
Vietnam J Comput Sci (2014) 1:231–239
DOI 10.1007/s40595-014-0023-8

REGULAR PAPER

A simple distributed reasoning system for the connection calculus

Adam Meissner

Received: 10 December 2013 / Accepted: 7 May 2014 / Published online: 28 May 2014
© The Author(s) 2014. This article is published with open access at Springerlink.com

Abstract We present a simple, distributed reasoning sys-
tem for the first order logic, which applies a connection cal-
culus as an inference method. The calculus has been pro-
posed by Bibel as a generalization of some other popular
approaches, like the tableau calculus or the resolution-based
inference. The system is constructed in a lean deduction style
and it has been inspired to some extent by a sequential rea-
soner leanCoP, implemented in Prolog. Our reasoner has a
form of a relational program in the Oz language. In this pro-
gramming model, a computational strategy is a parameter of
a program having a form of a special object called a search
engine. Therefore, the same program can be run in various
ways, particularly in parallel on distributed machines. For
this purpose, we use a parallel search engine available on the
Mozart platform, which is a programming environment for
Oz. We also describe results of experiments for estimating a
speedup obtained by the distributed processing.

Keywords Distributed reasoning system · Connection
calculus · Lean deduction · Oz language

1 Introduction

The term reasoning system or, synonymously, an inference
system or a reasoner denotes a computer program intended
for processing knowledge,which is expressed in a formal cal-
culus, e.g. the first order logic (FOL). Programs of this type
are successfully used in various fields, e.g. in expert sys-
tems, control in manufacturing, action planning in robotics,

A. Meissner (B)
Institute of Control and Information Engineering, Poznań University
of Technology, pl. M. Skłodowskiej-Curie 5, 60-965 Poznan, Poland
e-mail: Adam.Meissner@put.poznan.pl

predictive analytics or natural language processing. Nowa-
days, one can observe a growing popularity of “intelligent”
tools, which apply miscellaneous forms of reasoning. This,
in turn, increases a demand for efficient reasoning systems
that can be easily adopted to different tasks and relocated
among various computational environments. Unfortunately,
the efficiency of reasoners is usually obtained by implement-
ing complex optimization techniques. In consequence, the
majority of reasoning systems are complicated constructions,
difficult to modify and to transfer from one environment to
another. Moreover, the complex system architecture often
causes scalability problems and increases the probability of
error occurrence.

The exception are so-called lean reasoning systems, i.e.
relatively small programs containing only basicmechanisms,
essential for soundness and completeness of an inference
process. Well-known, precursory examples of lean reasoners
are: PTTP [11], SATCHMO [6] or leanTAP [2]. Programs
of this type obviously can not solve hard inference problems.
Nevertheless, this approach yields various benefits. In con-
trast to complex systems, lean reasoners are not hard to verify.
Moreover, they can be easily modified and adapted to par-
ticular applications [1]. They are also remarkably efficient
in solving less difficult problems. It follows from a lower
overhead for handling their internal parts than it happens
for advanced systems. Furthermore, lean reasoners can act
as convenient test-beds for comparison of various inference
techniques, where the absolute efficiency is not as important
as the relative one.

We consider that the computational power of lean rea-
soning systems can be enhanced by introducing parallel and
distributed computations to them. Therefore, we propose a
distributed lean reasoner for FOL, as the main contribution
of this paper. The key difficulty in designing a program of
this type is to preserve its simplicity. In our approach, the rea-

123

232 Vietnam J Comput Sci (2014) 1:231–239

soner is constructed in a declarative programming paradigm,
which separates a program from a computational strategy.
Hence, the reasoning system can keep its small size since it
comprises only a description of basic inference instruments,
while the operational semantics is defined outside.

Putting this idea into practice, we decided to use the rela-
tional programming model available in the Oz language [9],
where a computational strategy is a parameter of the pro-
gram execution. Some details of this conception are given in
Sect. 4. Furthermore, we chose the connection calculus [3] as
a reasoning formalism. It was proposed by Bibel as a gener-
alization of some other popular approaches, like the tableau
calculus or the resolution-based inference. The idea of par-
allel reasoning in the connection calculus is not new—it was
considered e.g. by the authors of the paper [7] who defined a
variant of the calculus suggesting how some inference steps
can be parallelized. The authors also implemented their ideas
as a short Prolog program, which can be regarded as a lean
reasoning system. However, it is not clear if any attempts
were made to run this program in parallel. Another success-
ful example of a sequential lean reasoner for the connection
calculus, also implemented in the Prolog language, is the
system leanCoP [8]. This system is the inspiration for the
solution presented here.

