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Abstract
Online education platforms play an increasingly important role in mediating the
success of individuals’ careers. Therefore, while building overlying content recom-
mendation services, it becomes essential to guarantee that learners are provided
with equal recommended learning opportunities, according to the platform princi-
ples, context, and pedagogy. Though the importance of ensuring equality of learning
opportunities has been well investigated in traditional institutions, how this equality
can be operationalized in online learning ecosystems through recommender sys-
tems is still under-explored. In this paper, we shape a blueprint of the decisions and
processes to be considered in the context of equality of recommended learning oppor-
tunities, based on principles that need to be empirically-validated (no evaluation with
live learners has been performed). To this end, we first provide a formalization of
educational principles that model recommendations’ learning properties, and a novel
fairness metric that combines them to monitor the equality of recommended learning
opportunities among learners. Then, we envision a scenario wherein an educational
platform should be arranged in such a way that the generated recommendations
meet each principle to a certain degree for all learners, constrained to their individ-
ual preferences. Under this view, we explore the learning opportunities provided by
recommender systems in a course platform, uncovering systematic inequalities. To
reduce this effect, we propose a novel post-processing approach that balances per-
sonalization and equality of recommended opportunities. Experiments show that our
approach leads to higher equality, with a negligible loss in personalization. This paper
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provides a theoretical foundation for future studies of learners’ preferences and limits
concerning the equality of recommended learning opportunities.

Keywords AIED · Ethics · Learning analytics · Recommender systems

Introduction

Learning experience selection by learners is at the heart of curriculum develop-
ment and, consequently, is vital to shaping individuals’ knowledge and competen-
cies (Talla, 2012; Druzhinina et al., 2018). The term learning experience generally
refers to interactions in courses, programs, or other situations where learning takes
place, including traditional and non-traditional settings (Girvan, 2018). Notable
examples of the latter, with an impact on individual experiences, are online course
platforms, such as Coursera and Udemy. The proliferation of initiatives and the
increasing adoption of these platforms have been requiring automated mechanisms
to support learning experience selection by learners, tailored to the platform’s
principles, context, pedagogy, and needs (Rieckmann, 2018).

One aspect receiving special attention to support the learning experience selection
on these online platforms is the ranking of courses deemed of relevance to individual
learners. As a result, recommender systems are being deployed to suggest courses
that accommodate learner’s interests and needs (Kulkarni et al., 2020). These rec-
ommended courses can be envisioned as learning opportunities being offered for the
attention of a learner. Though optimizing recommendations according to learners’
interests has been seen for years as the ultimate goal in the context of educational
recommender systems, important principles (i.e., properties the platform aims to pur-
sue, such as the validity, learnability, quality, and affordability of the recommended
courses1) and the extent to which they are equally met across learners should be con-
sidered to shape online learning opportunities (Talla, 2012; Druzhinina et al., 2018).
Recommendations thus need to meet a trade-off between the interests of learners
and the principles of the platform, providing learners with a well-rounded range of
learning experiences (Abdollahpouri et al., 2020).

Recommender capabilities represent a fundamental component of artificial intel-
ligence systems in education. For this reason, ensuring equality among learners
according to the recommended educational opportunities is essential, as the sug-
gested courses may translate to educational gains and losses for the learners. By
extension, education significantly influences individuals’ life chances in the job mar-
ket, and these opportunities should not be undermined by arbitrary decisions provided
by a recommender system. Meyer (2016) has revealed how equal learning oppor-
tunities, equal learning outcomes, and equal job opportunities relate to each other
and emphasized the indispensable, but at the same time potentially dangerous, need
for equal learning opportunities. The demand for equal learning opportunities alone
can lead to (i) attributing unequal learning outcomes that could have been avoided
to unequal talent and effort, (ii) justify social inequalities by saying that all mea-
sures were taken to realize equal learning opportunities, (iii) limit efforts to merely

1“Modeling Recommended Learning Opportunity through Principles” provides a detailed description of
the principles covered in this paper.
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Fig. 1 Example of Inequality in Recommended Learning Opportunities. We consider two learners, ui and
uj (first line). The mid-line shows us that the learners interacted with similar resources in terms of quality
(star:high; square:low), validity (light-blue:old; dark-blue:fresh), and affordability level (1:low; 2:mid;
3:high). However, if we consider ranked lists provided by a collaborative algorithm to those two learners
(bottom line), ui ’s recommendation list consists of mostly fresh, high-quality, and affordable resources,
while uj ’s recommendations focus on obsolete, low-quality, and expensive resources

realize equal educational opportunities. These aspects have been investigated in tra-
ditional educational settings worldwide, such as in China (Golley & Kong, 2018),
Germany (Buchholz et al., 2016), Japan (Fujihara & Ishida, 2016), Korea (Byun
& Park, 2017), Spain (Fernández-Mellizo & Martı́nez-Garcı́a, 2017), and United
States (Shields et al., 2017).

Thanks to extensive empirical analyses, these studies have identified several vari-
ables that may lead to unequal educational opportunities, with the gap in up-to-date
competencies required by the job market and the considerable costs of access to edu-
cation as two of them. Operationalizing these principles and the consequent notion
of equal learning opportunities in online ecosystems via recommenders is still under-
explored. These systems learn patterns from data containing inherent biases, which
end up being amplified in the recommendations based on such data (Boratto et al.,
2019). Some learners might thus receive unequal opportunities based on the princi-
ples pursued by the targeted educational ecosystem. Figure 1 shows an example of
this phenomenon2. Hence, it is imperative to mitigate inequalities while retaining
personalization.

In this paper, we propose the concept of equality of recommended learning oppor-
tunities in personalized recommendations. To investigate how this concept applies to
the online learning ecosystem, we envision a scenario wherein the educational plat-
form should guarantee that a set of learning principles are met for all the learners, to
a certain degree, when generating recommendations according to the learner’s inter-
ests. We assume that those principles can be operationalized in terms of properties
held by a list of recommendations. Therefore, the ideal recommender system would
(i) achieve higher consistency between the principles pursued by the platform and
those measured in the recommendations, (ii) retain the consistency across different
learner populations while (iii) honouring individual interests. Under this scenario, we
characterize the recommendations proposed to learners in a real-world online course
platform as a function of seven principles derived from knowledge and curriculum
literature, as reported in “Problem Formulation”. Ten pre-existing available recom-
mender algorithms, whose details are presented in “Recommendation Algorithms
and Protocols”, are evaluated. Our exploratory analysis sheds light on systematic

2Please note that the figures in this manuscript are best seen in color.
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inequalities against learners based on the properties of the suggested courses. The
results of our study thus motivate us to devise a novel post-processing approach
that balances equality and personalization in recommendations. Specifically, the core
assumption is that the notion of equality might be enhanced by trying to balance
out desirable properties of course recommendations and that this objective can be
achieved by re-ranking the courses originally suggested (and optimized for person-
alization) by the recommender system, such that the lists recommended to learners
meet desirable principles of course recommendations equally across learners. The
contribution of the work presented in this paper is four-fold:

1. Operational: we define principles that model learning opportunity proper-
ties, and we combine them in a fairness metric that monitors the equality of
recommended learning opportunities across learners.

2. Social: we provide observations and insights on learning opportunities in rec-
ommendations, using a dataset that includes more than 40K learners and 30K
courses.

3. Technical: we propose a post-processing recommendation approach that aims
to balance personalization and equality of learning opportunities to enable
optimization of different combinations of the principles of equality.

4. Ethical: we evaluate our approach on a real-world publicly available dataset,
and we show how it may lead to higher equality of recommended learning
opportunities among learners, with a negligible loss in personalization.

Our study represents a step toward understanding how equality principles can be
operationalized and combined in a formal notion of equal opportunities in educa-
tional recommendations. This paper shapes a blueprint of the decisions and processes
to be recommended, based on principles that need to be empirically-validated (no
evaluation with live learners has been performed), and serves as a theoretical foun-
dation for future studies of learners’ concepts of fairness, preferences, or limits
concerning the equality of recommended learning opportunities. For instance, this
paper can be used to create examples of what questions to ask as part of interviews
with learners, what scenarios to explore to elicit their concepts of fairness, and how
to process data in the platform to monitor and ensure the equality principles.

The remainder of this paper is structured as follows. Section “Related Work”
presents related work. Section “Problem Formulation” introduces the proposed prin-
ciples and notion of equality, and “Exploratory Analysis” depicts the explorative
analysis. Then, “Optimizing for Equality of Learning Opportunities” describes and
evaluates our approach for mitigating inequality of recommended opportunities.
Finally, “Conclusions” provides concluding remarks and discusses future research
directions.

RelatedWork

This research lies at the intersection of Artificial Intelligence in Education (AIED),
Recommender Systems (RecSys), and Fairness, Accountability, Transparency, Explain-
ability (FATE).
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Educational Recommender Systems in the Artificial Intelligence Context

The advances in the area of computing technologies have facilitated the implementa-
tion of artificial intelligence applications in educational settings, improving teaching,
learning, and decision making (Pinkwart, 2016). Learners’ behavioral patterns have
been analyzed to make inferences, judgments, or predictions, serving for personal-
ized guidance or feedback to students, teachers, or policymakers, for example, as
proposed by Mao (2019) and Ren et al. (2019).

Our study in this paper treats recommender capabilities as a crucial component of
AIED systems (Khanal et al., 2019). Given the increase in resources available in online
course platforms and learning management systems, designing personalized recom-
mendations has become a key challenge. This challenge, thereby, motivates research
carried out by the AIED, Educational Data Mining (EDM), and Learning Analytics
and Knowledge (LAK) communities. The most common objective in prior work is to
suggest resources or peers in a given course. For instance, Lin et al. (2020) proposed a
deep attention-based model to recommend resources based on learners’ online behav-
iors. This work outperformed state-of-the-art baselines in terms of accuracy (i.e., the
extent to which the recommended items are among those included in the test set for
that learner, meaning that the recommender system predicts well the future interests
of the learner). Similarly, Wang et al. (2019) introduced a recommendation algorithm
for textbooks, showing that adding adaptivity significantly increases engagement.

Beyond recommending learning resources, Eagle et al. (2018) designed an algo-
rithm for individualized help messages. Further, the work demonstrates that the needs
of learners for a lesson can be effectively predicted from their behavior in prior
lessons. Mi and Faltings (2017) and Chen and Demmans (2020) showed the impor-
tant role of personalization while modeling forum discussion recommendations. Both
works illustrated the presented algorithms’ effectiveness in predicting learners’ pref-
erences. Additionally, Chau et al. (2018) assisted instructors with recommendations
on the most relevant material to teach. Reciprocal recommendations have been inves-
tigated by Labarthe et al. (2016) and Potts et al. (2018). These works proposed
two recommendation approaches for personalized contact lists. Their experiments
uncovered that learners are more likely to engage in courses if they received peer rec-
ommendations. Finally, other tasks dealt with the accuracy of recommender systems
in matching learners and job offers (Jacobsen & Spanakis, 2019).

