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Abstract
Many recent studies have looked at the viability of applying recurrent neural net-
works (RNNs) to educational data. In most cases, this is done by comparing their
performance to existing models in the artificial intelligence in education (AIED)
and educational data mining (EDM) fields. While there is increasing evidence that,
in many situations, RNN models can improve on the performance of these existing
methods, in this work we take a different approach. Rather than directly comparing
RNNs with other models, we are instead interested in the results when RNNs are
combined with one of these existing models. In particular, we attempt to improve
the performance of ALEKS (“Assessment and LEarning in Knowledge Spaces”), an
adaptive learning and assessment system based on Knowledge Space Theory, through
the use of RNN models. Using data from more than 1.4 million ALEKS assess-
ments, we first build an RNN classifier that attempts to predict the final result of
each assessment. After verifying the accuracy of these predictions, we develop our
stopping algorithm, with the goal of improving the efficiency of the ALEKS assess-
ment by reducing the total number of questions that are asked. Based on this stopping
algorithm, we give a comprehensive analysis of the possible effects it would have on
students. We show that the combination of an RNN with the ALEKS assessment can
reduce the average assessment length by over 26%, while a high degree of accuracy
is maintained.
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Introduction

Over the last several years, deep learning techniques have achieved dramatic break-
throughs in many scientific fields (Goodfellow et al. 2016; LeCun et al. 2015).
Arguably, the first of these came in the area of computer vision (Krizhevsky et al.
2012), with subsequent advancements appearing in fields such as language modeling
(Devlin et al. 2019; Le and Mikolov 2014; Mikolov et al. 2013), speech recognition
(Graves et al. 2013; Sak et al. 2014), game playing (Silver et al. 2016, 2017), and
machine translation (Wu et al. 2016). Influenced in no small part by these achieve-
ments, models and applications using neural networks are moving into the education
domain, with these concepts appearing in studies throughout the artificial intelli-
gence in education (AIED) and educational data mining (EDM) fields. In particular,
because of the sequential nature of many types of educational data, recurrent neu-
ral networks (RNNs) are being used more frequently in the educational literature
(Botelho et al. 2017; Jiang et al. 2018; Käser and Schwartz 2019; Ruseti et al. 2018;
Xu and Davenport 2020).

In comparison, there are also many longstanding and well-studied models of learn-
ing and assessment that are used throughout the AIED field. These include models
and theories such as Bayesian Knowledge Tracing (BKT) (Baker et al. 2008; Cor-
bett and Anderson 1994; Yudelson et al. 2013), Knowledge Space Theory (KST)
(Doignon and Falmagne 1985; Falmagne et al. 2013; Falmagne and Doignon 2011),
and Performance Factors Analysis (PFA) (Pavlik et al. 2009). These methods have
been analyzed and vetted by a substantial body of research, and a large number of
adaptive learning and assessment systems in use are based, at least in part, on these
frameworks (Cen et al. 2007; de Chiusole et al. 2020; Falmagne et al. 2013; Hocke-
meyer et al. 1997; Lynch and Howlin 2014; Pavlik et al. 2020) (see also Baker (2016)
and Desmarais and Baker (2012), and the references therein, for further examples).
Given the pervasiveness of these methods, a natural progression is to look at the via-
bility of using deep learning to improve on them. As such, much of the recent work in
the AIED field related to neural networks has focused on analyzing their effectiveness
by comparing their performance to that of various existing methods and techniques.

For example, in the area of student modeling, (Piech et al. 2015) introduced an
RNN-based model of student knowledge that was compared and contrasted with
more traditional approaches, such as BKT. While the initial results seemed promis-
ing, follow-up studies (Khajah et al. 2016; Wilson et al. 2016; Xiong et al. 2016)
revealed a more nuanced picture. Specifically, (Xiong et al. 2016) discussed issues
with the data and methodologies in (Piech et al. 2015), with these issues complicating
the comparisons that were made. Additionally, both Khajah et al. (2016) and Wilson
et al. (2016) presented examples where the RNN model was matched, or even out-
performed, by models based on BKT and item response theory (IRT). These results
were synthesized in Wilson et al. (2016), which concluded that deep learning mod-
els, while showing promise in the education field, are by no means guaranteed to
outperform other educational models. This conclusion is supported by subsequent
work such as Mao et al. (2018), which had BKT outperforming RNN models on one
measure, yet simultaneously performing worse on others.
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Several other examples exist of RNNs being applied to problems related to student
modeling and prediction. In Lin and Chi (2017), RNNs were used to model student
learning gains, and it was shown that the RNN models were more accurate and effi-
cient in comparison to BKT models. Another relevant study is Jiang et al. (2019),
where RNNs were applied to the task of making course grade predictions, based on
the student’s history of previous courses and grades. These predictions were then
used as part of a novel course recommendation system that generated a suggested
list of prerequisite courses for the student. Yet another example is contained in Käser
and Schwartz (2019), where RNNs were used to classify students into groups based
on their learning behaviors; the results indicated that the RNN models were at least
as good as the methods traditionally used for this task. Finally, one additional study
from this area is Matayoshi et al. (2019), where RNNs were used as part of a model of
student knowledge retention that extended and improved on a basic forgetting curve.

RNNs have also been used for other topics, such as in recent studies of mod-
els for sensor-free affect detection (Botelho et al. 2017; Jiang et al. 2018). In these
works, RNN models were fed sequences of actions by students, and the models then
used these actions to classify students into various affective states. In comparison
to previously used techniques, Botelho et al. (2017) reported a significant overall
improvement when applying RNNs to affect detection; furthermore, while the results
in Jiang et al. (2018) were more mixed, they still showed a benefit to using RNNs.

While it is becoming clear that deep learning and RNNs have a place in the
AIED and EDM fields, the discussion in the preceding paragraphs demonstrates that
there are instances where the use of another model may be preferred. Motivated by
these observations, the current work takes a slightly different approach. Rather than
directly comparing and contrasting deep learning with other AIED models, we are
instead interested in the results when deep learning is used in combination with one
of these models. Specifically, ALEKS (“Assessment and LEarning in Knowledge
Spaces”) (McGraw-Hill Education/ALEKS Corporation 2021) is an adaptive learn-
ing and assessment system based on KST. At the core of the ALEKS system is an
adaptive assessment that aims to precisely and efficiently identify the topics in an
academic course that a student knows, as well as identify the topics she is ready to
learn next. Our goal is to augment the KST-powered ALEKS assessment with the
classification strengths of an RNN model.

The specific focus of our efforts in this study is ALEKS Placement, Prepara-
tion and Learning (ALEKS PPL), a specialized product that has been developed to
offer recommendations for placing students in post-secondary mathematics courses.
In Matayoshi et al. (2019), an initial version of a stopping algorithm, also based
on an RNN classifier, was introduced to improve the efficiency of the ALEKS PPL
assessment. In this current work, we build on these previous results by evaluating an
updated version of the stopping algorithm. The changes to the algorithm include a
larger set of features for the machine learning classifier, as well as the removal of
certain restrictions that slightly hindered the performance of the previous version.
However, in comparison to Matayoshi et al. (2019), our main contribution is a sig-
nificantly more comprehensive and detailed evaluation of the stopping algorithm and
its various effects. Thus, in addition to a more in-depth analysis of the performance
of the predictive models, we spend a considerable amount of time attempting to
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understand the effects of the stopping algorithm on students if it were to be oper-
ationalized; for example, we look at the time that the algorithm can save students.
Finally, we propose and evaluate an alternative version of the stopping algorithm that
is more flexible and easier to maintain in a production environment.

