
Vietnam J Comput Sci (2014) 1:29–37
DOI 10.1007/s40595-013-0002-5

REGULAR PAPER

The paraconsistent process order control method

Kazumi Nakamatsu · Jair M. Abe

Received: 29 September 2013 / Accepted: 30 September 2013 / Published online: 9 November 2013
© The Author(s) 2013

Abstract We have already developed some kinds of para-
consistent annotated logic programs. In this paperwepropose
the paraconsistent process order control method based on a
paraconsistent annotated logic program called before–after
extended vector annotated logic program with strong nega-
tion (bf-EVALPSN)with a small example of pipeline process
order verification. Bf-EVALPSN can deal with before–after
relations between twoprocesses (time intervals) in its annota-
tions, and its reasoning system consists of two kinds of infer-
ence rules called the basic bf-inference rule and the transitive
bf-inference rule.We introduce how the bf-EVALPSN-based
reasoning system can be applied to the safety verification for
process order.

Keywords Paraconsistent annotated logic program ·
Before–after relation · Bf-EVALPSN · Process order control

1 Introduction

A family of paraconsistent logic called annotated logics PT
was proposed by daCosta et al. [4]. They can dealwith incon-
sistency with many truth values called annotations, although
the semantics of annotated logics is basically two valued. The

K. Nakamatsu (B)
School of Human Science and Environment, University of Hyogo,
Shinzaike, Himeji 670-0092, Japan
e-mail: nakamatu@shse.u-hyogo.ac.jp

J. M. Abe
ICET-Paulista University, São Paulo, SP, CEP 04026-022, Brazil

J. M. Abe
Institute of Advanced Studies, University of Sao Paulo,
Cidade Universitaria, São Paulo, SP, CEP 05508-970, Brazil
e-mail: jairabe@uol.com.br

paraconsistent annotated logic has been developed from the
viewpoint of logic programming [3], aiming at application
to computer science. Furthermore, we have developed the
paraconsistent annotated logic program to deal with incon-
sistency and some kinds of non-monotonic reasoning in a
framework of annotated logic programming by using onto-
logical (strong) negation and the stable model semantics [6],
which is called annotated logic programwith strong negation
(ALPSN for short). Later, to deal with defeasible reasoning
[14], we proposed a new version of ALPSN called vector
annotated logic program with strong negation (VALPSN for
short) and applied it to resolving conflicts [7]. Furthermore,
we have extended VALPSN to deal with deontic notions
(obligation, forbiddance, etc.) and named extendedVALPSN
(EVALPSN for short) [8,9]. We have shown that EVALPSN
can deal with defeasible deontic reasoning and the safety
verification for process control.

Considering the safety verification for process control,
there are many cases in which the safety verification for
process order is significant. For example, suppose a pipeline
network in which two kinds of liquids, nitric acid and caus-
tic soda, are used for cleaning the pipelines. If those liquids
are processed continuously and mixed in the same pipeline
by accident, explosion by neutralization would be caused.
To avoid such a dangerous accident, the safety for process
order should be strictly verified in a formal way. However,
it seems to be a little difficult to utilize EVALPSN for the
safety verification of process order control different from that
of process control. Therefore, we have developed EVALPSN
toward treating before–after relations between time intervals
and applied it to process order control [11], which has been
named before–after (bf)-EVALPSN. The before–after rela-
tion reasoning system based on bf-EVALPSN consists of two
groups of inference rules called the basic bf-inference rule
and the transitive bf-inference rule.

123

30 Vietnam J Comput Sci (2014) 1:29–37

The original ideas of treating such before–after relations
in logic were proposed for developing practical planning and
natural language understanding systems by Allen [1] and
Allen and Ferguson [2]. In his logic, before–after relations
between two time intervals are represented in some special
predicates and treated in a framework of first-order temporal
logic. On the other hands, in bf-EVALPSN, before–after rela-
tions between two time intervals are regarded as paraconsis-
tencybetweenbefore and after degrees, and they canbe repre-
sentedmoreminutely in vector annotations of a special literal
R(pi , p j , t) representing the before–after relation between
two processes (time intervals) at time t . Bf-EVALPSN-based
before–after relation reasoning system consists of two kinds
of efficient inference rules called the basic bf-inference rule
and the transitive bf-inference rule that can be implemented
as a bf-EVALPSN.

This paper is organized as follows: in Sect. 2, EVALPSN is
reviewed briefly; in Sect. 3, bf-EVALPSN is formally defined
and its simple reasoning example is introduced; in Sect. 4,
the bf-EVALPSN reasoning system consisting of two kinds
of inference rules is defined and explained in detail with some
examples; in Sect. 5, the paraconsistent process order control
method based on bf-EVALPSN reasoning is introduced with
a small example of pipeline process order control; lastly, we
conclude this paper.

2 Annotated logic program EVALPSN

In this section, we review EVALPSN briefly [9]. Generally, a
truth value called an annotation is explicitly attached to each
literal in annotated logic programs [3]. For example, let p be
a literal andμ an annotation, then p : μ is called an annotated
literal. The set of annotations constitutes a complete lattice.
An annotation in EVALPSN has a form of [(i, j), μ] called
an extended vector annotation. The first component (i, j) is
called a vector annotation and the set of vector annotations
constitutes the complete lattice,

Tv(n) = {(x, y) | 0 ≤ x ≤ n, 0 ≤ y ≤ n, x, y, n are integers}

in Fig. 1. The ordering (�v) of Tv(n) is defined as: let
(x1, y1) , (x2, y2) ∈ Tv(n),

(x1, y1) �v (x2, y2) iff x1 ≤ x2 and y1 ≤ y2.