Course recommendations have recently received attention due to the increas-
ing number of initiatives carried out online. For instance, Pardos and Jiang (2020)
generated course recommendations that are novel and unexpected, but still rele-
vant to learners’ interests. Their results revealed that providing services optimized
for serendipity allows learners to explore resources without a strong bias towards
the learner’s (past) experience. Furthermore, Morsomme and Alferez (2019) found
that students find recommendations for courses at other departments very helpful.
In the university context, Esteban et al. (2018) and Boxuan et al. (2020) described
two hybrid-methods for discovering the most relevant criteria that affect the course
recommendation for university learners. Their respective results confirmed that the
overall rating that a learner gives to a course is the most reliable information
source. However, when it is complemented with other criteria about the courses, the
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recommendation accuracy increases. Capturing the sequential relationships across
courses made it possible to devise a course recommender system in Polyzou et al.
(2019). Their course recommender system outperforms other collaborative filtering
and baseline approaches.

Extensive research work has been devoted to mastery learning in intelligent tutor-
ing systems, which select educational resources for learners based on knowledge
tracing. For instance, Thaker et al. (2020) automatically identified the most relevant
textbooks to be recommended by incorporating learner’s knowledge states. Chanaa
and Faddouli (2020) proposed a model that predicts learner’s needs for recommenda-
tion using dynamic graph-based knowledge tracing. By learning feature information
and topology representation related to learners, their model achieved a competitive
accuracy of more than 80%. To avoid the mismatch between learners and learning
resources, Dai et al. (2016) introduced a recommender system for suggesting learning
resources, with a domain knowledge structure to connect learners’ skills and learning
resources. They showed that the accuracy is higher when texts related to the con-
cerned domain knowledge are involved. In Chan et al. (2006), the authors conclude
that ready-to-hand access conceives the potential for a new evolution of technology-
enhanced learning (TEL) phase. This phase is defined as “seamless learning spaces”
and marked by a succession of the learning experiences over different scenarios.
Further, it arises from the availability of one (or more) device(s) per student (“one-
to-one”). The one-to-one TEL holds the potential to ”cross the chasm” from early
adopters handling isolated design studies to adoption-based research and extensive
implementation. Finally, Ai et al. (2019) designed an exercise recommender that
considers exercise-concept mappings while tracing learners’ knowledge. This recom-
mender led to a better performance than the heuristic policy of maximizing learners’
knowledge level.

Our contribution differs from prior work in three major ways. First, current
approaches have been mostly optimized for learners’ preference prediction, given
their ratings, performance, grades, or enrolments. Conversely, our approach aims to
balance how learning opportunities vary, based on high-level properties directly mea-
surable on the ranked lists (e.g., familiarity and learnability of the recommended
courses), going beyond the accuracy in predicting the future learner’s preferences
only. Second, even though several recommender systems integrated beyond-accuracy
aspects, such as learnability and serendipity, combining them with other aspects and
decoupling them from the underlying recommendation strategy appears impracti-
cal. By contrast, our post-processing mechanism can be applied to the output of any
recommender system to arrange recommendations that meet a range of properties.
Third, controlling how much the generated recommendations are equally consistent
across learners has been rarely investigated. Hence, we introduce and operationalize
a novel fairness metric that monitors equality among learners concerning the targeted
educational principles.

Fairness in Artificial Intelligence for Education

Characterizing and counteracting potential pitfalls of data-driven educational inter-
ventions is receiving increasing attention from the research community. Educational
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applications of artificial intelligence are not immune to the risks observed in other
domains. Moreover, the design of systems may often be driven more by profit than
by actual educational impact, with serious potential risks (e.g., algorithmic biases,
invasion of privacy, or negative social impacts) out-weighting any benefits (Shum,
2018; Bulger, 2016; Williamson, 2017).

Responding to these concerns may be critical to determine the fairness of AIED
systems and to shape how the ethics for human learning are more broadly defined.
However, only a few works have focused on ethics in AIED, where the increasing use
of learning analytics and artificial intelligence raises unique context-specific chal-
lenges (Ocumpaugh et al., 2014). For instance, while most existing fairness auditing
and de-biasing methods require access to sensitive demographic information (e.g.,
age, race, gender) at an individual level, such information is often unavailable to
AIED practitioners (Holstein et al., 2019a). Also, it becomes challenging to define
fair outcomes in contexts where a system results in disparate outcomes across sub-
populations, such as learners having lower or higher prior knowledge (Hansen &
Reich, 2015). Although the community has been interested in the ethical dimensions
of data-driven educational systems (Drachsler et al., 2015; Sclater & Bailey, 2015;
Tsai & Gasevic, 2017), the focus has often been on policies.

Despite this widespread attention, fairness has been rarely discussed from a more
practical and technical perspective (Holmes et al., 2019; Holstein & Doroudi, 2019;
Mayfield et al., 2019; Porayska-Pomsta & Rajendran, 2019). Given that designing
methods for addressing unfairness challenges can be highly context-dependent (Hol-
stein et al., 2019b; Green & Hu, 2018; Selbst et al., 2019), the education research
community has started to explore what fairness, accountability, transparency, and
ethics look like in technology-supported education specifically. For instance, (Yu
et al., 2020) found that combining the profile and material data sources does not fully
neutralize biases, and it still leads to high rates of underestimation among disadvan-
taged groups for learners’ success prediction. Similarly, (Doroudi & Brunskill, 2019)
showed that knowledge tracing algorithms are susceptible to unfairness, but that
knowledge tracing with the additive factor may be fairer. Hu and Rangwala (2020)
focused on individually fair models for identifying students at-risk of underperform-
ing. The work shows how to effectively mitigate bias in models and make the models
useful in aiding all learners. Conversely, Abdi et al. (2020) investigated the impact
of complementing educational recommender systems with transparent justifications
for their recommendations. This impact leads to a positive effect on engagement
and perceived effectiveness and an increasing sense of unfairness due to learners not
agreeing with how their competency is modeled. Such appraisal is key to enhancing
our understanding of fairness, building on knowledge gleaned from AIED research.

However, to the best of our knowledge, controlling equality in educational recom-
mender systems has been so far under-explored. Consequently, we investigated how
fairness and ethical aspects have been treated by the general-purpose RecSys com-
munity (Barocas et al., 2017; Ramos et al., 2020), analyzing whether and how the
resulting treatments can be tailored to recommender systems in education. Fairness
across end-users deals with ensuring that users who belong to different protected
classes (group-based) or are similar at the individual level (individual-based) receive
recommendations with the same quality. Group-based fairness requires that the
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protected groups are treated similarly to the advantaged groups or the population as
a whole. For instance, Zhu et al. (2018) designed an approach that identifies and
removes from tensors all gender information about users. This approach leads to
fairer recommendations (i.e., with a smaller difference in the quality of the recom-
mendations received by user’s groups) regardless of the user’s group membership.
Rastegarpanah et al. (2019) generated artificial data to balance group representations
in the training set and minimize the difference between groups in terms of mean
squared error. Similarly, (Yao & Huang, 2017) proposed metrics related to popula-
tion imbalance (i.e., a class of users characterized by a sensitive attribute being the
minority) and observation bias (i.e., a class of users who produced fewer ratings than
their counterpart). Under a similar scenario, for instance, Beutel et al. (2019) built
a pairwise regularization that penalizes the model if its ability to predict which item
was clicked is better for one group than the other. These works showed that oper-
ationalizing their metrics in the recommender’s objective function results in fairer
recommendations.

Group-fairness may be, unfortunately, inadequate as a notion of fairness, given
that there exist circumstances wherein group fairness is maintained but, from an
individual point of view, the outcome is blatantly unfair. Hence, our study cares
about learners as individuals, not as belonging to a class based on a certain sensitive
attribute. This condition also fits with educational scenarios where sensitive demo-
graphic attributes (e.g., age, race, gender) at an individual level are unavailable to
learning analytics practitioners. Examples of individual fairness notions proposed by
the RecSys community (Biega et al., 2018; Lahoti et al., 2019a; Singh & Joachims,
2019) imply that similar users should have similar outcomes. Their definition of
fairness states that any two individuals similar concerning a particular task should
be treated likewise, assuming that a similarity metric between individuals exists.
For instance, in a health-related recommender system, two patients with a similar
pathology should receive recommendations of the same quality.

Our study generalizes the original definition of individual fairness and applies it
to the educational context. Specifically, we aim to provide all learners, indistinctly,
with recommended learning opportunities that are equally consistent with the tar-
geted principles. We do not rely on any notion of similarity across pairs of learners
based on how the targeted principles were met in the past. Compared to our defi-
nition, the other existing ones could even emphasize existing inequalities (e.g., two
learners who similarly experienced less learnable recommended courses in the past
could end up receiving low learnable courses more and more, though the recom-
mender would have been fair under the original individual fairness notion). On the
other hand, achieving the fairness goal indistinctly for all learners, as per our defini-
tion, can be more challenging since the demographic and behavioral (e.g., in terms
of preferences) similarity between learners can vary significantly.

Problem Formulation

In this section, we formalize recommendation concepts, educational principles, and
metrics that respectively monitor consistency and equality of recommended learning
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opportunities among learners, according to our definition of fairness, as explained
earlier.

Preliminaries

Given a set of learners U and a set of educational resources I , we assume that learn-
ers expressed their interest for a subset of resources in I . The feedback collected
from learner-resource interactions can be abstracted to a set of pairs (u, i), implicitly
obtained from user activity, or triplets (u, i, rating) explicitly provided by learn-
ers, denoted in short by Ru,i . We denote the learner-resource feedback matrix by
R ∈ R

M∗N where Ru,i > 0 indicates that learner u interacted with resource i, and
Ru,i = 0 otherwise. Furthermore, we denote the set of resources that learners u ∈ U

interacted with by Iu = {i ∈ I : Ru,i > 0}.
We assume that each resource i ∈ I is represented by an m-dimensional feature

vector Fi = (f1, . . . , fm) over a set of features F = {Fi,1, Fi,2, . . . , Fi,m}. Each
dimension Fj can be viewed as a set of values or labels describing a feature of a
resource i, fi,j ∈ Fj for j = 1, . . . , m. In our experiments, we considered five
features, i.e., instructional level (discrete), resource category (discrete), last update
timestamp (discrete datetime), number of enrolled learners (continuous), and price
(continuous). Furthermore, we assume that each resource i ∈ I is composed of a set
of assets Li . Each li,j ∈ Li has a type ti,j ∈ T . In our study, we considered T =
{V ideo, Article, Ebook, Podcast}, due to their popularity and their availability in
the public datasets.

We assume that a recommender estimates relevance for unobserved entries in R

for a given learner and uses them to rank resources. It can be abstracted as learning
˜Ru,i ∈ [0, 1], which represents the predicted relevance of resource i for learner u.
Given a certain learner u, resources i ∈ I \ Iu are ranked by decreasing ˜Ru,i , and
top-k, with k ∈ N and k > 0, resources are recommended. Finally, we denote the set
of k ∈ N resources recommended to user u by Ĩu.

Modeling Recommended Learning Opportunity through Principles

Given that the recommendation capabilities are a relevant part of AIED systems,
investigating whether educational recommender systems are fair and how they can
be made a vehicle for making our educational systems fairer is essential. Capturing,
formalizing, and operationalizing notions of equality can shape our understanding of
the extent to which the educational offerings available to learners provide them with
equal opportunities and how recommender systems influence the normal course of
educational business. To this end, defining the variables to be equalized constitutes a
natural pre-requisite.