The outline of the paper is the following. We begin with background informa-
tion, where we give a brief introduction to KST and the KST-based criteria currently
used for stopping the ALEKS PPL assessment. We then describe our experiments
and the RNN model building procedure. Based on the RNN model, we define an
updated stopping algorithm that we apply to our test data, and we attempt to under-
stand its effects with a comprehensive analysis of the results. Finally, we evaluate the
aforementioned alternative version of the stopping algorithm, and we compare and
contrast the performance of the two different versions of the algorithm.

KST, ALEKS, and the Current Stopping Rule

In this section we give a brief introduction to KST and the ALEKS assessment. For
a more detailed introduction to these subjects, we refer the reader to Falmagne et al.
(2013) and Falmagne and Doignon (2011). In KST and ALEKS, an item is a problem
type that tests a discrete unit of the curriculum, with each item being composed of a
collection of examples that are designed to be equal in difficulty. A knowledge state
is a set of items that a student knows, that is, the student has the ability to solve. The
knowledge space is the collection of all such possible knowledge states. In general,
the number of knowledge states in the knowledge space is much less than the total
number of possible sets of items. This is because the items share specific relationships
that determine the collection of knowledge states. For example, a knowledge state
that contains an advanced item will necessarily contain more elementary items that
test concepts required for the mastery of that advanced item.

Fig. 1 Screen capture of an ALEKS item titled “Introduction to solving an equation with parentheses.” In
addition to the problem statement, the screen capture shows the answer input box; tools for inputting frac-
tions and mixed numbers; and buttons for clearing the answer box, undoing the last action, and obtaining
help with the answer input tools
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Figure 1 contains a screen capture of an example math item titled “Introduction to
solving an equation with parentheses.” This item tests a student’s ability to apply the
distributive property and solve a linear equation. As such, it is a prerequisite item for
more advanced equation solving items. For example, if a student knows an item with
a name such as “Solving a linear equation with several occurrences of the variable
and distribution,” it stands to reason that this same student is able to solve the problem
in Fig. 1, which covers prerequisite concepts needed for this more advanced item.

The goal of the ALEKS assessment is to discover the student’s knowledge state
within the knowledge space. The assessment employs an adaptive querying process,
as the student’s previous answers affect the choice of the next item to ask. Using this
adaptive process, it attempts to identify the student’s knowledge state with as few
questions as possible. Among other things, the assessment leverages the information
contained in the knowledge space, such as the prerequisite relationships, to assist
with this process.

Given a particular assessment question, the student’s response falls into one of
three categories:

– student inputs a correct answer;
– student inputs an incorrect answer;
– student clicks on the “I don’t know” button.

Based on the student responses up to, and including, the current question, each item
is assigned an estimated probability that it is contained in the student’s knowledge
state. The probabilistic nature of the assessment lends the flexibility that is needed to
deal with careless errors and lucky guesses (see, for example, Chapter 13 in Falmagne
and Doignon (2011) for further information). Using the probability estimates, at all
times the items under consideration are partitioned into the following categories by
the ALEKS system:

– items that are most likely in the student’s knowledge state (in-state);
– items that are most likely not in the student’s knowledge state (out-of-state);
– the remaining items (uncertain).

The assessment terminates when the student’s knowledge state is precisely identi-
fied; this happens when all of the items are classified as either in-state or out-of-state,
with no remaining “uncertain” items. Alternatively, to prevent a student from having
to answer too many questions, the assessment stops if a predefined maximum num-
ber of questions is reached. In both cases, the in-state items are returned as the best
estimate of the student’s knowledge state. Note that, because of the information con-
tained in the knowledge space and the associated knowledge states, most items end
by being classified as in-state or out-of-state without having been directly asked.

There are 314 items in ALEKS PPL, covering material from elementary mathe-
matics to precalculus, and the ALEKS PPL assessment has a limit of 29 questions.1

While the items used in ALEKS PPL also appear in other ALEKS products, they were

1Students actually answer up to 30 questions when accounting for a randomly chosen question asked
during the assessment and used for validation and other statistics.
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specifically chosen for use in ALEKS PPL due to their relevance for placement in
college mathematics. The item score of the student is simply the number of items that
are in the student’s knowledge state (i.e., the in-state items) at the end of the assess-
ment. The percentage score is the ratio of the item score over 314 (the total number
of items). From these scores, ALEKS PPL recommends placement in a course. The
default recommendation is based on the cut scores in Table 1. Next to each of the cut
scores we have listed the corresponding course(s) from the typical sequence of math
courses in use at many U.S. colleges.

Approximately 97% of ALEKS PPL assessments reach the maximum limit of 29
questions and thus end with a number of uncertain items. There are several reasons
for this. To start, most ALEKS items have an open-ended free response interface,
and are thus prone to careless errors, or “slips,” during an assessment (in comparison,
“lucky guesses” are much less common). Such careless errors, and the resulting mis-
representation of what the student knows, affect the number of questions it takes to
accurately identify the knowledge state (see Pelc (2002), and the references therein,
for an enlightening discussion of these issues in a related context). Further compli-
cating the process of extracting reliable information from student responses is that, as
discussed in Matayoshi et al. (2018), there is evidence that as an ALEKS assessment
progresses, the behavior of some students may change. For example, students may
experience a type of assessment fatigue, making them less likely to attempt to answer
a question later in the assessment, and thereby decreasing the chance that uncertain
items will be moved to the in-state category. Additionally, from a more theoretical
standpoint, the combinatorial nature of knowledge spaces presents difficulties of its
own when attempting to identify the knowledge state of a student. The number of
states in a knowledge space typically grows exponentially as a function of the number
of items; since many knowledge spaces used in practice contain several hundred (or
even over a thousand) items, counting the exact number of states quickly becomes an
intractable problem. For example, in the specific case of the knowledge space used
for ALEKS PPL, the number of states is estimated to be on the order of 1023.

While the previous paragraph describes several reasons that explain why precisely
identifying a student’s knowledge state is not an easy problem, the adaptive and prob-
abilistic nature of the ALEKS assessment allows it to deal appropriately with the
challenges arising from both the open format of the items and the students’ shifting

Table 1 ALEKS PPL placement recommendations

Placement Item Percent Course placement

category Score Score

1 < 44 < 14% Basic Math/Prealgebra

2 ≥ 44 ≥ 14% Beginning Algebra

3 ≥ 94 ≥ 30% Intermediate Algebra

4 ≥ 144 ≥ 46% College Algebra

5 ≥ 192 ≥ 61% Precalculus/Business Calculus

6 ≥ 239 ≥ 76% Calculus I
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behaviors (Falmagne et al. 2013; Falmagne and Doignon 2011). As for the combina-
torial difficulties, it must be noted that, if the assessment stops before removing all
the uncertain items, there are (potentially many) remaining candidates for the actual
knowledge state of the student. In particular, the in-state items can be viewed as a
lower bound on the items the student knows, while the complement of the out-of-
state items is then the corresponding upper bound. In practice, it turns out that the
set of in-state items provides an accurate description of the student’s standing by the
time the assessment ends (see, for example, studies evaluating the validity and reli-
ability of the ALEKS assessment in Cosyn et al. (in press), Doble et al. (2019), and
Falmagne et al. (2013)).