The rest of the paper is organized as follows: In Sect. 2 we
present the principles of the connection calculus. Section 3
contains a description of the general reasoning algorithm. In
Sect. 4 we describe crucial elements of the reasoning sys-
tem. The description is preceded by the sketch of the rela-
tional programming model and distributed computing in the
Oz language. Section 5 provides the results of experiments
intended for estimating the speedup obtained by distributed
computations. Section 6 concludes the paper with some final
remarks.

2 Principles of the connection calculus

We briefly present the fundamentals of the connection cal-
culus. In this description we use a standard FOL syntax
and semantics as well as some elements of logic program-
ming theory [5]. In particular, the alphabet encompasses con-
stantsa, b, c, variables x, y, z, functors f, g, h andpredicates
p, q, r . The symbol L denotes a literal, namely an atomic
formula (i.e. a positive literal) or a negated atomic formula,
i.e. a negative literal. An atomic formula is called in short an
atom. All mentioned symbols can possibly be subscripted.
The symbol θ stands for a substitution {x1/t1, . . . , xn/tn},
where xi is a variable and ti is a term for i = 1, n. An appli-
cation of the substitution θ to the expression E (namely, to a
term or to a formula) results in the expression Eθ , which is
obtained from E by replacing every occurrence of the vari-
able xi by the term ti . The expression Eθ is called an instance

of the expression E . Moreover, a copy of the expression E is
an instance of E with all variables renamed to new, unique
identifiers. If the given expression does not contain variables
then it is called ground. Two expressions E and E ′ are unifi-
able if there exists a unifier for them, that is to say, a substi-
tution θ , such that Eθ = E ′θ .

The semantics of FOL is given by means of an interpre-
tation I, which is a pair (�I , ·I) consisting of an interpre-
tation domain and an interpretation function, respectively.
The formulas F and G are called equisatisfiable if the for-
mula F is satisfiable whenever the formula G is satisfiable
too and vice versa. However, the formulas F and G can have
different models. Every FOL formula can be transformed
to an equisatisfiable formula of the form (Qx1) . . . (Qxn)F ,
where Q is a quantifier (either existential or universal) and
the formula F contains no quantifiers; x1, . . . , xn are all the
variables occurring in F . Furthermore, every formula can
also be transformed to the disjunctive normal form (DNF)
or to the conjunctive normal form (CNF). In the first case
the resulting formula is a disjunction F1 ∨ · · · ∨ Fm where
every Fi for i = 1, m is a conjunction of literals. In the latter
case, the result is a conjunction G1 ∧ · · · ∧ Gn where every
Gi is a disjunction of literals for i = 1, n. Details of these
transformations can be found e.g. in [3].

In our context the reasoning consists in proving the valid-
ity of a given hypothesis by showing that it has some par-
ticular syntactic properties. For example, the formula F is
valid, namely is a tautology, if it can be transformed to the
form F ′∨ ∼ F ′. The proof can also be given indirectly, that
is to say, by demonstrating that the negation of the formula is
unsatisfiable. One of possible reasoning methods is the con-
nection calculus [3]. A characteristic feature of this approach
is that hypotheses are represented as matrices of literals. In
particular, one can distinguish two forms of the representa-
tion, namely a positive and a negative one.

In the first case, a hypothesis corresponding to the given
matrix is regarded as a tautology, which is to be proven
directly. Every column of the matrix is considered as a con-
junction of its literals and the matrix represents a disjunction
of columns. All the variables are existentially quantified by
assumption. In other words, the matrix stands for the formula
(∃)H , where the subformula H is in DNF and contains no
quantifiers. The formula is said to be positively represented
by the matrix. For example, let G denote the following for-
mula: ∃x∃y(∼ p1(x, y) ∧ p4(a, x)∧ ∼ p6 ∨ p2(x)∧ ∼
p5(b)∨ ∼ p3(y)). The matrix, which represents it positively
is given on the left-hand side of Fig. 1.

In case of the negative representation one assumes that a
formula corresponding to a matrix is unsatisfiable and proofs
constructed for this representation are indirect. Every row of
the matrix is regarded as a disjunction of its literals while
the matrix corresponds to a conjunction of rows. Variables
in literals are implicitly universally quantified. Summing up,

123

Vietnam J Comput Sci (2014) 1:231–239 233

Fig. 1 Positive and negative representation of exemplary formulas

the matrix stands for the formula (∀)H , where the quantifier-
free subformula H is in CNF.

Moreover, a positive representation of any formula F can
by transformed to a negative representation of the formula
∼ F by making an anti-clockwise quarter rotation of the
corresponding matrix and negating all the literals contained
in it. For example, the transformation of the matrix on the
left-hand side of Fig. 1 results in the matrix on the right-hand
side of the same figure. One can observe, that it negatively
represents the formula ∀x∀y((p1(x, y)∨ ∼ p4(a, x)∨ p6)∧
(∼ p2(x)∨ p5(b))∧ p3(y)), which is a negation of the exem-
plary formula G.