Organizing learning opportunities in classroom settings has been traditionally a
responsibility of instructional designers or teachers. To this end, they rely on a range
of principles coming from the curriculum design field, including significance, self-
sufficiency, validity, interest, utility, learnability, feasibility (Talla, 2012; Druzhinina
et al., 2018). Hence, our study assumes that the notion of equality needs to consider
these principles derived from the instructional design beliefs as those to be equalized
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in recommendations, given their real-world validity for learners’ educational experi-
ences from the instructional perspective. However, we do not argue that this approach
and the consequent principles are the only ones as they strongly depend on the edu-
cational context and the outcomes of the fairness auditing processes in the target
context. Our principle modelling aims to serve as a starting point for researchers, to
guide them in what questions, scenarios, and data to explore, while addressing the
questions related to fairness. Therefore, we argue that our study offers a blueprint for
the decisions and processes needed.

Human inspection of curriculum-design-based principles is usually based on tex-
tual guidelines, and the translation into numerical indicators, when available, is
dependent on the specificity of the educational context. Given the unique character-
istics of the online educational context and the constraints the platforms introduced
in the collection of learners’ data, we assume that the principles are based on data
that would typically be available in a platform in which an educational recommender
system would be embedded. For this reason, not all the principles and not all the
guidelines can be directly operationalized3. One of the core assumptions of our
approach is then that it should be possible to define those principles in terms of prop-
erties held by a list of recommendations. Specifically, we envision a scenario wherein
only a representative subset of principles are embedded in the recommender system’s
logic. The educational platform is thus empowered with the capability of controlling
the extent to which the list of courses recommended to learners meets each principle.
While the high-level conception of the selected principles is assumed to be relevant,
their operationalization into the recommender’s logic is dependent on the platform,
turning to simplified implementations in some cases. While we provide formulations
that are as general as possible, we will ensure that our approach can be extended or
adapted to any principle.

Formally, we consider a set C of functions c
Ĩu

(·) : I k −→ [0, 1]. Each function

receives a set of k resources I k and returns a value indicating how much the set of
resources meets that principle. The higher the value, the higher the extent to which
the principle is met. Specifically, we consider the following seven principles, whose
mathematical formulation is provided in Appendix A.

Definition 1 (Familiarity) Familiarity is defined as whether the learner is familiar
with the recommended content, as measured by whether the relative frequency of the
course categories in a recommended set is proportional to that in the courses the
learner took.

Familiarity is at the heart of learner-centered education. Learners might be more
comfortable if the subject matter is meaningful to them, and it is assumed that it
becomes meaningful if they are familiar with that subject. Xie and Joo (2009) sup-
ported this observation through descriptive and statistical analysis, uncovering that
the familiarity was correlated to the content searching behavior. Similarly, Qiu and
Lo (2017) showed that participants were behaviourally and cognitively more engaged

3“Limitations” identifies a range of restraints derived from these assumptions.
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in tasks with familiar topics as well as having a more positive affective response to
them.

Our study models familiarity using the category of the resources in a recom-
mended list, encoded into a pre-defined taxonomy. If the relative frequency of the
course categories in a recommended set is proportional to that in the courses the
learner took, we assume that the familiarity is high (a value of 1). Conversely, the
minimum familiarity of 0 is achieved when the recommender suggests resources in
the opposite direction concerning the learner’s most familiar categories. This princi-
ple is related to the concept of calibrated recommendations, which aim to reflect the
various interests of a user in the recommended list with their appropriate proportions
(Steck, 2018)4.

Definition 2 (Validity) Validity is defined as whether the course is likely to be up-to-
date and not obsolete, as measured by when content was last updated. A subject is
assumed to be more valid if it has been newly updated.

Controlling the validity of the learning content is one of the major axes of educa-
tion since learners would not find information invalid anymore in the courses. One
way of maintaining the validity of the course content is to continuously update it,
either with more recent content or with new versions of the same contents (e.g.,
adapted based on the learners’ feedback). This practice also shows learners that the
course is alive. Curriculum-design experts usually seek to follow current trends and
carefully consider the validity of a curriculum (Druzhinina et al., 2018); otherwise,
the opportunity becomes obsolete. Similarly, Bulathwela et al. (2019) highlighted
that content freshness is one of the main factors shaping content validity. Hence,
we assume that validity should be to be taken into account in the recommendations
offered.

Our scenario operationalizes the validity principle by controlling that learners are
presented with recommended courses that have been recently or frequently updated.
Values close to 0 imply that the recommended list includes courses no longer updated
for a long time, while values close to 1 are achieved by recommended courses with
recent updates5.

Definition 3 (Learnability) Learnability is defined as whether the recommended
courses present an opportunity that is coherent with the learners’ ability, with the
learnability measured as whether the set of courses varies in terms of instructional
level.

Learnability is generally associated with the ease, efficiency, and effectiveness
with which learners can perform a knowledge acquisition activity. Our study assumes

4Differently from that work, which used the Kullback–Leibler divergence as a non-symmetric, unbounded,
and computationally unstable distance function, we adopted the Hellinger distance, which is symmetric
and bounded in the range [0, 1].
5It should be noted that using recency of updates as a proxy for validity does not consider that, for instance,
a course on foundational material updated many times in the past does not benefit from recent updates.
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that the subject matter to be recommended should be within the knowledge schema
of the learners. The literature indicated that learnability impacts learner motivation
to learn (Conaway & Zorn-Arnold, 2016), prompting us to monitor this principle in
the recommended lists.

In our scenario, this concept is operationalized to ensure that courses of diverse
instructional levels are presented and maximize the possibility that learners can find
an opportunity coherent with their abilities. Please, note that our study is not learner-
centric, i.e., no record of student learning, performance, or exam grades is made and,
therefore, student knowledge is not tracked. The factors tracked to measure learn-
ability are the instructional levels of the courses attended by and recommended to
learners. Compared to knowledge-tracking methods, our operationalization might
appear an over-simple way of modelling the zone of proximal development, i.e.,
the zone between the actual level of development of the learner and the next level
attainable through the use of mediating tools and/or collaboration, defined by Vygot-
sky (1978). However, the current online course platforms impose constraints that
should be met. Specifically, data on mid-term quizzes and final exams are often
not recorded internally, and this leaves the implementation of traditional knowledge-
tracking techniques in these platforms as an open challenge. Hence, we rely on course
recommendations that cover different instructional levels. Learnability values close
to 0 imply inequality among levels, while the high balance is obtained with values
close to 1.

Definition 4 (Variety) Variety is defined as whether the recommendation takes into
account that learners are different and learn in different ways based on their interests
and ability, as measured by the degree to which the recommended courses present a
mix of different asset types.

Providing course material in a variety of formats represents a primary objective.
For instance, by studying the online course design and teaching practices of award-
winning teachers, Kumar et al. (2019) uncovered that including video, audio, reading,
and interactive content made courses more engaging and appreciated by learners dur-
ing their learning sessions, though no explicit mention of the effectiveness of variety
on learning gains has been made. In another study, Papathoma et al. (2020) high-
lighted how this variety of formats increases the accessibility of a course, given that
learners may struggle with a particular medium (e.g., due to a reading barrier such
as dyslexia or a video barrier such as hearing or attention problem). Therefore, mon-
itoring whether a course provides learners with a large variety of content formats is
crucial.

Our operationalization of variety assumes that varied asset types may be provided
to help learners comprehend the subject from various perspectives. Hence, variety
values close to 0 mean that the learning opportunities are focused on only one asset
type, while types greatly vary for values close to 1.

Definition 5 (Quality) Quality is defined as the perceived appreciation of the rec-
ommended resources by the learners, as measured by the ratings that the learners
assign to resources after interacting with them.
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Student evaluation of teaching quality is prominent to assess current teaching
experiences. Teaching evaluation helps to promote a better learning experience for
learners and provide information to future learners while deciding for attending a
course. However, defining quality in online learning is challenging because there
is no real consensus on its true meaning. Consequently, quality is evaluated dif-
ferently depending on the organization in charge of measuring it. For instance,
Darwin (2017) showed that student ratings are perceived as a valuable, though frag-
ile, source of intelligence about the effectiveness of curriculum design, teaching
practices, and assessment strategies. On the other hand, Gómez-Rey et al. (2016)
observed that learners considered other core variables in defining quality in online
programs, such as the ability to transfer, knowledge acquisition, learner satisfaction,
and course design.

Our study operationalizes quality by leveraging the learners’ ratings. Rating values
close to 0 mean that the learning opportunities are of low quality (i.e., they have
received a low rating from other learners), while values close to 1 are measured for
high-quality recommended opportunities. Though some studies demonstrated that
learners’ ratings do not often correlate with other measures of quality (e.g., learning
outcomes), this design choice makes it possible to meet the current constraints in
data gathering in large-scale educational platforms and allows us also to maintain this
principle as general as possible.

Definition 6 (Manageability) Manageability is defined as whether the online classes
are large or small, as measured by the number of learners enrolled in the recom-
mended courses, with small classes considered more manageable.

Organizational aspects are critical for shaping learners’ experiences. In this con-
text, class size differences may influence academic interactions between students and
their professors and peers. For instance, with a large number of learners, the instructor
may work harder to combat student passivity and encourage participation, as learn-
ers feel an increasing sense of anonymity. This point is confirmed by the study of
Beattie and Thiele (2016), which uncovered that the likelihood of academic interac-
tions about course material and assignments with professors was diminished in larger
classes, as was the probability of talking to peers about ideas from classes. Similarly,
Lowenthal et al. (2019) revealed that online courses with fewer enrollments are seen
better for student learning and faculty satisfaction by learners and instructors.

Our study embeds the notion of manageability, associating it with the size of
the course class where the recommended opportunities take place. This principle is
relevant to offer opportunities under smaller and controlled classes. Hence, man-
ageability values close to 0 mean that the learning opportunities include very large
classes, while values close to 1 refer to small classes6.

6It should be noted that other operationalizations might refer to a teacher’s ability to manage students or
how topics are selected by teachers. Other aspects of manageability (e.g., number of teaching assistants,
number of recitation sections) can be captured under this principle, depending on the educational context
and platform capabilities.
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Definition 7 (Affordability) Affordability is defined as the cost of accessing the rec-
ommended opportunities, as measured by the enrolment fees of the suggested courses,
with less expensive courses having higher affordability value.

Dealing with the increasing costs of education is critical, given that lots of learners
need access to vastly more affordable and quality education opportunities, including
tuition-free course options. For instance, Mohapatra and Mohanty (2017) emphasized
that the affordability of the offering is one of the prime predictors of the learners’ per-
ception, while Joyner et al. (2016) uncovered that providing more affordable courses
has led to the learner population that is more intrinsically motivated to learn, more
experienced, and more professionally diverse in some contexts. Institutions and plat-
forms are thus under increasing pressure to provide more affordable learning without
sacrificing optimal learning outcomes. For this reason, we monitor the affordability
principle in the recommendations generated in the online platform.

Our notion of affordability aims to control the degree of economic accessibility
for the recommended opportunities, measured by their enrolment fees. Specifically,
we consider how much the learning opportunities cover a range of fees. A value close
to 0 means that the learning opportunities are expensive, while a value close to 1
corresponds to free-of-charge opportunities.

