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Abstract
As intelligent textbooks become more ubiquitous in classrooms and educational 
settings, the need to make them more interactive arises. An alternative is to ask stu-
dents to generate knowledge in response to textbook content and provide feedback 
about the produced knowledge. This study develops Natural Language Processing 
models to automatically provide feedback to students about the quality of sum-
maries written at the end of intelligent textbook sections. The study builds on the 
work of Botarleanu et al. (2022), who used a Longformer Large Language Model 
(LLM) to develop a summary grading model. Their model explained around 55% 
of holistic summary score variance as assigned by human raters. This study uses a 
principal component analysis to distill summary scores from an analytic rubric into 
two principal components – content and wording. This study uses two encoder-only 
classification large language models finetuned from Longformer on the summaries 
and the source texts using these principal components explained 82% and 70% of 
the score variance for content and wording, respectively. On a dataset of summaries 
collected on the crowd-sourcing site Prolific, the content model was shown to be 
robust although the accuracy of the wording model was reduced compared to the 
training set. The developed models are freely available on HuggingFace and will 
allow formative feedback to users of intelligent textbooks to assess reading com-
prehension through summarization in real time. The models can also be used for 
other summarization applications in learning systems.
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Introduction

Intelligent textbooks have become increasingly popular in recent years as the 
COVID-19 pandemic pushed many learners into online classes (Seaman & Sea-
man, 2020) combined with advances in Natural Language Processing (NLP) that 
have made human-machine interaction more accessible (Brusilovsky et al., 2022; 
Wang et al., 2021). Intelligent textbooks have many advantages over print textbooks, 
including the integration of multimedia elements such as video, audio, and hyper-
links. While some studies have demonstrated no significant difference in learning 
between digital and print textbooks (Rockinson-Szapkiw et al., 2013), a more recent 
and comprehensive meta-analysis of 26 studies reported that interactive features such 
as those in intelligent textbooks improve reading performance with a moderate effect 
size across multiple knowledge domains (Clinton-Lisell et al., 2021). Additionally, 
college students prefer the lower cost and ease of use of intelligent textbooks (Ji et 
al., 2014; Chulkov & VanAlstine, 2013).

A textbook should be more than a static web-based version of a traditional paper 
textbook to be considered intelligent. Instead, an intelligent textbook should be inter-
active and adapt to the individual user’s needs. Various forms of artificial intelligence 
techniques can be employed to accomplish the goal of interactivity, including the use 
of Transformer-based Large Language Models (LLMs). LLMs have been used for a 
variety of purposes, including summary generation (Khandelwal et al., 2019), ques-
tion answering (Shao et al., 2019), text classification (Wolf et al., 2020), validation 
of peer-assigned scores in massive open online courses (Morris et al., 2023b), and 
question generation tasks (Lopez et al., 2021).

Previous research indicates that writing about textbook content in tasks such as 
summarization can increase learning outcomes in various content domains (Graham 
et al., 2020; Silva & Limongi, 2019). However, scoring summaries is time-intensive 
for instructors, paving the way for automatic approaches to summary scoring (Laga-
kis & Demetriadis, 2021). This study is part of a larger project called Intelligent 
Textbook for Enhanced Language Learning (iTELL) to develop a computational 
framework that converts static, web-based textbooks into interactive, intelligent text-
books. iTELL converts any type of machine-readable text into an interactive web-
app, and students can write summaries directly in the application. These summaries 
can be scored automatically by LLMs specifically trained to generate scores which 
inform qualitative feedback to students related to content and wording. Students can 
use the feedback from these models in different ways, including to reflect on and 
guide their learning, identify and correct misconceptions, review missed topics, and 
prepare for upcoming materials. As such, while iTELL is being developed in the con-
text of intelligent textbooks, it also has multiple applications outside of that context.

The goal of this current study is to report on the automated summary evaluation 
models integrated into iTELL and discuss how feedback is automatically provided 
to the users of intelligent textbooks. Based on pretrained encoder-only LLMs, our 
models can help students develop their knowledge while providing important infor-
mation about reading comprehension to teachers and material developers (Phillips 
Galloway, & Uccelli, 2019). Specifically, we provide an overview of LLMs that pro-
vide a formative assessment of summaries. These include models based on RoBERTa 
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(Liu et al., 2019) that predict scores based only on the summary due to constraints 
on the maximum sequence length, and models using Longformer (Beltagy et al., 
2020), which are capable of an increased max sequence length, allowing them to 
predict summary scores while including considerably more text from the textbook as 
context. Because iTELL is designed to be domain agnostic, the models must provide 
accurate feedback to users regardless of the textbook topic. To that end, the models 
were trained on a dataset comprising source texts on a wide range of informative top-
ics. The research questions that guide this study are the following:

1. To what extent does the inclusion of source text from the textbook improve the 
accuracy of the LLMs in automatically scoring summaries?

2. Does unsupervised pretraining on a large dataset of texts in the target language 
domain improve performance on the LLMs?

3. How well do automated summary evaluation LLMs perform when they are used 
outside of the context of the dataset and labels considered during their training?

Related Work

Intelligent Textbooks

The earliest intelligent textbooks were designed in the 1990s using the principles 
of knowledge engineering, in which the textbook would be designed and produced 
by domain experts (Brusilovsky et al., 2022). Early work in designing intelligent 
textbooks included the development of hypertext (Bareiss & Osgood, 1993), which 
allowed students to navigate the book efficiently (Brusilovsky & Pesin, 1998). One 
of the first web-based interactive textbooks included ELM-ART, an intelligent, inter-
active textbook to teach programming introduced in 1996 (Weber & Brusilovsky, 
2016).

The development of intelligent textbooks has increased in the past decade as com-
putational tools become more sophisticated and accessible (Sosnovsky et al., 2023). 
More recent research has included mining student behaviors in intelligent textbooks 
and using those data to provide an individualized learning experience. For instance, 
Lan and Baraniuk (2016) developed a muti-armed bandit algorithm that uses results 
from previous assessments to identify and recommend pedagogical activities opti-
mally individualized for each student. Learner behavior such as failure to correctly 
answer comprehension questions can also be used to adaptively modify the content of 
textbooks, thus recommending materials to remediate comprehension gaps (Thaker 
et al., 2020). Other research has shown that student behaviors in intelligent text-
books, such as annotation and highlighting, can predict student success in the course 
(Winchell et al., 2018) and that concept or keyphrase extraction using annotation by 
trained experts can be used as training data for machine learning algorithms (Wang 
et al., 2021).

Researchers have also used NLP techniques to construct semantic maps of text-
books which can be used to integrate the textbook with resources available on the 
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web (Alpizar-Chacon & Sosnovsky, 2021; Labutov et al., 2017). In addition, part-of-
speech taggers have been employed to develop question generation tools that auto-
matically generate and embed comprehension questions into intelligent textbooks 
(Kumar et al., 2015). Generative Transformer neural networks such as GPT-2 have 
also been used to develop language generation tools to provide information to stu-
dents within intelligent textbooks (Yarbro & Olney, 2021).

