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Abstract We develop a new Web ontology rule language,
called WORL, which combines a variant of OWL 2 RL with
eDatalog¬. We allow additional features like negation, the
minimal number restriction and unary external checkable
predicates to occur at the left-hand side of concept inclusion
axioms. Some restrictions are adopted to guarantee a trans-
lation into eDatalog¬. We also develop the well-founded
semantics and the stable model semantics for WORL as well
as the standard semantics for stratifiedWORL (SWORL) via
translation into eDatalog¬. Both WORL with respect to the
well-founded semantics andSWORLwith respect to the stan-
dard semantics have PTime data complexity. In contrast to
the existing combined formalisms, in WORL and SWORL
negation in concept inclusion axioms is interpreted using
nonmonotonic semantics.
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1 Introduction

In recent years, the Semantic Web area has been rapidly
developed and attracted lots of attention. A central idea of
the Semantic Web is that ontologies are a proper bridge
among users and search engines, ensuring more accurate
search results. Therefore, Web Ontology Language (OWL),
built on the top of XML and RDF, serves as an important tool
for specifying ontologies and reasoning about them.Together
with rule languages, it serves as a main knowledge represen-
tation formalism for the Semantic Web.

The main semantical and logical foundation of OWL are
description logics (DLs). Such logics represent the domain
of interest in terms of concepts, individuals, and roles. A con-
cept is interpreted as a set of individuals, while a role is inter-
preted as a binary relation between individuals. A knowledge
base in a DL consists of an RBox of role axioms, a TBox of
terminological axioms and an ABox of facts about individu-
als.

The second versionOWL2 ofOWL, recommended by the
W3C consortium in 2009, is based on the DL SROIQ. This
logic is highly expressive but has intractable combined com-
plexity (N2ExpTime-complete) and data complexity (NP-
hard) for basic reasoning problems. Thus, W3C recom-
mended also profiles OWL 2EL, OWL2QL andOWL2RL,
which are restricted sublanguages of OWL 2 Full and enjoy
PTime data complexity. These profiles are based on the fam-
ilies of description logics EL [3,4], DL-Lite [5] and Descrip-
tion Logic Programs (DLP) [13], respectively. There are also
more sophisticated fragments of DLs with PTime data com-
plexity: Horn-SHIQ [15], Horn-SROIQ [21] and Horn-
DL [20].

Rule languages provide very useful knowledge represen-
tation formalisms applicable to the Semantic Web. Some
fragments of DLs like DLP [13] can be translated into rule
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languages. But most importantly, rule languages can be com-
bined with DLs to develop more expressive formalisms. An
early attempt to achieve such a combination was SWRL [14],
a rule language using only concept names, role names and
the equality predicate. However, without restrictions its com-
bination with OWL DL is undecidable.

A knowledge base in other combined languages is usu-
ally specified as a pair 〈O,P〉, where O is an ontology in
some DL and P is a set of rules, e.g., specified in Datalog
or its suitable extension, which can use concept names and
role names. Interaction between O and P is either one-way
(O affects P) or two-way (where P may also affectO). The
approach of defining a knowledge base as a pair 〈O,P〉 is
adopted in a considerable number of works, including [8] (on
AL-log), [17] (on CARIN), [19] (on DL-safe rules), [24] (on
DL+log), [18,16] (on hybrid MKNF), [9] (on hybrid pro-
grams), [23] (on OntoDLV), [10] (on dl-programs). In these
works, if negation is allowed in P then P and its interaction
with O are interpreted using some nonmonotonic semantics
(e.g., the stablemodel semantics, theMKNF semantics or the
well-founded semantics). However, O is always interpreted
using the usual (monotonic) semantics.

In the current paper we treat such a pair 〈O,P〉 just as
a layer and study the case when O can be translated to
an eDatalog¬ program and P is an eDatalog¬ program.
eDatalog¬ extends Datalog¬ by allowing two basic types
(for individuals and data constants), external checkable pred-
icates and the equality predicate (between individuals). Con-
cept names and role names are allowed both in heads and
bodies of program clauses. Our approach is novel in the fol-
lowing aspects:

– Negation inO is interpreted using a nonmonotonic seman-
tics (the well-founded semantics, the stable model seman-
tics, or the standard semantics for stratified knowledge
bases); this differs fromall the above-mentionedworks [8–
10,16–19,23,24].

– We combine O and P into one set (called a layer, which
is divided into a TBox consisting of concept inclusion
axioms/program clauses and an ABox consisting of facts).
This allows for a tighter integration betweenDLs and rules.
It may seem similar to the approach of SWRL, but we also
allow ordinary predicates, use a nonmonotonic semantics
for negation, and design the language appropriately to get
decidability and PTime data complexity (w.r.t. the well-
founded semantics, and the standard semantics for strati-
fied knowledge bases).

– To reflect modularity of ontologies (e.g., the import fea-
ture of ontologies), we define a knowledge base to be
a hierarchy of layers (a tree or a rooted directed acyclic
graph of layers). Each layer in turn may be stratifiable and
divided further into strata. The granulation is not substan-
tial for the well-founded semantics, as the whole knowl-

edge base will be flattened to a set of program clauses and
facts.

– However, it is substantial for the stable model semantics
(see Example 8). Furthermore, when each layer of the
considered knowledge base is stratifiable and the standard
semantics is used for it, layers not only emphasize modu-
larity but also affect the semantics (flattening the knowl-
edge base may result in an unstratifiable layer).

The Web ontology rule language we define in this paper,
WORL, combines a variant of OWL 2 RL with eDatalog¬.
Similarly to our previous work on OWL 2 eRL+ [6], we:

– disallow those features of OWL 2 RL that play the role
of constraints (i.e., the ones that are translated to negative
clauses of the form ϕ → ⊥);

– allow unary external checkable predicates;
– allow additional features like negation and the constructor

≥ n R.C to occur at the left-hand side of � in concept
inclusion axioms.

Some restrictions are adopted for the additional features to
guarantee a translation of WORL programs into eDatalog¬.
We also define the rule language SWORL (stratifiedWORL)
and develop thewell-founded semantics and the stablemodel
semantics for WORL as well as the standard semantics for
SWORL via translation into eDatalog¬. Both WORL with
respect to the well-founded semantics and SWORL with
respect to the standard semantics have PTime data complex-
ity.

This paper is a revised and extended version of our
conference paper [7]. Comparing to [7], in the current
paper, we additionally provide the standard model seman-
tics for WORL, a direct method for checking stratifiability
of TBoxes, all the proofs and a number of illustrative exam-
ples. The three semantics for eDatalog¬ which we consider
are now presented in a uniform manner.

The rest of this paper is structured as follows. In Sect. 2 we
introduce eDatalog¬, stratified eDatalog¬, and their seman-
tics. In Sect. 3we presentWORL, a translation ofWORL into
eDatalog¬, and its well-founded semantics and stable model
semantics. Section 4 is devoted to SWORL and its standard
semantics. Section 5 concludes “this work”. In the Appen-
dix, we present a direct method for checking stratifiability of
TBoxes.