An easy transition between these two representations
yields various advantages, which are not available in the
majority of the other reasoning methods. One of them,
pointed out in [3], is the possibility of a dual interpretation
of a proof, i.e. either as a direct proof or as an indirect one.
Another benefit of the connection calculus is the indepen-
dence of a truth value of a formula, represented by a matrix,
from some operations performed on matrices, which in par-
ticular correspond to commutativity of conjunction and dis-
junction symbols. More precisely, the following operations
preserve the validity of a hypothesis given in the positive
representation:

– changing order of columns in the matrix
– changing order of literals in a column
– adding a column Cθ to the matrix containing the
column C .

The symbol θ denotes any substitution being applied to all
literals of the column C . In case of the negative representa-
tion, the unsatisfiability of the formula is an invariant of the
following operations:

– changing order of rows in the matrix
– changing order of literals in the row
– adding a row Rθ to the matrix containing the row R.

Let M be a matrix consisting of columns C1, . . . , Cn ,
which positively represents a formula F . A path in thematrix
M is any sequence L1, . . . , Ln of elements of M , such that
the literal Li is an element of the column Ci for i = 1, n.
Let L be a positive literal; moreover let neg(L) =∼ L and
let neg(∼ L) = L . Two literals L and L ′ belonging to the

Fig. 2 Negative representation
of the exemplary formula G1

same path form a connection if there exists a unifier θ of
neg(L) and L ′. It should be remarked that the unifier θ has
to be applied to both the columns where the literals L and L ′
come from. For this reason, the columns are initially copied
in order to save them for future instantiations, unless they are
ground.

A set of connections in the matrix M is called a mating for
M . Amating, in turn, is called spanning if every possible path
in M contains at least one connection included in this mat-
ing. Furthermore, a matrix is complementary if there exists
a spanning mating for it. One of fundamental results for the
connection calculus states that the formula F is a tautology
if and only if M is a complementary matrix [3]. Furthermore,
a necessary condition for the existence of a spanning mating
for M is that M contains at least one positive column, i.e. a
column consisting of positive literals only.

For example, one has to prove that the following formula
∀x∀y(q ∧ (p(a, y)∨ ∼ q) ∧ (∼ p(x, b)∨ ∼ p(x, c))),
denoted by G1, is false. The negative representation of
this formula is given in Fig. 2. A transition to the posi-
tive representation of the formula ∼ G1, having the form
∃x∃y(∼ q∨ ∼ p(a, y) ∧ q ∨ p(x, b) ∧ p(x, c)), results in
the matrix M , which is depicted in Fig. 3.

The process of the creation of a spanning mating for M
follows in four steps and results in the complementarymatrix
M ′ presented in Fig. 4. In every step one connection is built,
which is indicated by a dot-ended line.

Let the symbol Li, j denote an element of amatrix,which is
located at the i-th row and j-th column. The first step consists

Fig. 3 Positive representation of the exemplary formula ∼ G1

Fig. 4 A complementary matrix for the exemplary formula ∼ G1

123

234 Vietnam J Comput Sci (2014) 1:231–239

in forming a connection between literals L1,1 and L1,2 from
the matrix M . For this purpose, the columns C1 and C2 from
M are copied into the columns C2 and C4 in the matrix M ′,
respectively. In the next step, a unifier θ1 = {x1/a, y1/b} is
applied to them and the connection is formed. Subsequently,
the literal L2,2 is connected to the literal L1,3 in the matrix
M ′ using the substitution θ2 = {y/c}. It should be noticed
that the column C2 is not copied since it becomes ground in
the former step. Also, for the sake of simplicity, a copy of
the column C3 is neglected as unnecessary for the creation
of a spanning mating. In two final steps, the literals L2,3 and
L2,4 are respectively connected to the literal L1,5.

3 Reasoning method

The main goal of the reasoning algorithm is the creation of
the spanning mating for the given matrix M . To do this, one
has to check if every possible path in the matrix contains at
least one connection. Let P denote a path being currently
under construction. In other words, the matrix contains some
columns, which the path P has not been conducted through.
Hence, one has to select a column C of this type and then
select a literal L from it. If P contains a literal L ′, which
forms a connection with the literal L , then the creation of the
path going through L can stop since every path starting from
it contains a connection. Otherwise, the literal L should be
added to P . The act of connecting a literal L to some element
of the path P is called a reduction step, while adding a new
literal to the path is an extension step [8].