Summarization and Reading Comprehension

Text summarization is a valuable tool to build and assess student knowledge (Head 
et al., 1989) that has become more common in educational applications (Graham & 
Harris, 2015), especially in readability assessments like those found in intelligent 
textbooks (Phillips Galloway & Uccelli, 2019). Writing tasks like summarizations 
also help students build and consolidate their knowledge about reading materials in 
addition to their effectiveness in reading comprehension assessment. A meta-analysis 
of 56 experiments on the effect of writing on learning by Graham et al. (2020) found 
an average weighted effect size of Hedges’s g = 0.3 (p <.005) between pre and post-
tests for students who used writing to learn from texts. This effect size held, regard-
less of whether the knowledge domain was science, social studies, or mathematics. 
These results may be due to the increased cognitive demands of writing, a process 
in which the learner must actively reconstruct knowledge from the text (Nelson & 
King, 2022). For instance, Galbraith and Baaijen (2018) contend that writing con-
sists of two separate domains, one in which knowledge from the text is retrieved and 
manipulated and one in which the author actively uses their understanding of the 
world to construct text. Concurrent research by Silva and Limongi (2019) indicates 
that the practice of summary writing may help to consolidate the knowledge gained 
from reading into long-term memory. Despite the effectiveness of summarization in 
education and assessment, providing feedback to learners about the quality of sum-
maries is time-consuming for educators (Gamage et al., 2021), making summariza-
tion challenging to scale.

Automated Summary Evaluation

An essential component of intelligent textbooks is the capacity to provide formative 
feedback to students about their comprehension, and real-time feedback provided 
by AI is effective at improving reading comprehension (Chen et al., 2021; Kim et 
al., 2020). Before the development of deep learning approaches to NLP, automated 
summary evaluation (ASE) was primarily performed by comparing the summary 
being tested with a professionally produced reference summary. Algorithms such as 
ROUGE (Lin & Hovy, 2003), closely related to BLEU (Papineni et al., 2001), were 
used to provide summary scores based on word and phrase co-occurrence between 
the test summary and the reference summary. While ROUGE is correlated with 
human judgments of summary quality and is actively used in the training of summa-
rization algorithms (Ganesan, 2018; Scialom et al., 2019), it is biased toward surface-
level lexical features, a limitation which can be addressed using more advanced NLP 
features including word embedding approaches (Ng & Abrecht, 2015). More impor-
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tantly, ROUGE and BLEU approaches require the use of reference summaries cre-
ated by a human expert, which are resource intensive and impractical in the context 
of intelligent textbooks like those generated with the iTELL platform.

Recent developments in NLP allow more sophisticated feedback approaches for 
open-ended reading assessments like text summarization. For instance, Crossley et 
al. (2019) developed a summarization model to predict ratings of main idea integra-
tion in student summaries using lexical diversity features, a word frequency metric, 
and Word2vec semantic similarity scores between summaries and the correspond-
ing source material. The model explained 53% of the variance in ratings. Martínez-
Huertas et al. (2019) used latent semantic analysis to embed summaries into semantic 
vector spaces where the rubric scores could be extracted. Their method achieved a 
Pearson’s correlation with scores from expert raters between 0.78 and 0.81. With the 
rise of LLMs, new methods of automated summary evaluation have been evaluated. 
For instance, Botarleanu et al. (2022) used LLMs to predict overall student summa-
rization scores derived from an analytic rubric, explaining ∼ 55% of score variance.

Current Study

The NLP models discussed above show the potential for open-ended assessments of 
text comprehension through summarization in intelligent textbooks. To fulfill their 
purpose in the context of the iTELL framework, the models should accurately score 
summaries of source texts on any topic. The current study expands on the work of 
Crossley et al. (2019); Botarleanu et al. (2022); Morris et al. (2023a) which used a 
similar dataset of summaries on sources covering a variety of topics. First, instead 
of using the raw scores from an analytic rubric, we consolidated the scores into two 
principal components and used those as labeled data in model training. Second, we 
assessed the extent to which domain adaptation of the models improves scoring 
accuracy.

Methods

Four different datasets were used in this study, listed for reference in Table 1. Dur-
ing training, we used a training dataset used for finetuning the models and a dataset 
from Commonlit used for domain adaptation. We also used two datasets for post-hoc 
tests of validity and generalizability - a dataset of professional summaries found in a 
textbook available on OpenStax, and a dataset of summaries written by participants 
recruited through the Prolific crowdsourcing platform. Each of these datasets will be 
discussed in more detail in the subsequent sections.

Name Use Sources N Summaries N
Training Finetuning 101 690
Commonlit Domain adaptation 6 93,484
Textbook Post-hoc testing 94 94
Prolific Post-hoc testing 4 113

Table 1 List of datasets 
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Data

Our summary training corpus comprises 4,690 summaries written by high school, 
university, and adult writers collected by three higher education institutions between 
2018 and 2021, corresponding to 101 source texts. Crossley et al. (2019) and Botar-
leanu et al. (2022) used a subset of this data. The training corpus consolidates sev-
eral different data sources, including summaries written by workers on Amazon’s 
Mechanical Turk service (Li et al., 2018), summaries written by undergraduate col-
lege students, and summaries written by high school students. Source texts consider 
a variety of topics, such as the effect of UV radiation, diabetes, computer viruses, red 
blood cells, and the dangers of smoking. The sources had a mean word count of 308.5 
(SD = 130.49) and thus may be shorter than sections in an intelligent textbook. How-
ever, the topics were academic and therefore, similar to topics from intelligent text-
books. Each source had an average of 46.44 summaries written for it (SD = 62.12), 
with a maximum of 258 summaries and a minimum of 10. The summaries had an 
average of 75.18 words (SD = 50.51).

The formatting of the summary dataset was not uniform. For example, in some 
cases, source documents included several articles, and only one was summarized by 
any individual writer. We checked each source to ensure each summary was paired 
with only one properly formatted source. This process of cleaning and normalization 
is the first and often most labor-intensive step toward training a machine learning tool 
(Shorten et al., 2021). However, cleaned datasets often significantly impact the final 
accuracy of the model (Chollet, 2018).

Summary Scoring

Regardless of source, all summaries in the training dataset were scored according 
to the same procedure. Two expert raters scored each summary using a 0–4 scaled 
analytic rubric to score 7 criteria important in understanding the quality of summari-
zations. The criteria included main point/gist (whether the summary captured the gist 
of the source), details (to what extent the summary included all relevant information 
from the source), language beyond the source (grammar and syntax), paraphrasing/
wording (avoiding plagiarism and direct copying from the source), objective lan-
guage (accurately reflecting the view of the source), and cohesion (to what extend the 
summary was clearly and rationally organized), and text length. Appendix A contains 
the rubric used by raters in their assessment of the summaries.

Raters were initially normed on a small set of summaries not included in the final 
set of summaries. As such, raters talked through ∼ 20 summaries until they were com-
fortable with the rubric. They then scored ∼ 40 summaries until reaching an accept-
able level of inter-rater reliability (r >.699). Afterwards, raters scored summaries 
independently by source. Within the prompt, the scored summaries were randomized 
to reduce the potential for ordering effects. Also, raters could adjudicate any score 
differences greater than 1. Raters did this by talking through the summary with each 
other and then deciding whether they wanted to modify their ratings based on the 
discussion. If an agreement was not reached, the individual scores were not altered, 
but their average was used in subsequent predictions. Final inter-rater reliability was 
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acceptable (r >.800 and κ > 0.700). Average scores between the raters were calculated 
for each essay and used for the data analysis.