For each extended vector annotated literal p : [(i, j), μ],
the integer i denotes the amount of positive information to
support the literal p and the integer j denotes that of neg-
ative one. The second component μ is an index of fact and
deontic notions such as obligation, and the set of the second
components constitutes the complete lattice,

Td = {⊥, α, β, γ, ∗1, ∗2, ∗3,�}.

Fig. 1 Lattice Tv(2) and lattice Td

The ordering (�d) of Td is described by the Hasse’s dia-
gram in Fig. 1. The intuitive meaning of each member of
Td is⊥(unknown),α(fact),β(obligation),γ (non-obligation),
∗1(fact and obligation), ∗2(obligation and non-obligation)
and ∗3(fact and non-obligation), �(inconsistency).

Then, the complete lattice Te(n) of extended vector anno-
tations is defined as the product, Tv(n) × Td . The ordering
(�e) of Te(n) is defined: let [(i1, j1), μ1], [(i2, j2), μ2] ∈ Te,

[(i1, j1), μ1] �e [(i2, j2), μ2] iff (i1, j1) �v (i2, j2)

and μ1 �d μ2.

There are two kinds of epistemic negations (¬1 and ¬2)
in EVALPSN, both of which are defined as mappings over
Tv(n) and Td , respectively.

Definition 1 (epistemic negations ¬1 and ¬2 in EVALPSN)

¬1([(i, j), μ]) = [(j, i), μ], ∀μ ∈ Td ,

¬2([(i, j),⊥]) = [(i, j),⊥], ¬2([(i, j), α]) = [(i, j), α],
¬2([(i, j), β]) = [(i, j), γ], ¬2([(i, j), γ]) = [(i, j), β],
¬2([(i, j), ∗1]) = [(i, j), ∗3], ¬2([(i, j), ∗2]) = [(i, j), ∗2],
¬2([(i, j), ∗3]) = [(i, j), ∗1], ¬2([(i, j),�]) = [(i, j),�].

If we regard the epistemic negations as syntactical oper-
ations, the epistemic negations followed by literals can be
eliminated by the syntactical operations. For example,¬1(p :
[(2, 0), α]) = p : [(0, 2), α] and ¬2(q : [(1, 0), β]) = p :
[(1, 0), γ]. There is another negation called strong negation
(∼) in EVALPSN, and it is treated as well as classical nega-
tion [4].

Definition 2 (strong negation ∼) Let F be any formula and
¬ be ¬1 or ¬2.

∼ F =def F → ((F → F) ∧ ¬(F → F)).

Definition 3 (well-extended vector annotated literal) Let p
be a literal.

p : [(i, 0), μ] and p : [(0, j), μ]
are called well-extended vector annotated literals, where i, j
are non-negative integers and μ ∈ {α, β, γ }.
Definition 4 (EVALPSN) If L0, . . . , Ln are weva-literals,

L1 ∧ . . . ∧ Li∧ ∼ Li+1 ∧ . . . ∧ ∼ Ln → L0

123

Vietnam J Comput Sci (2014) 1:29–37 31

Fig. 2 Before (be)/after (af)
and disjoint before (db)/after
(da)

is called an EVALPSN clause. An EVALPSN is a finite set of
EVALPSN clauses.

Here, we comment that if the annotations α and β repre-
sent fact and obligation, notions “fact”, “obligation”, “for-
biddance” and “permission” can be represented by extended
vector annotations, [(m, 0), α] , [(m, 0), β], [(0, m), β], and
[(0, m), γ], respectively, in EVALPSN, where m is a non-
negative integer.

3 Before–after EVALPSN

In this section, we review bf-EVALPSN. The details are
found in [12,13].

In bf-EVALPSN, a special annotated literal R(pm, pn, t) :
[(i, j), μ] called bf-literalwhose non-negative integer vector
annotation (i, j) represents the before–after relation between
processes Prm and Prn at time t is introduced. The integer
components i and j of the vector annotation (i, j) represent
the after and before degrees between processes Prm(pm) and
Prn(pn), respectively, and before–after relations are repre-
sented paraconsistently in vector annotations.

Definition 5 (bf-EVALPSN) An extended vector annotated
literal,

R(pi , p j , t) : [(i, j), μ]
is called a bf-EVALP literal or a bf-literal for short, where
(i, j) is a vector annotation and μ ∈ {α, β, γ }. If an
EVALPSN clause contains bf-EVALP literals, it is called
a bf-EVALPSN clause or just a bf-EVALP clause if it con-
tains no strong negation. A bf-EVALPSN is a finite set of
bf-EVALPSN clauses.

We provide a paraconsistent before–after interpretation
for vector annotations representing bf-relations in bf-
EVALPSN, and such a vector annotation is called a bf-
annotation. Exactly speaking, there are 15 kinds of
bf-relation according to before–after order between four
start/finish times of two processes.

Before (be)/after (af) is defined according to the bf-
relation between each start time of the two processes. If one
process has started before/after another one starts, then the bf-
relations between them are defined as “before/after”, which
are represented in the left in Fig. 2.