Though each of the principles has relevance for students’ educational experiences
from the instructional design perspective, the set of principles could be expanded.
Additionally, the proposed set is not meant to be the unique right set. Furthermore, it
should be noted that massive online course platforms are often targeted for profitability
and large coverage, and a business plan should be provided and making a profit must be
considered as one of the primary goals. Thus, the question of how to integrate business
and educational principles remains an open one. This question deserves a broader
and specific discussion, going beyond a closer inspection of the technicalities. Our
study in this paper assumes that the educational platform aims to impact the learners
positively. Furthermore, there might be several principles left out, but relevant for
certain educational scenarios or specific platforms (e.g., the time of day a course is
offered). This observation challenges an assumption that there is a one-size-fits-all
set of principles to be equalized in educational recommender systems. Another point
to mention is that the considered principles assume a top-down approach and seem
to leave little in the way of learner autonomy to help in their decision-making about
the courses they take. However, this is not fully the case, given that recommendations
are meant as a suggestion to learners, and learners are the entity that makes the final
decision on the courses to attend. In addition, the principles to be considered and
the importance to give to each of them could be tailored to each learner individually,
through ad-hoc user interfaces integrated into the course platform. The protocols and
interfaces required to favor customization at the individual learner level go beyond
the scope of this paper, although our approach might be adapted.

Equality of Recommended Learning Opportunity

To formalize the equality of recommended learning opportunities, we first need to
define how much the list recommended to each learner meets the principles targeted
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by the educational platform. In this paper, we propose to operationalize the concept
of consistency across principles as the similarity between (i) the degree to which all
principles are met into the recommended list and (ii) the degree of importance for the
principles targeted by the educational platform. The higher the similarity, the higher
the extent to which the principles are met. We resorted to the operationalization of
this metric locally on each ranked list so that it will be possible to optimize such
a metric on a pre-computed recommended list through a post-processing function
(see “The Post-Processing Approach Proposed”). For the ranked list of recommended
courses Ĩu to a learner u, we assume the platform aims to ensure a targeted degree
pu(m) for each principle m ∈ C for each learner. In other words, pu(m) defines the
extent to which the platform seeks to meet that principle m. The higher the pu(m)

score is, the more important principle m is for the platform. The main motivation
behind this term is that principles might have different importance, and the term we
are defining here allows us to model the degree to which each principle should be met.

pu(m) ∈ [0, 1], ∀ m ∈ {0, · · · , |C| − 1} (1)

Once a recommender computes the top-k resources Ĩu to be suggested to learner
u ∈ U , we need to define the extent to which each principle m ∈ C is met in Ĩu. To
this end, we measure the degree the principle m is met in the recommended list Ĩu as
q
Ĩu

(m). The way this score is obtained depends on the principle under consideration
and how it has been operationalized (see Section 3.2 for a textual description of
each principle m and Appendix A for the mathematical formulation of each principle
m to obtain c). For instance, given a recommended list Ĩu and assuming that m is
the principle of affordability, the score c represents the extent to which the courses
in Ĩu are affordable (the more affordable the recommended courses are, the higher
the c score is). This score is needed to monitor the gap between the degree qu(m)

the principle m is met in the recommended courses and the targeted degree pu(m)

expected by the platform (defined in (1)). The score qu(m) is defined as follows:

q
Ĩu

(m) = c
Ĩu

(m) ∈ [0, 1], ∀ m ∈ {0, · · · , |C| − 1} (2)

where the value corresponding to each principle q
Ĩu

(m) is computed by applying the
formulas formalized in Appendix A.

Once we have formulated the degree qu(m) the principle m is met in the recom-
mended courses and the targeted degree pu(m) expected by the platform, we need to
define how to measure the gap between these two degrees across principles. This is of
fundamental importance to assess how far the recommender system is from achiev-
ing the targeted degree pursued by the platform. Specifically, for the ranked list of a
learner u, the principles targeted by the educational platform are met if the values in
pu (targeted degree of the platform) and q

Ĩu
(degree achieved in the recommended

list) are aligned with each other. To assess the extent to which the principles’ goals
targeted by the educational platform are met (are consistent between each other),
we compare the vectors pu and q

Ĩu
, measuring the distance between the two. We

define the notion of Consistency between (i) target principles and (ii) the extent to
which the principles are achieved in recommendations, by the complement of the
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Manhattan (M) distance7, a symmetric and bounded distance measure. The higher
the distance is, the lower the consistency score for the target principles is. Comput-
ing this consistency score Consistency(u|w) for all learners allows us to compare
the extent to which recommendations are equally consistent across all learners, i.e.,
whether the notion of equality of recommended learning opportunities defined in our
paper is met. The consistency for each learner and the entire learners’ population is
formulated as follows:

Consistency(u|w) = 1 − M(pu, qĨu
|w) = 1 − 1

|Ĩ |
|Ĩ |
∑

i=1

wi

∣

∣

∣[pu]i − [q
Ĩu

]i
∣

∣

∣ (3)

Consistency(U |w) = 1

|U |
∑

u∈U

Consistency(pu, qĨu
|w) (4)

where w is a vector of size |C|; the element wi is the weight assigned to the principle
i, between 0 and 1. Consistency is 1 if pu (targeted degree of the platform) and q

Ĩu

(degree achieved in the recommended list) are perfectly balanced, meaning that the
principles pursued by educational platform are met. Conversely, the lowest Consis-
tency 0 is achieved when pu assigns value 0 to every principle that q

Ĩu
assigns value

1 (or vice versa), so that the distributions are completely unbalanced. In the latter sit-
uation, the recommender suggests resources opposite to the educational platform’s
goals. Given that principles are context-sensitive, our notion of consistency might
provide different target degrees of principles for each learner or each time period.
For instance, concerning familiarity, different learners might have a different propen-
sity for familiar content, and the same learner may, at different times, have distinct
preferences. The above formulation allows modeling these circumstances.

Given the notion of consistency, we can formalize the notion of Equality across
consistencies as the complement of the Gini index8 over the consistencies across
learners. The Gini index ranges between 0 and 1, with higher values representing
distributions with high inequality. It is used as:

Equality(U |w) = 1 − GINI ({Consistency(u|w) | ∀ u ∈ U}) (5)

where a value of 0 represents the largest inequality across consistencies (i.e., the
extent to which the degree of the principles targeted by the platform and the degree
of the principles achieved by the recommender system are the same), and a value of
1 means that the recommender systems are perfectly equal across learners in terms of
consistency. Differently from Lahoti et al. (2019b) and Biega et al. (2018), we count
as a positive effect when learners achieve high consistency in recommendations,

7The Manhattan distance between two vectors is equal to the one-norm of the distance between the vectors.
Specifically, it represents the distance between two points in a grid-based on a strictly horizontal and/or
vertical path, i.e., along the grid lines.
8The Gini index is a statistical measure of distribution that aims to model inequality among a population.
The coefficient ranges from 0 to 1, with 0 representing perfect equality and 1 representing perfect inequal-
ity. Formally, it is defined based on the Lorenz curve, which plots the proportion of the total consistency of
the population cumulatively earned by the bottom x% of the population. The Gini index is the ratio of the
area that lies between the line of equality and the Lorenz curve over the total area under the line of equality.
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regardless of the consistency in their past interactions. Thus, the ideal recommender
system would be the one that (i) achieves the highest consistency between the prin-
ciples pursued by the platform and those measured in the recommendations, (ii)
keeps it equal over the learners’ population, and (iii) retains individual interests of
learners.

It should be noted that our notion of equality is defined as providing the same
consistency on principles to all learners, without leveraging any information on
learners’ sensitive features, e.g., gender. The targeted degree for each principle for
each student is assumed to be set by or known by the educational platform. Our
approach enables a platform to set the same targeted degree for all students or
apply student-specific targeted degrees set based on the previous learners’ prefer-
ence or elicited from learners. To focus better on the core contribution of this paper,
“Exploratory Analysis” will investigate whether all the principles can be maximized
for all learners, leaving student-specific targeted degrees as part of a human-centered
study9. Furthermore, the reliance on stakeholders empowered with decision-making
capabilities to configure the platform with the considered principles and their differ-
ent targeted degrees represents an essential element towards implementing our notion
of equality. This primary responsibility of stakeholders is in addition to all the others
involved in the educational ecosystem (e.g., selecting the preferred system, deciding
the recommendation strategy, and defining the visual interface).

Exploratory Analysis

To illustrate the trade-off between learners’ interests and the considered principles
and further emphasize the value of our analytical modeling, we characterize the learn-
ing opportunities proposed by ten algorithms to learners of a real-world educational
dataset as a function of the proposed principles.

Data

We analyze data from the educational context, exploring the role of the proposed
principles in recommendations. We remark that the experimentation is challenging
because there are very few large-scale educational datasets coming from this specific
field of online education. To the best of our knowledge, COCO (Dessı̀ et al., 2018)
is the widest educational dataset with all the attributes required to model the proposed
principles and with enough data to assess performance significantly. Collected from
an online course platform, it includes 43,045 courses and 4,123,127 learners who
gave 6,564,870 ratings. Other educational datasets proposed by Feng et al. (2019),
Zhang et al. (2019), and Qiu et al. (2016) generally include (learner, course, rating)
triplets only, as needed in traditional recommendation scenarios.

9We argue that quantifying student-specific targeted degrees from the previous learners’ preferences
encoded in the training set might be unreliable, given that the preference of each learner might have been
biased by the recommender system itself.
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Recommendation Algorithms and Protocols

We considered ten methods and investigated the recommendations they generated.
Two of them are baseline recommenders, and the other eight are state-of-the-art algo-
rithms, chosen due to their performance, wide adoption, and core applicability in
learning contexts (Kulkarni et al., 2020). These algorithms are:

– Non-Personalized: Random and TopPopular.
– Neighbor-based: UserKNN and ItemKNN (Sarwar et al., 2001).
– Matrix-Factorized: GMF (He et al., 2017), NeuMF (He et al., 2017).
– Graph: P3-Alpha (Cooper et al., 2014) and RP3-Beta (Paudel et al., 2016).
– Content: ItemKNN-CB (Lops et al., 2011).
– Hybrid: CoupledCF (Zhang et al., 2018).

Based on hyperparameter tuning, UserKNN and ItemKNN relied on the cosine
metric and 100 neighbors. GMF and NeuMF used 10 factors and were trained on 4
negative samples per positive instance. This means that, for each observed user-item
interaction, we added to the training set four user-item pairs where the selected item
has been never observed by that user in the dataset. P3-Alpha was executed with
0.8 alpha and 200 neighbors, while RP3-Beta adopted 0.6 alpha, 0.3 beta, and 200
neighbors. ItemKNN-CB mapped course descriptions to Term-Frequency Inverse-
Document Frequency (TF-IDF) features. The TF-IDF features of courses into the
user’s profile were averaged, and their cosine similarity with the TF-IDF features of
other courses is used during ranking. CoupledCF embedded user-item associations,
the user tendency to interact with each category of courses, and the category of the
course in the current user-item pair. To be as close as possible to a real scenario, we
used a fixed-timestamp split (Campos et al., 2014). The basic idea is to choose a sin-
gle timestamp that represents the moment in which test learners are on the platform
waiting for recommendations. Their past corresponds to the training set, and the per-
formance is evaluated with data coming from their future. In this work, we select the
splitting timestamp 2017-06-08, which maximizes the number of learners involved
in the evaluation, by setting two constraints: the training set must keep at least 4 rat-
ings per user, and the test set must contain at least 1 rating. This split led to 43,021
learners, 24,321 courses, and 529,857 interactions (Fig. 2). Normalized Discounted
Cumulative Gain (NDCG)10 is used as an effectiveness metric. As a measure of rel-
evance for NDCG, the binarized (u, i) tuples formalized in “Problem Formulation”
were used11.