Dimensionality Reduction

We were faced with several choices because the scoring rubric consisted of seven 
criteria,. These included training a single multitask model to predict all seven scores 
at once at the cost of accuracy and training seven different models at the expense 
of increased compute requirements. A third choice, and the one we selected, was to 
conduct a principal component analysis (PCA) to assess the potential to reduce the 
dimensionality of the seven analytic scores in the rubric into a smaller number of 
constructs.

Before conducting the PCA, the human scores were standardized using z-score 
normalization. An initial PCA with all possible factors (n = 7) indicated 2 compo-
nents that reported eigenvalues over 0.70 (Jolliffe’s criteria). A Kaiser-Meyer-Olkin 
(KMO) measure of sampling adequacy indicated that no variables need to be removed 
(i.e., all KMO values were above 0.5), and the overall KMO score = 0.87 showed a 
“meritorious” sample (Kaiser, 1974). The PCA reported a Bartlett’s test of spheric-
ity, χ2 (4690) = 11,513.99, p <.001, indicating that correlations between the analytic 
scores were sufficiently large for the PCA. Within the components, there was a break 
in the cumulative variance explained between the second and the third component. 
Considering this break, we decided on a 2-component solution when developing the 
PCA. These 2 components explained approximately 73% of the shared variance in 
the data from the initial PCA. Figure 1 displays a scree plot showing the eigenvalue, 

Fig. 1 Scree plot of eigenvalues against number of principal components
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or absolute value of the explained variance, plotted against the number of principal 
components.

The first component was related to Content (i.e., Component 1), and the analytic 
scales of details, main point, objective language use, and cohesion were combined 
into a weighted score. The analytic scales for paraphrasing and language beyond the 
source were combined into a weighted score designated as Wording (i.e., Compo-
nent 2). Text length did not load into the first components and was removed. Table 2 
displays descriptive statistics for all scores, including the principal components. The 
component scores were z-score normalized and rescaled such that zero represents 
the mean for each principal component, and one unit represents one standard devia-
tion. These transformed scores were used as outcome variables in our large language 
models.

Summary Scoring Model

We used two pretrained LLMs to develop summary scoring models. The Transformer 
(Vaswani et al. 2017) is a neural network architecture that relies on the self-attention 
mechanism and can be trained in parallel in contrast to previous recurrent neural 
architectures. LLMs are Transformer-based models pretrained on a large corpus of 
text that can be further finetuned for downstream tasks. The LLMs used in this study 
were trained using masked language modeling, in which the text is tokenized, but 
some tokens are masked. The task of masked language modeling is to predict the 
masked tokens based on all the tokens that come before and after the masked tokens. 
Because of the cost and time associated with developing an LLM, only a few models 
are produced and are freely available.

Pretrained LLM models can be refined in two ways. The primary method of model 
refinement is through finetuning. The model is trained on the target task using the 
training data with corresponding labels. Unlike generative models such as ChatGPT 
(Abdullah et al., 2022) or LLaMa (Touvron et al., 2023), which are trained to predict 
the next token in a series given the preceding tokens, this study uses embedding or 
encoder-only models which are commonly used in regression or classification tasks. 
Encoder-only models include a special classification token at the beginning of the 
sequence. As the model processes the language data, the embedding of the classifi-
cation token comes to represent semantic information about the text as a whole. A 
classification head, which could be a linear layer or a traditional machine learning 

Language domain N Mean SD Min Max
Main Point 4,690 3.05 0.80 0.5 4
Details 4,690 2.79 0.84 0 4
Cohesion 4,690 2.97 0.79 0 4
Objective Language 4,690 2.79 0.73 0 4
Paraphrasing 4,690 2.23 0.91 0 4
Language Beyond the 
Source

4,690 2.26 0.70 0 4

Content PCA 4,690 8.00 2.04 0.76 10.96
Wording PCA 4,690 3.51 1.25 0 6.28

Table 2 Descriptive statistics 
for summary scores in the train-
ing dataset
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algorithm, uses the classification token as input to make predictions about the class of 
the text. During finetuning, the parameters of the model, as well as the classification 
head, are adjusted.

A secondary method is domain adaptation through unsupervised pretraining (Tun-
stall, von Werra & Wolf, 2022). Unsupervised pretraining may be used when there 
is a large amount of unlabeled data but a relatively small amount of labeled data. In 
this case, the model is trained using masked language modeling on language data 
from the target language domain to allow the model greater familiarity with the target 
domain. For example, Beltagy, Lo, and Cohen (2019) used unsupervised pretraining 
on a scientific corpus to improve the accuracy of the BERT model in that domain. 
After domain adaptation, the resultant model is finetuned on the labeled data for clas-
sification or regression specific tasks.

In this study, we considered two LLMs: the RoBERTa base model (Liu et al., 
2019) and the Longformer base LLM (Beltagy et al., 2020). RoBERTa is an encoder-
only Transformer model pretrained on the English Wikipedia corpus and Bookcor-
pus. The Transformer neural architecture relies on attention mechanisms in which, 
at every layer, each token embedding is modified by each other token embedding. 
As a result, the computational requirements grow quadratically as a function of the 
input sequence length. In RoBERTa, the length of the input sequence is limited to 512 
tokens to ensure computational efficiency. While this length is sufficient for many 
summaries, it is not long enough to include text from the textbook in the model input.

The Longformer LLM (Beltagy et al., 2020) can handle longer input sequences 
by utilizing sparse attention, in which not all tokens are compared with every other 
token. Instead, Longformer uses a sliding attention window so that each token only 
attends to the tokens a certain number of positions to its left and right. Sparse atten-
tion mitigates the problem of limited sequence length by reducing the computational 
complexity of the attention mechanism. In addition to the sliding attention window, 
Longformer also utilizes global attention in which specific tokens attend to every 
other token. Since attention is bidirectional, all tokens will attend to global tokens 
as well. Combining these two types of attention enables Longformer to increase the 
max sequence length from 512 tokens to 4,096 tokens while remaining efficient. The 
Longformer max sequence length allowed us to include both the summary and source 
texts from the textbook in the input sequence. By default, Longformer places global 
attention only on the classification token at the beginning of the sequence and uses 
a 512-token sliding attention window which moves across the rest of the sequence. 
Because the summary is more salient to the score in the task of summary evaluation, 
however, we hypothesized that it would be beneficial to use global attention for the 
entire summary. This allows tokens in the summary to attend to every token in the 
source text and vice-versa. We chose to include the entire summary in global atten-
tion and shorten the sliding window to 256 tokens to conserve compute. To the best 
of our knowledge, this approach has not been used in automatic summary evaluation 
with Longformers.