We introduce other kinds of bf-relations as well as before
(be)/after (af).

Disjoint before (db)/after (da) is defined as having a time
lag between the earlier process finish time and the later one’s
start time; this is described on the right in Fig. 2.

Immediate before (mb)/after (ma) is defined as having no
time lag between the earlier process finish time and the later
one’s start time; it is described on the left in Fig. 3.

Joint before (jb)/after (ja) is defined as two processes
that overlap, where the earlier process had finished before
the later one finished; it is described on the right in Fig. 3.

S-included before (sb)/S-included after (sa) is defined as
two processes, where one had started before the other started,
but finished at the same time; it is described on the left in
Fig. 4.

Included before (ib)/after (ia) is defined as two process-
es, where one had started/finished before/after another one
started/finished; it is described on the right in Fig. 4.

F-included before (fb)/after (fa) is defined as two
processes that started at the same time, but with one fin-
ishing before another one finished; it is described in the left
in Fig. 5.

Paraconsistent before–after (pba) is defined as having
two processes that started at the same time and also finished
at the same time; it is described on the right in Fig. 5.

The epistemic negation over bf-annotations, be, af, db,
da, mb, ma, jb, ja, ib, ia, sb, sa, fb, fa and pba is
defined and the complete lattice of bf-annotations is shown
in Fig. 6.

Fig. 3 Immediate before (mb)/after (ma) and joint before (jb)/after
(ja)

Fig. 4 S-included before (sb)/after (sa) and included before (ib)/
after (ia)

Fig. 5 F-included before (fb)/after (fa) and paraconsistent before–
after (pba)

123

32 Vietnam J Comput Sci (2014) 1:29–37

Fig. 6 The complete lattice Tv(12)bf for bf-annotations

Definition 6 (epistemic negation ¬1 for bf-annotations) The
epistemic negation ¬1 over the bf-annotations is obviously
defined as the following mappings:

¬1(af) = be, ¬1(be) = af, ¬1(da) = db,

¬1(db) = da, ¬1(ma) = mb, ¬1(mb) = ma,

¬1(ja) = jb, ¬1(jb) = ja, ¬1(sa) = sb,

¬1(sb) = sa, ¬1(ia) = ib, ¬1(ib) = ia,

¬1(fa) = fb, ¬1(fb) = fa, ¬1(pba) = pba.

Therefore, each bf-annotation can be translated into vector
annotations as bf = (0, 8), db = (0, 12), mb = (1, 11),
jb = (2, 10), sb = (3, 9), ib = (4, 8), fb = (5, 7) and
pba = (6, 6).

4 Reasoning system in bf-EVALPSN

To represent the basic bf-inference rule in bf-EVALPSN, we
newly introduce two literals:

st(pi , t), which is interpreted as process Pri starts at time
t , and
fi(pi , t), which is interpreted as process Pri finishes at
time t .

Those literals are used for expressing process start/finish
information and may have one of the vector annotations,
{⊥(0, 0),t(1, 0),f(0, 1),�(1, 1)}, where annotations
t(1, 0) and f(0, 1) can be intuitively interpreted as “true”
and “false”, respectively.

First of all, we introduce a group of basic bf-inference
rules to be applied at the initial stage (time t0), which are
named (0, 0)-rules.

(0,0)-rules Suppose that no process has started yet and the
vector annotation of bf-literal R(pi , p j , t) is (0, 0), which
shows that there is no knowledge in terms of the bf-relation
between processes Pri and Pr j , then the following two basic
bf-inference rules are applied at the initial stage.

(0,0)-rule-1 If process Pri started before process Pr j

starts, then the vector annotation (0, 0) of bf-literal
R(pi , p j , t) should turn to be(0, 8), which is the great-
est lower bound of the set, {db(0, 12), mb(1, 11),
jb(2, 10), sb(3, 9), ib(4, 8)}.
(0,0)-rule-2 If both processes Pri and Pr j have started at
the same time, then it is reasonably anticipated that the bf-
relation between processes Pri and Pr j will be one of the
bf-annotations, {fb(5, 7), pba(6, 6), fa(7, 5)} whose
greatest lower bound is (5, 5) (refer to Fig. 6). There-
fore, the vector annotation (0, 0) of bf-literal R(pi , p j , t)
should turn to (5, 5).

(0, 0)-rule-1 and (0, 0)-rule-2 are translated into the bf-
EVALPSN,

R(pi , p j , t) : [(0, 0), α] ∧ st(pi , t) : [t, α]
∧ ∼ st(p j , t) : [t, α] → R(pi , p j , t) : [(0, 8), α] (1)

R(pi , p j , t) : [(0, 0), α] ∧ st(pi , t) : [t, α]
∧ st(p j , t) : [t, α] → R(pi , p j , t) : [(5, 5), α] (2)

Suppose that (0, 0)-rule-1 or 2 has been applied, then the
vector annotation of bf-literal R(pi , p j , t) should be one of
(0, 8) or (5, 5). Therefore, we need to consider two groups
of basic bf-inference rules to be applied for following (0, 0)-
rule-1 and 2, which are named (0,8)-rules and (5,5)-rules,
respectively.

(0,8)-rules Suppose that process Pri has started before
process Pr j starts, then the vector annotation of bf-literal
R(pi , p j , t) should be (0, 8). We have the following infer-
ence rules to be applied for following (0, 0)-rule-1.