As said in Sect. 2, a copy of every nonground column par-
ticipating in a reduction step is added to thematrix M . Due to
undecidability of FOL, this can result in an unlimited growth
of a number of columns, which in turn prevents from finding
a suitable mating for M . However, in some of such cases
the spanning mating could be found if columns and literals
were selected in a different order. This problem can be over-
come by means of the depth-first iterative deepening (DFID)
search strategy. Roughly speaking, the process of construct-
ing a spanning mating for a given input matrix starts with
a limited length of a path. Therefore, all possible paths are
tried, whose length does not exceed the limit. If no span-
ning mating is found, the process starts again with a length
limit increased. The initial limit, as well as its increment
in every iteration are parameters of the DFID search. This
method is proven to be asymptotically optimal among brute-
force strategies in terms of proof length, space and time [4].
Hence, it is widely used in lean reasoners for undecidable
logics.

Below, we present a reasoning algorithm for the connec-
tion calculus, whose general description is to be found in [3].
The algorithm is given in pseudocode since we try to keep

as close as possible to the realization presented in the next
section. Furthermore, the algorithm has a form of two sub-
programs, namely the function Prove1 and the procedure
Prove2. The subprograms, in turn, consist of sequences of
steps or statements, which are executed one by one. Each of
them can either terminate (implicitly) successfully or with
a failure. In the latter case, the whole subprogram termi-
nates with a failure. Otherwise, namely if all elements of
the subprogram terminate successfully then the subprogram
terminates successfully, as well.

The pseudocode contains some boldfaced statements. In
their description, we use the following metasymbols: Expr
(an expression), Cond (a boolean expression), Stat (a state-
ment or a sequence of statements), Set (a set or a sequence).
Moreover, the metasymbol Elem stands for the specification
of an element, which is to be selected from a given set. The
specification comprises an identifier of the element. It may
also contain some conditions and constraints, which have
to be satisfied for a successful selection. All the mentioned
symbols can possibly be subscripted. Additionally, the sym-
bol [Expr] denotes an optional expression Expr .

The statement if Cond1 then Stat1 [elseif Cond2 then
Stat2] [else Stat3] represents a decision. It has an intuitive
semantics, whose definition is to be found e.g. in [9].

The statement select Elem from Set declares a nonde-
terministic choice of the element Elem from the set Set . In
other words, any element can be selected, which satisfies the
Elem description. This issue is discussed in the sequel. After
a successful selection of the element Elem, it is assumed to
be removed from Set for further processing. On the other
hand, the statement results in failure if the selection of an
element is impossible, because for example Set is empty or
it contains no element specified by Elem.

The statement for Elem in Set do Stat represents an iter-
ative selection of the element Elem from the set Set . Unlike
the former statement, it always assumes an order of the given
set. After a subsequent element is selected, it is considered to
be removed from Set for the current iteration, which consists
in the execution of the statement (or a sequence of statements)
Stat . Furthermore, if Stat executes the statement continue
then the current iteration is interrupted and the control is
passed to the next one.

The statement exit causes a successful termination of a
procedure. The statement return Expr acts similarly when
used in a function, except it returns the value of Expr to the
function call. On the other hand, the statement fail makes a
subprogram stop with a failure.

A top-level part of the algorithm is the function Prove1.
It takes the matrix M , represented as a set of columns, and
tries to build a spanning mating for it with respect to the limit
Lim. One should observe, that the function returns the value
true only in case of a successful termination of the step 3.

123

Vietnam J Comput Sci (2014) 1:231–239 235

Function Prove1(M, Lim)

Input: M – a matrix, Lim – a limit of a path length.
Output: the answer true if M is complementary; the
answer f alse if M is not complementary; a failure if no
spanning mating can be constructed for M with respect
to Lim.
Step 1: if M contains no positive column then return
false.
Step 2: select a positive column C from M .
Step 3: execute Prove2(C, M, ∅, Lim).
Step 4: return true.
End Function.

The procedure Prove2 initially checks if the current col-
umn C , regarded as a set of literals, is empty. Such a column
corresponds to a true formula (as an empty conjunction) and
thus the matrix containing it is a tautology, as well. Other-
wise, for every element L of the column C the reduction step
(i.e. step 3) is tried. If the reduction is not possible, the exten-
sion step is undertaken, which is represented in the procedure
by steps 3–8.

In particular, step 5 consists in the creation of a copy C ′′
of the column C ′. However, making a copy of a column and
reusing it in subsequent computations is pointless if the col-
umn is ground. In such a case, the columnC ′ is not considered
for further processing (see step 8).Moreover, the symbol L|P
denotes a path constructed from the path P by adding L to it
as the first element; the value of the expression length(P),
in turn, is a number of elements of the sequence P . The func-
tion unify, given in step 7, realizes a unification algorithm. It
results in failure if the arguments are not unifiable.