We divided the scored summary corpus into training, validation, and test sets. We 
selected 15 out of the 101 sources text to comprise the test set only to ensure gen-
eralizability across source texts and prompts (i.e., these source texts were not used 
in training or validation). After splitting the data, the training, validation, and test 
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sets comprised 3,285, 703, and 702 summaries, respectively. Each summary from 
the training set was tokenized and fed to the RoBERTa model during finetuning. For 
Longformer, the summary and the source text for the summary were concatenated 
using a specific separator token (specifically, “< \s>”) and then tokenized together to 
generate the input sequences. These token sequences were used as input data for their 
respective models, and the final classification token was used to train a linear regres-
sion head. We trained each model for six epochs with a batch size of 8 and a learning 
rate of 3e-05, retaining the best model. We used mean squared error as the evaluation 
metric during the training process. After training, we tested each model’s perfor-
mance by predicting the summary Content and Wording scores. We evaluated model 
performance in terms of correlation with the human rater judgments and explained 
variance (R2).

In addition to the finetuning procedures described above, we also domain-adapted 
the Longformer and RoBERTa pretrained models on a different dataset of 93,484 
summaries written by middle and high-school students. The summaries were col-
lected from six sources available online through the Commonlit platform. This is the 
largest, unlabeled dataset in the target language domain to the best of our knowledge, 
and we considered it a reasonable candidate for domain adaptation, although the very 
small number of source texts (N = 6) meant that, although the models were training 
on a large set of student summaries, they were training on only a very small set of 
source texts. We used a masked language modeling task to domain adapt the models 
for eight epochs with a learning rate of 2e-5. After constructing the domain-adapted 
models, we finetuned them using the same methods described above and evaluated 
their performance by calculating the correlation between predicted scores and human 
rater judgments.

Post-Hoc Analysis

In addition to training and testing the LLMs on the training dataset, we also tested 
the LLMs on a dataset of summaries written by experts and a dataset of summaries 
written by participants recruited from the Prolific crowdsourcing website on con-
tent within an intelligent textbook. We chose the 2nd edition textbook for Macro-
economics, freely available on the Openstax website (https://openstax.org/details/
books/principles-macroeconomics-2e). This text consists of 94 sections divided into 
21 chapters. Each section includes a professional summary (N = 94). In addition to 
the material in the sections, the textbook includes pages for key terms, concepts, and 
review questions for each section.

We used the best-performing LLM to predict scores for the section summaries pro-
vided in the textbook. We generated two sets of section text and section summaries, 
one in which the summaries are matched to the appropriate section and one in which 
the summaries are randomized so that they are not matched with the section they 
summarize. We predicted the scores for content and wording for the summaries of 
each of the 94 sections in the textbook in both the matched and unmatched datasets. 
If the model is accurate, the summaries in the matched group would score higher than 
those in the unmatched group.
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In addition to testing the models on professional summaries in the textbook, we 
also used the crowdsourcing site Prolific to recruit 60 participants to write 113 short 
summaries of sections from the Macroeconomics Openstax textbook. These summa-
ries were scored by two expert raters using the same rubric from the original summary 
dataset. Despite extensive efforts of rater norming, inter-rater reliability was lower 
than in the original dataset (QWK = 0.576). Additionally, quadratic weighted kappa 
values showed a large amount of variability between criteria, as seen in Table 3. 
Given that reliability was still acceptable in most cases, we generated principal com-
ponents for Content and Wording for each Macroeconomics summary. Finally, we 
evaluated the strongest LLM on the Prolific test set by comparing the LLM predicted 
scores to the PCA scores derived from human scores.

Results

Comparing Models That Include the Source Text to Models That are Naive to the 
Source

The results of comparing predicted scores in the held-out test set of the training data-
set to the actual scores assigned by expert human raters are presented in Table 4. For 
Content scores, the Longformer model, in which both the summary and the source 
were included in the input, achieved higher accuracy than the RoBERTa model that 
considered only the summary (explaining 82% versus 67% of the variance, respec-
tively). For Wording scores, the Longformer model outperformed the RoBERTa 
model (explaining 70% versus 41% of the variance, respectively). Scatterplots for 
the results are presented in Fig. 2.

Content Wording
r R2 r R2

RoBERTa (pretrained) 0.82 0.67 0.64 0.36
RoBERTa (domain adapted) 0.83 0.69 0.65 0.42
Longformer (pretrained) 0.91 0.82 0.87 0.70
Longformer (domain adapted) 0.85 0.72 0.78 0.60

Table 4 Results from the roberta 
and longformer models
 

PCA Criterion QWK
Content Organization 0.485

Main Points 0.567
Details 0.611

Wording Voice 0.320
Language 0.531
Wording 0.730
Total 0.576

Table 3 Inter-rater reliability 
statistics for out-of-domain 
dataset
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Domain Adaptation Through Unsupervised Pretraining

Training from a domain adapted model improved performance slightly in the Roberta 
model compared to finetuning from the pretrained model. However, the domain 
adapted Longformer model performed worse than the non-domain adapted version 
for both content and wording (explaining 72% and 60% of the variance, respec-
tively). Even with reduced performance compared to the base model, the domain 
adapted Longformer model still performed better than either of the two RoBERTa 
models with no access to the source text.

Post-hoc Tests on the Prototype Intelligent Textbook

While our non-domain adapted Longformer model performed well on the training 
data, we further tested it using the section summaries written by the textbook authors 
found in the Macroeconomics textbook. We did this by using the summaries and 
their matching sections to predict quality scores for content and wording. To create a 
comparison group, we also ran the model on the summaries paired with unmatched 
source texts. The results are illustrated in Fig. 3. The summaries matched to the cor-
rect sources have scored higher than average in wording and content. The summaries 

Fig. 2 Predicted scores plotted against actual scores for the four models
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paired with unmatched sources have scored below average in Content and slightly 
above average in Wording. The differences between matched and unmatched content 
were statistically significant (p <.001) in both domains with large effect sizes, but 
Content reported a greater effect size (d = 1.56) than Wording (d = 0.938).

The accuracy of the Longformer model on the dataset of summaries written by 
participants recruited through Prolific was lower than the accuracy on the original 
dataset. Pearson’s product-moment correlations showed a strong correlation between 
predictions and human scores for Content r(123) = 0.70, p <.001. for Content. How-
ever, the Wording model did a poorer job at predicting human scores r(123) = 0.29, 
p =.001. Figure 4 displays scatterplots showing the correlations between the predicted 
and human scores in this dataset.

Fig. 4 Scatterplot showing correlations between predicted and human scores on prolific dataset

 

Fig. 3 Boxplot showing distributions of generated scores for professional summaries
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Discussion

This paper introduces robust LLMs integrated within iTELL to provide formative 
assessment for summaries written at the end of chapter sections in intelligent text-
books. These summarization models can assess reading comprehension for students 
working within the intelligent textbook, provide feedback to students to help them 
better understand their comprehension of material, and deliver an overview to teach-
ers about how well students understand the material provided. The summarization 
models presented in this study are more robust than previously reported models, 
likely because of the training data provided and because we used a principal compo-
nent analysis on analytic scores from a summarization rubric to aggregate scores into 
two summarization criteria: content and wording.