2 Preliminaries

We denote the set of concept names by CNames, and the set
of role names by RNames.

From the point of view of OWL, there are two basic
types: individual (i.e. object) and literal [22] (i.e. data con-
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stant).We denote the individual type by IType, and the literal
type by LType. Thus, a concept name is a unary predicate
of type P(IType), a data type is a unary predicate of type
P(LType), an object role name is a binary predicate of type
P(IType × IType), and a data role name is a binary predicate
of type P(IType × LType). For simplicity, we do not provide
specific data types like integer, real or string. Apart from con-
cept names and role names, we will also use a set OPreds of
ordinary predicates (including data types) and a set ECPreds
of external checkable predicates. We assume that the sets
CNames, RNames, OPreds and ECPreds are finite and pair-
wise disjoint. By a set of defined predicates we mean:

DPreds = CNames ∪ RNames ∪ OPreds.

With each k-ary predicate from OPreds we associate its type
P(T1 × · · · × Tk), where each Ti is either IType or LType.
A k-ary predicate from ECPreds has the type P(LTypek).
We assume that each predicate from ECPreds has a fixed
meaning which is checkable in the following sense:

if p is a k-ary predicate from ECPreds and d1, . . . , dk

are constants of LType, then the truth value of
p(d1, . . . , dk) is fixed and computable in polynomial
time (in the number of bits used for d1, . . . , dk).

For example, one may want to use the binary predicates >,
≥, <, ≤ on real numbers with the usual semantics.

We assume there is only one equality predicate ‘=’, which
belongs to OPreds and has the type P(IType × IType). For
data constants, we assume the Unique Names Assumption
instead.

A term is either an individual (of type IType) or a literal
(of type LType) or a variable (of type IType or LType). If p
is a predicate of type P(T1 × · · ·× Tk), and for 1 ≤ i ≤ k, ti
is a term of type Ti , then p(t1, . . . , tk) is an atomic formula
(also called an atom). An atom is ground if it contains no
variables.

An interpretation I = 〈�I
o ,�I

d , ·I〉 consists of a non-
empty set �I

o called the object domain of I, a non-empty
set �I

d disjoint with �I
o called the data domain of I, and

a function ·I which maps:

– every individual a to an element aI ∈ �I
o ,

– every literal d to a unique1 element dI ∈ �I
d ,

– every concept name A to a subset AI of �I
o ,

– every data type DT to a subset DTI of �I
d ,

– every predicate of type P(T1×· · ·×Tk) inDPreds different
from ‘=’ to a subset of �1 × · · · × �k , where �i = �I

o
if Ti = IType, and �i = �I

d if Ti = LType,
– predicate ‘=’ to a congruence of I.2

1 i.e., if d1 �= d2 then dI
1 �= dI

2 .
2 Recall that a congruence is an equivalence relation preserving func-
tions and relations occurring in the language.

A Herbrand interpretation is a set of ground atoms of
predicates from DPreds. An ABox is a finite Herbrand inter-
pretation.

The size of a ground atom is the number of bits used for
its representation. The size of an ABox is the sum of the sizes
of its atoms.

By EqAxioms we denote the following set of axioms:

x = x
x = y → y = x
x = y ∧ y = z → x = z
xi = x ′

i ∧ p(x1, . . . , xi , . . . , xk) → p(x1, . . . , x ′
i , . . . , xk),

where p is any k-ary predicate of DPreds different from ‘=’
and i is any natural number between 1 and k such that the i th
argument of p is of type IType.

A Herbrand interpretation H is closed w.r.t. EqAxioms
if for every ground instance ϕ1 ∧ · · · ∧ ϕk → ψ (with
k ≥ 0) of an axiom in EqAxioms using the individuals and
data constants occurring in H, if {ϕ1, . . . , ϕk} ⊆ H then
ψ ∈ H.

Given a Herbrand interpretation H that is closed w.r.t.
EqAxioms, let I be the interpretation specified as follows:

– �I
o is the set of all individuals occurring in H,

– �I
d is the set of all data constants occurring inH,

– for every k-ary predicate p ∈ DPreds,

pI = {〈t1, . . . , tk〉 | p(t1, . . . , tk) ∈ H}.

Observe that =I is a congruence of I. We call the
quotientI/= ofI by the congruence=I the traditional inter-
pretation corresponding to H.

2.1 The rule language eDatalog¬

In [6], we defined eDatalog as an extension of Datalog with
the equality predicate, external checkable predicates, and
a relaxed range-restrictedness condition. In this subsection,
we define the rule language eDatalog¬ similarly as an exten-
sion of Datalog¬, but using the full range-restrictedness con-
dition.

An eDatalog ¬ program clause is a formula of the form

(ϕ1 ∧ · · · ∧ ϕh ∧ ¬ψ1 ∧ · · · ∧ ¬ψk

∧ ξ1 ∧ · · · ∧ ξl ∧ ¬ζ1 ∧ · · · ∧ ¬ζm) → α (1)

where h, k, l, m ≥ 0, ϕ1, . . . , ϕh, ψ1, . . . , ψk, α are atoms
of predicates from DPreds, and ξ1, . . . , ξl , ζ1, . . . , ζm are
atoms of predicates from ECPreds, with the property that
every variable occurring in α or some ψi , ξi or ζi occurs also
in some atom ϕ j (this is the range-restrictedness condition).

The atom α in (1) is called the head of the program clause.
If p is the predicate of α then the clause is called a program
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clause defining p. The formula at the left-hand side of → in
(1) is called the body of the program clause.

An eDatalog ¬ program is a finite set of eDatalog ¬ pro-
gram clauses. An eDatalog ¬ knowledge base is a pair 〈P,A〉
consisting of an eDatalog¬ program P and an ABox A. A
query is defined to be a formula that can be the body of an
eDatalog ¬ program clause.

Example 1 Let P be the following eDatalog ¬ program:

[acceptable(X) ∧ hasPrice(X, Y )

∧ acceptable(X ′) ∧ hasPrice(X ′, Y ′) ∧ Y < Y ′]
→ excluded(X ′)

acceptable(X) ∧ ¬excluded(X) → preferable(X)

and let A = {acceptable(a), acceptable(b), hasPrice(a,

100), hasPrice(b, 120)}. ThenKB = 〈P,A〉 is an eDatalog¬
knowledge base. Here, ‘<’ is an external checkable predi-
cate with the usual semantics; X and X ′ are variables of type
IType; Y and Y ′ are variables of type LType; a and b are
objects (of type IType); 100 and 120 are data constants (of
type LType).