(0,8)-rule-1 If process Pri has finished before process
Pr j starts, and process Pr j starts immediately after
process Pri finished, then the vector annotation (0, 8)
of bf-literal R(pi , p j , t) should turn to mb(1, 11).
(0,8)-rule-2 If process Pri has finished before process
Pr j starts, and process Pr j has not started immediately
after process Pri finished, then the vector annotation
(0, 8) of bf-literal R(pi , p j , t) should turn to db(0, 12).
(0,8)-rule-3 If process Pr j starts before process Pri
finishes, then the vector annotation (0, 8) of bf-literal
R(pi , p j , t) should turn to (2, 8) that is the greatest lower
bound of the set, {jb(2, 10), sb(3, 9), ib(4, 8)}.

123

Vietnam J Comput Sci (2014) 1:29–37 33

(0, 8)-rule-1, 2 and 3 are translated into the bf-EVALPSN,

R(pi , p j , t) : [(0, 8), α] ∧ fi(pi , t) : [t, α]
∧ st(p j , t) : [t, α] → R(pi , p j , t) : [(1, 11), α] (3)

R(pi , p j , t) : [(0, 8), α] ∧ fi(pi , t) : [t, α]
∧ ∼ st(p j , t) : [t, α] → R(pi , p j , t) : [(0, 12), α] (4)

R(pi , p j , t) : [(0, 8), α]∧ ∼ fi(pi , t) : [t, α]
∧ st(p j , t) : [t, α] → R(pi , p j , t) : [(2, 8), α] (5)

(5,5)-rules Suppose that both processes Pri and Pr j have
already started at the same time, then the vector annotation
of bf-literal R(pi , p j , t) should be (5, 5). We have the fol-
lowing inference rules to be applied for following (0, 0)-
rule-2.

(5,5)-rule-1 If process Pri has finished before process
Pr j finishes, then the vector annotation (5, 5) of bf-literal
R(pi , p j , t) should turn to sb(5, 7).
(5,5)-rule-2 If both processes Pri and Pr j have finished
at the same time, then the vector annotation (5, 5) of bf-
literal R(pi , p j , t) should turn to pba(6, 6).
(5,5)-rule-3 If process Pr j has finished before process
Pri finishes, then the vector annotation (5, 5) of bf-literal
R(pi , p j , t) should turn to sa(7, 5).

Basic bf-inference rules (5, 5)-rule-1, 2 and 3 are trans-
lated into the bf-EVALPSN,

R(pi , p j , t) : [(5, 5), α] ∧ fi(pi , t) : [t, α]
∧ ∼ fi(p j , t) : [t, α] → R(pi , p j , t) : [(5, 7), α] (6)

R(pi , p j , t) : [(5, 5), α] ∧ fi(pi , t) : [t, α]
∧ fi(p j , t) : [t, α] → R(pi , p j , t) : [(6, 6), α] (7)

R(pi , p j , t) : [(5, 5), α] ∧ ∼ fi(pi , t) : [t, α]
∧ fi(p j , t) : [t, α] → R(pi , p j , t) : [(7, 5), α] (8)

If one of (0, 8)-rule-1,2, (5, 5)-rule-1,2 and 3 has been
applied, a final bf-annotation such as jb(2, 10) between two
processes should be derived. However, even if (0, 8)-rule-3

has been applied, no bf-annotation could be derived. There-
fore, a group of basic bf-inference rules named (2, 8)-rules
should be considered for following (0, 8)-rule-3.

(2,8)-rules Suppose that process Pri has started before
process Pr j starts and process Pr j has started before
process Pri finishes, then the vector annotation of bf-literal
R(pi , p j , t) should be (2, 8) and the following three rules
should be considered.

(2,8)-rule-1 If process Pri finished before process Pr j

finishes, then the vector annotation (2, 8) of bf-literal
R(pi , p j , t) should turn to jb(2, 10).
(2,8)-rule-2 If both processes Pri and Pr j have finished
at the same time, then the vector annotation (2, 8) of bf-
literal R(pi , p j , t) should turn to fb(3, 9).
(2,8)-rule-3 If process Pr j has finished before Pri fin-
ishes, then the vector annotation (2, 8) of bf-literal
R(pi , p j , t) should turn to ib(4, 8).

Basic bf-inference rules (2, 8)-rule-1, 2 and 3 are trans-
lated into the bf-EVALPSN,

R(pi , p j , t) : [(2, 8), α] ∧ fi(pi , t) : [t, α]
∧ ∼ fi(p j , t) : [t, α] → R(pi , p j , t) : [(2, 10), α] (9)

R(pi , p j , t) : [(2, 8), α] ∧ fi(pi , t) : [t, α]
∧ fi(p j , t) : [t, α] → R(pi , p j , t) : [(3, 9), α] (10)

R(pi , p j , t) : [(2, 8), α] ∧ ∼ fi(pi , t) : [t, α]
∧ fi(p j , t) : [t, α] → R(pi , p j , t) : [(4, 8), α] (11)

The application orders of all basic bf-inference rules are sum-
marized in Table 1.

Now, we introduce the transitive bf-inference rule, which
can reason a vector annotation of bf-literal transitively.

Suppose that there are three processes Pri , Pr j and Prk

starting sequentially, then we consider deriving the vector
annotation of bf-literal R(pi , pk, t) from those of bf-literals
R(pi , p j , t) and R(p j , pk, t) transitively. We describe only
the variation of vector annotations in the following rules.

