x j
n . · · · .x j

n︸ ︷︷ ︸
•t j (sn)

.a j .

� j , otherwise (i.e., si is the leader and •t j (si) ≥ 2).

Finally, process � j is defined as � j = C1| · · · |C1︸ ︷︷ ︸
t•j (s1)

| · · ·

|Cn| · · · |Cn︸ ︷︷ ︸
t•j (sn)

, meaning that � j = 0 if t•j = ∅.

Example 7 Consider the net N (m0) of Fig. 3, where transi-
tion t1 is labeled with a, t2 with b and t3 with c. Applying
the translation above, we obtain the well-formed, finite-net
multi-CCS process

INet(N (m0)) = (νL)(C1 |C1 |C1 |C2 |C2)

where L = {y1, y2, y3}∪{x11 , x12 , x13 , x21 , x22 , x23 , x31 , x32 , x33 },
and

C1
def= (x11.0 + x11.a.C1) + (x21.0 + x21.x

2
1.x

2
2.b.0)

+ x32.x
3
2.c.C3 + y1.0

C2
def= 0 + x22.0 + x32.0 + y2.0

C3
def= 0 + 0 + 0 + y3.0

Note that INet(N (m0)) is a finite-net multi-CCS process:
in fact, the restriction operator occurs only at the top level,
applied to the parallel composition of a number of constants;

s2s1

s3

2 3

a b c

2

Fig. 3 A simple net

each constant has a body that is sequential and restriction-
free. Note also that INet(N (m0)) is awell-formed process: in
fact, each strong prefix is an input x j

i , and any sequence ends
with an action a j ∈ A which is either an input or τ ; hence,
no synchronization of sequences is possible. Therefore, the
following proposition holds by Theorem 4 and Proposition
12.

Proposition 18 For any finite P/T Petri net N (m0) =
(S, A, T,m0), the net Net(INet(N (m0))) is a finite, statically
reduced, P/T net.

Example 8 In order to explain the role of addend yi in the
body of constantCi , for i = 1, . . . , n, let us assume that they
are omitted in Definition 17. Now, let us consider the net
N ({s1, s2}) = ({s1, s2, s3, s4}, {a}, {(s1, a, s3), (s2, a, s4)},
{s1, s2}), which has four places and two transitions. The
finite-net multi-CCS term INet(N ({s1, s2})) would be
(νL)(C1 |C2), where L = {x11 , x12 , x21 , x22 } and

C1
def= a.C3 + 0 C2

def= 0 + a.C4

C3
def= 0 + 0 C4

def= 0 + 0

but now Net(INet(N ({s1, s2}))) is the net ({a.C3 + 0, 0 +
a.C4, 0 + 0}, {a}, {(a.C3 + 0, a, 0 + 0), (0 + a.C4, a, 0 +
0)}, {a.C3 + 0, 0 + a.C4}), which has three places only, as
the two distinct places s3 and s4 are now mapped to the same
place 0+ 0. This fusion cannot happen when we include the
additional addend yi in the body of each constant Ci .

Now we are ready to state our main result, the so-called
representability theorem.

Theorem 6 (Representability theorem)Let N (m0) = (S, A,

T,m0) be a finite, statically reduced, P/T net system such that
A ⊆ L∪{τ }, and let p = INet(N (m0)). Then, Net(p) is iso-
morphic to N (m0).

Proof Let N (m0) = (S, A, T,m0) be a finite, statically
reduced, P/T net system,with S = {s1, . . . , sn}, A ⊆ L∪{τ },

123

Vietnam J Comput Sci (2016) 3:15–34 31

T = {t1, . . . , tk} and l(t j) = a j for j = 1, . . . , k. The asso-
ciated finite-net multi-CCS process is

INet(N (m0)) = (νL)(C1| · · · |C1︸ ︷︷ ︸
m0(s1)

| · · · |Cn| · · · |Cn︸ ︷︷ ︸
m0(sn)