2.2 Stratified eDatalog¬

A stratification of an eDatalog¬ program P is a sequence of
eDatalog¬ programs P1, . . . ,Pn such that:

– {P1, . . . ,Pn} is a partition of P ∪ EqAxioms,
– for some mapping f : DPreds → {1, . . . , n}, every pred-

icate p ∈ DPreds satisfies the following conditions:

– the program clauses in P ∪ EqAxioms defining p are
in P f (p),

– if P ∪ EqAxioms contains a program clause defining p
in the form

(ϕ1 ∧ · · · ∧ ϕh ∧ ¬ψ1 ∧ · · · ∧ ¬ψk ∧ ξ1 ∧ · · · ∧ ξl

∧ ¬ζ1 ∧ · · · ∧ ¬ζm) → α

then for every 1 ≤ i ≤ h and 1 ≤ j ≤ k :
• if p′

i is the predicate of ϕi then f (p′
i ) ≤ f (p),

• if p′′
j is the predicate of ψ j then f (p′′

j ) < f (p).

Given a stratification P1, . . . ,Pn of P , each Pi is called a
stratum of the stratification, and f is called the stratifica-
tion mapping. Let us emphasize that f (‘=’) ≤ f (p) for all
p ∈ DPreds.

An eDatalog¬ program P is called a stratified
eDatalog ¬ program if it has a stratification. It is called a
semipositive eDatalog ¬ program if it has a stratification
with only one stratum.3

3 Facts supplied to that only stratum are kept separately, e.g., in an
ABox.

A pair 〈P,A〉 is called a stratified eDatalog ¬ knowl-
edge base if it is an eDatalog¬ knowledge base withP being
a stratified eDatalog¬ program.

Example 2 The programP given in Example 1 is a stratified
eDatalog¬ program with two strata. Each program clause of
P forms a stratum.

2.3 Semantics of eDatalog¬

Let 〈P,A〉 be an eDatalog¬ knowledge base. By Pgr
A we

denote the set of all ground instances of the program clauses
ofP∪EqAxioms that use only individuals and data constants
occurring in P or A.

By PA we denote the set of all clauses

(ϕ1 ∧ · · · ∧ ϕh ∧ ¬ψ1 ∧ · · · ∧ ¬ψk) → α

such that Pgr
A contains a program clause

(ϕ1 ∧ · · · ∧ ϕh ∧ ¬ψ1 ∧ · · · ∧ ¬ψk

∧ ξ1 ∧ · · · ∧ ξl ∧ ¬ζ1 ∧ · · · ∧ ¬ζm) → α (2)

where all ξ1, . . . , ξl are true and all ζ1, . . . , ζm are false (by
the fixed meaning of external checkable predicates).

Example 3 Consider the eDatalog¬ knowledge base 〈P,A〉
given in Example 1. ThenPA consists of a number of ground
instances of clauses of EqAxioms and the following clauses:

[acceptable(a) ∧ hasPrice(a, 100)∧
acceptable(a) ∧ hasPrice(a, 120)] → excluded(a)

[acceptable(a) ∧ hasPrice(a, 100)∧
acceptable(b) ∧ hasPrice(b, 120)] → excluded(b)

[acceptable(b) ∧ hasPrice(b, 100)∧
acceptable(a) ∧ hasPrice(a, 120)] → excluded(a)

[acceptable(b) ∧ hasPrice(b, 100)∧
acceptable(b) ∧ hasPrice(b, 120)] → excluded(b)

acceptable(a) ∧ ¬excluded(a) → preferable(a)

acceptable(b) ∧ ¬excluded(b) → preferable(b).

Note that the predicate ‘<’ does no longer occur in PA.

Note that PA ∪ A is a ground Datalog¬ program. Fur-
thermore, if 〈P,A〉 is a stratified eDatalog¬ knowledge base
then PA ∪ A is a ground stratified Datalog¬ program. We
define:

– the well-founded model of an eDatalog¬ knowledge base
〈P,A〉 to be the well-founded model of the ground
Datalog¬ program PA ∪ A [11],

– a stable model of an eDatalog¬ knowledge base 〈P,A〉 to
be a stablemodel of the groundDatalog¬ programPA∪A
[12],

– the standard model of a stratified eDatalog¬ knowledge
base 〈P,A〉 to be the standard model of the stratified
Datalog¬ program PA ∪ A [1].
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Let ϕ be a query and θ be a ground substitution for all
the variables of ϕ. We say that θ is an answer to ϕ w.r.t.
〈P,A〉 and the well-founded semantics if ϕθ holds in the
well-founded model of 〈P,A〉.4 Similarly, θ is called an
answer to ϕ w.r.t. 〈P,A〉 and the stable model semantics if
ϕθ holds in a stable model of 〈P,A〉. If 〈P,A〉 is stratifiable
then θ is called an answer to ϕ w.r.t. 〈P,A〉 and the standard
semantics if ϕθ holds in the standard model of 〈P,A〉.

As a Datalog¬ program may have zero or more than one
stable model, an eDatalog¬ knowledge base may also have
zero or more than one stable model. Note that we adopt
the answer set programming approach to deal with the case
when an eDatalog¬ knowledge base hasmore than one stable
model.

Proposition 1 The data complexity of eDatalog¬ with res-
pect to the well-founded semantics is in PTime.

Proof Let 〈P,A〉 be an eDatalog¬ knowledge base. The set
Pgr
A can be constructed in polynomial time and has polyno-

mial size in the size of A. As the truth values of the atoms
of external checkable predicates that occur in Pgr

A can be
computed in polynomial time,PA can also be constructed in
polynomial time and has polynomial size in the size ofA. It
is well known that the well-founded model of the Datalog¬
program PA ∪A can be constructed in polynomial time and
has polynomial size in the size of PA ∪ A (see, e.g., [1]).
Thus, the well-founded model of 〈P,A〉 can be constructed
in polynomial time and has polynomial size in the size ofA.
Consequently, answering queries to 〈P,A〉 w.r.t. the well-
founded semantics can be done in polynomial time in the
size of A. ��
Lemma 1 Given an eDatalog¬ knowledge base KB =
〈P,A〉 with P being a semipositive eDatalog¬ program, the
standard Herbrand model of KB can be computed in polyno-
mial time and has polynomial size in the size of A.

Proof Recall that Pgr
A has polynomial size in the size of A

(when P is fixed). Let P ′
A be the set of all the program

clauses

ϕ1 ∧ · · · ∧ ϕh → α

such that Pgr
A contains a program clause

(ϕ1 ∧ · · · ∧ ϕh ∧ ¬ψ1 ∧ · · · ∧ ¬ψk

∧ ξ1 ∧ · · · ∧ ξl ∧ ¬ζ1 ∧ · · · ∧ ¬ζm) → α

where {ψ1, . . . , ψk} ∩ A = ∅, all ξ1, . . . , ξl are true and all
ζ1, . . . , ζm are false (by the fixed meaning of external check-
able predicates). The setP ′

A is a Datalog program, which can
be computed in polynomial time and has polynomial size in

4 The well-founded model is treated as a three-valued interpretation.

the size of A. The least Herbrand model of P ′
A can be com-

puted in polynomial time and has polynomial size in the size
ofP ′

A (see, e.g., [1]). Thus, it can be computed in polynomial
time and has polynomial size in the size ofA. That model is
the same as the standard Herbrand model of KB. ��
Corollary 1 Given a stratified eDatalog¬ knowledge base
KB = 〈P,A〉, the standard Herbrand model of KB can be
computed in polynomial time and has polynomial size in the
size of A. As a consequence, the data complexity of strati-
fied eDatalog¬ with respect to the standard semantics is in
PTime.