Table 1 Application orders of
basic bf-inference rules

Vector
annotation

Rule Vector
annotation

Rule Vector
annotation

Rule Vector
annotation

Rule-1 (0, 12)

Rule-2 (1, 11)

Rule-1 (0, 8) Rule-1 (2, 10)

(0, 0) Rule-3 (2, 8) Rule-2 (3, 9)

Rule-3 (4, 8)

Rule-1 (5, 7)

Rule-2 (5, 5) Rule-2 (6, 6)

Rule-3 (7, 5)

123

34 Vietnam J Comput Sci (2014) 1:29–37

Transitive bf-inference rules

TR0 (0, 0) ∧ (0, 0) → (0, 0)

TR1 (0, 8) ∧ (0, 0) → (0, 8)

TR1-1 (0, 12) ∧ (0, 0) → (0, 12)

TR1-2 (1, 11) ∧ (0, 8) → (0, 12)

TR1-3 (1, 11) ∧ (5, 5) → (1, 11)

TR1-4 (2, 8) ∧ (0, 8) → (0, 8)

TR1-4-1 (2, 10) ∧ (0, 8) → (0, 12)

TR1-4-2 (4, 8) ∧ (0, 12) → (0, 8) (12)

TR1-4-3 (2, 8) ∧ (2, 8) → (2, 8)

TR1-4-3-1 (2, 10) ∧ (2, 8) → (2, 10)

TR1-4-3-2 (4, 8) ∧ (2, 10) → (2, 8) (13)

TR1-4-3-3 (2, 8) ∧ (4, 8) → (4, 8)

TR1-4-3-4 (3, 9) ∧ (2, 10) → (2, 10)

TR1-4-3-5 (2, 10) ∧ (4, 8) → (3, 9)

TR1-4-3-6 (4, 8) ∧ (3, 9) → (4, 8) (14)

TR1-4-3-7 (3, 9) ∧ (3, 9) → (3, 9)

TR1-4-4 (3, 9) ∧ (0, 12) → (0, 12)

TR1-4-5 (2, 10) ∧ (2, 8) → (1, 11)

TR1-4-6 (4, 8) ∧ (1, 11) → (2, 8)

TR1-4-7 (3, 9) ∧ (1, 11) → (1, 11)

TR1-5 (2, 8) ∧ (5, 5) → (2, 8)

TR1-5-1 (4, 8) ∧ (5, 7) → (2, 8) (15)

TR1-5-2 (2, 8) ∧ (7, 5) → (4, 8)

TR1-5-3 (3, 9) ∧ (5, 7) → (2, 10)

TR1-5-4 (2, 10) ∧ (7, 5) → (3, 9)

TR2 (5, 5) ∧ (0, 8) → (0, 8)

TR2-1 (5, 7) ∧ (0, 8) → (0, 12)

TR2-2 (7, 5) ∧ (0, 12) → (0, 8) (16)

TR2-3 (5, 5) ∧ (2, 8) → (2, 8)

TR2-3-1 (5, 7) ∧ (2, 8) → (2, 10)

TR2-3-2 (7, 5) ∧ (2, 10) → (2, 8) (17)

TR2-3-3 (5, 5) ∧ (4, 8) → (4, 8)

TR2-3-4 (7, 5) ∧ (3, 9) → (4, 8)

TR2-4 (5, 7) ∧ (2, 8) → (1, 11)

TR2-5 (7, 5) ∧ (1, 11) → (2, 8) (18)

TR3 (5, 5) ∧ (5, 5) → (5, 5)

TR3-1 (7, 5) ∧ (5, 7) → (5, 5) (19)

TR3-2 (5, 7) ∧ (7, 5) → (6, 6)

Note (I) The name of a transitive bf-inference rule such as
TR1-4-3 indicates the application sequence of transitive bf-
inference rules until the transitive bf-inference rule has been
applied. For example, if the rule TR1 has been applied, one

of the rules TR1-1, TR1-2, . . . or TR1-5 should be applied
at the following stage; and if the ruleTR1-4 has been applied
after the rule TR1, one of the rules TR1-4-1, TR1-4-2, . . .

or TR1-4-7 should be applied at the following stage; on the
other hand, if one of the rules TR1-1, TR1-2 or TR1-3 has
been applied after the rule TR1, there should be no transitive
bf-inference rule to be applied at the following stage because
one of bf-relations db(0, 12), mb(1, 11) has been derived.

Note (II) Transitive bf-inference rules,

TR1-4-2 (12), TR1-4-3-2 (13), TR1-4-6 (14),

TR1-5-1 (15), TR2-2 (16), TR2-3-2 (17),

TR2-5 (18), TR3-1 (19)

have no following rule to be applied, even though they cannot
derive the final bf-relations between processes represented
by bf-annotations such as jb(2, 10). For example, suppose
that the ruleTR1-4-3-2 has been applied, then vector annota-
tion (2, 8) of bf-literal (pi , pk, t) just indicates that the final
bf-relation between processes Pri and Prk is represented by
one of three bf-annotations, jb(2, 10), sb(3, 9) or ib(4, 8)
because vector annotation (2, 8) is the greatest lower bound
of those bf-annotations. Therefore, if one of transitive bf-
inference rules (12),(13),(14),(15),(16), (17),(18) and (19),
has been applied, one of (0, 8)-rule, (2, 8)-rule or (5, 5)-rule
should be applied for deriving the final bf-annotation at the
following stage. For example, if the rule TR1-4-3-2 has been
applied, (2, 8)-rule should be applied at the following stage.