Procedure Prove2(C, M, P, Lim)

Input: C – a current column, M – a set of columns that
the current path is to be conducted through, P – a current
path, Lim – a limit of a path length.
Output: success if each path starting from P and leading
through every element ofC , and then through all columns
in M , contains a connection; a failure otherwise.
Step 1: if C = ∅ then exit.
Step 2: for every literal L in C do execute the steps 3–8.
Step 3: if there exists a literal L ′ in P and a unifier θ of
neg(L) and L ′ then P := Pθ , C := Cθ , continue.
Step 4: select a column C ′ from M .
Step 5: C ′′ := copy(C ′).
Step 6: select a literal L ′ from C ′′.
Step 7: σ := uni f y(L ′, neg(L)).
Step 8: if C ′ is ground then execute Prove2(C ′′σ,

M, (L|P)σ, Lim) elseif lenght (P) < Lim then exe-
cute Prove2(C ′′σ, M ∪ {C ′}, (L|P)σ, Lim) else fail.
End Procedure.

4 System description

Every reasoning system contains two basic elements. One
of them is a realization of inference rules defining conclu-
sions that can be obtained from premises. The other element
is a strategy of searching for a proof, which determines a
way the premises are selected in a reasoning process. Both
the elements are naturally present in logic programming lan-
guages, e.g. in Prolog. Hence, reasoning systems are often
implemented as logic programs. Unfortunately, the majority
of the considered languages handle only one search strategy
being fixed in the execution environment.

One of the exceptions is Oz—an experimental, multipara-
digm programming language [9], whose execution environ-
ment is the Mozart platform [13]. The work on the language,
as well as on its software platform began in nineties by a
group of European laboratories, whose significant partici-
pants were German Research Centre for Artificial Intelli-
gence (DFKI), Swedish Institute of Computer Science, Uni-
versite catholiqué de Louvain (Belguim) and Universität des
Saarlandes (Germany). The Oz language enables the usage
of many well-known programming models together in the
same program, e.g. imperative and declarative programming,
distributed programming, etc. Every model, called a pro-
gramming paradigm, is represented by a characteristic set of
Oz instructions. The paradigm corresponding to logic pro-
gramming is named a relational paradigm. A declarative
semantics of a relational program is similar to the Prolog
one. However, a search strategy is not fixed like in the case
of Prolog, but it is specified as a parameter of the program
execution. Therefore, the same program can be run accord-
ing to various search strategies. This possibility is very con-
venient, especially in the prototyping and testing phase. A
realization of a search strategy has a form of a special object
called a search engine (in short: an engine). A number of
engines are available in libraries of the Mozart platform.
They are implemented in the Oz language at an abstract
level. In consequence, definitions of engines are relatively
short, so they can be modified and extended with no particu-
lar effort. All these reasons decided that the system presented
in the paper is realized as a relational program in the Oz
language.

An operational semantics of a relational program is
described using a search tree, whose nodes correspond to
computation spaces (in short: spaces) [10]. The main use of
spaces is to encapsulate computations. In other words, com-
putations running in spaces are separated one from another
and thus they can be performed independently. Going into
some details, an execution of a program starts in the root
space. Let us assume that the program contains a statement,
which introduces a nondeterministic choice with n alterna-
tives. In such a case, the respective node of the search tree
has n child nodes. Each of them is a clone of the parent

123

236 Vietnam J Comput Sci (2014) 1:231–239

one, except it contains the information, which alternative it
represents. Moreover, the execution of subsequent “nonde-
terministic statements” results in the further branching of
the tree. Every dangling node corresponds to one possi-
ble result of computations, which can either be a success
or a failure. Summing up, a relational program fully deter-
mines the shape of its search tree. The tree, however, is
not built by the program but by a search engine. In this
way the declarative semantics of a program, correspond-
ing to the structure of the tree, is separated from its oper-
ational semantics. It should be underlined that computa-
tions performed in every branch are independent from the
other branches. More precisely, they compete among one
another for finding a solution. In consequence, a search
tree can be easily constructed in parallel on distributed
machines.

An appropriate, distributed search engine is an instances
of the library class Search.parallel. It can be regarded
as a team of concurrent autonomous agents comprising a
manager and a group of workers. The manager controls
the computations by finding a work for idle workers and
collecting the results whereas the workers construct frag-
ments of the search tree. Members of the team commu-
nicate by exchanging messages. A command, which cre-
ates a new engine specifies a computational environment,
namely a set of machines connected in a network. The
command also indicates a number of workers to be run
on each of the machines. The engine starts on behalf of
the manager, which sends a root of the search tree to a
selected worker and puts the worker on a list of possibly
busy workers. On the other hand, every idle worker sends
a request for a job to the manager. In response, the man-
ager tries to find a busy worker (registered on the list),
which is ready to share its job. If such a worker is found,
it sends a root of an unexplored subtree to the manager,
which conveys it to the idle worker and puts this worker
on the list. A worker can also inform the manager about
finding a solution. After receiving such a message, the man-
ager may tell all the workers to stop their jobs and close
the engine. The detailed description of the engine architec-
ture, including the communication protocol, is to be found in
[10].