3 The web ontology rule language WORL

3.1 Syntax and notation of WORL

We use:

– the truth symbol � to denote owl:Thing [22],
– a and b to denote individuals (i.e. objects),
– d to denote a literal (i.e. a data constant),
– A and B to denote concept names (i.e. Class ele-
ments [22]),

– C and D to denote concepts (i.e. ClassExpression ele-
ments [22]),

– lC± and lC to denote concepts like a subClassExpression
of [22],

– rC to denote a concept like a superClassExpression
of [22],

– eC to denote a concept like an equivClassExpression
of [22],

– DT to denote a data type (i.e. a Datatype of [22]),
– DR to denote a data range (i.e. a DataRange of [22]),
– puec to denote a unary predicate from ECPreds,
– r and s to denote object role names (i.e. ObjectProperty

elements [22]),
– R and S to denote object roles (i.e. ObjectPropertyExpr.
elements [22]),

– σ and 
 to denote data role names (i.e. DataProperty ele-
ments [22]).

The families of R, DR, lC±, lC , rC , eC are defined by
the following BNF grammar, where n ≥ 2 :

R := r | r−

DR := DT | DT � DR

lC± := A | ¬A | {a} | lC± � lC± | lC± � lC± | ∃R.lC± |
∃R.� | ≥n R.lC± | ∃σ.DR | ∃σ.puec | ∃σ.{d}

lC := A | {a} | lC � lC± | lC± � lC | lC � lC | ∃R.lC± |
∃R.� | ≥n R.lC± | ∃σ.DR | ∃σ.puec | ∃σ.{d}
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rC := A | rC � rC | ∀R.rC | ∃R.{a} | ∀σ.DR | ∃σ.{d} |
≤1 R.lC± | ≤1 R.�

eC := A | eC � eC | ∃R.{a} | ∃σ.{d}
Here, by r− we denote the inverse of an object role r .

Notice the occurrences of lC± in the definition of lC . They
are accompanied by lC or R to guarantee the so called safe-
ness (range-restrictedness) condition.

Comparing with [6], it can be seen that ¬A, ≥ n R.lC±
and ∃σ.puec for lC± are additional features w.r.t. OWL 2 RL.

The class constructor ObjectOneOf [22] can be written
as {a1, . . . , ak} and expressed as {a1} � · · · � {ak}. We will
use the following abbreviations:Func (Functional), InvFunc
(InverseFunctional), Sym (Symmetric), Trans (Transitive),
Key (HasKey).

A DL TBox axiom, like a ClassAxiom or a Datatype
Definition or a HasKey axiom of OWL 2 RL [22], is an
expression of one of the following forms, where h, k ≥ 0
and h + k ≥ 1:

lC � rC, eC = eC ′,
DT = DR, Key(lC±, R1, . . . , Rh, σ1, . . . , σk).

(3)

An RBox axiom, like an ObjectPropertyAxiom or a Data
PropertyAxiom of OWL 2 RL [22], is an expression of one
of the following forms:

R1 ◦ · · · ◦ Rk � S, R = S, R = S−, ∃R.� � rC,

� � ∀R.rC, Func(R), InvFunc(R), Sym(R), Trans(R),

σ � 
, σ = 
, ∃σ � rC, � � ∀σ.DR. (4)

Note that axioms of the form R = S, R = S−,
Sym(R) or Trans(R) are expressible by axioms of the form
R1 ◦ · · · ◦ Rk � S, and hence can be deleted from the above
list.

An RBox axiom of the form ∃R.� � rC (resp.
� � ∀R.rC , ∃σ � rC , � � ∀σ.DR) stands for an
ObjectPropertyDomain (resp. ObjectPropertyRange, Data
PropertyDomain, DataPropertyRange) axiom as in [22].

One can classify these latter axioms as DL TBox axioms
instead of RBox axioms. Similarly, Key(. . .) axioms can be
classified as RBox axioms instead.

We accept the following definitions:

– A (WORL) TBox axiom is either a DL TBox axiom (as
defined by (3)) or an RBox axiom (as defined by (4)) or
an eDatalog¬ program clause.

– A (WORL) TBox is a finite set of TBox axioms.
– AWORL knowledge layer is a pairL = 〈T ,A〉 consisting
of a TBox T and an ABox A.

Note that we defined an ABox to be a finite set of ground
atomsof predicates fromDPreds. If onewants to add an asser-
tion of the form C(a) to a WORL knowledge layer 〈T ,A〉,

where C is a complex concept belonging to the rC family,
he or she can add the assertion A(a) toA and add the axiom
A � C to T , where A is a fresh concept name.

WORL knowledge bases are defined inductively as fol-
lows:

– a WORL knowledge layer is a WORL knowledge base,
– if L is a WORL knowledge layer and KB1, . . . , KBk are

WORLknowledge bases thenKB = 〈L, {KB1, . . . , KBk}〉
is a WORL knowledge base.

A WORL knowledge base 〈L, {KB1, . . . , KBk}〉 can be
thought of as an ontology with L being a set of direct state-
ments, and KB1, . . . , KBk being subontologies.

Example 4 This example is based on the ones of [1,11,12].
It is about a two players game with states a, b, c, d, e, f, g.
A player wins if the opponent has no moves. The allowed
moves are illustrated below:

We use a concept name winning and a role name move.
Let T be the TBox consisting of only the axiom

∃move.¬winning � winning

and letAbe theABoxconsistingof the assertionsmove(a, b),

. . . , move( f, g) that correspond to the edges in the above
graph. Then KB = 〈T ,A〉 is a WORL knowledge base.

3.2 Translating WORL into eDatalog¬

We first define a translation π that translates a TBox axiom
to a set of formulas of classical first-order logic. After that
we will refine π to get a translation that converts a TBox to
an eDatalog¬ program.

For an eDatalog¬ program clause ϕ, let π(ϕ) = {ϕ}.
For a DL TBox axiom or an RBox axiom ϕ, let π(ϕ) be

defined as in Fig. 1, where π(x) is an auxiliary translation that
translates each concept or data range to a formula, where x
denotes a variable.

For π(x)(ϕ) in the cases when ϕ is ∃R.C , ∃R.�, ≥n R.C ,
∃σ.DR or ∃σ.puec, note that ϕ occurs in the left-hand side of
→ and the introduced variables are existentially quantified.
Those quantifiers change to universal when taken out of the
scope of →.