5 The process order control method in bf-EVALPSN

In this section, we present the process order control method
with a simple example for pipeline process order verification.

The process order control method has the following three
steps:

Step 1 translate the safety properties of the process order
control system into bf-EVALPSN;

Step 2 verify if permission for starting the process can
be derived from the bf-EVALPSN in step1 by the basic
bf-inference rule and the transitive bf-inference rule or
not.

The verification step 2 can be carried out not only just
before starting the process, but also at any time.

We assume a pipeline system consisting of two pipelines,
PIPELINE-1 and 2, which deal with pipeline processes
Pr0 ,Pr1 ,Pr2 andPr3. Theprocess schedule of those process-
es are shown in Fig. 7.Moreover, we assume that the pipeline
system has four safety properties SPR -i(i = 0, 1, 2, 3).

S P R-0 process Pr0 must start before any other processes,
and process Pr0 must finish before process Pr2 finishes,

123

Vietnam J Comput Sci (2014) 1:29–37 35

PIPELINE-1

PIPELINE-2

Fig. 7 Pipeline process schedule

S P R-1 process Pr1 must start after process Pr0 starts,
S P R-2 process Pr2 must start immediately after process
Pr1 finishes,
S P R-3 processPr3 must start immediately after processes
Pr0 and Pr2 finish.

Step 1 All safety properties SPR-i(i = 0, 1, 2, 3) can be
translated into the following bf-EVALPSN clauses.

SPR-0 ∼ R(p0, p1, t) : [(0, 8), α] → st(p1, t) : [f, β],
(20)

∼ R(p0, p2, t) : [(0, 8), α] → st(p2, t) : [f, β],
(21)

∼ R(p0, p3, t) : [(0, 8), α] → st(p3, t) : [f, β],
(22)

st(p1, t) : [f, β] ∧ st(p2, t) : [f, β]
∧ st(p3, t) : [f, β] → st(p0, t) : [f, γ], (23)

∼ fi(p0, t) : [f, β] → fi(p0, t) : [f, γ], (24)

where bf-EVALPSN clauses (20), (21) and (22) declare
that if process Pr0 has not started before other processes
Pri (i = 1, 2, 3) start, it should be forbidden from starting
each process Pri (i = 1, 2, 3); bf-EVALPSN clause (23)
declares that if each process Pri (i = 1, 2, 3) is forbidden
from starting, it should be permitted to start process Pr0; and
bf-EVALPSN clause (24) declares that if there is no forbid-
dance from finishing process Pr0, it should be permitted to
finish process Pr0.

SPR-1 ∼ st(p1, t) : [f, β] → st(p1, t) : [f, γ], (25)

∼ fi(p1, t) : [f, β] → fi(p1, t) : [f, γ], (26)

where bf-EVALPSN clause (25)/(26) declares that if there is
no forbiddance from starting/finishing process Pr1, it should
be permitted to start/finish process Pr1, respectively.

SPR-2 ∼ R(p2, p1, t) : [(11, 0), α] → st(p2, t) : [f, β],
(27)

∼ st(p2, t) : [f, β] → st(p2, t) : [f, γ], (28)

∼ R(p2, p0, t) : [(10, 2), α] → fi(p2, t) : [f, β],
(29)

∼ fi(p2, t) : [f, β] → fi(p2, t) : [f, γ], (30)

where bf-EVALPSN clause (27) declares that if process
Pr1 has not finished before process Pr2 starts, it should be
forbidden from starting process Pr2; the vector annotation
(11, 0) of bf-literal R(p2, p1, t) is the greatest lower bound
of {da(12, 0), ma(11, 1)}, which implies that process Pr1
has finished before process Pr2 starts; bf-EVALPSN clauses
(28)/(30) declare that if there is no forbiddance from start-
ing/finishing process Pr2, it should be permitted to start/finish
process Pr2, respectively; and bf-EVALPSN clauses (29)
declare that if process Pr0 has not finished before process
Pr2 finishes, it should be forbidden from finishing process
Pr2.

SPR-3 ∼ R(p3, p0, t) : [(11, 0), α] → st(p3, t) : [f, β],
(31)

∼ R(p3, p1, t) : [(11, 0), α] → st(p3, t) : [f, β],
(32)

∼ R(p3, p2, t) : [(11, 0), α] → st(p3, t) : [f, β],
(33)

∼ st(p3, t) : [f, β] → st(p3, t) : [f, γ], (34)

∼ fi(p3, t) : [f, β] → fi(p3, t) : [f, γ], (35)

where bf-EVALPSN clauses (31), (32) and (33) declare that
if one of processes Pri (i = 0, 1, 2) has not finished yet,
it should be forbidden from starting process Pr3; and bf-
EVALPSN clauses (34)/(35) declare that if there is no for-
biddance from starting/finishing process Pr3, it should be
permitted to start/finish process Pr3, respectively.

Step 2 Here, we show how the bf-EVALPSN process order
safety verification is carried out at five time points, t0, t1,
t2, t3 and t4 in the process schedule (Fig. 7). We consider
five bf-relations between processes Pr0, Pr1, Pr2 and Pr3,
represented by the vector annotations of bf-literals,

R(p0, p1, t), R(p0, p2, t), R(p0, p3, t),

R(p1, p2, t), R(p2, p3, t)

which should be verified based on safety properties SPR-0,
1, 2 and 3 in real time.