Our gains in performance over those reported in previous studies, especially Cross-
ley et al. (2019) and Botarleanu et al. (2022), are likely the result of using cleaned 
training data and training the model on principal component scores that characterize 
the summaries in a more condensed representation. The top-performing Longformer 
models developed in this study achieved R2 values of 0.82 and 0.70 when predicting 
human ratings, outperforming RoBERTa models and previous LLM-based automatic 
summary evaluation models, including the Transformer models by Botarleanu et al. 
(2022) which achieved R2 ∼ 55%, and the more semantic approaches used by Cross-
ley et al. (2019) who reported an R2 of 0.53.

In answer to the first research question regarding whether there is a substantial 
difference in accuracy when a model is provided with both the summary and the 
source, a model trained to take both the source and the summary performed better 
than one which only had access to the summary. The increased max sequence length 
provided by Longformer’s sparse attention allowed us to input both the summary and 
the source divided by a separator token, which led to increased accuracy compared 
to RoBERTa, which only had access to the summary. The differences are most appar-
ent in the case of Wording, where the model based on the pretrained Longformer 
reported almost double the R2 value relative to the RoBERTa model.

The answer to the second research question, whether domain adaptation can 
improve the accuracy of the summary scoring models, reported mixed results. The 
RoBERTa model benefited from domain adaptation, but it was the weaker of the two 
models tested. In contrast, finetuning directly on the pretrained Longformer model 
produced better results than finetuning on the domain-adapted model. This may be 
because the Commonlit dataset with many summaries only included six sources, 
which did not provide the language variation needed for the problem space. Instead 
of generating models that generalize and provide scores for summaries of any source, 
the domain adaptation step may have created models that are specifically adapted to 
the six sources in the Commonlit dataset. This hypothesis is supported by the fact that 
domain adaptation helped somewhat in the case of the RoBERTa models in which the 
source was omitted from the input. In the case of the Longformer model, the small 
number of sources may have resulted in catastrophic forgetting (Ramasesh et al., 
2021), where the model overfitted to those sources and forgot some of the parameters 
from its pretraining.
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In answer to the third research question, the analysis of the Longformer LLM on 
expert summaries found in a Macroeconomics textbook provided some evidence of 
concurrent validity for the developed model. When the model was tested on summa-
ries matched with the correct source, the model outputted scores above the mean on 
average for both Content and Wording. However, when tested on summaries matched 
with incorrect sources, the Content score was nearly half a standard deviation lower 
than the mean on average. In contrast, the Wording score remained above the mean 
(although significantly lower than the score when the summaries and sources were 
correctly matched). These results make sense because Content scores should more 
strongly differ between matched and unmatched source texts. However, Wording 
measures include features related to paraphrasing and language beyond the source, 
which would be higher in expert summaries, but only partially reliant on the source 
text. The results from the Macroeconomics summaries provide evidence that the 
models discriminate between matched and unmatched summaries. Summaries are 
scored better when paired with the correct source, especially in terms of Content.

The test on summaries solicited from participants on Prolific had mixed results. 
The Content model performed well on these summaries. By contrast, although the 
Wording model predictions were better than chance, it did not accurately predict 
human scores with fidelity. This may be a result of the difficulty in aligning the raters 
to the original scoring procedure. Although we had access to the rubric provided in 
Appendix A, we did not have access to the rater training procedure. As a result, our 
raters were not capable of attaining sufficient agreement with each other and presum-
ably were also not aligned with the original set of raters.

Application

The summary evaluation models developed here were integrated into the iTell frame-
work to assess reading comprehension via end-of-section summarization. The pur-
pose of the summaries is to make the textbooks more interactive and provide students 
with opportunities to produce knowledge and test understanding, while having access 
to timely personalized feedback. Within iTELL, the summary scoring models have 
been combined with several other features to ensure the accuracy of the feedback 
provided and to ensure that good-faith efforts are made by students. After students 
produce a summary (students cannot cut and paste), and before that summary is 
passed to the scoring models, the summaries go through a filter component. The 
filter ensures that the summary is between 50 and 200 words, and the summary is 
passed through a semantic similarity measure using Doc2Vec (Le & Mikolov, 2014) 
that assesses whether the summary is on topic. Additionally, summaries that heavily 
borrow from the source text or contain offensive language are rejected without being 
analyzed by the LLMs. Source borrowing scores are based on prevalence of overlap-
ping n-grams between the summary and the source (Broder, 1998) while offensive 
language ratings are based on occurrences of offensive words or phrases from an 
offensive word list (Inflianskas, 2019). These filters help ensure that only effortful 
summaries are passed to the models and help reduce the computational load required 
by the models.
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Summaries are then run through the LLMs, which are used to develop forma-
tive feedback. Figure 5 displays a screenshot with examples of written feedback that 
students may receive from iTELL for high and low-quality summaries on Content, 
Wording, source borrowing, and topic similarity. Although numerical scores are cal-
culated for each of these criteria on the back end, the user receives written qualitative 
feedback. If the scores are below a certain threshold, the user will be encouraged to 
revisit the section and asked to rewrite their summary before moving on to the next 
section. In addition, key phrases are identified within the source text using KeyBART 
(Inflianskas, 2019), an LLM trained to generate keyphrases. Using KeyBART, stu-
dents are provided with a list of key phrases from the source text not present in their 
summary, and are then directed to specific paragraphs or subsections they may not 
have included in their summaries to help with revision. These feedback mechanisms 
provide the learners with actionable formative feedback beyond the output of the 
LLMs. The feedback provided by the summary evaluation tools can help provide 
insight into the students’ reading comprehension skills, assist students in reflecting, 
summarizing, and articulating what they learned, provide class-level and individual 

Fig. 5 Screenshots from iTELL displaying feedback from low and high-quality summaries
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student metrics on textbook comprehension, and help developers redesign the cur-
riculum and the textbook itself.

Conclusion

In this study, we used RoBERTa and Longformer pretrained Transformers to finetune 
four large language models to score student-written section summaries automatically. 
Although the source texts summarized in the dataset used to train the model are 
likely shorter than intelligent textbook sections, the topics were similar (i.e., they 
were academic). The accuracy and post-hoc validation scores for the Content models 
were strong enough for inclusion into iTELL, especially in the case of the mod-
els finetuned from the Longformer pretrained model. The Wording model showed 
promising results but more validation needs to be done using real-world data from 
textbooks. The summarization models incorporated into iTell can provide students 
with opportunities for open-ended comprehension assessment and interactive feed-
back within intelligent textbooks. Additionally, the models are freely available on 
HuggingFace1,2, allowing access to learning platforms, researchers, and textbooks 
developed outside the iTELL framework.

Although the models are strongly predictive, they have limitations. First, 
while the summaries found in the training data are broadly similar to the target 
task, and post-hoc tests provided evidence of concurrent validity, more testing 
in target domains is necessary to ensure that the model accuracy reported in this 
study will transfer to the task of scoring summaries within a variety of different 
academic topics. This is particularly the case with the Wording model, since post-
hoc tests showed lower generalizability outside of the training data. Addition-
ally, the models need to be tested on intelligent textbook users to ensure that the 
feedback provided by the models leads to increase learning. Another limitation 
involves the interpretability of the LLM’s output for teachers and learners. The 
two numerical scores provided by the models indicate summary quality. Nev-
ertheless, the feedback provided to users should explain at a granular level the 
components of the summaries that lead to the scores and provide actionable sug-
gestions for improvement. Future work should focus on explainable Artificial 
Intelligence methods to better understand the decisions within the LLMs that lead 
to the scores.