There is, however, a particularity of ALEKS PPL that distinguishes it from other
KST applications. The goal of the assessment here is not so much as identifying the
detailed knowledge state of the student as simply gathering enough information for
an accurate placement in one of six categories. Building on this idea, it is possi-
ble that the course placement recommendation for a student can be identified before
the full 29 questions of the assessment are asked. Our goal is to take advantage of
this fact and to develop a stopping algorithm for the ALEKS PPL assessment that in
many cases can, with high accuracy, identify the appropriate course placement rec-
ommendation with fewer than 29 questions. To do this, we first build several machine
learning classifiers that aim to predict the final course placement recommendation
for a student, based on the (partial) information of the assessment up to a given ques-
tion number. Once this is done, we can use these classifiers to implement an actual
algorithm for stopping an ALEKS PPL assessment.

Experimental Setup

The data for our experiments consist of 1,449,625 ALEKS PPL assessments, with
each assessment being taken by a unique student for placement purposes in a college
or university setting (typically in their first year, but not always). For this analysis, we
use only full-length assessments consisting of 29 questions (as mentioned previously,
roughly 97% of ALEKS PPL assessments reach this maximum number of questions).
The assessments were taken during a time period starting in March 2012 and ending
in October 2018, and the distribution of the course placement recommendations is
given in Fig. 2. After being processed, the data used to train our models are sequential
in nature, with each assessment generating one sequence; each sequence consists of
29 steps, with one step for each question on the assessment. Of the assessments in
the data set, 50,000 are randomly chosen and used for a held-out test set, another
50,000 are randomly chosen and used for a validation set to tune hyperparameters
and compare several models, and the remainder (1,349,625) are used for training our
models. As is standard practice when applying deep learning models to large data
sets (Prechelt 2012; Srivastava et al. 2014), we use a single partition of our data into
training, validation and test sets, rather than applying k-fold cross-validation or a
similar method. This is in part due to the computationally expensive nature of training
deep learning models, but it is also because of the important fact that, with such a
large test set, we can expect the results to generalize to our full data set.
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Fig. 2 Relative frequency histogram of course placement recommendations from the 1,449,625 full-length
assessments in our data set

For our classification models, the target (ground truth) label for each sequence is
determined by the course placement recommendation made by the ALEKS system
using the full 29 questions from the assessment. Formally, using the knowledge state
returned by the ALEKS system after question n (i.e., the set of in-state items after
question n), the student’s percentage score is computed to find the recommended
course placement based on Table 1; we refer to this placement recommendation as
Cn. In this context, our target labels then correspond to C29. Thus, the results of the
ALEKS PPL assessment can be viewed as a multiclass classification problem with
six different class labels, one for each of the possible course placement recommen-
dations. Under this framework, we are interested in building classifiers that can use
only the first n questions of the assessment, with n < 29, to reliably predict the
course recommendation returned by the full-length assessment. Note that the pur-
pose of this work is not to validate the current course placement recommendations
made by ALEKS PPL; validity of the ALEKS system is investigated in other works
such as Cosyn et al. (in press), Falmagne et al. (2013), and Reddy and Harper (2013).
Instead, the goal of our study is to match the current recommendations made by the
full-length ALEKS PPL assessments.

As an aside, in addition to the classification model described in the previous para-
graph, during this research we also explored other models that estimated how much
the student’s percentage score would change during the remainder of the assessment
(rather than attempting to predict the final course placement). This approach has
some similarities with other stopping rules that have been applied to student model-
ing. For example, works such as Käser et al. (2016), Klingler et al. (2016), Lee and
Brunskill (2012), and Rollinson and Brunskill (2015) applied stopping rules based
on whether the predictions from a student model had stabilized. However, while this
approach seemed promising initially, its performance ultimately proved to be inferior
to that of the classification model that predicts the final course placement.
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Models

For our recurrent neural network models, we use two different recurrent units: gated
recurrent units (GRU) (Cho et al. 2014) and long short-term memory (LSTM) units
(Hochreiter and Schmidhuber 1997). We include both models in our experiments
since there currently is not a consensus that one architecture or the other gives
superior performance, as several studies and comparisons have not revealed a clear
winner; these include examples both within the education domain (Botelho et al.
2017; Jiang et al. 2018; Käser and Schwartz 2019; Ruseti et al. 2018), as well as
from the broader machine learning community (Chung et al. 2014; Yin et al. 2017).
Both RNN models use a softmax output function that assigns an estimated probabil-
ity to each of the class labels, and the cross-entropy loss is computed at each step
in the sequence (i.e., after each question in the assessment) using these probabilities.
Additionally, as a baseline comparison, we also build a set of logistic regression (LR)
classifiers, one for each question number, where each logistic regression is trained
only on the data up to that point in the assessment.2 To handle the multiclass aspect
of our problem, the logistic regression classifiers use a one-vs.-rest approach, where
a separate model is trained for each class label (in comparison to a true multinomial
logistic regression, the one-vs.-rest approach gave better results on our validation
set). Figures 3 and 4 contain graphical representations of the models.

When building our models, we use two different methods for generating our fea-
tures. Our first method views the classification problem based on the actions of the
students during the assessment. Specifically, as our features we use the items asked
and the responses given during the assessment, and we refer to this set of features
as the student-centered approach. For the student-centered approach, we have three
variables per item, with each variable representing a possible outcome given a stu-
dent response; recall that these responses can take the form of a correct answer, an
incorrect answer, or an “I don’t know” answer. This approach requires a total of
3 × 314 = 942 independent variables to represent all the possible combinations of
responses and items. For our RNN models, each response is encoded in a differ-
ent vector, with the n-th vector containing the response at question n, and only the
response at question n. For example, if question 15 was answered incorrectly, the
15th vector contains a “1” in the column representing an incorrect answer to the item
asked at question 15, and a “0” in each of the other 941 columns. Then, as we have
29 questions in each sequence, the entire set of features for an individual student is
contained in an array of size 29 × 942.

Since the logistic regression models are unable to process sequential data, the fea-
tures for the student-centered logistic regression are slightly different from those of
the RNN models. That is, at question n the logistic regression features include the
response from question n, along with all of the previous n − 1 responses; this means

2We also experimented with a similar methodology for the RNN models. That is, rather than building a
single RNN model, we built separate models for each question number. However, since the performance
was very similar to that of the single RNN model, and due to the extra complexities required by this
method, we did not pursue this approach further.
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Fig. 3 Graphical depiction of the RNN model. The variable xi,j represents the j -th input feature at ques-
tion i, where the total number of features, given by n, is either 942 or 1884. The value of pi,j in the
output represents the predicted probability of class label j at question i, and C29 is the ALEKS PPL course
placement recommendation at the end of the assessment (i.e., after question 29). While the RNN model
generates unique predictions after each step in the sequence, the target label (C29) used for computing the
cross-entropy loss is the same at each of these steps

the feature vector has n nonzero components at question n. These features are then
used to train the logistic regression model for question n; as mentioned previously,
while the same RNN model is used at all points in the assessment, we train sepa-
rate logistic regression models for each question number. Because of this, the logistic
regression models are at a relative disadvantage in comparison to the RNN mod-
els, as each individual logistic regression is only trained on data up to that specific
point in the assessment. Contrast this with the RNN models, which are fed the entire
sequences of data when training; it seems plausible that this extra information is used
by the RNN models to improve their predictive accuracy.