The reasoning system processes matrices, which are rep-
resented by Oz data structures. In particular, a matrix is
a list of columns, while a column is a list of literals. We
use the symbol O in the superscript to denote the Oz rep-
resentation of the given expression. A negative literal has
a general form of Oz record ([9]) neg(L O), whose label
is a reserved symbol neg standing for the negation and
the field L O is an Oz counterpart of the positive literal
L . In other words, L is an atom, namely a predicate pos-
sibly followed by a tuple of terms. Predicates, functors
and constants are denoted by alphanumeric strings start-

ing from a lowercase letter, whereas variable names start
from an uppercase one. A tuple of terms (t1, . . . , tn) is
represented by the expression (t O

1 t O
2 . . . t O

n) with a
space character as a separator. Summing up, the exem-
plary matrix given in Fig. 1 has the following represen-
tation in Oz: [[neg(p1(X Y)) p4(a X) neg(p6)]
[p2(X) neg(p5(b))] [neg(p3(Y))]].

The key part of the system is the function Prove1 and
the procedure Prove2, which are defined below. They
are a straightforward realization of the reasoning method
described in Sect. 3. A crucial element of this realiza-
tion is the selection mechanism, which corresponds to the
statement select Elem from Set . It is used for choos-
ing both a column from the matrix and a literal from
the column. The mechanism has a form of the state-
ment {SelectNth Lst {Space.choose {Length
Lst}} Elem Lst1}. TheprocedureSelectNth selects
the n-th element Elem from the list Lst, where n is a num-
ber specified by the second argument. The argument Lst1
is a list obtained by removing the element Elem from Lst.
The function call {Length Lst} returns a number of ele-
ments of the list Lst. The statement {Space.choose
N} is executed in a computation space and it informs a
search engine about a nondeterministic choice with N alter-
natives. The engine in the response clones the space N
times and sends to each copy a numerical identifier ranging
from 1 to N. The identifier becomes a value of the expres-
sion {Space.choose N}. In consequence, each element
of the list Lst is to be processed further in a separate
space.

The first argument (Mat) of the function Prove1 is an
input matrix, while the latter one (Lim) is a current limit
of the path length. Generally, the call of this function may
yield three different results. In particular, the value true
is returned if one can construct a spanning mating for the
matrix Mat and thus the formula represented by Mat is a
tautology. On the other hand, i.e. when it can be proven that
the spanningmating for Mat does not exist, the value false
is returned. The function can also terminate by failure, which
means that no spanning mating can be constructed for Mat
with respect to the current limit of the path length. In such
case, the computations can be repeated in a DFID manner,
namely with an increased value of the argument Lim, as it is
explained in Sect. 3.

The function initially checks if the matrix Mat is empty
(line 2). If so, it returnsfalse (line 7). Otherwise, a separate
clone of the current space is created for each column C of
the matrix Mat (line 3). If the column is not positive, i.e. it
contains at least one negative literal, the further computations
cease in failure (line 4); the function call {Record.label
L} returns a label of the record L. In other case, that is to
say, if the column C is positive, the procedure Prove2 is
executed for it (line 5).

123

Vietnam J Comput Sci (2014) 1:231–239 237

1 fun {Prove1 Mat Lim}
2 if Mat \= nil then C Cs in
3 {SelectNth Mat {Space.choose {Length Mat}} C Cs}
4 if {Some C fun {$ L} {Record.label L} == neg end} then fail else
5 {Prove2 [’!’] (neg(’!’)|C)|Cs nil Lim}
6 true end
7 else fail end
8 end

The execution of the procedure Prove2 results in failure
if no spanning mating can be constructed for the input matrix
with respect to Lim. In consequence, it causes a failure of
the function Prove1 (in line 5). On the other hand, namely
when the mating is constructed, the procedure Prove2 ter-
minates successfully and the function Prove1 returns the
value true.

The first argument of the procedure Prove2 (i.e. Col)
is a list of literals corresponding to the current column. The
argument Mat, in turn, is a list of remaining columns, which
the current path is to be conducted through. The path, having

a form of a list of literals, is represented by the argument
Path. The last argument (Lim) is a number limiting the
Path length. The initial call of the procedure (line 5 of the
definition of the functionProve1) contains a technical trick,
used at first in the system leanCoP. It consists in building
an artificial current column [’!’], which encompasses a
reserved predicate ’!’. This symbol must not occur in the
input matrix. Furthermore, the original current column C is
extended by the negation of the predicate ’!’ and added to
the list of remaining columns, which is represented by the
expression (neg(’!’)|C)|Cs. The aim of this artifice is
to cause the initial current column C to be copied (line 11
of the definition of the procedure Prove2). Otherwise, the
reasoning system is incomplete, namely it may not be able
to prove some formulas, which are tautologies.