Initial stage (at time t0) no process has started at time t0, thus,
the bf-EVALP clauses,

R(p0, p1, t0) : [(0, 0), α], (36)

R(p1, p2, t0) : [(0, 0), α], (37)

R(p2, p3, t0) : [(0, 0), α] (38)

R(p0, p2, t0) : [(0, 0), α], (39)

R(p0, p3, t0) : [(0, 0), α] (40)

are obtained by transitive bf-inference rule TR0; then,
bf-EVALP clauses (36), (39) and (40) satisfy each body
of bf-EVALPSN clauses (20), (21) and (22), respectively;
therefore, the forbiddance,

123

36 Vietnam J Comput Sci (2014) 1:29–37

st(p1, t0) : [f, β], (41)

st(p2, t0) : [f, β], (42)

st(p3, t0) : [f, β] (43)

from starting each process Pri (i = 1, 2, 3) is derived. More-
over, since bf-EVALP clauses (41), (42) and (43) satisfy the
body of bf-EVALPSN clause (23), the permission for starting
process Pr0,

st(p0, t0) : [f, γ]
is derived; therefore, process Pr0 is permitted to start at
time t0.

2nd Stage (at time t1) process Pr0 has already started but all
other processes Pri (i = 1, 2, 3) have not started yet; then the
bf-EVALP clauses,

R(p0, p1, t1) : [(0, 8), α], (44)

R(p1, p2, t1) : [(0, 0), α], (45)

R(p2, p3, t1) : [(0, 0), α] (46)

are obtained, where the bf-EVALP clause (44) is derived
by basic bf-inference rule (0, 0)-rule-1. Moreover, the bf-
EVALP clauses,

R(p0, p2, t1) : [(0, 8), α], (47)

R(p0, p3, t1) : [(0, 8), α] (48)

are obtained by transitive bf-inference rule TR1; as bf-
EVALPclause (44) does not satisfy the bodyof bf-EVALPSN
clause (20), the forbiddance from starting process Pr1,

st(p1, t1) : [f, β] (49)

cannot be derived. Then, since there is no forbiddance (49),
the body of bf-EVALPSN clause (25) is satisfied and the
permission for starting process Pr1,

st(p1, t1) : [f, γ]
is derived. On the other hand, since bf-EVALP clauses (47)
and (48) satisfy the body of bf-EVALPSN clauses (27)
and (31), respectively, the forbiddance from starting both
processes Pr2 and Pr3,

st(p2, t1) : [f, β], st(p3, t1) : [f, β]
are derived; therefore, process Pr1 is permitted to start at
time t1.

3rd Stage (at time t2) process Pr1 has just finished and process
Pr0 has not finished yet; then, the bf-EVALP clauses,

R(p0, p1, t2) : [(4, 8), α], (50)

R(p1, p2, t2) : [(1, 11), α], (51)

R(p2, p3, t2) : [(0, 8), α] (52)

are derived by basic bf-inference rules (2, 8)-rule-3, (0, 8)-
rule-2 and (0, 0)-rule-1, respectively. Moreover, the bf-
EVALP clauses,

R(p0, p2, t2) : [(2, 8), α],
R(p0, p3, t2) : [(0, 12), α]
are obtained by transitive bf-inference rules TR1-4-6 and
TR1-2, respectively. Then, since bf-EVALP clause (51) does
not satisfy the body of bf-EVALPSN clause (27), the forbid-
dance from starting process Pr2,

st(p2, t2) : [f, β] (53)

cannot be derived. Since there is no forbiddance (53), it satis-
fies the body of bf-EVALPSNclause (28), and the permission
for starting process Pr2,

st (p2, t2) : [f, γ]
is derived. On the other hand, since bf-EVALP clause (53)
satisfies the body of bf-EVALPSN clause (31), the forbid-
dance from starting process Pr3,

t (p3, t2) : [f, β]
is derived; therefore, process Pr2 is permitted to start. How-
ever, process Pr3 is still forbidden from starting at time t2.

4th Stage (at the t3) process Pr0 has finished, process Pr2 has
not finished yet, and process Pr3 has not started yet; then, the
bf-EVALP clauses,

R(p0, p1, t3) : [(4, 8), α], (54)

R(p1, p2, t3) : [(1, 11), α], (55)

R(p2, p3, t3) : [(0, 8), α] (56)

in which the vector annotations are the same as in the previ-
ous stage are obtained because bf-annotations of bf-EVALP
clauses (54) and (55) have been already reasoned, and the
before–after relation between processes Pr2 and Pr3 is the
same as in the previous stage. Moreover, the bf-EVALP
clauses,

R(p0, p2, t3) : [(2, 10), α], (57)

R(p0, p3, t3) : [(0, 12), α] (58)

are obtained,where bf-EVALP clause (57) is derived by basic
bf-inference rule (2, 8)-rule-1. Then, bf-EVALP clause (57)
satisfies the body of bf-EVALP clause (33), and the forbid-
dance from starting process Pr3,

S(p3, t3) : [f, β]
is derived. Therefore, process Pr3 is still forbidden from start-
ing because process Pr2 has not finished yet at time t3.