Our second method uses the actual item categorizations of the ALEKS assess-
ment as features. Recall that at each point in the assessment an item is categorized as
being either in-state, out-of-state, or uncertain. Thus, using this assessment-centered
approach, we again require 3 × 314 = 942 independent variables, in this case to rep-
resent all possible combinations of assessment categories and items. The n-th vector
contains the categorization of the items by the assessment after question n. Specifi-
cally, each in-state item has a value of “1” in its in-state column and a value of “0” in
each of the out-of-state and uncertain columns; each out-of-state item has a value of
“1” in its out-of-state column, and so on. Note that for this approach the RNN models
and the logistic regression models all use exactly the same features.
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Fig. 4 Graphical depiction of the logistic regression model. The variable xi,j represents the j -th input
feature at question i, where the total number of features, given by n, is either 942 or 1884. The value of
pi,j in the output represents the predicted probability of class label j at question i, and C29 is the ALEKS
PPL course placement recommendation at the end of the assessment (i.e., after question 29). In contrast
to the RNN model, 29 separate logistic regression classifiers are trained, one for each question number in
the assessment

As discussed previously, it was shown in Matayoshi et al. (2018) that the response
patterns of students change throughout the course of the assessment; as one exam-
ple, it was mentioned that students may be more reluctant to attempt a problem later
in the assessment. Such evidence is what motivates the student-centered approach,
which attempts to use the specific responses of the student to predict the class label
they are likely to end the assessment with. In comparison, the ALEKS assessment
takes the response of the student and, being adaptive in nature, updates its expec-
tation of what items the student knows (or doesn’t know) and categorizes the items
accordingly. This information from the assessment system is lost when taking the
student-centered approach, and thus the assessment-centered approach makes for an
interesting comparison. Conveniently, it should be mentioned that each approach uses
the same number of features (942), facilitating comparisons between the two. Addi-
tionally, as an extra set of features that was not included in Matayoshi et al. (2019),
we also evaluate the performance when the assessment-centered and student-centered
features are combined (for a total of 1884 variables). Using a larger number of fea-
tures requires a correspondingly larger set of model parameters, exposing the model
to overfitting issues. However, given the large number of assessments in our train-
ing data, we expect that any possible overfitting will be more than compensated for
by the added information from the combined set of features, thus yielding the best
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performing model. As we will see shortly, this assumption is correct, and leads to a
slight improvement over the classifiers from Matayoshi et al. (2019).

Model Evaluation

All of the models are repeatedly trained on the 1,349,625 assessments in the training
set, while the results on the 50,000 assessments in the validation set are used to tune
the various hyperparameters (with the held-out test set then being used for the evalu-
ation and analysis of our final models, beginning in the next section). For each of the
neural network architectures (i.e., LSTM or GRU), the number of hidden layers, the
sizes of the hidden layers, and the learning rate are tuned on the validation set. We
also experiment with the usage of batch normalization (Ioffe and Szegedy 2015), a
method for normalizing the inputs of the neural network layers that, in many cases,
improves the performance of the model (Goodfellow et al. 2016; Ioffe and Szegedy
2015; Santurkar et al. 2018). To help prevent overfitting, in all of our RNN models
we apply early stopping (Prechelt 2012) and dropout (Gal and Ghahramani 2016;
Srivastava et al. 2014); these regularization techniques are commonly applied to neu-
ral networks, as they help improve the ability of the models to generalize to new data
(Goodfellow et al. 2016). For the logistic regression models, the only tuned hyperpa-
rameter is the strength of the L2 regularization; most likely due to the large amount
of data in the training set, lower regularization improves the performance, with the
best performing logistic regression model essentially removing the regularization.

The logistic regression models are trained using the scikit-learn (Pedregosa et al.
2011) Python library. As this research took place over a period of several years, we
initially built and trained our RNN models using a combination of Keras (Chollet and
et al. 2015) and Theano (Theano Development Team 2016); however, we switched to
PyTorch (Paszke et al. 2019) for the latter portion of this work. To test out different
combinations of hyperparameters for the RNN models, we use an iterative approach,
in which the results from previous training runs are used to inform the choices of
hyperparameters for subsequent runs. Due to the relatively long training time, as well
as the large number of hyperparameters, we use this manual process for tuning the
hyperparameters instead of more traditional techniques, such as grid search. On the
validation set, we experiment with models using anywhere from one to six hidden
layers, and we vary the sizes of the hidden layers from as little as a few hundred
units, up to a few thousand. For our hidden unit activation functions we exclusively
use rectified linear units (ReLU), and for all our models (both logistic regression and
RNN) we use cross-entropy loss.

For each classifier architecture, the best results from the performance on the vali-
dation set are shown in Table 2, where the accuracy, Matthews correlation coefficient,
and log loss are reported for two different points in the assessment; we show the
results after question 15, which gives an idea of the performance roughly halfway
through the assessment, and after question 25, which highlights the performance
near the end of the assessment. The Matthews correlation coefficient, introduced in
Matthews (1975) and extended to the multiclass case in Gorodkin (2004), is a statis-
tic for measuring the quality of a classifier. It performs well with unbalanced data
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Table 2 Comparison of different classifier models and architectures. Results shown are from the best
performing models, as measured by the predictions applied to the validation set

Model After question 15 After question 25

Accuracy Matthews Log loss Accuracy Matthews Log loss

ALEKS 0.648 0.579 — 0.921 0.905 —

Student-centered features:

LR 0.820 0.781 0.409 0.921 0.904 0.202

GRU 0.824 0.786 0.394 0.925 0.909 0.178

LSTM 0.827 0.790 0.388 0.931 0.917 0.165

Assessment-centered features:

LR 0.820 0.781 0.404 0.937 0.923 0.159

GRU 0.827 0.790 0.388 0.942 0.930 0.142

LSTM 0.828 0.791 0.387 0.943 0.931 0.140

Combined features:

LR 0.825 0.788 0.391 0.939 0.926 0.154

GRU 0.830 0.793 0.379 0.944 0.932 0.136

LSTM 0.830 0.793 0.381 0.943 0.931 0.139

(Boughorbel et al. 2017) and has been suggested as being more informative in com-
parison to other measures such as the accuracy and F1 score (Chicco 2017; Powers
2011). To apply the Matthews correlation coefficient, we use the class with the high-
est probability estimate as the predicted class label, which is then compared to the
true class label (in the case of binary class labels, Matthews correlation coefficient is
actually equivalent to the phi coefficient). Also, as a point of comparison for the clas-
sifiers, the “ALEKS” row reports the accuracy and Matthews correlation coefficient
if we were to use the student’s current course placement (i.e., Cn) as defined by the
in-state items at that time (after either question 15 or 25).