)

where L = {y1, . . . , yn} ∪ {x11 , . . . , x1n , x21 , . . . , x2n , . . . ,
xk1 , . . . , x

k
n }, and for each place si we have a correspond-

ing constant Ci
def= (

∑k
j=1 c

j
i) + yi .0, defined as in Definition

17. For notational convenience, (
∑k

j=1 c
j
i)+ yi .0 is denoted

by pi , i.e., Ci
def= pi ; for the same reason, we use p to denote

INet(N (m0)).
Let ρ = {L ′/L} be a substitution that maps each bound

name x j
i (or yi) to its corresponding restricted name x ′ j

i (or
y′
i) in L′, for i = 1, . . . , n and j = 1, . . . , k. Let Net(p) =

(S′, A′, T ′,m′
0). Then, m

′
0 = dec(p) is the multiset

dec((νL)(C1| · · · |C1︸ ︷︷ ︸
m0(s1)

| · · · |Cn| · · · |Cn︸ ︷︷ ︸
m0(sn)

))

= dec(C1| · · · |C1︸ ︷︷ ︸
m0(s1)

| · · · |Cn| · · · |Cn︸ ︷︷ ︸
m0(sn)

)ρ

= m0(s1) · p1ρ ⊕ · · · ⊕ m0(sn) · pnρ.

because Ci
def= pi for i = 1, . . . n and so dec(Ci) = {pi }.

Hence, the initial places are all of the form piρ, where such
a place is present in m′

0 only if m0(si) > 0.
Note that, by Definition 17, any transition t ′ ∈ T ′ is such

that t ′• = dec(� j) for some suitable j , so that each stati-
cally reachable place s′

i in S′ is of the form piρ, which are
all distinct because each pi contains one distinguishing sum-
mand yi .0. Hence, there is a bijection f : S → S′ defined
by f (si) = s′

i = piρ, which is the natural candidate isomor-
phism function. To prove that f is an isomorphism, we have
to prove that:

1. f (m0) = m′
0,

2. t = (m, a,m′) ∈ T implies f (t) = (f (m), a, f (m′)) ∈
T ′, and

3. t ′ = (m′
1, a,m′

2) ∈ T ′ implies there exists t =
(m1, a,m2) ∈ T such that f (t) = t ′, i.e., f (m1) = m′

1
and f (m2) = m′

2.

From items (2) and (3) above, it follows that A = A′.

Proof of 1: Let m0 = k1 · s1 ⊕ k2 · s2 ⊕ · · · ⊕ kn · sn , where
ki = m0(si) ≥ 0 for i = 1, . . . , n. The mapping via f of the
initial marking m0 is f (m0) = k1 · f (s1) ⊕ k2 · f (s2) ⊕

· · · ⊕ kn · f (sn) = k1 · p1ρ ⊕ k2 · p2ρ ⊕ · · · ⊕ kn · pnρ
= dec(C1| · · · |C1︸ ︷︷ ︸

k1 times

| · · · |Cn | · · · |Cn︸ ︷︷ ︸
kn times

)ρ = dec(p) = m′
0.

Proof of 2: we prove that, for j = 1, . . . , k, if t j =
(m, a,m′) ∈ T , then t ′j = (f (m), a, f (m′)) ∈ T ′. From
transition t j , we can derive the two processes
Pj = (C1ρ| · · · |C1ρ︸ ︷︷ ︸

•t j (s1)

| · · · |Cnρ| · · · |Cnρ︸ ︷︷ ︸
•t j (sn)

) and P ′
j =

(C1ρ| · · · |C1ρ︸ ︷︷ ︸
t•j (s1)

| · · · |Cnρ| · · · |Cnρ︸ ︷︷ ︸
t•j (sn)

) such that f (•t j) =

dec(Pj) and f (t•j) = dec(P ′
j). According to Definition

17, for each Ci = pi , we have a summand c ji in pi ,
with Q j = (c j1ρ| · · · |c j1ρ︸ ︷︷ ︸

•t j (s1)

| · · · | c jnρ| · · · |c jnρ︸ ︷︷ ︸
•t j (sn)

). By inspecting the

shape of t j and the definition of the various c ji ’s, one can
get convinced that (dec(Q j), l(t j), dec(P ′

j)) is a derivable
transition. Hence, since each pi is a summation containing
the summand c ji , also (dec(Pj), l(t j), dec(P ′

j)) is a derivable
transition and belongs to T ′, as required.