Initially, the procedure Prove2 checks if the current col-
umn Col is empty (line 2). If so, the computations cease
successfully (line 22) since the input matrix represents a true

formula. In other case, namely when the current column is
not empty, it is split to the current literal L and the remaining
literals Ls (line 3). Then, the negated literal NegL is con-
structed for L (line 4) and the reduction step is tried for it
(line 5). More precisely, the literal L forms a connection if
NegL is successfully unified with some element of the cur-
rent path. This ends the path led through the current literal.
In consequence, the process of creation a spanning mating is
continued for remaining literals of the current column (line
6). Otherwise, to wit when no reduction can be performed
for L, the extension step is applied in lines 8–21.

1 proc {Prove2 Col Mat Path Lim}
2 if Col \= nil then Col1 Col2 L Ls NegL in
3 L = Col.1 Ls = Col.2
4 if {Record.label L} == neg then NegL = L.1 else NegL = neg(L) end
5 if {UnifiableMember NegL Path} then
6 {Prove2 Ls Mat Path Lim}
7 else
8 if Mat \= nil then Mat1 in
9 {SelectNth Mat {Space.choose {Length Mat}} Col1 Mat1}

10 if Col1 \= nil then L1 Ls1 in
11 {CopyTerm Col1 Col2}
12 {SelectNth Col2 {Space.choose {Length Col2}} L1 Ls1}
13 if {Not {OccurUnify L1 NegL}} then fail end
14 if {Not {NotGround Col1}} then
15 {Prove2 Ls1 Mat1 L|Path Lim}
16 elseif Lim > {Length Path} then
17 {Prove2 Ls1 Mat L|Path Lim}
18 else fail end
19 else fail end
20 else fail end
21 {Prove2 Ls Mat Path Lim} end
22 else skip end
23 end

It starts from checking if the list of remaining columns
(i.e. Mat) is empty (line 8). In such case, any extension is
impossible and thus the procedure terminates by failure (line
20). Otherwise, a column Col1 is selected from Mat (line
9). If the column is empty (line 10) then it can not be used
for an extension step and therefore the computations result
in failure for it (line 19). In other case, the procedure cre-
ates a copy of Col1 (line 11). It should be reminded that
all variables appearing in Col1 are replaced in the copy
Col2 by new, unique ones. The next step consists in the
selection of a literal L1 from the column Col2. If the literal
does not form a connection with the current literal L then the
computations terminate by failure for it (line 13). Otherwise,
the current path can possibly be extended by the literal L,
nevertheless, with regard to some other conditions. In par-
ticular, when the column Col1 is ground (line 14), that is
to say, it contains no variables, then it can be removed from
the list of remaining columns for further processing. Such a

123

238 Vietnam J Comput Sci (2014) 1:231–239

list is indicated by Mat1. At last, the literal L is added to
Path and the computations are continued for the other lit-
erals Ls1 in the column Col1 and for the list Mat1 (Line
15). It should be remarked, that in the considered case the
column Col1 is identical to its copy Col2. On the other
hand, when the column Col1 is not ground, it can not be
neglected in further processing. Therefore, the computations
are continued for literals Ls1 and for remaining columns
Matwith Col1 included (line 17). However, in this case the
length of the current path must not exceed the limit Lim (line
16). Otherwise, the computations result in failure. Finally,
after successful processing of the current literal L, the com-
putations are continued for the rest of the current column,
i.e. for the remaining literals represented by the symbol Ls
(line 21).

Table 1 The computational time [s] for selected TPTP problems

Problem 1 Worker 2 Workers 3 Workers 4 Workers 5 Workers

SYN212-1 101.88 77.37 56.86 46.01 40.12

SET052-6 109.56 26.03 9.63 7.18 6.71

PUZ037-2 151.08 80.64 56.16 37.2 33.67

PLA010-1 190.41 167.78 146.44 112.19 61.55

MGT030-1 214.29 80.83 61.59 52.41 50.88

LCL009-1 59.68 56.8 56.23 5.79 5.18

GEO026-3 252.73 148.9 112.15 78.07 63.21

BOO012-1 33.34 33.11 5.28 5.29 5.28

ANA029-2 240.6 19.91 17.29 11.34 7.07

5 Experimental results

The experiments discussed in this section were aimed at esti-
mating the speedupobtained by running the reasoning system
in parallel on distributed machines with the increasing num-
ber of workers. The computational environment consisted
of identical machines equipped with the processor Pentium
P4D 3.4 GHz, 1 GBRAM, 1GBit Ethernet and Linux 2.6.32.
All the computers were powered by theMozart system 1.3.2.
One of the machines was designated for running themanager
while each of the other computers processed one worker.