While all of the classifier models perform relatively well, the RNN models show
small, but consistent, gains over the logistic regression models. Additionally, while
the assessment-centered model performs better than the student-centered model in
all cases, the best results are from the combined model. Also of note is that the
LSTM models seem to perform slightly better with both the student-centered and
assessment-centered features; however, the strongest overall performance comes
from the combined features using GRU hidden units. In the latter case, the GRU
models might be less prone to overfitting due to their having fewer parameters
than the LSTM models. Finally, the performance of the ALEKS assessment, while
comparable to the other models at question 25, is notably worse at question 15.

The best performing RNN models consist of either two or three hidden layers.
While we trained models with more hidden layers, the added depth did not improve
the results, suggesting that a very “deep” representation of the data is not necessary
to get optimal performance. Note that this is seemingly consistent, albeit in a slightly
different context, with results from several studies (Ding and Larson 2019; Khajah
et al. 2016; Wilson et al. 2016; Wilson et al. 2016) giving evidence of the relative lack
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Table 3 Results from applying McNemar’s test to the predictions using the combined set of features

Models After question 15 After question 25

+/− −/+ χ2 p-value +/− −/+ χ2 p-value

LR, GRU 807 1026 25.93 �0.001* 499 763 54.81 �0.001*

LR, LSTM 969 1182 20.89 �0.001* 624 833 29.69 �0.001*

GRU, LSTM 633 627 0.02 0.888 397 342 3.95 0.047

The +/− columns show the number of examples from the validation set where the prediction from the first
classifier is correct and the prediction from the second classifier is incorrect. Similarly, the −/+ columns
show the number of times the first classifier is incorrect and the second is correct. An asterisk (*) next to
the p-value denotes a statistically significant difference after applying the Benjamini-Yekutieli procedure
with a threshold of 0.05

of depth that is necessary to build accurate student models. The combined features
LSTM model in Table 2 has an initial hidden layer with 1900 units and one additional
hidden layer with 1200 units, while the GRU model has an initial hidden layer with
1900 units and two additional hidden layers, each with 1200 units.

As the best results come from the models using the combined set of features, we
attempt to get a more precise measure of the differences in performance between
these models by using McNemar’s test (Edwards 1948; McNemar 1947). In partic-
ular, we use McNemar’s test to compare the accuracy values of the classifiers, as
this procedure is recommended when a single partition of the data is used for train-
ing and evaluation (as opposed to a procedure that uses multiple partitions, such as
cross-validation or resampling) (Dietterich 1998). McNemar’s test evaluates the dif-
ference in accuracy scores by looking at the examples for which one model makes
a correct prediction and the other makes an incorrect prediction; the resulting test
statistic follows a χ2-distribution with a single degree of freedom. For this analysis,
we compare each of the three classifiers to each other after both questions 15 and
25, for a total of six comparisons. Due to these multiple comparisons, we also apply
the Benjamini-Yekutieli procedure (Benjamini and Yekutieli 2001), with a thresh-
old of 0.05, to control for false positives. Since each of our models are trained and
evaluated on the same data, we use the Benjamini-Yekutieli procedure, instead of
the more common Benjamini-Hochberg procedure (Benjamini and Hochberg 1995),
because the former is more conservative and can be applied regardless of the type of
dependency that exists between the test statistics (Benjamini and Yekutieli 2001).3

The results are shown in Table 3, where we can see that the differences in accuracy
scores between the RNN and logistic regressions models are always statistically sig-
nificant; however, the differences in the accuracy scores between the RNN models
are not significant.

3It’s worth mentioning that the statistical significance results are unchanged if the Benjamini-Hochberg
procedure is applied instead.
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Stopping Algorithm

Now that we have confirmed the accuracy of our classifiers, we can use the pre-
dictions from these classifiers to implement a stopping algorithm for the ALEKS
assessment. The idea of the stopping algorithm, the full details of which are given
in Algorithm 1, is the following. We first identify potential points at which to stop
the assessment based on the confidence of the classifier. That is, our first criterion
is that the most confident predicted class label is above a certain threshold, α. Then,
to ensure that our classifier has at least a minimal amount of data to work with, we
also require that each assessment has asked at least five questions before the stopping
algorithm is activated.

In comparison to the algorithm outlined in Matayoshi et al. (2019), a couple of
changes have been made that, based on further experiments on our validation set,
led to an improvement in the performance of the stopping algorithm. First, we are
not requiring that Cn (i.e., the course placement recommendation after question n,
as determined by the student’s current percentage score) is equal to the classifier’s
predicted class label. As this requirement can be viewed as an ensemble of the pre-
dictions from the classifier and the assessment, we initially believed it would lead to
better performance. However, in some cases the classifier would return a very high
predicted probability for the final course placement recommendation, but the previ-
ous version of the stopping algorithm would then wait for the ALEKS assessment’s
recommendation to match this prediction; thus, removing this restriction allows these
assessments to end earlier. The second difference from Matayoshi et al. (2019) is
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that we are activating the stopping algorithm after 5 questions, rather than 10. As
before, this restriction on the previous version was causing some assessments to con-
tinue longer than necessary, as in many cases the classifier’s estimated probability
was already very high before reaching this minimum number of questions.

Once we have defined our stopping algorithm, we can next evaluate the effect of
the algorithm on the assessment’s performance using our held-out set of test data.
As measured by the values in Table 2, we saw in the previous section that while
the assessment-centered features gave consistent gains over the student-centered fea-
tures, the overall best performance came from the combined features; thus, for this
evaluation we exclusively use the combined set of 1884 features. The effectiveness
of Algorithm 1 will be evaluated on both the average assessment length and the accu-
racy of the predicted course placement recommendation as returned by the algorithm.
Note that since, by definition, the placement recommendation returned after question
29 is the ground truth label, perfect accuracy would be obtained if no assessments are
stopped before question 29.

The first set of results from the held-out test data are contained in Fig. 5, where
we plot the accuracy of the predicted course recommendation versus the average
assessment length, for various probability thresholds (i.e., various values of α). The
first thing to note is that the GRU model seems to give a small, but consistent,
improvement over the LSTM model. In comparison, the performance of the logis-
tic regression model, while strong, is clearly behind both of the RNN models. For
example, at an accuracy of 0.99, the GRU model has an average assessment length
of about 20.2 questions, while the logistic regression model has an average length of
about 21.1 questions; at an accuracy of 0.995, the average lengths are 21.3 and and
22.7 questions, respectively. Additionally, at any accuracy rate of 0.995 or higher, the
GRU model is a minimum of 1.4 questions better than the logistic regression, with the
maximum difference being about 2.5 questions. It should be emphasized that since
the course placement recommendation can have a significant effect on a student’s

Fig. 5 Accuracy vs. average assessment length on held-out test data for the combined features models
listed in Table 2
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Fig. 6 Accuracy of the ALEKS PPL assessment when stopped after specific question numbers. (While
the x-value for each ALEKS PPL data point is technically an “average,” all the assessments represented
by this data point have the exact same length.) For comparison, the performance of the GRU model with
the combined set of features, using various threshold values α, is also shown

subsequent classroom experience, maintaining the accuracy of the predicted recom-
mendation is extremely important. Thus, in evaluating the performance of an actual
implementation of the stopping algorithm, accuracy values above 0.995 are the most
relevant, and these are the values for which the RNN models show the greatest gains
over the logistic regression model.