Proof of 3: We prove that if t ′j = (m′
1, a,m′

2) ∈ T ′, then
there exists a transition t j = (m1, a,m2) ∈ T such that
f (m1) = m′

1 and f (m2) = m′
2. This is proved by case

analysis on the shape of the marking m′
1.

If m′
1 is a singleton, then m′

1 = {piρ} for some i =
1, . . . , n, and so t ′j = {piρ} a−→m′

2. According to Defini-
tion 17, such a transition is derivable by the rules only if,
among the many summands composing piρ, there exists a
summand c ji ρ = a.� jρ, which is possible only if in N (m0)

we have a transition t j with •t j = {si }, f ({si }) = {piρ},
f (t•j) = dec(� jρ) = m′

2 and l(t j) = a, as required.
Otherwise, if m′

1 = k1 · p1ρ ⊕ · · · ⊕ kn · pnρ and i
is the least index such that ki > 0, then in deriving transi-
tion t ′j = m′

1
a−→m′

2, one of the ki processes piρ acts as the
leader of the synchronization, and all the other participants
are servants. If ki = 1, then, by Definition 17, pi has a sum-
mand c ji defined as x j

i+1. · · · .x j
i+1︸ ︷︷ ︸

ki+1 times

. · · · . x j
n . · · · .x j

n︸ ︷︷ ︸
kn times

.a j .� j ,

where � j = C1| · · · |C1︸ ︷︷ ︸
h1 times

| · · · |Cn| · · · |Cn︸ ︷︷ ︸
hn times

..

This summand c ji will synchronize with all the other com-
ponents of m′

1, as each other may only contribute with an

action of the form x j
k for k = i + 1, . . . , n, being the

unique synchronizable summand of pk . Therefore, transi-
tion t ′j is possible only if transition t j = (m1, a,m2) is in
T , where m1 = k1 · s1 ⊕ · · · ⊕ kn · sn , with f (m1) =
m′

1, and m2 = h1 · s1 ⊕ · · · ⊕ hn · sn is such that
f (m2) = C1ρ| · · · |C1ρ︸ ︷︷ ︸

h1 times

| · · · |Cnρ| · · · |Cnρ︸ ︷︷ ︸
hn times

, as required.

Similarly, if ki ≥ 2, then pi has a summand c ji defined as

123

32 Vietnam J Comput Sci (2016) 3:15–34

x j
i .0 + x j

i .· · ·.x j
i︸ ︷︷ ︸

ki−1 times

. x j
i+1.· · ·.x j

i+1︸ ︷︷ ︸
ki+1 times

.· · ·.x j
n .· · ·.x j

n︸ ︷︷ ︸
kn times

.a j .� j , such

that the other ki − 1 instances of pi can contribute to a syn-
chronization with the first pi by means of the summand x j

i .0

in c ji . ��
Example 9 Function INet(−) can be applied to any finite P/T
net N (m0). However, if N (m0) is not statically reduced, the
representability theorem does not hold. Let us consider the
net N ({s1}) = ({s1, s2}, {a}, {(s1, a,∅), (s2, a,∅)}, {s1}).
Clearly such a net is not statically reduced because place
s2 is not statically reachable from the initial marking. The
finite-netmulti-CCS term INet(N ({s1}))would be (νL)(C1),
where L = {y1, y2} ∪ {x11 , x12 , x21 , x22 } and

C1
def= a.0 + 0 + y1.0 C2

def= 0 + a.0 + y2.0

but nowNet(INet(N ({s1}))) is the net ({a.0+0+ y1.0}, {a},
{(a.0 + 0 + y1.0, a,∅)}, {a.0 + 0 + y1.0}), which has one
place and one transition only, i.e., it is isomorphic to the sub-
net of N ({s1}) statically reachable from the initial marking
{s1}.
Remark 3 In the classic definition of Petri nets (see, e.g.,
[7,30,31]), the transition labeling is given with actions taken
from a set A of unstructured actions; hence, our assumption
that A ⊆ L ∪ {τ } is in analogy with this tradition.