1 https://huggingface.co/tiedaar/longformer-content-global
2 https://huggingface.co/tiedaar/longformer-wording-global
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Appendix A – Scoring Rubric

Score Main points/Gist Details Cohesion Objective 
language

Wording/
Paraphrasing

Language 
beyond 
source 
text

Sum-
mary 
length

1 Main idea is not 
linked to central 
topic

State-
ments are 
not related 
to the 
passage

Ideas are 
randomly 
presented 
and do 
not link 
to each 
other

The 
language 
used 
is not 
objective.

Summary 
shows a heavy 
reliance on 
verbatim copy-
ing of source 
language.

Summary 
shows a 
very basic 
under-
standing of 
lexical and 
syntactic 
structures.

Much 
shorter 
or 
longer 
than 
ex-
pected

2 Main idea is linked 
to central topic but 
there is no topic 
sentence to bring 
ideas together

Some key 
infor-
mation 
from the 
passage is 
included, 
but 
important 
ideas are 
missing

Some 
ideas link 
to each 
other

Some 
of the 
language 
used is 
objective

Summary 
shows some 
use of original 
wording, 
but there are 
examples 
of verbatim 
or near-
copy of source 
language.

Summary 
shows an 
under-
standing of 
lexical and 
syntactic 
structures.

Short-
er or 
longer 
than 
ex-
pected

3 Main idea is linked 
to central topic 
and there is a topic 
sentence that states 
some aspect of the 
content

Most key 
infor-
mation 
from the 
passage is 
included, 
but some 
ideas may 
be irrel-
evant or 
inaccurate

Most 
ideas are 
logically 
presented

Most 
of the 
language 
used is 
objective

Summary 
shows evi-
dence of appro-
priate levels of 
paraphrasing.

Summary 
shows an 
appro-
priate 
range of 
lexical and 
syntactic 
structures

A bit 
shorter 
or 
longer 
than 
ex-
pected

4 Main idea is linked 
to central topic and 
has a topic sentence 
that states the main 
idea.

All key 
informa-
tion in the 
passage is 
included 
without 
irrelevant 
ideas.

All 
ideas are 
logically 
presented

All of the 
language 
used is 
objective

Summary 
shows substan-
tial evidence 
of appropriate 
paraphrasing 
use.

Summary 
shows an 
excellent 
range of 
lexical and 
syntactic 
structures.

Ap-
propri-
ate 
length.

Based on Taylor (2013), Westley, Culatta, Lawrence, & Hall-Kenyon (2010)

Declarations

Conflict of interest The authors affirm that there are no conflicts of interest.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, 
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long 
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative 
Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 

1 3



International Journal of Artificial Intelligence in Education

to the material. If material is not included in the article’s Creative Commons licence and your intended use 
is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission 
directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

Abdullah, M., Madain, A., & Jararweh, Y. (2022). ChatGPT: Fundamentals, applications and social 
impacts. In 2022 Ninth International Conference on Social Networks Analysis, Management and 
Security (SNAMS) (pp. 1–8). Ieee. https://doi.org/10.1109/SNAMS58071.2022.10062688

Alpizar-Chacon, I., & Sosnovsky, S. (2021). Knowledge models from PDF textbooks. New Review of 
Hypermedia and Multimedia, 27(1–2), 128–176. https://doi.org/10.1080/13614568.2021.1889692.

Bareiss, R., & Osgood, R. (1993). Applying AI models to the design of exploratory hypermedia systems. 
Proceedings of the Fifth ACM Conference on Hypertext - HYPERTEXT ’93, 94–105. https://doi.
org/10.1145/168750.168790.

Beltagy, I., Peters, M. E., & Cohan, A. (2020). Longformer: The Long-Document Transformer. https://doi.
org/10.48550/ARXIV.2004.05150.

Botarleanu, R. M., Dascalu, M., Allen, L. K., Crossley, S. A., & McNamara, D. S. (2022). Multitask Sum-
mary Scoring with Longformers. In M. M. Rodrigo, N. Matsuda, A. I. Cristea, & V. Dimitrova (Eds.), 
Artificial Intelligence in Education (Vol. 13355, pp. 756–761). Springer International Publishing. 
https://doi.org/10.1007/978-3-031-11644-5_79.

Broder, A. Z. (1998). On the resemblance and containment of documents. Proceedings Compression 
and Complexity of SEQUENCES 1997 (Cat no 97TB100171), 21–29. https://doi.org/10.1109/
SEQUEN.1997.666900.

Brusilovsky, P., Sosnovsky, S., & Thaker, K. (2022). The return of intelligent textbooks. AI Magazine, 
43(3), 337–340. https://doi.org/10.1002/aaai.12061.

Brusilovsky, P., & Pesin, L. (1998). Adaptive navigation support in educational hypermedia: An evaluation 
of the ISIS-Tutor. Journal of computing and Information Technology, 6(1), 27–38. https://hrcak.srce.
hr/file/221190

Chen, C. M., Chen, L. C., & Horng, W. J. (2021). A collaborative reading annotation system with for-
mative assessment and feedback mechanisms to promote digital reading performance. Interactive 
Learning Environments, 29(5), 848–865. https://doi.org/10.1080/10494820.2019.1636091.

Chollet, F. (2018). Deep learning with Python. Manning Publications Co.
Chulkov, D. V., & VanAlstine, J. (2013). College student choice among electronic and printed textbook 

options. Journal of Education for Business, 88(4), 216–222.
Clinton-Lisell, V., Seipel, B., Gilpin, S., & Litzinger, C. (2021). Interactive features of E-texts’ effects on 

learning: A systematic review and meta-analysis. Interactive Learning Environments, 1–16.
Crossley, S. A., Kim, M., Allen, L., & McNamara, D. (2019). Automated Summarization Evaluation 

(ASE) Using Natural Language Processing Tools. In S. Isotani, E. Millán, A. Ogan, P. Hastings, B. 
McLaren, & R. Luckin (Eds.), Artificial Intelligence in Education (Vol. 11625, pp. 84–95). Springer 
International Publishing. https://doi.org/10.1007/978-3-030-23204-7_8.

Galbraith, D., & Baaijen, V. M. (2018). The work of writing: Raiding the Inarticulate. Educational Psy-
chologist, 53(4), 238–257. https://doi.org/10.1080/00461520.2018.1505515.

Gamage, D., Staubitz, T., & Whiting, M. (2021). Peer assessment in MOOCs: Systematic literature review. 
Distance Education, 42(2), 268–289. https://doi.org/10.1080/01587919.2021.1911626.

Ganesan, K. (2018). ROUGE 2.0: Updated and Improved Measures for Evaluation of Summarization 
Tasks. https://doi.org/10.48550/ARXIV.1803.01937.