Similar to our analysis in the previous section, we can compare the results of our
stopping algorithm to the current performance of the ALEKS assessment by using
the course placement recommendation after question n (i.e., Cn) as our prediction
of the ground truth label. For example, if we stop every assessment on the held-out
test set after question 28, using C28 as the predicted label results in an accuracy of
0.9795. Figure 6 shows the current placement accuracy after questions 5 to 29 where,
for comparison, we have also included the results for the GRU model. We can see
that there is a wide gap in performance between the two models. For example, after
20 questions we can see on the plot that ALEKS PPL has an accuracy of about 0.8;
in comparison, when the average assessment length of the GRU model is 20, the cor-
responding accuracy is roughly 0.99. We thus observe a very large boost in accuracy
and efficiency when the information from the current state of the ALEKS assessment
is fed to the RNN classifier. Furthermore, the accuracy values for the ALEKS place-
ment alone when it is stopped early show that, in many cases, the questions being
asked at the end of the assessment are relevant to the student’s final course place-
ment. These results emphasize the importance of our classifiers, which are able to
effectively separate the assessments that are still asking relevant questions from the
ones that are no longer gaining useful information.

We next look at the performance of the classifiers using a specific value of α.
Figure 7 contains a histogram of the assessment lengths after the stopping algorithm
is applied, using both the GRU and logistic regression models with α = 0.99. We can
see that the majority of the assessments stop early, with only about 16.5% of the GRU
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Fig. 7 Relative frequency histogram of assessment lengths after the stopping algorithm is applied on the
held-out test data, using the combined features, the GRU and logistic regression models, and a threshold
of α = 0.99

assessments continuing for the full 29 questions; for the logistic regression model,
roughly 21.7% continue for the full 29 questions. For these same models and α,
Table 4 shows the results partitioned by the actual (ground truth) classification label.
The best results, in terms of both assessment length and accuracy, are for the extreme
labels 1 and 6, with the average assessment length showing a substantial reduction
in both cases. In comparison, while still being acceptable, the gains are not nearly as
large for labels 4 and 5. It is worth mentioning that these results closely parallel what
was found in Doble et al. (2019), where an evaluation of the reliability of the ALEKS
PPL assessment was performed. In this evaluation, it was shown that ALEKS PPL
has the least variability (or, equivalently, gives the most reliable results) for labels 1
and 6, while having the greatest variability for labels 4 and 5. Thus, it seems likely
that this increased variability is a major reason for the weaker performance of the
stopping algorithm with labels 4 and 5.

Table 4 Stopping statistics by ground truth label for the GRU and logistic regression models on held-out
test data, using a threshold of α = 0.99

Class label Sample size GRU Logistic regression

Average length Accuracy Average length Accuracy

1 4357 17.48 0.9959 18.6 0.9970

2 8680 21.21 0.9944 22.23 0.9968

3 11108 21.89 0.9950 23.40 0.9947

4 7640 24.47 0.9908 25.71 0.9904

5 8259 25.34 0.9923 26.41 0.9932

6 9956 15.68 0.9971 17.35 0.9945

Total 50000 21.11 0.9943 22.42 0.9943
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To further understand the results, we next look in more detail at the probability
estimates returned by the GRU classifier after question 20. Figure 8 shows histograms
of the final item scores (i.e., the number of items classified as in-state by ALEKS
PPL at the end of the assessment), conditioned on the model classification probabili-
ties above certain thresholds; note that we include the results for all the probabilities
above a given threshold, regardless of whether or not the predicted class label is cor-
rect. For example, in the topmost plot we show the histogram computed from all the
assessments in our test set for which the GRU classifier has a maximum probability
greater than 0.8 at question 20; the other plots then show the histograms based on
higher probability thresholds. The vertical (red) lines represent the different item cut
scores given in Table 1, and from the figure we can see that the predictions with the
highest probabilities occur away from these cut scores; in other words, by the time we
reach the highest probability threshold of 0.99, hardly any item scores remain near
the red lines. This makes intuitive sense; if an item score ends up being very close to
a cut score, it is difficult for the classifier to know with much certainty on which side
of the cut score the final item score will fall.

Furthermore, from Fig. 8 we can also see that the classifier assigns the lowest
probabilities to the predictions coming from the item scores corresponding to course
labels 4 and 5 (i.e., the item scores from 144 to 238). In particular, raising the thresh-
old to 0.99 results in a dramatic reduction of the number of probabilities for labels 4
and 5 (well in excess of the relative sample sizes of these categories in comparison
to the other categories). Note that this corresponds to the weaker results shown in
Table 4 for these labels. As before, the greater variability for labels 4 and 5 discussed
in Doble et al. (2019) seems to play a role here.

l

Fig. 8 Item score histograms for the final state using all 29 questions, conditioned on the GRU model
classification probability at question 20. Vertical (red) lines correspond to the cut-scores from Table 1
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Fig. 9 Histogram of the difference between an item score and its nearest cut score from Table 1, for the
285 assessments that are classified incorrectly using the GRU model and a threshold of α = 0.99

Next, we note that using a threshold of α = 0.99, there are 285 assessments that
are classified incorrectly by the GRU model. To get a better understanding of these
misclassifications, Fig. 9 shows a histogram of the difference between each item
score and its closest cut score from Table 1. We can see that the majority of the
data points tend to cluster around the cut scores; that is, 149 of these misclassified
assessments (about 52%) are within two items of a cut score, and 222 assessments
(about 78%) are within five items of a cut score. With that in mind, it should be noted
that, if an item score is within a handful of items of a cut score, it is not clear which

l

Fig. 10 Relative frequency histogram of assessment durations on the held-out test data. Solid (green)
bars represent the assessments with the stopping algorithm applied, using the combined features GRU
model and a threshold of α = 0.99. The striped (blue) bars represent the durations from the full-length
assessments using all 29 questions
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side of the cut score a student truly should be placed. Further information would be
needed to determine which course placement is a better fit for the student.4

Assessment Duration

Building on the analyses in the previous section, we now attempt to understand the
effect of the stopping algorithm on one important aspect of the assessment: the actual
time required by each student to finish. Of the 50,000 assessments in our test set, we
have access to the specific time spent on each question for 45,470 assessments; due to
technical reasons (mainly consisting of missing or corrupted data), we are unable to
recover these data for the remaining 4,530 students. To begin, the striped (blue) bars
in Fig. 10 show the time distribution, in minutes, of these 45,470 assessments using
all 29 questions. The mean and median durations are 93.6 minutes and 82.5 minutes,
respectively. We can see from the figure that the distribution has a long tail, with the
maximum duration being about 442 minutes. The solid (green) bars in Fig. 10 then
show the distribution of the time durations after the stopping rule is applied, using
the combined features GRU model with a value of α = 0.99. Here, we can see that
the distribution has been shifted to the left, with the mean and median durations now
being 70.1 minutes and 59.7 minutes, respectively. Thus, after applying the stopping
algorithm, over half of the students are able to finish the assessment in less than an
hour, with the average assessment duration being reduced by about 23.5 minutes.