10Discounted cumulative gain (DCG) is a measure of ranking quality. The premise of DCG is that highly
relevant courses appearing lower in a recommend list should be penalized, given that the graded relevance
is logarithmically proportional to the ranking position. To let DCG be independent of the ranking length, DCG is
normalized by scaling the results based on the best possible value, i.e., ideal DCG. The latter is computed
by sorting all relevant courses in the test set by their relevance, producing the maximum possible DCG.
11It may happen that many more courses would be relevant to a given learner than that learner will have
interacted with. Some courses that end up high on a recommended list for a given learner but that this
learner did not see or have time for it would not be relevant. Dealing with this well-known problem of
missing-not-at-random interactions is an open problem in the recommendation landscape (Nakagawa &
Freckleton, 2008).
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(a) Categories : Interest (b) Last Update : Validity

(c) Level : Learnability (d) Asset Types : Variety

(e) Rating Value : Quality (f) Mean Rating : Quality

(g) Popularity : Massiveness (h) Enrolments : Massiveness

(i) Prices : Affordability

Fig. 2 Data Statistics. Characteristics of the real-world dataset relevant to the learning opportunity prin-
ciples proposed by this paper: course popularity, rating values, last update timestamp, thematic category,
instructional level, asset types (V:Video; A:Article; E:Ebook; P:Podcast), prices, number of enrolments per
course, and average rating per course. Subfigure captions specify the feature and the interested principle
as < Feature >:< principle >

Real-World Observations

We characterize how the proposed principles were met in the lists of courses sug-
gested by the algorithms considered. Student-specific targeted weights for each
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principle would be elicited through user groups, surveys, or implicit preferences
observed in the collected data. However, due to the absence of this form of feed-
back in COCO and given that the preference of each learner derived from historical
data might have been biased by the recommender system itself, we consider a sce-
nario where the educational platform aims to maximize all the targeted principles,

i.e., . To this end, we assume to give the same maximum weight

to all the principles, i.e., . While this assumption comes with
some limitations described in “Limitations”, given that each learner does not always
prefer maximum familiarity, for example, such setup allows us to quantify the extent
to which each principle is met. We leave experiments on learner-specific weights
elicited through interviews or surveys as future work. Three research questions drove
our analysis:

RQ4.3.1 Does a relation exist between consistency and equality?
RQ4.3.2 To what extent principles impact on consistency and equality?
RQ4.3.3 Are consistency and equality affected by the past learners’ behavior?

Equality Analysis (RQ4.3.1) In this subsection, to answer the first research question,
we explore whether a relation between consistency and equality exists and, if this
is the case, which type of relation exists. Answering this question can allow us to
uncover a link between a metric that requires knowledge about the whole learner
population (i.e., equality) and a metric that can be directly optimized on a single
ranked list (consistency), making it possible to apply a non-NP-Hard re-ranking pro-
cedure to increase equality in our task. To this end, we provided recommendations
to all learners, suggesting to each learner k = 10 courses; then we measured con-
sistency across the whole learners’ population, i.e., how much the principles were
met in the recommendations of learners (4), and equality, i.e., how similar were the
consistencies across learners (5). Furthermore, to assess the extent to which the rec-
ommender system is accurate (i.e., predicts well the future interests of the learners),
we also computed the accuracy of the recommender system in terms of Normalized
Discounted Cumulative Gain (NDCG). Table 1 reports the consistency, equality, and
accuracy of the ten recommender systems considered. A higher value indicates that
a recommender better drives consistency, equality, and/or accuracy respectively. A
first observation from Table 1 is the following:

Though the observation above holds under our setting, the values associated with
the equality of the recommender systems and the mean consistency values associated
with each principle do not reveal much about how consistency estimates are equal
across individual learners. Therefore, we plot consistencies across learners for each
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(a) Consistency distribution. (b) Consistency errors bars.

(c) Equality w.r.t. Consistency.

Fig. 3 Consistency over the Entire Population. On the left plot, lines represent the consistency distribu-
tion over learners, sorted in increasing order. On the center plot, each error bar includes mean (dot), std
deviation (black solid line), and min-max values (colored thick line). The right plot highlights the direct
relation between consistency and equality

algorithm, sorted by increasing values (Fig. 3a). It can be observed that ItemKNN-CB
and CoupledCF are equally consistent across learners. This result might depend on
the fact that, in the presence of principles related to the course content, the content-
based and hybrid methods may, incidentally, increase those principles and lead to
higher consistency. In other words, their equality could be biased by the fact that they
capitalize on input information that is related to some principles.

While it may happen that certain principles are optimized by a traditional recom-
mendation algorithm involuntarily, it is generally impractical to arrange the internal
logic of an algorithm a priori to all the principles targeted. Figure 3b plots the con-
sistency error bars for each algorithm, with mean, standard deviation, minimum, and
maximum values. We observe that there is a link between the magnitude of the mean
and the standard deviation. More precisely, the higher the mean consistency guaran-
teed by the algorithm, the lower the standard deviation across consistency values is
(Fig. 3c). Hence, we can draw a subsequent observation:

Uncovering a link between a metric that requires knowledge about the whole
learner population (i.e., Equality in (5)) and a metric that can be directly optimized
on a single ranked list (i.e., Consistency in (4)) makes it possible to apply a non-NP-
Hard re-ranking procedure to solve our task. This suggests that we should investigate
the interplay between (i) the average consistency across principles and (ii) the con-
sistency achieved for each principle individually when a given learner and algorithm
are considered.
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We can conclude that a relation between consistency and equality exists in all the
recommender systems considered. The relation is direct, i.e., the higher the consis-
tency is, the higher the equality is, meaning that recommender systems that achieve
higher consistency also tend to equalize it across learners. The strength of this relation
depends on the recommender system.

Individual Principle Analysis (RQ4.3.2) Next, to answer the second research question,
we investigate the extent to which the considered principles impact on consistency
and equality and whether this impact is different based on the principle. An explo-
ration of this perspective can inform us on the extent to which each principle is
met and, by extension, provide helpful insights for the approach we will develop to
increase equality. For the sake of readability and conciseness, we do not further con-
sider the Random algorithm over the analysis. Figure 4 reports the mean, standard
deviation, minimum, and maximum values over each principle on that recommender.
For instance, the coupledcf plot shows that the familiarity score has a mean
of 0.80, a standard deviation of ±0.05, and spans the whole range (min: 0.00; max:
1.00). The first observations can be made for the top popular algorithm, whose
results reveal that popular courses are mostly fresh (high validity) and have high
quality. However, the consistency of these two principles comes at the price of low
familiarity, learnability, variety, and affordability. Considering algorithms that cap-
italize on course metadata (CoupledCF and ItemKNN-CB), similar patterns can be
observed across principles, except on variety and quality. For the variety and quality,
embedding user-item interactions in CoupledCF can reduce the min-max gap. Hence,
we can avoid situations where few learners have very high/low values. Other
algorithms achieved a more stable consistency.

To assess whether certain algorithms favor or hurt a given principle, Fig. 5 reports
for each principle how it varies over algorithms. We observe that familiarity and
affordability suffer from high deviations, while more stable values were measured for
other principles over algorithms. We conjecture that the stability observed on quality
comes from the highly unbalanced rating value distribution. Indirectly, this effect could
come from the fact that learners tend to evaluate courses with high ratings when they
decide to rate them. Figure 5 also confirmed this intuition. On principles like affordabil-
ity, manageability, and learnability, the considered algorithms got lower values.

To further confirm the role of each principle over consistency, we looked at the
correlation between the consistency achieved for a given principle and the consis-
tency achieved by including all the principles. In Fig. 6, we report the results for each
principle and algorithm pair. Values higher than 0 are expected when the consistency
at the principle level is directly related to the high consistency achieved when all the

658



International Journal of Artificial Intelligence in Education (2022) 32:636–684

Fi
g.
4

A
lg

or
ith

m
ov

er
Pr

in
ci

pl
e.

Fo
re

ac
h

re
co

m
m

en
da

tio
n

al
go

ri
th

m
,t

he
co

rr
es

po
nd

in
g

pl
ot

re
po

rt
s

an
er

ro
rb

ar
fo

r
ea

ch
pr

in
ci

pl
e

as
m

ea
su

re
d

fo
rt

ha
ta

lg
or

ith
m

,i
nc

lu
di

ng
m

ea
n

(d
ot

),
st

d
de

vi
at

io
n

(s
ol

id
bl

ac
k

lin
e)

,a
nd

m
in

-m
ax

va
lu

es
(t

hi
ck

co
lo

re
d

lin
e)

659



International Journal of Artificial Intelligence in Education (2022) 32:636–684

Fi
g.
5

Pr
in

ci
pl

e
ov

er
A

lg
or

ith
m

s.
Fo

r
ea

ch
pr

in
ci

pl
e,

th
e

co
rr

es
po

nd
in

g
pl

ot
re

po
rt

s
an

er
ro

r
ba

r
fo

r
ea

ch
al

go
ri

th
m

as
m

ea
su

re
d

fo
r

th
at

al
go

ri
th

m
,i

nc
lu

di
ng

m
ea

n
(d

ot
),

st
d

de
vi

at
io

n
(s

ol
id

bl
ac

k
lin

e)
,a

nd
m

in
-m

ax
va

lu
es

(t
hi

ck
co

lo
re

d
lin

e)

660



International Journal of Artificial Intelligence in Education (2022) 32:636–684

principles are considered. Hence, the overall consistency is more likely to be met
when that specific principle is met. Values lower than 0 result in the opposite behav-
ior. No relation is found when the value is close to 0. This property allows us to make
another observation:

We can conclude that the extent to which the principles impact consistency and
equality depends on the recommender system and the principle considered. In gen-
eral, certain principles (e.g., familiarity, learnability, and affordability) appear as the
principles with the highest impact on consistency and equality, across all recom-
mender systems. Those principles might be the ones that will be impacted the most
by an approach that increases equality.

Past InteractionAnalysis (RQ4.3.3) The last research question in this section is related
to an exploration of the extent to which consistency and equality are affected by
the past learners’ behavior. Most of the observations seen so far are based on the
fact that the observed consistency values are averaged over learners. However, it is
interesting to ask whether, for two learners with similar past interactions concerning
the considered principles, we should expect a similar consistency. In other words, we

Fig. 6 Principle-Consistency Relation. Heatmap of correlations between the consistency for a given prin-
ciple and the consistency for the whole principles list, over different algorithms. Each value ranges in [-1,
+1], and for each principle and algorithm, the Spearman correlation is computed over a distribution of
(principle value, user consistency) pairs
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ask whether similar learners get similar consistency. In our setting, for learners, we
assume that being similar means having similar consistency in their past interactions.
Therefore, we computed the consistency metric defined in (3) by substituting the
vector q

Ĩu
(i.e., the extent to which principles are met in the recommendations Ĩu)

with the vector qIu (i.e., the extent to which principles are met in the list of courses
Iu previously attended by the learner), so that we can quantify how much the targeted
principles were met in the set of past interactions of each learner.