Graham, S., & Harris, K. R. (2015). Common Core State standards and writing: Introduction to the Special 
Issue. The Elementary School Journal, 115(4), 457–463. https://doi.org/10.1086/681963.

Graham, S., Kiuhara, S. A., & MacKay, M. (2020). The effects of writing on learning in Science, Social 
studies, and Mathematics: A Meta-analysis. Review of Educational Research, 90(2), 179–226. https://
doi.org/10.3102/0034654320914744.

Head, M. H., Readence, J. E., & Buss, R. R. (1989). An examination of summary writing as a mea-
sure of reading comprehension. Reading Research and Instruction, 28(4), 1–11. https://doi.
org/10.1080/19388078909557982.

1 3

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SNAMS58071.2022.10062688
https://doi.org/10.1080/13614568.2021.1889692
https://doi.org/10.1145/168750.168790
https://doi.org/10.1145/168750.168790
https://doi.org/10.48550/ARXIV.2004.05150
https://doi.org/10.48550/ARXIV.2004.05150
https://doi.org/10.1007/978-3-031-11644-5_79
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1109/SEQUEN.1997.666900
https://doi.org/10.1002/aaai.12061
https://hrcak.srce.hr/file/221190
https://hrcak.srce.hr/file/221190
https://doi.org/10.1080/10494820.2019.1636091
https://doi.org/10.1007/978-3-030-23204-7_8
https://doi.org/10.1080/00461520.2018.1505515
https://doi.org/10.1080/01587919.2021.1911626
https://doi.org/10.48550/ARXIV.1803.01937
https://doi.org/10.1086/681963
https://doi.org/10.3102/0034654320914744
https://doi.org/10.3102/0034654320914744
https://doi.org/10.1080/19388078909557982
https://doi.org/10.1080/19388078909557982


International Journal of Artificial Intelligence in Education

Inflianskas, R. (2019). Profanity Filter. GitHub repository. https://github.com/rominf/profanity-filter/blob/
master/profanity_filter/data/en_profane_words.txt.

Ji, S. W., Michaels, S., & Waterman, D. (2014). Print vs. electronic readings in college courses: Cost-
efficiency and perceived learning. The Internet and Higher Education, 21, 17–24.

Khandelwal, U., Clark, K., Jurafsky, D., & Kaiser, L. (2019). Sample Efficient Text Summarization Using 
a Single Pre-Trained Transformer. https://doi.org/10.48550/ARXIV.1905.08836.

Kim, M. K., Gaul, C. J., Bundrage, C. N., & Madathany, R. J. (2020). Technology supported reading 
comprehension: A design research of the student mental model analyzer for research and teaching 
(SMART) technology. Interactive Learning Environments, 1–25. https://doi.org/10.1080/10494820
.2020.1838927.

Kumar, G., Banchs, R., & D’Haro, L. F. (2015). RevUP: Automatic gap-fill question generation from 
Educational texts. Proceedings of the Tenth Workshop on Innovative Use of NLP for Building Educa-
tional Applications, 154-161, https://doi.org/10.3115/v1/W15-0618.

Labutov, I., Huang, Y., Brusilovsky, P., & He, D. (2017). Semi-supervised techniques for Mining Learning 
outcomes and prerequisites. Proceedings of the 23rd ACM SIGKDD International Conference on 
Knowledge Discovery and Data Mining, 907, 915. https://doi.org/10.1145/3097983.3098187.

Lagakis, P., & Demetriadis, S. (2021). Automated essay scoring: A review of the field. 2021 Interna-
tional Conference on Computer, Information and Telecommunication Systems (CITS), 1–6. https://
doi.org/10.1109/CITS52676.2021.9618476.

Lan, A. S., & Baraniuk, R. G. (2016). A Contextual Bandits Framework for Personalized Learning Action 
Selection. EDM, 424–429.

Le, Q., & Mikolov, T. (2014). Distributed representations of sentences and documents (pp. 1188–1196). 
PMLR.

Li, H., Cai, Z., & Graesser, A. C. (2018). Computerized summary scoring: Crowdsourcing-based 
latent semantic analysis. Behavior Research Methods, 50(5), 2144–2161. https://doi.org/10.3758/
s13428-017-0982-7.

Lin, C. Y., & Hovy, E. (2003). Automatic evaluation of summaries using N-gram co-occurrence statis-
tics. Proceedings of the 2003 Conference of the North American Chapter of the Association for 
Computational Linguistics on Human Language Technology - NAACL ’03, 1, 71–78. https://doi.
org/10.3115/1073445.1073465.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O., Lewis, M., Zettlemoyer, L., & Stoyanov, 
V. (2019). RoBERTa: A Robustly Optimized BERT Pretraining Approach. ArXiv:1907.11692 [Cs]. 
http://arxiv.org/abs/1907.11692.

Lopez, L. E., Cruz, D. K., Cruz, J. C. B., & Cheng, C. (2021). Simplifying Paragraph-Level Question 
Generation via Transformer Language Models. In D. N. Pham, T. Theeramunkong, G. Governatori, 
& F. Liu (Eds.), PRICAI 2021: Trends in Artificial Intelligence (Vol. 13032, pp. 323–334). Springer 
International Publishing. https://doi.org/10.1007/978-3-030-89363-7_25.

Martínez-Huertas, J. Á., Jastrzebska, O., Olmos, R., & León, J. A. (2019). Automated summary evaluation 
with inbuilt rubric method: An alternative to constructed responses and multiple-choice tests assess-
ments. Assessment & Evaluation in Higher Education, 44(7), 1029–1041. https://doi.org/10.1080/0
2602938.2019.1570079.

Morris, W., Crossley, S., Holmes, L., Ou, C., McNamara, D., & Dascalu, M. (2023a). Using Large Lan-
guage Models to Provide Formative Feedback in Intelligent Textbooks. In International Conference 
on Artificial Intelligence in Education (pp. 484–489). Cham: Springer Nature Switzerland.

Morris, W., Crossley, S. A., Langdon, H., & Trumbore, A. (2023b). Using Transformer Language Models 
to Validate Peer-Assigned Essay Scores in Massive Open Online Courses (MOOCs). In Proceedings 
of the Thirteenth International Conference on Learning Analytics & Knowledge.

Nelson, N., & King, J. R. (2022). Discourse synthesis: Textual transformations in writing from sources. 
Reading and Writing. https://doi.org/10.1007/s11145-021-10243-5.

Ng, J. P., & Abrecht, V. (2015). Better Summarization Evaluation with Word Embeddings for ROUGE 
(arXiv:1508.06034). arXiv. http://arxiv.org/abs/1508.06034.

Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2001). BLEU: A method for automatic evaluation of 
machine translation. Proceedings of the 40th Annual Meeting on Association for Computational Lin-
guistics - ACL ’02, 311, https://doi.org/10.3115/1073083.1073135.

Phillips Galloway, E., & Uccelli, P. (2019). Beyond reading comprehension: Exploring the additional 
contribution of Core Academic Language skills to early adolescents’ written summaries. Reading and 
Writing, 32(3), 729–759. https://doi.org/10.1007/s11145-018-9880-3.