Given that the distribution of the assessment times has many students with very
long durations, we next look at the effect of the stopping algorithm on these extreme
assessments. There are 3483 students who took longer than three hours to complete
the assessment; these students have a mean duration of approximately 221.1 minutes.
After applying the stopping algorithm, the mean duration for these students drops
to 149.8 minutes (with a mean of 19.4 questions), a decrease of over 71 minutes.
Furthermore, the number of assessments longer than three hours drops to 1299 (a
reduction by a factor of ≈ 2.7). Thus, we see that the stopping algorithm has an even
more pronounced effect on the students in the (right) tail of the distribution.

What is interesting about these extreme students is that the course placement dis-
tribution is very different from the overall distribution shown in Fig. 2. As shown
in Fig. 11, the distribution is skewed to the right, with roughly 54% of the students
placing into the highest category and another 24% placing into the second-highest
category. At the moment, we do not have a good understanding of the reasons for
this shift in the distribution, and our ability to analyze the situation is complicated by
limited access to data on the subsequent course outcomes of these particular students.
One view is that these students are very methodical and thorough while taking their

4To help with issues such as this, the PPL product has an option for remediating students who are not
satisfied with their initial course placement. Thus, if a student falls short of a desired cut score, they can
take advantage of this option and retake the PPL assessment, possibly placing into a higher course.
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Fig. 11 Relative frequency histogram of course placement recommendations for the 3483 students in the
held-out test data with full-length assessments longer than 180 minutes

assessments. That is, these are (possibly) students who are very motivated to place
into a high course, and because of this they take their time, double-check their work,
and only move on to the next problem when they are confident that they have solved
the question correctly. Note that this scenario has some similarities to the findings in
Mojarad et al. (2018), where students were divided into clusters based on their learn-
ing profiles in the ALEKS system; while the results focused mostly on the learning
aspect of ALEKS, as opposed to the assessment activity, it is worth noting that the
cluster of students who worked at the slowest pace, yet simultaneously put in the
most effort, ended with the highest scores. Another contributing factor to these long
assessments is the fact that the highest performing students are likely to encounter
the most difficult material on the assessment. This material can include topics such as
trigonometry, and problems from these topics can take substantially longer to work
through in comparison to the more elementary concepts.

A possible criticism of the above reasoning is that it doesn’t completely fit with
results from other studies specifically analyzing the response times of students. For
example, the students in González-Espada and Bullock (2007) had significantly
longer response times on incorrect answers, in comparison to their response times on
correct answers, while the students in Wang and Heffernan (2012) who took longer
to answer questions were, on average, less successful; in other words, contrary to
what we observe in ALEKS PPL, in both of these studies a longer response time was
associated with weaker performance. One factor complicating this analysis is that the
decision of whether or not to proctor the ALEKS PPL assessment is made by each
individual institution, and it is possible that many of these assessments are being
taken by students at home without any supervision. Thus, in such cases it would be
feasible for some students to treat this as an “open book” exam, thereby using out-
side resources, such as textbooks or internet searches, to help find solutions to the
assessment questions; the longer assessment times could then reflect the extra effort
the students spend searching for help on the assessment questions. Understanding
more about the behavior of these extreme students is currently the subject of ongoing
research.
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Effect on the Final State

The goal of our next analysis is to evaluate the effect of the stopping algorithm on
the knowledge state that is returned by the assessment. To that end, we focus on the
differences between (a) the state that is returned when the assessments are stopped
early and (b) the state from the full-length assessments. This is an important analy-
sis, as the ALEKS PPL product has an option for remediating students who are not
satisfied with their initial course placement, with the goal for them being to retake
the ALEKS PPL assessment after the remediation and place into a higher course. In
such cases, the knowledge state serves as the starting point for the student’s remedi-
ation, and so the effect on this knowledge state should be measured and quantified.
To do this, we use two different measures that are meant to quantify the amount of
similarity between two states K and L. First, we compute the size of the symmetric
difference of the two states, which is a measure that is commonly used within KST to
compare different states (Falmagne and Doignon 2011). The symmetric difference is
simply the union of the two set differences K \ L and L \ K . Second, we compute
the Jaccard distance, which normalizes the size of the symmetric difference by the
size of the union of the states:

|K \ L| + |L \ K|
|K ∪ L| .

(In the above formula, the symbol | · | represents the size, or cardinality, of the given
set.) The Jaccard distance computation returns a value from zero to one, inclusive,
where zero indicates the sets are equal, and one indicates the sets are completely
disjoint.

For our analysis, we use the results from the combined features GRU model on
the test set, with a threshold of α = 0.99. The results are shown in Table 5, where
we can see some interesting contrasts between the two measures. For example, while
the symmetric difference values for label 1 are roughly equivalent to most of the
other labels, the Jaccard distance values are much higher; in the latter case, this is
because the Jaccard distance is computed relative to the size of the state, and the

Table 5 Statistics grouped by ground truth label for the size of the symmetric difference and the Jaccard
distance between the state returned by the stopping algorithm and the state from the full-length assessment.
For this analysis, we use the combined features GRU model on the held-out test data with a threshold of
α = 0.99

Class label Symmetric difference size Jaccard distance

Mean Median SD Mean Median SD

1 7.4 6 6.5 0.28 0.22 0.26

2 7.6 5 8.1 0.11 0.08 0.11

3 7.1 5 7.9 0.06 0.04 0.06

4 5.6 4 7.4 0.03 0.02 0.04

5 4.8 2 7.0 0.02 0.01 0.03

6 21.1 17 17.6 0.08 0.06 0.06
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label 1 states contain at most 43 items. Then, note that the symmetric difference
values for label 6 are high, but they are relatively small after being normalized with
the Jaccard distance. Additionally, students in this class are placed into the highest
possible course (Calculus) and do not need to use the remediation mode of ALEKS
PPL; thus, identifying their exact knowledge state is less critical.

Next, note that both the symmetric difference and Jaccard distance values are low-
est for classes 4 and 5. Recalling the results from the previous sections, in which it
was shown that the RNN classifier, as well as the overall stopping algorithm, has the
weakest performance for these class labels, we can assume this is due to the fact that
these assessments are not stopped as early as the rest. Specifically, in Table 4 we see
that the average assessment lengths for labels 4 and 5 are roughly 24 and 25 ques-
tions, respectively, while the remaining labels range from about 16 questions to 22
questions. Since the stopping algorithm is less confident with assessments in cate-
gories 4 and 5, it allows them to run longer, and in such a case the state returned by
the stopping algorithm is more similar to the state from the full-length assessment.

Training with Short-Term Course Placement Recommendations

The results from the previous sections show that the proposed stopping algorithm is
both accurate and efficient, and that it can have a large positive benefit on the ALEKS
PPL assessment. However, the procedure used to develop the stopping algorithm suf-
fers from at least one drawback; namely, it requires access to the course placement
recommendation of the assessment using all 29 questions, as this recommendation
is used as the target (ground truth) label while training the RNN models. The prob-
lem with this approach is that if such a stopping algorithm were to be deployed to
actual students, the majority of these assessments would be stopped before 29 ques-
tions, and we would no longer have access to the ground truth labels. According to
Fig. 7, upwards of 80% of the assessments are stopped early and would thus be miss-
ing labels; this presents obstacles for continually evaluating the performance of the
stopping algorithm, or for further retraining of the RNN model.