To this end, for all the possible pairs of learners, u1 and u2, we computed the dif-
ference of consistency in their profile and their recommendations. Figure 7 depicts
pairs of results by increasing the difference of consistency in their profiles. It can be
observed that, except for the graph-based P3Alpha and RP3Alpha, a higher similar-
ity of consistency between the profiles results in a higher similarity of consistency
over the recommendations. Figure 8 also shows, for each principle and algorithm,
the best and worst consistency across learners, according to the above definition. It
is confirmed that familiarity, learnability, variety, and affordability play a key role in
overall consistency.

We can conclude that consistency and equality are affected by the prior courses the
learner has attended in the platform. Learners whose former courses already achieve

Fig. 7 Consistency in Profile and Recommendation. The lines show the difference in recommendation con-
sistency over random pairs of learners, with values sorted by increasing difference in consistency in profiles
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Fig. 8 Learners with More (Less) Consistency. For each principle, the corresponding plot reports the mean
consistency achieved in recommendations by learners with high consistency in their profile (orange) and
low consistency in their profile (blue)

high consistency tend to receive recommendations that are consistent too. Increasing
equality might require playing with the lists recommended to learners that suffer from
a low consistency even in their profile.

Optimizing for Equality of Learning Opportunities

With the observations made so far, we conjecture that re-ranking each list of recom-
mendations to maximize the considered principles will lead to higher consistency,
and, consequently, to higher equality. Therefore, in this section, we describe, eval-
uate, and discuss the approach proposed in this paper to favor consistency of the
principles (Section 3.2) in recommendations (Fig. 9).

The Post-Processing Approach Proposed

To meet the principles pursued by the platform for each learner and optimizing for
equality of opportunities across learners, we introduce a recommendation procedure
that seeks to maximize the consistency formalized in (3).

Fig. 9 Support Framework. First, given interactions and metadata, a recommendation algorithm computes
a user-item relevance matrix. Then, given a user-item relevance matrix, a list of principle functions, a
principle weight strategy, and a list of principle targets, our approach returns a user-item relevance matrix
that meets the input principles. Finally, a ranking step, given the adjusted user-item relevance, outputs the
recommended list
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Given that it is generally hard to build the equity-enhancing mechanisms into the
main recommendation algorithm, we propose to re-arrange the recommended lists
returned by a recommender system, a common practice known as re-ranking (Potey
& Sinha, 2017). On the one hand, this strategy might be limited in its impact, since
reordering a small set of recommendations might have a less profound effect than
building equality into the recommendation selected by the recommender system from
the extensive pool of possibilities. On the other hand, it has several advantages, such
as that it can be applied to the output of any recommender system and can be easily
extended to include any novel principle. Therefore, we assume that the notion of
equal recommended learning opportunities might be enhanced by trying to balance
out desirable properties of course recommendations, and that re-ranking the courses
originally suggested (and optimized for personalization) by the recommender system
can be a feasible strategy for achieving this objective. The re-ranking should operate
such that the modified lists recommended to learners meet desirable principles of
course recommendations equally across learners.

For each learner u ∈ U , our goal is to determine an optimal set I∗ of k courses to
be recommended to u, so that the principles pursued by the platform are met while
preserving accuracy (i.e., the extent to which the recommended items are among
those included in the test set for that learner, meaning that the recommender system
predicts well the future interests of the learner). To this end, we capitalize on a max-
imum marginal relevance (Carbonell & Goldstein, 1998) approach, with (3) as the
support metric. In other words, we aim to find the set of courses I∗ to recommended
to the learner u such that those courses have high relevance for the learner u (˜Rui :
the relevance predicted by the recommender on the course i for learner u) and their
addition to the recommended list brings the highest increase in the consistency level
across the principles (Consistency(pu, qI |w): the extent to which the degrees pu

for all principles targeted by the platform and the actual degrees qI these principles
are met by the recommended list agree with each other). Let us consider an example
where we aim to recommend k = 10 courses to a given learner u. For each position
p of the ranking, for each course, we compute the weighted sum between (i) the rele-
vance of that course for the learner u and (ii) the consistency the recommended list to
u would achieve if we include that course in the list of recommendations. The weight
λ assigned to the consistency term allows us to define how important the consistency
is concerning the relevance of that course for the learner (i.e., the degree that course
meets the individual interests of that learner). Once we compute this weighted score
for all courses, we find the course that achieves the highest weighted score, and we
add it to the recommendations to u at position p. The same procedure is repeated
similarly for the other positions till k.

The set I∗ is obtained by solving the following optimization problem:

I∗(u|k, w) = argmax
I⊂I,|I|=k

(1 − λ)
∑

i∈I
˜Rui + λ Consistency(pu, qI |w), (6)

where qI is q when the top-k list includes items I, and λ ∈ [0, 1] is a parameter that
expresses the trade-off between accuracy and learning opportunity consistency. With
λ = 0, we yield the output of the recommender, not taking consistency optimization
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into account. Conversely, with λ = 1, the output of the recommender is discarded,
and we focus only on maximizing consistency.

This greedy approach yields an ordered list of resources, and the resulting list at
each step is (1−1/e) optimal among the lists of equal size. The proof of the optimality
of the proposed approach is provided in Appendix B. This property fits with the real
world, where learners may initially see only the first k recommendations, and the
remaining items may become visible after scrolling. Our approach also allows con-
trolling more than one learning opportunity principle in the ranked lists, with no
constraints on the size of C.

Evaluation Scenario and Experimental Results

In this section, we assess the impact of controlling consistency and equality of learning
opportunities across learners after applying our procedure to pursue the platform’s
principles (i.e., maximizing all the principle indicators). It is important to note that
we considered the same setup described for the exploratory analysis, including the
same datasets (“Data”), protocols (“Recommendation Algorithms and Protocols”),
and metrics (“Problem Formulation”), to answer four key research questions:

RQ5.2.1 Which weight setup achieved the best accuracy-equality trade-off?
RQ5.2.2 Which principles have experienced the largest gain in consistency?
RQ5.2.3 Which is the influence of the original relevance score distribution?
RQ5.2.4 How do the recommended lists differ, before and after our approach?

Influence of Weight Setup (RQ5.2.1) In this subsection, to answer the first research
question, we explore the extent to which each principles’ weight setup meets the
accuracy-equality trade-off. Given that the consistency achieved with the originally
recommended lists is different across principles and learners, different weight setups
might lead to distinct levels of the mentioned trade-off. Finding the weight setup that
results in the best trade-off is therefore of primary importance to increase equality.
We run experiments to assess (i) the influence of our procedure and the weight-based
strategy on accuracy, consistency, and equality, and (ii) the relation between a loss
in accuracy and a gain in consistency and equality while applying our procedure. To
this end, we envisioned three approaches of principle weight assignment:

– Glob assigns the same weight to all the principles, for all users. This method
would not account for the level of consistency the recommended list to a given
user already achieved and will treat all the principles equally.

– User assigns, to a principle, a weight proportional to the consistency gap for that
principle concerning the target of the platform, computed during the exploratory
analysis. The consistency gap for a principle has been obtained by averaging the
individual consistency gaps across users.

– Pers, given a user, assigns the weight for a principle by considering only their
(individual) consistency gap for that principle. Thus, different weights are used
along with the user population.
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For each model, we run an instance of our re-ranking procedure for each weight
assignment strategy, assigning to λ a value in [0.01, 0.25, 0.50, 0.75, 0.99].

The results related to NDCG, consistency, and equality are shown in Fig. 10.
Specifically, top-row plots on NDCG highlighted that ItemKNN and ItemKNN-CB
experienced the largest loss in NDCG at increasing λ. The rest of the algorithms

(a) NDCG on Glob. (b) NDCG on User.

(c) NDCG on Pers. (d) Consistency on Glob.

(e) Consistency on User. (f) Consistency on Pers.

(g) Equality on Glob. (h) Equality on User.

(i) Equality on Pers.

Fig. 10 Controlled Performance. Normalized Discounted Cumulative Gain (NDCG), consistency, and
equality achieved by our procedure under Glob, User, and Pers weight assignment strategies. For each
algorithm, our approach has been applied at various λ
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showed a more stable pattern on NDCG, even though the NDCG absolute value is
significantly lower for the one achieved by ItemKNN and ItemKNN-CB. Through-
out the weight assignment strategy, we did not observe a significant difference for the
same algorithm over the three strategies. On the other hand, the weight assignment
strategy has a notorious role in consistency and equality (middle and bottom rows).
Specifically, User and Pers weight setups made it possible to achieve higher con-
sistency and equality than Glob. We can also observe that all the algorithms brought
the same degree of improvement in consistency while varying λ.

Interestingly, by looking at equality scores, two patterns of improvement were
observed. Specifically, the algorithms from the graph-based, content-based, and
hybrid families showed a larger improvement at each value of λ than the other
families. The following observation can be drawn:

To have a more detailed picture, we analyzed the connection between a loss in
NDCG and a gain in consistency and equality. This aspect plays a key role in a real-
world context. While it is the responsibility of scientists to bring forth the discussion
about metrics, and possibly to design algorithms to optimize them by turning param-
eters, it is ultimately up to the stakeholders12 (e.g., teachers, instructional designers,
platform owners), depending on the targeted educational domain, to select the trade-
offs most suitable for their context. Therefore, this aspect would support a decision
regarding the value of λ to set up to achieve the desired trade-off. Figure 11 plots the
gain of consistency (top row) and equality (bottom row) resulting from the degree of
NDCG loss. It should be noted that the gain in consistency (equality) is computed
with respect to the original consistency (equality) at λ = 0.01. We observe that con-
sistency and equality within the same weight strategy show the same behavior on
the loss in NDCG. This observation confirms the results of our exploratory analysis,
where consistency and equality were directly proportional.

We can conclude that the principles’ weight setup has a high impact on the
accuracy-equality trade-off. Using user-based weights that represent the average of
the individual consistency gaps across learners or individual weights that are person-
alized for each user lead to higher equality of recommended learning opportunities.

12Although this approval lets stakeholders control the different factors impacting on fairness, it still leaves
open questions around the intrinsic maturity of the weight settings and the accountability in the decision-
making process.

667



International Journal of Artificial Intelligence in Education (2022) 32:636–684

(a) NDCG-Cons on Glob. (b) NDCG-Cons on User. (c) NDCG-Cons on Pers.

(d) NDCG-Equality on Glob. (e) NDCG-Equality on User. (f) NDCG-Equality on Pers.

Fig. 11 Accuracy-Equality Relation. For each algorithm and weight assignment setup, we computed the
gain in equality and consistency that can be achieved at the cost of loosing a certain degree of accuracy

Influence on Each Principle (RQ5.2.2) In this subsection, we answer the second
research question, aimed at exploring which principles have experienced the largest
gain in consistency, with our approach. For instance, this aspect is important to
understand whether our approach will favor those principles that already have high
consistency or those principles that suffer from a low consistency. To this end, we
run experiments to assess (i) which principles show the largest improvement thanks
to the proposed approach, and (ii) what is the impact of the weighting strategy
on the consistency of each principle. To answer these questions, for each model,
we run an instance of our re-ranking procedure for each weighting strategy, vary-
ing λ ∈ [0.01, 0.25, 0.50, 0.75, 0.99]. Then, we computed the consistency of each
principle achieved by an algorithm, at a given λ, with a given weighting.