The translation π is very intuitive and we use it also for
specifying the meanings of TBox axioms. Given an interpre-
tation I and a DL TBox axiom or an RBox axiom ϕ, we
define that I |� ϕ iff I |� π(ϕ), where the latter satisfaction
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Fig. 1 The translation π for DL
TBox axioms and RBox axioms.
All variables for π(.) like x , y,
z, u, v are fresh (new) variables.
Variables y and z used for
π(x)(.) are also fresh variables.
For π(Key(. . .)), note that no
new objects will be “created”
and x , y will only be instantiated
by named individuals

relation |� is defined as usual. We say that I is a model of
a TBox T , denoted by I |� T , if I |� ϕ for all ϕ ∈ T .

Example 5 Continuing Example 4, we have that:

π(∃move.¬winning � winning)

= {move(x, y) ∧ ¬winning(y) → winning(x)}.
Example 6 For ϕ = (∃r.(A1 � A2) � ∀r.B), we have

π(ϕ) = {r(x, y) ∧ (A1(y) ∨ A2(y)) → (r(x, z) → B(z))}.
As for free variables, x , y and z are universally quantified.
The only formula of π(ϕ) is not an eDatalog¬ program
clause. The intended translation of ϕ to a set of eDatalog¬
program clauses is

π3(ϕ) = {r(x, y) ∧ A1(y) ∧ r(x, z) → B(z),

r(x, y) ∧ A2(y) ∧ r(x, z) → B(z)}.
To specify π3, we use auxiliary translations π2,l and π2 such
that:

– when π2,l is applicable to a formula ψ of predicate logic,
π2,l(ψ) is a set of conjunctions of atomic formulas such
that, for any interpretation I, I |� ∨

π2,l(ψ) iff I |� ψ ;
for example,

π2,l(r(x, y) ∧ (A1(y) ∨ A2(y)))

= {r(x, y) ∧ A1(y), r(x, y) ∧ A2(y)};

– when π2 is applicable to a formula ψ of predicate logic,
π2(ψ) is a set of eDatalog¬ program clauses such that, for
any interpretation I, I |� ∧

π2(ψ) iff I |� ψ .

We define:

π2,l(ξ) = {ξ} if ξ is not of any of the forms ϕ ∧ ψ,

ϕ ∨ ψ, r−(x, y)

π2,l(r−(x, y)) = {r(y, x)}
π2,l(ϕ ∨ ψ) = π2,l(ϕ) ∪ π2,l(ψ)

π2,l(ϕ ∧ ψ) = {ϕ′ ∧ ψ ′ | ϕ′ ∈ π2,l(ϕ) and ψ ′ ∈ π2,l(ψ)}
π2(ξ) = {ξ} if ξ is not of any of the forms ϕ ∧ ψ,

ϕ → ψ, r−(x, y)

π2(r−(x, y)) = {r(y, x)}
π2(ϕ → ψ) =

{ϕ′ ∧ ξ ′ → ζ ′ | ϕ′ ∈ π2,l(ϕ) and (ξ ′ → ζ ′) ∈ π2(ψ)} ∪
{ϕ′ → ψ ′ | ϕ′ ∈ π2,l(ϕ), ψ ′ ∈ π2(ψ) and ψ ′ is not
of the form ξ ′ → ζ ′}

π2(ϕ ∧ ψ) = π2(ϕ) ∪ π2(ψ).
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We also need the following definitions of π3:

– if ϕ is an eDatalog¬ program clause then π3(ϕ) = {ϕ},
– if ϕ is a DL TBox axiom or an RBox axiom ϕ then

π3(ϕ) =
⋃

ψ∈π(ϕ)

π2(ψ),

– if ϕ is a TBox T then π3(T ) = ⋃
ϕ∈T π3(ϕ).

Lemma 2 For any (WORL) TBox T , π3(T ) is an eDatalog¬
program equivalent to T in the sense that, for any interpre-
tation I, I |� π3(T ) iff I |� T .

Proof Letψ denote a formula of classical first-order logic. It
can be proved by induction on the structure ofψ that π2,l(ψ)

and π2(ψ) are sets of formulas such that, for any interpreta-
tion I,

– I |� ∨
π2,l(ψ) iff I |� ψ ,

– I |� ∧
π2(ψ) iff I |� ψ .

Consequently, for any interpretation I and any DL TBox
axiom or RBox axiom ϕ, I |� π3(ϕ) iff I |� π(ϕ). By defi-
nition, I |� ϕ iff I |� π(ϕ). Therefore, π3(T ) is equivalent
to T .

It remains to show that π3(T ) is an eDatalog¬ program.
In the following, letα denote an atomic formula.Wedefine

the families of lψ±, lψ and rψ as follows (by using BNF
grammar for lψ± and rψ):

lψ± := α | ¬α | r−(t, t ′) | lψ± ∧ lψ± | lψ± ∨ lψ±
lψ := lψ± with the safeness condition

rψ := α | r−(t, t ′) | rψ ∧ rψ | lψ → rψ

where a formula ψ of the lψ± family satisfies the safeness
condition if translating ψ to the conjunctive normal form by
using the distributive laws of∧ and∨ results inψ1∨· · ·∨ψk

(where eachψi does not contains ∨) such that every variable
occurring in someψi occurs (among others) in some positive
atom of ψi .

It is straightforward to prove by induction on the structure
of C that:

– if C is a concept of the lC family then π(x)(C) is a for-
mula ψ of the lψ family such that translating ψ to the
conjunctive normal form by using the distributive laws of
∧ and ∨ results in ψ1 ∨ . . . ∨ ψk (where each ψi does not
contains ∨) such that variable x occurs in each ψi ,

– ifC is a concept of the rC family thenπ(x)(C) is a formula
of the rψ family such that if a variable y different from x
occurs in the formula then it occurs (among others) in the
left-hand side of some → in the formula.

Next, it can be proved by induction on the structure of ϕ

that:

– if ψ is a formula of the lψ family then π2,l(ψ) is a set of
formulas of the lψ family without the connective ∨ and
atoms of the form r−(t, t ′),

– if ϕ is a DL TBox axiom or an RBox axiom then π(ϕ) is
a set of formulas of the rψ family such that every variable
occurring in a formula from π(ϕ) occurs (among others)
in some positive atom of the formula in the left-hand side
of some →,

– if ϕ is a DL TBox axiom or an RBox axiom andψ ∈ π(ϕ)

then π2(ψ) is a set of eDatalog¬ program clauses.

Therefore, π3(T ) is an eDatalog¬ program. ��

3.3 The well-founded semantics of WORL

The flattened version of a WORL knowledge base KB is the
WORL knowledge layer denoted by flatten(KB) and defined
as follows:

– if KB is a layer then flatten(KB) = KB,
– else if KB = 〈L, {KB1, . . . , KBk}〉, L = 〈T ,A〉 and

flatten(KBi ) = 〈Ti ,Ai 〉 for 1 ≤ i ≤ k, then

flatten(KB) = 〈T ∪ T1 ∪ · · · ∪ Tk,A ∪ A1 ∪ · · · ∪ Ak〉.