However, if we want to be more generous and consider
Petri nets labeled over the set Act = L ∪ L ∪ {τ } of
structured actions and co-actions, the extension of the repre-
sentability theorem to this larger class of nets is not trivial.
First of all, we note that the translation in Definition 17
is no longer accurate; consider the Petri net N ({s1, s2}) =
({s1, s2}, {a, ā}, {(s1, a,∅), (s2, ā,∅)}, {s1, s2}), then
INet(N ({s1, s2})) is (νL)(C1 |C2), with L = {y1, y2} ∪
{x11 , x12 , x21 , x22 } and

C1
def= a.0 + 0 + y1.0 C2

def= 0 + ā.0 + y2.0,

but now Net(INet(N ({s1, s2}))) contain also an additional
synchronization transition ({a.0 + 0 + y1.0, 0 + ā.0 +
y2.0}, τ,∅), which has no counterpart in the original net
N ({s1, s2}). We conjecture that a possible solution is to be
based on the introduction an additional operator in the lan-
guage: the relabeling operator of CCS [25]—[b1/a1, . . . ,
bn/an], which relabels each action ai into bi—to be used
only at the top level. The procedure is as follows:

• First, relabel each transition t j of the original net N (m0),
labeled with an input action a j , to a new, not in use, input

action a j
j , yielding a new renamed net N ′(m0).

• Then, compute the associated process INet(N ′(m0)),
according toDefinition17; note that inNet(INet(N ′(m0)))

no additional synchronization transitions are introduced,
because, by renaming, no pair of transitions in N ′(m0) are
labeled with a matching pair of actions/co-actions.

• Then, consider the process INet(N ′(m0))[a1/a11, . . . ,
ak/akk] and compute its associated net: it will be isomor-
phic to the original net N (m0). ��

7 Conclusion

The class of finite-net multi-CCS processes represents a lan-
guage for describing finite, statically reduced, P/T Petri nets.
This is not the only language expressing finite P/T nets: the
first (and only other) one is Mayr’s PRS [22], which how-
ever is rather far from a typical process algebra as its basic
building blocks are rewrite rules (or net transitions) instead
of actions and, for instance, it does not contain any scope
operator like restriction.

A bit pretentiously, we claim that well-formed, finite-net
Multi-CCS is the language for finite Petri nets. The main
argument defending this claim is that the parallel operator
− ‖ − of a language able to express Petri nets has to be

• permissive: in a process p ‖ q, the actions p can perform
cannot be prevented by q. This requirement is necessary
because P/T Petri nets are permissive as well, meaning
that if a transition t is enabled at a marking m, then t is
also enabled at a marking m′ ⊇ m; the parallel operator
of Multi-CCS is permissive, while this is not the case for
other parallel operators, such as the CSP one p ‖A q
[20];

• Moreover, the parallel operator − ‖ − is to be ACI
(associative, commutative, with an identity), because the
decomposition of a parallel process into a marking has
to reflect that a marking is a (finite) multiset; also in this
case, the parallel operator of Multi-CCS is ACI, while
this is not the case for other parallel operators, notably
the CSP one.

• Moreover, the parallel operator should be able to express
multi-party synchronization, because a net transition,
which may have a preset of any size, can be generated by
means of a synchronization among many participants,
actually as many as are the tokens in its preset. The
Multi-CCS parallel operator can model multi-party syn-
chronization, by means of the interplay with the strong
prefixing operator. Other process algebras offer parallel
operators with multi-party synchronization capabilities,
but in Multi-CCS multi-party synchronization is “pro-
grammable”, meaning that we can prescribe the order in
which the various participants are to interact, indepen-
dently of the syntactic position they occupy within the
global term and without resorting to a global synchro-

123

Vietnam J Comput Sci (2016) 3:15–34 33

nization function, as in the case of some ACP dialects
[2].

The multi-party synchronization discipline has been cho-
sen as simple as possible: a sequence can synchronize with
a complementary action at a time, in the exact order they
occur in the sequence. About sequentialization operators, we
note that prefixing cannot be replaced byACP-like sequential
composition, because a language with recursion and sequen-
tial composition can express all the context-free languages,
while finite P/T nets cannot [19,30]; hence, sequential com-
position is too powerful to express only finite P/T nets. As
we have chosen a CCS-like naming convention, the scoping
operator, which can occur syntactically only at the top level,
is the CCS restriction operator.