5th Stage (at time t4) process Pr2 has just finished and process
Pr3 has not started yet; then, the bf-EVALP clauses,

123

Vietnam J Comput Sci (2014) 1:29–37 37

R(p0, p1, t4) : [(4, 8), α], (59)

R(p1, p2, t4) : [(1, 11), α], (60)

R(p2, p3, t4) : [(1, 11), α], (61)

R(p0, p2, t4) : [(2, 10), α], (62)

R(p0, p3, t4) : [(0, 12), α] (63)

are obtained. bf-EVALP clause (61) is derived by basic
bf-inference rule (0, 8)-rule-2. Moreover, since bf-EVALP
clauses (59), (62) and (63) do not satisfy the bodies of bf-
EVALP clauses (31), (32) and (33), the forbiddance from
starting process Pr3,

st(p3, t4) : [f, β] (64)

cannot be derived. Therefore, the body of bf-EVALPSN
clause (34) is satisfied, and the permission for starting process
Pr3,

st(p3, t4) : [f, γ]
is derived. Therefore, process Pr3 is permitted to start because
processes Pr0, Pr1 and Pr2 have finished at time t4.

6 Concluding remarks

In this paper, we have introduced the process order con-
trol method based on a paraconsistent annotated logic pro-
gram bf-EVALPSN, which can deal with before–after rela-
tion between processes with a small pipeline process order
safety verification control.

We would like to conclude this paper by describing the
advantages and disadvantages of the process order control
method based on bf-EVALPSN safety verification.

Advantages

– If a bf-EVALPSN is locally stratified [5], it can be easily
implemented in Prolog, C language, Programmable Logic
Controller (PLC) ladder program, etc. In practice, such
control bf-EVALPSNs are locally stratified.

– It has been proved that EVALPSN can be implemented
as electronic circuits on micro chips [10]. Therefore, if
real-time processing is required in the system, the method
might be very useful.

– The safety verification methods for both process control
and process order control can be implemented under the
same environment.

Disadvantages

– Since EVALPSN/bf-EVALPSN itself is basically not a
specific tool of formal safety verification, it includes com-
plicated and redundant expressions to construct safety
verification systems. Therefore, it should be better to
develop safety verification-oriented tool or program-
ming language based on EVALPSN/bf-EVALPSN if
EVALPSN/bf-EVALPSN can be applied to formal safety
verification.

References

1. Allen, J.F.: Towards a general theory of action and time. Artif.
Intell. 23, 123–154 (1984)

2. Allen, J.F., Ferguson, G.: Actions and events in interval temporal
logic. J. Log. Comput. 4, 531–579 (1994)

3. Blair, H.A., Subrahmanian, V.S.: Paraconsistent logic program-
ming. Theor. Comput. Sci. 68, 135–154 (1989)

4. da Costa, N.C.A., et al.: The paraconsistent logics PT . Zeitschrift
für Mathematische Logic und Grundlangen der Mathematik 37,
139–148 (1989)

5. Gelder,A.V., Ross,K.A., Schlipf, J.S.: Thewell-founded semantics
for general logic programs. J. Assoc. Comput. Mach. ACM 38,
620–650 (1991)

6. Nakamatsu, K., Suzuki, A.: Annotated semantics for default rea-
soning. In: Proceedings of the 3rd Pacific Rim International Con-
ference of Artificial Intelligence (PRICAI94), pp. 180–186. Inter-
national Academic Publishers (1994)

7. Nakamatsu, K.: On the relation between vector annotated logic
programs and defeasible theories. Log. Log. Philos. 8, 181–205
(2001)

8. Nakamatsu, K., et al.: A defeasible deontic reasoning system
based on annotated logic programming. In: Proceedings of the
4th International Conference of Computing Anticipatory Systems
(CASYS2000), AIP Conference Proceedings, vol. 573, pp. 609–
620. American Institute of Physics (2001)

9. Nakamatsu, K., et al.: Annotated Semantics for Defeasible Deontic
Reasoning. LNAI 2005, pp. 432–440. Springer, New York (2001)

10. Nakamatsu, K., Mita, Y., Shibata, T.: An intelligent action control
system based on extended vector annotated logic program and its
hardware implementation. J. Intell. Autom. Soft Comput. 13, 222–
237 (2007)

11. Nakamatsu, K.: The paraconsistent annotated logic program
EVALPSN and its application. Comput. Intell. Compend. Stud.
Comput Intell. 115, 233–306 (2008). Springer

12. Nakamatsu, K., Abe, J.M.: The development of paraconsistent
annotated logic program. Int. J. Reason.-Based Intell. Syst. 1, 92–
112 (2009)

13. Nakamatsu, K., Abe, J.M., Akama, S.: A logical reasoning system
of process before–after relation based on a paraconsistent annotated
logic programbf-EVALPSN. J. Knowl.-Based Intell. Eng. Syst. 15,
145–163 (2011)

14. Nute, D.: Basic defeasible logics. In: del Cerro, L. F., Penttonen,M.
(eds.) Intensional Logics for Programming, pp. 125–154. Oxford
University Press, Oxford (1992)

123

	The paraconsistent process order control method
	Abstract
	1 Introduction
	2 Annotated logic program EVALPSN
	3 Before--after EVALPSN
	4 Reasoning system in bf-EVALPSN
	5 The process order control method in bf-EVALPSN
	6 Concluding remarks
	References