All the testing hypotheses are tautologies coming from
the TPTP library [12]. The formulas were chosen under the
general criterion that the time of computations performed by
one worker should be in the range from 30 to 300 s. Tests
were run with the initial input depth equals 1 which was suc-
cessively increased by 1. The results of the tests are collected
in Table 1. The subsequent header row contains a problem
name and a number of workers appearing in the given variant
of the environment. Every entry in the table represents a com-
putational time taken from the system clock as an arithmetic
mean of 5 runs.

A speedup of computations is depicted in the bar chart
given in Fig. 5. All bars are grouped in clusters corresponding
to testing problems. Let Ti denote the time of computations
performed in the environment consisting of themanager and i
workers. Everybar represents a speedup Si = T1/Ti obtained
for the given problem and for i = 2, 5. The value of i is
indicated by a shading of a bar, as it is given in the legend on
the right side of the chart.

Fig. 5 Speedup for testing
problems

123

Vietnam J Comput Sci (2014) 1:231–239 239

Distinct speedup characteristics obtained for the input
problems confirm rather an expected effect that the speedup
depends on the structure of the constructed search tree. An
increment of the speedup is nearly always positive except
one case, i.e. the problem BOO012-1. However, the speedup
fluctuates with the increasing number of workers. In some
cases one can observe a surge in speedup, e.g. for prob-
lems SET052-6 (from S2 to S3), LCL009-1 (from S3 to S4),
BOO012-1 (from S1 to S2) or ANA029-2 (from S3 to S4).
It can be explained by the fact that the engine constructs the
search tree until the first successful branch is found. Thus,
the results of experiments strongly depend on the way the
search tree is partitioned among the workers. In particular,
the computational time reduces drastically if the failed branch
appears as the first one in the subtree given to some worker.
Another observation is the computational time nearly stops
to decrease after reaching a value of around 5 s., e.g. for prob-
lems LCL009-1 or BOO012-1. This limitation may follow
from the time overhead imposed by communication mecha-
nisms of the network environment.

6 Final remarks

In this paper we describe a simple, distributed reasoning sys-
tem for the first order logic. The systemfits the lean deduction
style and it uses a connection calculus as a reasoningmethod.
The system is actually independent from the computational
strategy thanks to implementing it in the relational model in
the Oz language. We use the parallel search engine from the
Mozart programming environment to run the system on dis-
tributed machines. Experiments show a reasonable speedup
achieved by distributing the computations for some exem-
plary problems. However, the comprehensive analysis of the

system efficiency requires more tests. The tests have to con-
sider a greater number of workers and also a greater number
of problems selectedwith regard to the structure of the search
tree. These tests are planned for the future.

Open Access This article is distributed under the terms of theCreative
Commons Attribution License which permits any use, distribution, and
reproduction in any medium, provided the original author(s) and the
source are credited.

References

1. Amir, E., Maynard-Zhang, P.: Logic-based subsumption architec-
ture. Artif. Intell. 153, 167–237 (2004)

2. Beckert, B., Possega, J.: leanTAP: Lean, Tableau-based deduction.
J. Autom. Reason. 15(3), 339–358 (1995)

3. Bibel, W.: Automated Theorem Proving. Vieweg Verlag, Braun-
schweig (1987)

4. Korf, R.E.: Depth-first iterative-deepening: an optimal admissible
tree search. Artif. Intell. 27, 97–109 (1985)

5. Lloyd, W.L.: Foundations of Logic Programming, 2nd edn.
Springer, Berlin (1987)

6. Manthey, R., Bry, F.: SATCHMO:ATheorem Prover Implemented
in Prolog. LNCS, vol. 310, pp. 415–434. Springer, Berlin (1988)

7. Neugebauer, G., Schaub, T.: A Pool-Based Connection Calculus.
Technical Report AIDA-91-02, TH Darmstadt (1991)

8. Otten, J., Bibel,W.: leanCoP: lean connection-based theorem prov-
ing. J. Symb. Comput. 36(1–2), 139–161 (2003)

9. VanRoy, P., Haridi, S.: Concepts, Techniques, andModels of Com-
puter Programming. The MIT Press, Cambridge (2004)

10. Schulte, Ch.: Programming Constraint Services. LNCS, vol. 2302.
Springer, Berlin (2002)

11. Stickel, M.: A Prolog Technology Theorem Prover: A New Expo-
sition and Implementation in Prolog. Technical Note No. 464, SRI
Int., Manlo Park (1989)

12. Sutcliffe, G., Suttner, C.B., Yemenis, T.: The TPTP Problem
Library. LNCS, vol. 814, pp. 252–266. Springer, Berlin (1994)

13. The Mozart Programming System. http://www.mozart-oz.org.
Accessed 29 Nov 2013

123

http://www.mozart-oz.org

	A simple distributed reasoning system for the connection calculus
	Abstract
	1 Introduction
	2 Principles of the connection calculus
	3 Reasoning method
	4 System description
	5 Experimental results
	6 Final remarks
	References