Summing up, any other language, if any, able to repre-
sent all and only finite P/T Petri nets should possess these
necessary features, which, altogether, seem to be exclusive
of finite-net Multi-CCS, or that at least are very rare in the
panorama of process algebras.

Our calculus is given a net semantics in terms of unsafe,
finite P/T nets, improving over previous work. Degano et al.
[8] and Olderog’s approach [28] is operational like ours, but
somehow complementary in style, as it builds directly over
the SOS semantics of CCS. Their construction generates safe
P/T nets which are finite only for regular CCS processes (i.e.,
processes where restriction and parallel composition cannot
occur inside recursion). On the contrary, here we give finite
P/T net semantics to a calculus strictly larger than regular
CCS, as parallel composition can occur in the body of recur-
sively defined constants. Similar concerns are for PBC [4],
whose semantics is given in terms of safe P/T nets only.
Nonetheless, PBC can express multiway synchronization by
means of its relabeling operators, and so, in principle, if
equipped with an unsafe semantics, it might also serve as
a language expressing all unsafe, finite P/T nets. The first
paper defining a net semantics in terms of unsafe P/T nets is
[13], where the approach is denotational and the considered
language is limited toCCSwithout restriction. Our technique
is somehow indebted to the earlier work of Busi and Gorrieri
[5] on giving labeled net semantics to the π -calculus [26]
in terms of P/T nets with inhibitor arcs; our solution simpli-
fies their approach for finite-net Multi-CCS because we do
not need inhibitors. In particular, already in that paper it is
observed that finite-net π -calculus processes originate finite
P/T net systems (with inhibitor arcs). Similar observations
on the interplay between parallel composition and restriction
in recursive definitions, in different contexts, has been done
also by others, e.g., [1]. Also important is the work of Meyer
[23,24] in providing an unlabeled P/T net semantics for a
fragment of the π -calculus; the main difference is that his
semantics may offer a finite net representation also for some
processes where restriction occurs inside recursion, but the

price to pay is that the resulting net semantics may be incor-
rect from a causality point of view; for instance, in process
(νc)(a.c.0 | b.c̄.0) | (ā.0 | b̄.0) the two synchronizations on a
and b are causally dependent in his semantics.

Denotational net semantics for unsafe Petri nets are rare.
Besides the work by Goltz [13] mentioned above, we know
also of [3], where CSP [20] is given a denotational net seman-
tics in terms of so-called open nets, a reactive extension of
ordinary Petri nets, with the limitation that parallel composi-
tion is modeled by disjoint union and arc weight can only be
1. Future work will be devoted to define compositional (i.e.,
denotational in style) unsafe P/T net semantics for finite-net
Multi-CCS, generalizing work of Goltz [13] and Taubner
[33].

We conclude this overview of related literature by noting
the differences of this paper with respect to its earlier version
[18]. First, the definition of finite-net Multi-CCS is a bit sim-
pler now, in order to capture the minimal language capable
of representing all and only finite P/T nets. Second, the net
Net(p) associated to a process p is statically reduced: this
ensures that Net(p) and Net(p | p) are the same unmarked
net, but with a different initial marking; on the contrary, in
[18] Net(p)was only dynamically reduced. Third, the finite-
ness theorem was wrongly stated in [18]: in fact, Net(p) is
finite not for all finite-net processes, but only forwell-formed
finite-net processes. Fourth, the construction of the finite-net
process p = INet(N (m0)) from the finite P/T net system
N (m0) is inaccurate in [18], as Net(p) may have more tran-
sitions than N (m0); as the previous construction used too few
bound names, it was impossible to link precisely the tokens
consumed by a transition to the actual place fromwhich these
tokens are to be consumed.