1 3

https://github.com/rominf/profanity-filter/blob/master/profanity_filter/data/en_profane_words.txt
https://github.com/rominf/profanity-filter/blob/master/profanity_filter/data/en_profane_words.txt
https://doi.org/10.48550/ARXIV.1905.08836
https://doi.org/10.1080/10494820.2020.1838927
https://doi.org/10.1080/10494820.2020.1838927
https://doi.org/10.3115/v1/W15-0618
https://doi.org/10.1145/3097983.3098187
https://doi.org/10.1109/CITS52676.2021.9618476
https://doi.org/10.1109/CITS52676.2021.9618476
https://doi.org/10.3758/s13428-017-0982-7
https://doi.org/10.3758/s13428-017-0982-7
https://doi.org/10.3115/1073445.1073465
https://doi.org/10.3115/1073445.1073465
https://doi.org/10.1007/978-3-030-89363-7_25
https://doi.org/10.1080/02602938.2019.1570079
https://doi.org/10.1080/02602938.2019.1570079
https://doi.org/10.1007/s11145-021-10243-5
http://arxiv.org/abs/1508.06034
https://doi.org/10.3115/1073083.1073135
https://doi.org/10.1007/s11145-018-9880-3


International Journal of Artificial Intelligence in Education

Ramasesh, V. V., Lewkowycz, A., & Dyer, E. (2021). Effect of scale on catastrophic forgetting in neu-
ral networks. In International Conference on Learning Representations. https://openreview.net/
pdf?id=GhVS8_yPeEa

Rockinson-Szapkiw, A. J., Courduff, J., Carter, K., & Bennett, D. (2013). Electronic versus traditional 
print textbooks: A comparison study on the influence of university students’ learning. Computers & 
Education, 63, 259–266.

Scialom, T., Lamprier, S., Piwowarski, B., & Staiano, J. (2019). Answers Unite! Unsupervised Metrics for 
Reinforced Summarization Models. https://doi.org/10.48550/ARXIV.1909.01610.

Seaman, J. E., & Seaman, J. (2020). Digital texts in the time of COVID: Educational resources in U.S. 
Higher Education. Bay View Analytics.

Shao, T., Guo, Y., Chen, H., & Hao, Z. (2019). Transformer-based neural network for answer selection in 
question answering. Ieee Access: Practical Innovations, Open Solutions, 7, 26146–26156. https://
doi.org/10.1109/ACCESS.2019.2900753.

Shorten, C., Khoshgoftaar, T. M., & Furht, B. (2021). Text Data Augmentation for Deep Learning. Journal 
of Big Data, 8(1), 101. https://doi.org/10.1186/s40537-021-00492-0.

Silva, M., A., & Limongi, R. (2019). Writing to learn increases long-term memory consolidation: A 
Mental-Chronometry and computational-modeling study of Epistemic writing. Journal of Writing 
Research, 11(vol(11 issue 1), 211–243. https://doi.org/10.17239/jowr-2019.11.01.07.

Sosnovsky, S., Brusilovsky, P., & Lan, A. (2023). Intelligent textbooks: The fifth international workshop. 
In international conference on artificial intelligence in education (pp. 97–102). Cham: Springer 
Nature Switzerland. https://link.springer.com/chapter/10.1007/978-3-031-36336-8_15

Thaker, K., Zhang, L., He, D., & Brusilovsky, P. (2020). Recommending Remedial Readings Using Stu-
dent Knowledge State. Educational Data Mining Society.

Touvron, H., Lavril, T., Izacard, G., Martinet, X., Lachaux, M. A., Lacroix, T., & Lample, G. (2023). 
Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971.

Tunstall, L., Von Werra, L., & Wolf, T. (2022). Natural Language Processing with transformers. O’Reilly 
Media, Inc.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N.,... & Polosukhin, I. (2017). 
Attention is all you need. Advances in neural information processing systems, 30. https://proceed-
ings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

Wang, M., Chau, H., Thaker, K., Brusilovsky, P., & He, D. (2021). Knowledge annotation for Intelligent 
textbooks. Technology Knowledge and Learning. https://doi.org/10.1007/s10758-021-09544-z.

Weber, G., & Brusilovsky, P. (2016). ELM-ART– An Interactive and Intelligent web-based Electronic 
Textbook. International Journal of Artificial Intelligence in Education, 26(1), 72–81. https://doi.
org/10.1007/s40593-015-0066-8.

Winchell, A., Mozer, M., Lan, A., Grimaldi, P., & Pashler, H. (2018). Can Textbook Annotations Serve as 
an Early Predictor of Student Learning? International Data Mining Society.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., Louf, R., Fun-
towicz, M., Davison, J., Shleifer, S., von Platen, P., Ma, C., Jernite, Y., Plu, J., Xu, C., Le Scao, T., 
Gugger, S., & Rush, A. (2020). Transformers: State-of-the-Art Natural Language Processing. Pro-
ceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: System 
Demonstrations, 38–45. https://doi.org/10.18653/v1/2020.emnlp-demos.6.

Yarbro, J. T., & Olney, A. M. (2021). Contextual Definition Generation. Proceedings of the Third Interna-
tional Workshop on Intelligent Textbooks, 2895.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

1 3

https://openreview.net/pdf?id=GhVS8_yPeEa
https://openreview.net/pdf?id=GhVS8_yPeEa
https://doi.org/10.48550/ARXIV.1909.01610
https://doi.org/10.1109/ACCESS.2019.2900753
https://doi.org/10.1109/ACCESS.2019.2900753
https://doi.org/10.1186/s40537-021-00492-0
https://doi.org/10.17239/jowr-2019.11.01.07
https://link.springer.com/chapter/10.1007/978-3-031-36336-8_15
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1007/s10758-021-09544-z
https://doi.org/10.1007/s40593-015-0066-8
https://doi.org/10.1007/s40593-015-0066-8
https://doi.org/10.18653/v1/2020.emnlp-demos.6


International Journal of Artificial Intelligence in Education

Authors and Affiliations

Wesley Morris1  · Scott Crossley1 · Langdon Holmes1 · Chaohua Ou2 · 
Mihai Dascalu3 · Danielle McNamara4

  Wesley Morris
wesley.g.morris@vanderbilt.edu

1 Vanderbilt University, Nashville, TN, USA
2 Georgia Institute of Technology, Atlanta, GA, USA
3 Polytechnic University of Bucharest, Bucharest, Romania
4 Arizona State University, Tempe, AZ, USA

1 3

http://orcid.org/0000-0001-6316-6479

	Formative Feedback on Student-Authored Summaries in Intelligent Textbooks Using Large Language Models
	Abstract
	Introduction
	Related Work
	Intelligent Textbooks
	Summarization and Reading Comprehension
	Automated Summary Evaluation
	Current Study

	Methods
	Data
	Summary Scoring
	Dimensionality Reduction
	Summary Scoring Model
	Post-Hoc Analysis

	Results
	Comparing Models That Include the Source Text to Models That are Naive to the Source
	Domain Adaptation Through Unsupervised Pretraining
	Post-hoc Tests on the Prototype Intelligent Textbook

	Discussion
	Application
	Conclusion
	Appendix A– Scoring Rubric
	References