Given a WORL knowledge base KB with flatten(KB) =
〈T ,A〉, the well-founded (Herbrand) model of KB, denoted
by WFKB, is defined to be the well-founded model of the
eDatalog¬ knowledge base KB′ = 〈π3(T ),A〉.

An answer to a query ϕ w.r.t. thatKB and thewell-founded
semantics is an answer to ϕ w.r.t. that KB′ and the well-
founded semantics of eDatalog¬.

The data complexity of WORL w.r.t. the well-founded
semantics is the complexity of the problem of finding all
answers to a query ϕ w.r.t. a WORL knowledge base KB and
the well-founded semantics, measured w.r.t. the sum of the
sizes of all ABoxes used in KB when assuming that DPreds,
ϕ and all the TBoxes used in KB are fixed and checking
whether a ground atom of an external checkable predicate is
true or false can be done in polynomial time.

The following theorem immediately follows from Propo-
sition 1.

Theorem 1 The data complexity of WORL with respect to
the well-founded semantics is in PTime.

Example 7 Let A, B, C , D be concept names and let T1, T2,
T be the TBoxes and A1, A2, A be the ABoxes specified
below:

T1 = {A � ¬B � C} A1 = {A(u), A(v), B(u)}
T2 = {A � ¬C � B} A2 = {A(u), A(v)}
T = {B � C � D} A = ∅
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Then KB1 = 〈T1,A1〉, KB2 = 〈T2,A2〉 and KB =
〈〈T ,A〉, {KB1, KB2}〉 are WORL knowledge bases. The
knowledge base KB consists of the main layer 〈T ,A〉 and
the additional layers KB1 and KB2. Flattening KB results in

KB′ = 〈T1 ∪ T2 ∪ T , {A(u), A(v), B(u)}〉.
The well-founded model of KB′ is

{A(u), A(v), B(u), ¬C(u),¬D(u), u = u, v = v, u �= v, v �= u}.

The remaining atoms B(v), C(v) and D(v) have value
“unknown”. The query D(x) w.r.t. KB and the well-founded
semantics has no answers, while the query ¬D(x) has one
answer {x/u}.

3.4 The stable model semantics of WORL

An answer set of a WORL knowledge base is defined induc-
tively as follows:

– An answer set of a WORL knowledge layer 〈T ,A〉 is
defined to be the set of all ground atoms of predicates
from DPreds that hold in a stable model of 〈T ,A〉 (Each
stable model of 〈T ,A〉 gives an answer set).

– An answer set of aWORL knowledge baseKB of the form
〈L, {KB1, . . . , KBk}〉, where L = 〈T ,A〉, is defined to be
an answer set of theWORLknowledge layer 〈T ,A∪A1∪
· · · ∪ Ak〉, where each Ai is an answer set of the WORL
knowledge base KBi .

Let ϕ be a query and θ be a ground substitution for all the
variables of ϕ. We say that θ is an answer to ϕ w.r.t. aWORL
knowledge base 〈P,A〉 and the stable model semantics if ϕθ

holds in the interpretation that corresponds to an answer set
of 〈P,A〉 (Notice that the answer set programming approach
is adopted here).

Example 8 Reconsider the WORL knowledge bases KB1,
KB2 and KB given in Example 7. The knowledge base KB1

has only one answer set

{A(u), A(v), B(u), C(v), u = u, v = v}.
The knowledge base KB2 has only one answer set

{A(u), A(v), B(u), B(v), u = u, v = v}.
Consequently, the knowledge base KB has only one answer
set

{A(u), A(v), B(u), B(v), C(v), D(v), u = u, v = v}.
The query D(x) w.r.t. KB and the stable model semantics
has the only answer {x/v}, and the query ¬D(x) has the
only answer {x/u}. Notice the difference between the stable
model semantics and the well-founded semantics.

Also observe that the flattened version KB′ of KB (given
in Example 7) has two answer sets:

{A(u), A(v), B(u), B(v), u = u, v = v},
{A(u), A(v), B(u), C(v), u = u, v = v}.

4 Stratified WORL

A TBox T is said to be stratifiable if π3(T ) is a stratified
eDatalog¬ program. In the “Appendix” we present a direct
method for checking stratifiability of a TBox without using
translation.

A WORL knowledge layer 〈T ,A〉 is called a SWORL
knowledge layer if T is stratifiable. A WORL knowledge
base is called a SWORL knowledge base if it is either
a SWORL knowledge layer or a pair 〈L, {KB1, . . . , KBk}〉
where L is a SWORL knowledge layer and each KBi is
a SWORL knowledge base.

Note that flattening a SWORL knowledge base 〈L, {KB1,

. . . , KBk}〉 may result in a WORL knowledge layer that is
not stratifiable.

Let KB be a SWORL knowledge base. The standard Her-
brand model of KB, denoted by HKB, is defined as follows:

– If KB is a SWORL knowledge layer 〈T ,A〉 then HKB is
the standard Herbrand model of the stratified eDatalog¬
knowledge base 〈π3(T ),A〉.

– If KB = 〈L, {KB1, . . . , KBk}〉 and L = 〈T ,A〉 thenHKB

is the standard Herbrandmodel of the stratified eDatalog¬
knowledge base 〈π3(T ),A ∪ HKB1 ∪ · · · ∪ HKBk 〉.

The standard model of a SWORL knowledge base KB is
defined to be the traditional interpretation corresponding to
HKB and is denoted by MKB.

The notion of answer to a query w.r.t. a SWORL knowl-
edge base and the data complexity of SWORL are defined as
usual:

– Given aSWORLknowledge baseKB and a queryϕ, a (cor-
rect) answer to ϕ w.r.t. KB and the standard semantics is
a ground substitution θ for all the variables of ϕ such that
MKB |� ϕθ , where |� is the satisfaction relation defined
in the usual way.

– The data complexity of SWORLw.r.t. the standard seman-
tics is the complexity of the problem of finding all answers
to a query ϕ w.r.t. a SWORL knowledge base KB and the
standard semantics, measured w.r.t. the sum of the sizes of
all ABoxes used in KB when assuming that DPreds, ϕ, the
structure of KB and all the TBoxes used in KB are fixed
and checking whether a ground atom of an external check-
able predicate is true or false can be done in polynomial
time.
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Theorem 2 The data complexity of SWORL with respect to
the standard semantics is in PTime.

Proof Let KB be a SWORL knowledge base and n be the
sum of the sizes of all ABoxes used in KB. We prove by
induction on the structure of KB that the standard Herbrand
model HKB of KB can be computed in polynomial time and
has polynomial size in n :

– If KB is a SWORL knowledge layer 〈T ,A〉 then HKB is
the standard Herbrand model of the stratified eDatalog¬
knowledge base 〈π3(T ),A〉, and by Corollary 1,HKB can
be computed in polynomial time and has polynomial size
in n.