Finally, an open problem for future research. Composi-
tional equivalence-checking on finite-state process algebras,
such as regular CCS, is a viable technique because the
used equivalence (typically, some form of bisimilarity over
finite-state LTSs) is decidable and also a congruence for the
operators of regular CCS. In desire of a similar technique for
finite-net Multi-CCS, one has to find an equivalence relation
which is decidable over finite P/T nets and a congruence for
the operators of Multi-CCS. This is not easy. Let us examine
threewell-known equivalences over finite P/T nets: interleav-
ing bisimilarity (Definition 7), step bisimilarity [27] and net
isomorphism (Definition 5). On the one hand, only net iso-
morphism is decidable for finite P/T nets, while interleaving
bisimilarity and step bisimilarity are undecidable [12,21].
On the other hand, net isomorphism is not a congruence for
+: for instance, p = a.(0 + 0) and q = a.(0 + 0 + 0)
are such that Net(p) ∼= Net(q) (both nets have only two
places and one transition), but Net(p + p) � Net(q + p),
as Net(p + p) is isomorphic to Net(p), while Net(q + p)
has three places and two transitions. Moreover, interleaving
bisimilarity is not a congruence for Multi-CCS parallel com-

123

34 Vietnam J Comput Sci (2016) 3:15–34

position [19], while step bisimilarity is a congruence for all
the operators of Multi-CCS [19]. Summing up, none of these
three equivalences satisfies both properties: being decidable
and a congruence. Of course, if we restrict our attention to
finite, bounded nets, the situation is much better and step
bisimilarity can be used to this aim, being decidable and a
congruence. However, for general, unbounded finite P/T nets
it is a challenging open problem to find an equivalence rela-
tion which satisfies both properties.

Acknowledgments The anonymous referees are thanked for their
detailed comments and suggestions. Massimo Morara is thanked for
pointing out the inaccuracy in the definition of the process INet(N (m0))

in [18].

OpenAccess This article is distributed under the terms of theCreative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

References

1. Aranda, J., Valencia, F., Versari, C.: On the expressive power of
restriction and priorities in CCS with replication. In: Proceedings
of the FOSSACS 2009. LNCS, vol. 5504, pp. 242–256. Springer,
New York (2009)

2. Baeten, J.C.M., Basten, T., Reniers, M.A.: Process algebra: equa-
tional theories of communicating processes. In: Cambridge Tracts
in Theoretical Computer Science, vol. 50. Cambridge University
Press, Cambridge (2010)

3. Baldan, P., Bonchi, F., Gadducci, F., Monreale, G.: Encoding syn-
chronous interactions using labelled Petri nets. In: Proceedings of
the Coordination’14. LNCS, vol. 8459, pp. 1–16. Springer, New
York (2014)

4. Best, E., Devillers, R., Koutny, M.: The box algebra = Petri nets
+ process expressions. Inf. Comput. 178(1), 44–100 (2002)

5. Busi, N., Gorrieri, R.: Distributed semantics for the π -calculus
based on Petri nets with inhibitor arcs. J. Logic Algebraic Program.
78(3), 138–162 (2009)

6. Courtois, P.,Heymans, F., Parnas,D.: Concurrent controlwith read-
ers and writers. Commun. ACM 14(10), 667–668 (1971)

7. Desel, J., Reisig, W.: Place/Transition Petri Nets. In: Reisig, W.,
Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic Models. Lec-
tureNotes in Computer Science, vol. 1491, pp. 122–173. Springer,
New York (1998)

8. Degano, P., DeNicola, R.,Montanari, U.: A distributed operational
semantics for CCS based on C/E systems. Acta Inform. 26(1–2),
59–91 (1988)

9. Degano, P., De Nicola, R., Montanari, U.: Partial ordering descrip-
tions and observations of nondeterministic concurrent systems.
In: Lecture Notes in Computer Science, vol. 354, pp. 438–466.
Springer, New York (1989)

10. Degano, P., Gorrieri, R., Marchetti, S.: An exercise in concurrency:
a CSP process as a condition/event system. Adv. Petri Nets (LNCS,
Springer) 340, 85–105 (1988)

11. Degano, P., Meseguer, J., Montanari, U.: Axiomatizing the algebra
of net computations and processes. Acta Inform. 33(7), 641–667
(1996)

12. Esparza, J.: Decidability and complexity of Petri net problems:
an introduction. In: Reisig, W., Rozenberg, G. (eds.) Lectures on
Petri Nets I: Basic Models. LectureNotes in Computer Science,
vol. 1491, pp. 374–428. Springer, New York (1998)

13. Goltz, U.: On representing CCS programs by finite Petri nets.
In: Proceedings of the MFCS’88. LNCS, vol. 324, pp. 339–350.
Springer, New York (1988)