Figure 12 reports the impact of our procedure on the considered principle for
different algorithms. Overall, it can be observed that our procedure allows us to
improve the consistency for all the principles, except Quality (see Fig. 12e). This
principle exhibited two main patterns based on the algorithms: quality increased for
ItemKNN and RP3Beta, while it decreased for the other algorithms. Interestingly,
adding course metadata information into the algorithm (ItemKNN-CB concerning
ItemKNN) changes the trend in quality. Furthermore, our approach made it pos-
sible to improve Familiarity, Variety, and Affordability, all of which achieved low
consistency scores in the exploratory analysis. It follows that the value of λ can be
fine-tuned to reach the desired level for a given principle. Another observation can
be drawn.
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.

Fig. 12 Controlled Consistency. Consistency per principle achieved by our procedure under the Glob
weight assignment strategies at various λ

We can conclude that our approach tends to increase the consistency of those prin-
ciples that suffer from a lower consistency in the original recommendations. The
impact on principles with an initial high consistency is negligible.

Influence of Relevance Score Distribution (RQ5.2.3) Having observed that the
improvement in consistency greatly varies among algorithms, we conjecture that the
distribution of relevance scores returned by the original algorithm may influence the
feasibility of our approach. Therefore, in this subsection, we aim to answer the third
research question on the influence of the original relevance score distribution in the
results. This aspect might inform us on the characteristics of the relevance scores and,
by extension, of the recommender system that might work better with our approach.
Hence, Fig. 13 shows the density of relevance scores along the range [−1, 1]. We
notice that GMF, NeuMF, and ItemKNN-CB produced relevance scores with a high
density around zero. Therefore, in our approach, the relevance part may be dominated
by the consistency part, regardless of the applied λ. Consequently, relevance could
have a drastic drop even for low λ values, making it harder to find a good trade-off
between accuracy and consistency. This behavior is confirmed by the results previ-
ously reported in Fig. 11. The NDCG loss compared to the Consistency gain is higher
for GMF, NeuMF, and ItemKNN-CB. Given that the relevance scores distribution is
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Fig. 13 Relevance Score Distribution. For each algorithm, we compute the density of the user-item
relevance scores computed by the original version of the recommender

highly dense, even a small improvement in consistency may completely overturn the
list of recommendations.

We can conclude that the density of the relevance score distribution influences the
trade-off between accuracy and consistency, after applying our approach. The higher
the density is, the higher the drop in accuracy is.

Qualitative Inspection (RQ5.2.4) For the fourth research question, we investigate the
extent to which the recommended lists of courses differ, before and after applying
our approach. Exploring this perspective is important given that it refers to the con-
crete differences in recommendations that will be experienced by learners in the real
world. The targeted principles and the corresponding consistency and equality met-
rics directly monitor properties of the recommender lists and the experiments showed
that our approach leads potentially13 to more consistent and equal recommended
learning opportunities. However, it may also be interesting to inspect some recom-
mended lists resulting from a traditional recommendation algorithm and how they
change after our approach, closing the circle for the problem that motivated this study
and assessing the practical end-to-end impact of the proposed approach.

Table 2 shows how the list of courses recommended to an example learner changes
after applying our procedure. First, regarding affordability, we observe that the re-
ranked list offers a broader range of opportunities in terms of fees, even among

13Given that it is based on assumptions and technical implementation, our approach remains to be further
evaluated from a human-centered point of view (e.g., on the learners’ perceptions in subjective experiences
in both academic and life-long outcomes). There is also the need to validate the value of λ in online
settings with learners, which remains in the domain of subjective decision-making by course designers
and engineers.
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Table 2 Impact on Recommendation. Top-10 recommendations provided to an example learner by the
traditional recommender system based on ItemKNN-CB (top) and the top-10 recommendations resulting
from our approach

Item ID Category Fee Level Update Learners Asset

Before

0 17175 development 99.99 all 2017-08-01 778 V+A

1 8518 development 199.99 all 2020-03-02 23386 V+A+E

2 17772 academics 199.99 all 2019-07-30 6501 V+A

3 18689 development 199.99 all 2019-08-11 10588 V+A

4 9364 development 99.99 all 2016-03-01 3825 V+A+E

5 17735 business 199.99 all 2020-03-13 19615 V

6 7932 development 29.99 beg 2015-11-06 4661 V+E

7 13191 development 199.99 all 2019-02-20 133490 V+A

8 15861 development 99.99 all 2020-02-24 24705 V+A

9 5676 development 199.99 all 2020-02-15 10638 V+A

After

0 4878 development 0.00 beg 2018-07-23 414169 V+A+E

1 9797 it-and-sw 0.00 int 2019-04-12 5605 V+A

2 17175 development 99.99 all 2017-08-01 778 V+A

3 7932 development 29.99 beg 2015-11-06 4661 V+E

4 9364 development 99.99 all 2016-03-01 3825 V+A+E

5 11275 it-and-sw 19.99 int 2019-08-30 777 V

6 8518 development 199.99 all 2020-03-02 23386 V+A+E

7 3707 development 19.99 beg 2015-02-27 1357 V

8 15861 development 99.99 all 2020-02-24 24705 V+A

9 8944 it-and-sw 19.99 beg 2018-11-10 8282 V+E

courses from the same category. This aspect may enable a learner to receive sug-
gestions that can better fit with their current financial resources. Then, more diverse
opportunities were proposed in terms of instructional level and asset types, in line
with the targets pursued by the platform. Except for the course with a large class
ranked in the first position, our approach leads to courses with smaller and, thus,
more manageable classes. However, this comes at the price of a slight loss of valid-
ity and category diversity. This happened because the learner mostly interacted with
“development” and “it-and-software” courses in the past, so our approach promoted
courses aligned with those categories (i.e., increasing familiarity).

While the proposed approach confirmed its feasibility for conveying multiple
principles into a recommended list and providing more equal learning opportunities
across learners, it should be noted that it is ultimately up to the stakeholders to select
principles and trade-offs most suitable for their context.

We can conclude that the impact of our approach is concretely observable in the
final recommended lists. Specifically, our approach mainly adds to the recommenda-
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tions a subset of courses that were originally ranked below the top-10 for that learner,
such that the targeted principles are consistently met.

Discussion

There has been an increasing attention to digitalized educational systems. Hence,
online course platforms are promptly becoming an essential tool for providing learners
with the most suitable material, meeting their expectations of educational values.
Due to the highly subjective and contextual nature of this process, educational plat-
forms need to consider multiple perspectives. Indeed, besides providing a wide range
of course filtering options, an increasingly high number of principles for further
processing such options is needed to identify the most suitable ones for a learner.
In this view, an in-depth understanding of recommendations in online course plat-
forms may reduce the overload of learners, improving consistency and equality of
the recommendations.

Though the learners of COCO may not be representative of general learners
in the recommender system, our analysis in “Exploratory Analysis” indicates that
optimizing recommendation algorithms only for learners’ interests may result in
undermining other essential properties conveyed by the learning opportunities pro-
posed to them. Ranges of educational recommender systems, such as those provided
by Bridges et al. (2018), Rieckmann (2018), and Bhumichitr et al. (2017), can thus
capitalize on our definitions, metrics, and procedures as a means for assessing rec-
ommendations’ consistency. However, the principles proposed in this paper, derived
from curriculum design beliefs, would need to be empirically-validated.

A complementary human-centered perspective of the principle design can strongly
benefit from our findings, leveraging our initial principles as a good starting point.
Nonetheless, this approach might not be sufficient, and no one-size-fits-all set of
principles would exist, given their dependence on the context and the involved
stakeholders. Despite having a range of limitations in terms of context-sensitivity,
learner-centeredness, operationalization, and temporal awareness (“Limitations”),
the re-ranking procedure that was proposed and assessed in “Optimizing for Equality
of Learning Opportunities” has been shown to improve equality across learners,
counteracting potential pitfalls of data-driven educational recommender systems.
This aspect becomes of paramount importance in large-scale contexts, especially
while reaching out to learners reluctant to the use of data-driven procedures (Herold,
2017). However, our results cannot prove that the differences in measured metrics
translate to better educational outcomes and learners’ acceptance. Finally, our work
embeds views and needs of multiple educational stakeholders into recommended lists
(Abdollahpouri et al., 2020).

In the broad discussion on FATE in AIED, we highlight that recommender capa-
bilities are an important component of AIED systems. Moreover, our research
contributes to the improvement of our understanding of fairness in the educational
recommendation context, by devising ways in which we can address fairness in AIED
design. Our study moves a step forward in understanding how equality principles can
be operationalized and combined in a formal notion of equal opportunities in educa-
tional recommendations. This contribution serves as a foundation to investigate how
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learners interpret concepts such as: (1) the fairness of the educational resource selec-
tion decisions they make (e.g., how they select courses for their degrees); (ii) what
they think about the fairness of the set of resources available to them; (iii) to what
extent they view the course selection process as fair; and (iv) how these decisions
are influenced by available information about the given courses. The principles and
formulations described in our study would be a starting point for this purpose. There-
fore, this study permits the research community to derive what questions to ask as
part of interviews with learners, what scenarios to explore to elicit their concepts of
fairness, and how to process data in the educational platform to monitor and ensure
the equality principles. This paper, thus, shapes a blueprint of the decisions and pro-
cesses to be done, once empirically-validated principles have been defined under
the targeted educational scenario. To this end, we provide evidence on what kind of
technological support is needed to ensure that learners’ course selection decisions
lead to greater equality across learners. Nonetheless, there are several issues regard-
ing inequality in educational opportunities that recommender systems could not fix
by themselves (e.g., whether certain advanced courses are available at all). Conse-
quently, our study would help better understanding what is known about the role that
recommender systems could play in the bigger questions around fairness and equal-
ity, grounding the design and implementation of formal notions of equality informed
by a deep understanding of how learners view equality.

Limitations

Since our observations varied over algorithms and principles, we identified the main
implications and limitations of our study.

• Limitations of data. While our results highlight the need to consider equality of
recommended learning opportunities while evaluating recommenders, the learn-
ers of COCO may not be representative of general learners in an educational
platform. Unfortunately, data with enough attributes to look for sophisticated
principles is hard to find. As pointed out in “Data”, other datasets include few
attributes of learners and courses.

• Limitations of principles. While our principles shed light on important aspects
underlying the ranked courses, they may not be representative of the princi-
ples targeted by certain platforms and are based on assumptions derived from a
dataset. Thus, limitations arise from different perspectives.

– Context dependency. Because this study does not provide formative
or summative results about actual systems, it is thus more theoretical
than practical and does establish a framework for work in the context of
fairness in educational recommender systems. In traditional scenarios,
the operationalization of principles is usually based on textual guide-
lines, and the translation into numerical indicators (when performed)
is subjected to the specificity of the platform. Our measures show how
traditional text-based principles could be operationalized and enriched
based on the peculiarity of the online context (e.g., manageability).
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However, our framework can be adapted to any (number of) principles,
based on the pursued goals.