– If KB = 〈〈T ,A〉, {KB1, . . . , KBk}〉 then:
– By the inductive assumption,HKB1 ,…,HKBk can be com-
puted in polynomial time and have polynomial size in n.

– HKB is the standard Herbrand model of the stratified
eDatalog¬ knowledge base 〈π3(T ),A ∪ HKB1 ∪ · · · ∪
HKBk 〉, and by Corollary 1, HKB can be computed in
polynomial time and has polynomial size in the size of
A ∪ HKB1 ∪ · · · ∪ HKBk .

– Hence,HKB can be computed in polynomial time and has
polynomial size in n.

As a consequence, the data complexity of SWORL w.r.t.
the standard semantics is in PTime. ��

The standard semantics of SWORL coincides with the
well-founded semantics when restricting to SWORL knowl-
edge bases that are single layers and to queries of the form
(ϕ1 ∧ · · · ∧ ϕh ∧ ξ1 ∧ · · · ∧ ξl ∧ ¬ζ1 ∧ · · · ∧ ¬ζm), where
ϕ1, …, ϕh are atoms of predicates from DPreds and ξ1, …,
ξl , ζ1, …, ζm are atoms of predicates from ECPreds.

4.1 Example: apartment renting

In this subsection we discuss apartment renting, a common
activity that is often tedious and time-consuming. The exam-
ple is based on the one of [2]. The difference is that we use
SWORL instead of defeasible logic.

We begin by presenting the potential renter’s require-
ments:

– Carlos is looking for an apartment of at least 45 m2 with
at least two bedrooms. If it is on the third floor or higher,
the house must have an elevator. Also, pet animals must
be allowed.

– Carlos is willing to pay $300 for a centrally located 45 m2

apartment, and $250 for a similar flat in the suburbs. In
addition, he is willing to pay an extra $5 perm2 for a larger
apartment, and $2 per m2 for a garden.

– He is unable to pay more than $400 in total. If given the
choice, he would go for the cheapest option. His second
priority is the presence of a garden; his lowest priority is
additional space.

We use the following predicates to describe properties of
apartments:

– hasSize(X, Y ) : Y is the size of apartment X ,
– bedrooms(X, Y ) : apartment X has Y bedrooms,
– hasPrice(X, Y ) : Y is the rent price of apartment X ,
– floor(X, Y ) : apartment X is on the Y th floor,
– garden(X, Y ) : apartment X has a garden of size Y ,
– withLift(X) : there is an elevator in the house of X ,
– allowsPets(X) : pets are allowed in apartment X ,
– central(X) : apartment X is centrally located.

The predicates hasSize, bedrooms, hasPrice, floor and
garden are data role names, while the predicates withLift,
allowsPets and central are concept names. These predicates
are specified by ABox assertions.

We define a number of predicates. The first one is
withGarden, specified by:

garden(X, Y ) → withGarden(X). (5)

We use predicate offers(X, N , Y, Z) defined as follows:

[hasSize(X, Y ) ∧ central(X) ∧ ¬withGarden(X)]
→ offers(X, 1, Y, 0) (6)

[hasSize(X, Y ) ∧ central(X) ∧ garden(X, Z)]
→ offers(X, 2, Y, Z) (7)

[hasSize(X, Y ) ∧ ¬central(X) ∧ ¬withGarden(X)]
→ offers(X, 3, Y, 0) (8)

[hasSize(X, Y ) ∧ ¬central(X) ∧ garden(X, Z)]
→ offers(X, 4, Y, Z). (9)

The predicate offers(X, N , Y, Z) means Carlos is will-
ing to pay f (N , Y, Z) dollars for apartment X , where
f (N , Y, Z) is defined as

f (N , Y, Z) =

⎧
⎪⎪⎨

⎪⎪⎩

300 + 5(Y − 45) if N = 1
300 + 5(Y − 45) + 2.Z if N = 2
250 + 5(Y − 45) if N = 3
250 + 5(Y − 45) + 2.Z if N = 4.

This function is usedonly to specify the external checkable
predicate

tooExpensive(N , Y, Z , P) ≡ ( f (N , Y, Z) < P),

which in turn is used in the following program clause:

[offers(X, N , Y, Z) ∧ hasPrice(X, P)∧
tooExpensive(N , Y, Z , P)] → excluded0(X).

(10)
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Thus, excluded0(X) means apartment X is unacceptable.
Apartments acceptable to Carlos are defined by the fol-

lowing DL TBox axiom:

[∃hasSize.(≥ 45) � ∃bedrooms.(≥ 2) � (∃floor.(≤ 2)

� withLift) � allowsPets � ¬excluded0

� ∃hasPrice.(≤400)] � acceptable. (11)

In the above axiom, (≥45), (≥2), (≤2) and (≤400) are unary
external checkable predicates.

Among the acceptable apartments, the cheapest ones are
preferable:

[acceptable(X) ∧ hasPrice(X, Y ) ∧
acceptable(X ′) ∧ hasPrice(X ′, Y ′) ∧ Y < Y ′]
→ excluded1(X ′) (12)

acceptable(X) ∧ ¬excluded1(X) → preferable1(X). (13)

Among the cheapest apartments that are acceptable, the
ones with a garden are more preferable:

[preferable1(X) ∧ ¬withGarden(X) ∧
preferable1(X ′) ∧ withGarden(X ′)]
→ excluded2(X) (14)

preferable1(X) ∧ ¬excluded2(X) → preferable2(X). (15)

Among those apartments, Carlos will rent a largest one:

[ preferable2(X) ∧ hasSize(X, Y ) ∧
preferable2(X ′) ∧ hasSize(X ′, Y ′) ∧ Y < Y ′ ]
→ excluded3(X) (16)

preferable2(X) ∧ ¬excluded3(X) → mayRent(X). (17)

In the program clauses (12) and (16), ‘<’ is a binary exter-
nal checkable predicate.

Let T = {(5), …, (17)}. It is a stratifiable TBox. Only (11)
is a DL TBox axiom, while the other axioms are eDatalog¬
program clauses. The program clauses (5), (13), (15) and
(17) can also be expressed as DL TBox axioms, treating
withGarden, acceptable, excluded1, preferable1, excluded2,
preferable2, excluded3 and mayRent as concept names.