14. Gorrieri, R.: Language representability of finite P/T nets.
In:Programming Languages with Applications to Biology and
Security—Colloquium inHonour of PierpaoloDegano forHis 65th
Birthday, (PLABS 2015). LNCS, vol. 9465. Springer, New York
(2015) (being printed)

15. Gorrieri, R., Montanari, U.: SCONE: a simple calculus of nets.
In: Proceedings of the CONCUR’90. LNCS, vol. 458, pp. 2–30.
Springer, New York (1990)

16. Gorrieri, R., Montanari, U.: Towards hierarchical specification of
systems: a proof system for strong prefixing. Int. J. Found. Comput.
Sci. 1(3), 277–293 (1990)

17. Gorrieri, R., Marchetti, S., Montanari, U.: A2CCS: atomic actions
for CCS. Theor. Comput. Sci. 72(2–3), 203–223 (1990)

18. Gorrieri, R., Versari, C.: A process calculus for expressing finite
place/transition Petri nets. In: Proceedings of the EXPRESS’10,
EPTCS, 2010. doi:10.4204/EPTCS.41.6. arXiv:1011.6433v1

19. Gorrieri, R., Versari, C.: EATCS Text in Computer Science.
Introduction to concurrency theory: transition systems and CCS.
Springer, New York (2015)

20. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-
Hall, New York (1985)

21. Janc̆ar, P.: Undecidability of bisimilarity for Petri nets and some
related problems. Theor. Comput. Sci. 148(2), 281–301 (1995)

22. Mayr, R.: Process rewrite systems. Inf. Comput. 156(1–2), 264–
286 (2000)

23. Meyer, R.: A theory of structural stationarity in the π -calculus.
Acta Inform. 46(2), 87–137 (2009)

24. Meyer,R.,Gorrieri, R.:On the relationship betweenpi-calculus and
finite place/transition Petri nets. In: Proceedings of the CONCUR
2009. LNCS, vol. 5710, pp. 463–480. Springer, New York (2009)

25. Milner, R.: Communication and Concurrency. Prentice-Hall, New
York (1989)

26. Milner, R.: Communicating and Mobile Systems: Theπ -Calculus.
Cambridge University Press, Cambridge (1999)

27. Nielsen, M., Thiagarajan, P.S.: Degrees of non-determinism and
concurrency: a Petri net view. In: Proceedings of the Fourth Con-
ference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’84). LNCS, vol. 181, pp. 89–117.
Springer, New York (1984)

28. Olderog, E.R.: Nets, terms and formulas. In: Cambridge Tracts
in Theoretical Computer Science, vol. 23. Cambridge University
Press, Cambridge (1991)

29. Pomello, L., Rozenberg, G., Simone, C.: A survey of equivalence
notions for net based systems. Lect. Notes Comput. Sci. 609, 410–
472 (1992)

30. Peterson, J.L.: Petri Net Theory and the Modeling of Systems.
Prentice-Hall, New York (1981)

31. Reisig, W.: EATCSMonographs on TCS. Petri Nets: An Introduc-
tion. Springer, New York (1985)

32. Reisig, W., Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic
Models. Lecture Notes in Computer Science, vol. 1491. Springer,
New York (1998)

33. Taubner, D.: Finite representations of CCS and TCSP programs by
automata and Petri nets. In: Lecture notes in computer science, vol.
369. Springer, New York (1989)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.4204/EPTCS.41.6
http://arxiv.org/abs/1011.6433v1

	Language representability of finite place/transition Petri nets
	Abstract
	1 Introduction
	2 Background
	2.1 Labeled transition systems and bisimulation
	2.2 Finite place/transition Petri nets

	3 Finite-net multi-CCS
	3.1 Syntax
	3.2 Operational semantics with LTSs
	3.3 Well-formed processes
	3.4 An example: concurrent readers and writers

	4 Operational net semantics
	4.1 Places and markings
	4.2 Properties of places and markings
	4.3 Net transitions
	4.4 Properties of net transitions
	4.5 The reachable subnet Net(p)
	4.6 The CRW example

	5 Soundness
	6 A process term for any finite P/T net
	7 Conclusion
	Acknowledgments
	References