– Learner-centeredness. The considered principles do not relate to indi-
viduals, but to resources, educational level, number of learners, and so
on, referring to courses as a group. Given that learning and teaching
deal with changes in individuals (e.g, how each learner reacts to a prob-
lem within a course or which asset in which course was valuable for
learners), our principles could be enriched to reach this level of model-
ing, e.g., by adding principles connected with learning outcomes, when
large enough datasets will become available to the research community.
It remains also to be investigated the extent to which learners philosoph-
ically agree with this approach to equality, agree with it in practice, and
are willing to accept the downsides. Finally, empirical evidence would
be needed to assess whether recommendations from a recommender
system and re-ordering thereof, have any effect on how learners behave
(i..e, what courses they actually take).

– Technical operationalization. Some of the operationalizations have
been overly simplified due to the limitations of the data currently avail-
able in online course platforms. For instance, the recency of updates is
used as a proxy for validity, but there is more to validity than the recency
of updates. Similarly, learners’ ratings are used as a proxy for quality,
but learners’ ratings would not always correlate with other measures
of quality (e.g., learning outcomes), and class size is used as a proxy
for manageability, but other aspects (e.g., number of assistants) are not
captured. Finally, the way learnability is operationalized seems to be
simplified, and other aspects might be targeted. This opens up to more
advanced operationalizations.

– Temporal influence. Some of the principles are sensitive to time. For
instance, regarding familiarity, sometimes a learner may be looking
for something new that broadens their horizon, rather than something
familiar; at other times, they may need one more final elective for their
primary major, which might mean that the preferred resource would
have high familiarity. In other words, it is still not clear that a given
learner should be viewed as having a preference for a certain level of
familiarity per se. The same learner may, at different times, have dif-
ferent preferences. Similarly, regarding the measure of validity (i.e.,
recency of the last update), a course on foundational material could have
been updated many times in the past and does not benefit from recent
updates. Similar observations apply to other principles.

• Limitations of the ethical constructs. Given that our methodology has been
assessed in an offline setting, the real-world validity of the notion of equality
that is presented still needs to be shown. For instance, it should be investigated
whether this notion aligns with learner’s notion of fairness, whether learners pay
attention to all principles when assessing fairness, and whether this notion of
equality relates to fairness and ethical principles, especially if enhancing equality
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requires to give up a given degree of personalization. For instance, it is worth
exploring how fair it is to ask one learner to give up a degree of personalization
so that the familiarity target for another learner can be met. These issues will
drive future research of equality of recommended learning opportunities.

• Limitations of algorithms. Our study involves eight representative algorithms
from four families, but other types of algorithms may benefit from our proce-
dure. However, to better focus on the evaluation of our contribution and due to
the limitations of the data, we constrained our study to algorithms that are key
building blocks of several recommender systems.

• Limitations of evaluation protocol. Our results cannot prove that the differ-
ences in measured metrics translate to better educational outcomes and learners’
acceptance. Further studies with online evaluation are needed to complement
these results. However, we conjecture that our results can provide an essen-
tial contribution to reach this goal, and offline protocols can be useful to select
algorithms prior to an online deployment.

• Limitations of metrics. Among the large number of metrics that can be used
for evaluating a recommender system, we focus on consistency and equality to
better assess our contribution. We also measured NDCG because it maps well to
recommendation utility. However, consistency and equality do not consider the
position of the courses in a list, which can be important in large-scale recommen-
dation contexts (e.g., online course platforms where tons of courses are provided
and having courses at the top of the recommended list is crucial to visibility), as
an example. Our study focused on a more general perspective to reach a broader
audience.

Conclusions

In this paper, we proposed a novel fairness metric that monitors the equality of learn-
ing opportunity across learners in the context of educational recommender systems,
according to a novel set of educational principles. Then, we explored the learning
opportunities provided by ten state-of-the-art recommender systems in a large-scale
online course platform, uncovering systematic inequalities across learners. To coun-
teract this phenomenon, we proposed a post-processing approach that re-ranks the
recommended courses originally returned by an algorithm to maximize the equal-
ity of recommended learning opportunities while preserving personalization. Finally,
we assessed the impact of supporting learners with our approach to accuracy and
beyond-accuracy metrics. Based on the results, we can conclude that:

1. Recommendation algorithms tend to produce ranked lists with low equality of
recommended learning opportunities across learners, especially when the algo-
rithm uses only user-item interactions as training data.

2. Under our definition of the targeted principles, equality of quality, validity,
and manageability are guaranteed by recommenders. Familiarity, affordability,
learnability, and variety exhibit strong deviations over algorithms.
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3. Optimizing recommendations for consistency concerning a set of principles
leads to higher equality of recommended learning opportunities. This effect is
remarkable when learner-specific weights are adopted.

4. Controlling learning opportunity results in higher familiarity, variety, and afford-
ability while maintaining stable values for the other principles. However, quality
may experience small losses after applying our procedure.

5. The impact of our approach on accuracy and consistency depends on the density
of the relevance score distribution of the original recommendation algorithm.
The higher the density, the higher the drop in accuracy is.

Future work will embrace our findings to study the degree to which the courses
currently attended by learners satisfy the notion of equality, in addition to the courses
that are recommended. Moreover, a learner-centered approach will be carried out
to investigate what learner’s notions are for the fairness of the educational resource
selection decisions they make, to fine-tune and adjust our original set of principles.
By extension, learner-specific targeted degrees for each principle will be, conse-
quently, elicited and applied. Thanks to its flexibility, the notions and procedures
proposed in this study can fit with a plethora of applications within both educational
and non-educational contexts. There is also room for considering how additional
algorithms respond to evaluation and what internal mechanics contribute to achieving
higher consistency and equality. Finally, as real-world applications should consider
whether their recommender systems provide consistent and equal learning opportu-
nities across learners, we believe that there will be an increasing amount of research
related to applying our study to the educational industry.

With this study, we highlighted that our notions and procedures are quite broad
and incorporate elements of societal and ethical importance. It may be inevitable that,
as recommender systems move further into education, they will embed strategies like
the one we presented.

Appendix A: Mathematical Notation for Targeted Educational
Principles

In this appendix, we provide the mathematical formulations associated with the
educational principles proposed in “Modeling Recommended Learning Opportunity
through Principles”. They have been adopted for computing to what extent each
principle is achieved for each learner throughout the experiments.

Familiarity Given a course feature F1 ∈ N associated with integer-encoded repre-
sentation of the category g ∈ G of a resource, we consider two distributions:

– x(g|u): the distribution over categories G of the set of resources Iu user u

interacted with in the past, defined as x(g|u) = |Ig
u |/|Iu|;

– y(g|u): the distribution over categories G of the set of learning opportunities Ĩu

recommended to learner u, defined as y(g|u) = |Ĩ g
u |/|Ĩu|;
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where I
g
u and Ĩ

g
u represent the set of resources belonging to category g the learner

u attended and the recommender system proposed, respectively. Then, we define the
familiarity of Ĩu for a learner u as the inverse of the Hellinger distance across x(G|u)

and y(G|u). Specifically:

c
Ĩu

(1) = 1 − H(x(G|u), y(G|u)) (7)

where c
Ĩu

(1) = 1 if xu and yu are perfectly balanced, and the highest familiar-
ity is achieved. Conversely, the minimum familiarity 0 is achieved when xu assigns
probability 0 to every event that yu assigns a positive probability (or vice versa). In
the latter situation, the recommender suggests resources opposite with respect to the
user’s most familiar categories.

Validity Given a course feature F2 ∈ N representing the last time a resource has been
updated and the opening time of the platform, denoted as To, we define the validity
of a set of learning opportunities Ĩu at the current time Tc as follows:

c
Ĩu

(2) = 1 − 1

|Ĩu|
∑

i∈Ĩu

Tc − f2,i

Tc − To

(8)

where values close to 0 mean that the learning opportunities are obsolete, while
values close to 1 correspond to mostly fresh opportunities in Ĩu.

Learnability Given a course feature F3 ∈ N representing the instructional level of a
resource, we define the learnability in Ĩu as:

c
Ĩu

(3) = 1 − GINI

(

|Ĩ f3
u |

|Ĩu|
∀ f3 ∈ F3

)

(9)

where c
Ĩu

(3) is the inverse of Gini inequality index over the representations of all the

instructional levels in Ĩu, and Ĩ
f3
u is the set of resources in Ĩu with instructional level

f3. A value of 0 implies large inequality, while high balance is obtained with values
close to 1.

Variety Given that each resource j ∈ Ĩu is composed from a set of assets Lj and that
the asset type of a resource j is denoted by Tj = (tl ∈ T : ∀l ∈ Lj ), we define the
variety of the types in Ĩu as:

c
Ĩu

(4) = 1

|Ĩu|
∑

i∈Ĩu

|Ti |
|T | (10)

where values close to 0 mean that the learning opportunities are focused on few asset
types, while asset types greatly vary for values close to 1.
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Quality Given a learner-resource feedback’s matrix R and that the platform allows
for ratings between F5min

to F5max , we define the quality of a set Ĩu as follows:

c
Ĩu

(5) = 1 − 1

|Ĩu|
∑

i∈Ĩu

1

|Ui |
∑

u∈Ui

F5max − Ru,i

F5max − F5min

(11)

where values close to 0 mean that the learning opportunities are of low quality, while
values close to 1 are measured for high-quality opportunities.

Manageability Given a course feature F6 ∈ N representing the number of enrolled
learners in a course and that the platform allows for classes from F6min

to F6max

learners, we define the manageability in a set of learning opportunities Ĩu as follows:

c
Ĩu

(6) = 1

|Ĩu|
∑

i∈Ĩu

F6max − f6,i

F6max − F6min

(12)

where values close to 1 mean that the learning opportunities include small classes,
while values close to 0 refer to large classes.

Affordability Given a course feature F7 ∈ R representing the course enrollment fee
and that the platform allows for courses with a cost between F7min

and F7max , we
define the affordability of a set of learning opportunities Ĩu as follows:

c
Ĩu

(7) = 1

|Ĩu|
∑

i∈Ĩu

F7max − f7,i

F7max − F7min

(13)

where values close to 0 mean that the learning opportunities are highly expensive,
while values close to 1 correspond to free-of-charge learning opportunities in Ĩu.

Appendix B: Optimality Proof for the Proposed Post-Processing
Approach

The combinatorial maximization problem in (6) may be efficiently approximated
with a greedy approach with (1 − 1/e) optimality if the objective function of
the maximization is submodular. This statement has been proved in the following
demonstration.

Theorem 1 Let Consistency(p, q|w) = 1 − w‖p − q‖|C|
|C|, with |C|F > 0 and

wi ≥ 0 ∀i ∈ {0, · · · , |C|}, then for any λ ∈ [0, 1] the function in (6),
f (I|w) = (1 − λ)

∑

i∈I
˜Rui + λ Consistency(pu, qI |w),

is submodular. ◦

Proof First, since ˜Rui > 0, it follows that f1(I|w) = ∑

i∈I ˜Rui is a modular
function (i.e., hence, also submodular), because it is a sum of positive quantities.
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Second,

f2(I|w) = Consistency(pu, qI) = w‖pu − qI‖|C|
|C|

=
k

∑

i=1

wi |[pu]i − [qI ]i ||C| =
k

∑

i=1

xi,

where xi = wi |[pu]i − [qI ]i ||C| > 0. Again, f2 is modular because it is a sum of
positive quantities. Since f (I|w) = (1 − λ)f1(I|w) + λf2(I|w), and the convex
combination of submodular functions is submodular, f is submodular.
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