Translating the TBox T to a stratified eDatalog¬ program
P = π3(T ), the DL TBox axiom (11) is replaced by the
following eDatalog¬ program clauses:

[hasSize(X, Y1) ∧ Y1 ≥ 45 ∧ bedrooms(X, Y2) ∧ Y2 ≥ 2

∧ floor(X, Y3) ∧ Y3 ≤ 2 ∧ allowsPets(X) ∧ ¬excluded0(X)

∧ hasPrice(X, Y4) ∧ Y4 ≤ 400 ] → acceptable(X) (18)

[hasSize(X, Y1) ∧ Y1 ≥ 45 ∧ bedrooms(X, Y2) ∧ Y2 ≥ 2

∧ withLift(X) ∧ allowsPets(X) ∧ ¬excluded0(X)

∧ hasPrice(X, Y4) ∧ Y4 ≤ 400] → acceptable(X). (19)

A possible stratification of P is: {(5)}, {(6), (7), (8), (9),
(10)}, {(18), (19), (12)}, {(13), (14)}, {(15), (16)}, {(17)}.

LetA be theABox consisting of the ground atoms of pred-
icates bedrooms, hasSize, central, floor, withLift, allowsPets,
garden and hasPrice that reflect the information contained
in the following table:

Flat Bedrooms Size Central Floor Lift Pets Garden Price

a1 1 50 Yes 1 No Yes 300

a2 2 45 Yes 0 No Yes 335

a3 2 65 No 2 No Yes 350

a4 2 55 No 1 Yes No 15 330

a5 3 55 Yes 0 No Yes 15 350

a6 2 60 Yes 3 No No 370

a7 3 65 Yes 1 No Yes 12 375

For example, bedrooms(a1, 1), hasSize(a1, 50), central
(a1), floor(a1, 1), allowsPets(a1) and hasPrice(a1, 300) are
the atoms ofA that involve apartment a1. AsABoxes contain
only positive information, only atom withLift(a4) of predi-
cate withLift occurs in A.

The pair KB = 〈T ,A〉 is a SWORL knowledge layer
(and a SWORL knowledge base). The standard Herbrand
modelHKB contains atoms acceptable(X) only for X ∈ {a3,
a5, a7} and atoms preferable1(X) only for X ∈ {a3, a5}.
Only atom preferable2(a5) of predicate preferable2 and atom
mayRent(a5) of predicate mayRent occur inHKB.

5 Conclusions

We have developed theWeb ontology rule languagesWORL
and SWORL together with the well-founded semantics and
the stable model semantics for WORL and the standard
semantics for SWORL. BothWORLwith respect to thewell-
founded semantics and SWORL with respect to the standard
semantics have PTime data complexity.

As WORL can be translated into eDatalog¬ and SWORL
can be translated into stratified eDatalog¬, the languages
WORL and SWORL are notmore expressive than eDatalog¬
and stratified eDatalog¬, respectively. However, WORL and
SWORL allow using also syntax of description logic (and
hence also OWL). This has the same benefits as in the case
OWL 2 RL compared to eDatalog, and is very useful for
applications of the Semantic Web. As Web ontology rule
languages, WORL and SWORL have the advantage of using
efficient computational methods of Datalog¬ (extended for
eDatalog¬).

Using nonmonotonic semantics for negation in concept
inclusion axioms is a novelty of our approach. Modularity of
SWORL is also worth mentioning.
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6 Appendix: Checking stratifiability of TBoxes

We specify a dependency relation between the predicates
occurring in a TBox for deciding whether the TBox is strat-
ifiable.

For ϕ being either a concept of the lC family but not of the
form ≥ n R.C , or an expression of the form R, R1 ◦ · · · ◦ Rk ,
�, σ or ∃σ , let Preds−(ϕ) be the set of the concept names
that occur inϕ under negation, and letPreds+(ϕ) be the set of
the predicates from DPreds that occur in ϕ but do not belong
to Preds−(ϕ).

For a concept C belonging to the rC family, define
LPreds+(C), LPreds−(C) and RPreds(C) as follows:5

– case C = A:
LPreds+(C) = LPreds−(C) = ∅, RPreds(C) = {A};

– case C = D1 � D2:
LPreds+(C) = LPreds+(D1) ∪ LPreds+(D2),
LPreds−(C) = LPreds−(D1) ∪ LPreds−(D2),
RPreds(C) = RPreds(D1) ∪ RPreds(D2);

– case C = ∀r.D or C = ∀r−.D:
LPreds+(C) = {r} ∪ LPreds+(D),
LPreds−(C)=LPreds−(D),
RPreds(C) = RPreds(D);

– case C = ∃r.{a} or C = ∃r−.{a}:
LPreds+(C) = LPreds−(C) = ∅, RPreds(C) = {r};

– case C = ∀σ.DR:
LPreds+(C) = {σ }, LPreds−(C) = ∅,
RPreds(C) is the set of all data types occurring in DR;

– case C = ∃σ.{d}:
LPreds+(C) = LPreds−(C) = ∅, RPreds(C) = {σ };

– case C = ≤1 r.D or C = ≤1 r−.D:
LPreds+(C) = {r} ∪ Preds+(D),
LPreds−(C) = Preds−(D),
RPreds(C)={‘=’};

– case C = ≤1 r.� or C = ≤1 r−.�:
LPreds+(C) = {r}, LPreds−(C) = ∅, RPreds(C) =
{‘=’}.

Let LPreds+(R) = LPreds−(R) = ∅ and RPreds(r) =
RPreds(r−) = {r}. Let LPreds+(σ ) = LPreds−(σ ) = ∅
and RPreds(σ ) = {σ }.

It can be proved that a TBox T is stratifiable if T does
not use the concept constructor ≥ n R.C and there exists
a function f from DPreds to positive natural numbers such
that:

5 Where L stands for “left of →” and R stands for “right of →”.

– for every eDatalog¬ program clause ϕ in T ∪ EqAxioms,
if q is the predicate of the head of ϕ and p is a pred-
icate from DPreds that occurs in the body of ϕ then
f (p) ≤ f (q), and additionally, if p occurs under negation
in ϕ then f (p) < f (q);

– for every axiom of the form ϕ � ψ in T and for every
q ∈ RPreds(ψ):

– for every p ∈ Preds+(ϕ) ∪ LPreds+(ψ),
f (p) ≤ f (q);

– for every p ∈ Preds−(ϕ) ∪ LPreds−(ψ),
f (p) < f (q);

– for every axiom of the form ϕ = ψ in T , all the predicates
occurring in ϕ = ψ have the same f value;

– for every axiom Key(C, R1, . . . , Rh, σ1, . . . , σk) in T :
Preds−(C) = ∅ and, for every predicate p belonging to
Preds+(C) or {σ1, . . . , σk} or occurring in R1, . . . , Rh ,
f (p) = f (‘=’);

– for every axiom of the form Func(R) or InvFunc(R) in
T , where R = r or R = r−, we have that f (r) = f (‘=’).

To check whether a TBox T is stratifiable one can con-
struct a graph of dependencies between the predicates occur-
ring in T . The condition f (p) ≤ f (q) (resp. f (p) < f (q))
is expressed by an edge with mark + (resp. −) from vertex
p to vertex q. The TBox is stratifiable if that graph does not
contain any cycle with an edge marked by −.
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