One possible solution is to select a subset of assessments for which the stopping
algorithm is not used. From a purely technical standpoint, this is a desirable proce-
dure as it gives access to a set of labeled data that can be used to evaluate and retrain
the RNN classifier. In comparison, from the student perspective this is suboptimal,
as many students would lose the benefits of the stopping algorithm; in this scenario
the issues of fairness and equality are significant and must be taken into consider-
ation. To avoid this problem, an alternative way to evaluate the performance of the
stopping algorithm is to directly study the outcomes of the course recommendations.
That is, we can measure the validity of the ALEKS PPL course placement recom-
mendations by looking at the performance of the students who enroll in the suggested
courses. This is currently employed as part of our standard procedure for evaluat-
ing ALEKS PPL, and this practice could be applied to evaluate the performance of
the stopping algorithm. However, this approach has its own drawbacks. For example,
while looking at something like the pass/fail rates of students can indicate if there is a
systematic problem with the ALEKS PPL recommendations, this information is not
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specific enough to use as the training labels for individual assessments, as these rates
can vary widely based on factors such as the institution, course, or instructor. Thus,
with this procedure the ground truth labels are still missing.

In the remainder of this section we explore an alternative model that attempts to
address the issues discussed in the previous paragraphs. To obtain this new model,
the only change we make to our previous model is how we select the target labels for
the RNN. Rather than using the course placement recommendations from all 29 ques-
tions as the target labels, we instead try to predict the course placement on a shorter
time scale. Specifically, at question n we use the course placement recommendation
given by the ALEKS system at question n + k, where k ≥ 1, as our target label. This
means that each assessment now generates a sequence of N −k steps, where N is the
length of the assessment, as the remaining k questions no longer have target labels;
note that the features for these N − k steps are unchanged from before. Furthermore,
we do not need to make any additional changes to our RNN model, or to Algorithm 1
(other than adjusting the thresholds, which we discuss shortly); once we have trained
our RNN model, the application of the stopping algorithm works as before. Figure 12
contains a graphical representation of this new model.

Fig. 12 Graphical depiction of the alternative RNN model using a value of k = 2. The variable xi,j

represents the j -th input feature at question i, where the total number of features, n, is equal to 1884. The
value of pi,j in the output represents the predicted probability of class label j at question i. The target
class label at question i is the ALEKS PPL course placement recommendation Ci+k at question i + k.
While our previous RNN models always used C29 as the target label at each step in the sequence, in this
model the target label changes based on the question number. In this example with k = 2, the target label
at question i is equal to the ALEKS PPL course placement recommendation from question i + 2
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The intuition behind this approach is the following. Suppose the assessment is cur-
rently at question n. If the RNN model is very confident when predicting the course
placement recommendation for question n + k, this can be interpreted as evidence
that the assessment has stabilized and can be stopped. Although we would expect
at least some drop in accuracy in comparison to having access to the course recom-
mendation using all 29 questions, the upside to this approach is that it is easier for
us to obtain access to the ground truth labels for a model that has been deployed to
production. That is, rather than having to let a subset of assessments run the full 29
questions, we only need to let this subset of assessments continue for an extra k ques-
tions, where we assume that k is a small number (under this assumption, it may even
be feasible to let every assessment continue for an extra k questions); as we will see
shortly, k = 2 is a reasonable value.

Additionally, with this new approach, since the prediction at question n only needs
to be evaluated against the label at question n + k, we can still measure the accuracy
of the first N − k questions of any assessment of length N , regardless of whether
or not the assessment was allowed to run further for data collection purposes. For
example, suppose the stopping algorithm decides to end an assessment after question
22, using a value of k = 2. This assessment will provide labeled data for questions
1 to 20 that can be used to evaluate the RNN predictions. (This is in contrast to
the original approach that always requires the label at question 29 to evaluate the
predictions at any of the previous questions.) Alternatively, if we wanted to evaluate
the predictions at questions 21 and 22 for the same assessment, we would simply
have to ask two additional questions (beyond the decision of the stopping algorithm).
Thus, this labeling strategy allows for much greater flexibility when evaluating the
performance of the RNN model.

When applying Algorithm 1 with these modified models on our validation set, we
observed that the classifiers suffer from low accuracy if the stopping algorithm is
applied too early. This isn’t all that surprising, as the classifiers are very limited in
their scope. For example, using the two-question model (i.e., k = 2), at question 10 in
the assessment the model is only making a prediction about the student’s placement
recommendation at question 12, which may not match the final label in many cases.
Thus, to compensate for this, we activate the stopping algorithm only for questions 17
and later (this value was tuned on our validation set). Additionally, our experiments
on the validation set showed that, while k = 2 gave better performance in comparison
to k = 1, there was little gain from using values larger than k = 2; thus, for our evaluation
on the test data we use k = 2 for both the GRU and logistic regression models.

The results from applying this modified algorithm are shown in Fig. 13. The origi-
nal GRU model, using the labels from the full-length assessments, has the best overall
performance. Looking at the average assessment length, it is between two to three
questions shorter than the modified models. Of note, however, is that at accuracy val-
ues of 0.995 or above, the performance of the GRU model using the n + 2 labels is
not far behind the logistic regression model using the full set of labels.

As discussed previously, in comparison to the models using the labels from the
full-length assessment, these modified models have a large disadvantage from only
knowing the information a few questions ahead. That is, during training the mod-
els with the full-length assessment labels “know” where the assessment ends, so to
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Fig. 13 Accuracy vs. average assessment length on held-out test data for the n + k models, with k = 2,
and the full models using all 29 questions. All models use the combined set of features

speak; this is in sharp contrast to the modified models, which are trained to make
short-term predictions. As shown in Table 4, the average assessment lengths for labels
1 and 6 are less than 18; given that this modified stopping rule doesn’t become active
until question 17, the difference in performance is perhaps not too surprising. Thus,
when deciding on an actual implementation of the stopping algorithm, the extra flex-
ibility afforded by this modified approach must be balanced against the superior
performance of the original model. We return to these issues in the discussion section.

Discussion

In this work we develop and analyze a stopping algorithm for an adaptive assess-
ment. In doing so, we continue the growing trend of applying deep learning and RNN
models to educational data. However, in contrast to studies that directly compare the
effectiveness of RNN models with more traditional AIED models and techniques,
we instead show that augmenting an existing model with an RNN classifier can pro-
duce very strong results. When applied to our test data, the RNN stopping algorithm
has a substantial shortening effect on the length of the ALEKS PPL assessment,
while maintaining the high level of accuracy that is required when offering course
placement recommendations. For example, with an accuracy of 0.995 the average
number of questions on the assessment is about 21.3, a reduction of over 26% from
the full-length of 29 questions.

In addition to looking at the overall accuracy and length statistics, we extend the
results from Matayoshi et al. (2019) with several additional analyses. For instance,
we examine the effect the stopping algorithm has on the time duration of assessments,
and we observe a substantial amount of time saved for the typical student. As an
example, with an accuracy of 0.995 the median time duration decreases by over 22
minutes, going from 82.5 minutes on the full-length assessments to 60.4 minutes on
the shortened assessments; based on this median time for the shortened assessments,
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we can infer that roughly half of the students would finish the assessment in about
an hour or less. Additionally, the stopping algorithm has an even larger effect on the
outlier students with very long assessment times, and a closer look at these students
reveals some interesting characteristics that require further study. We also evaluate
the effect on the final knowledge state returned by the assessment, as in some cases
this knowledge state is used as the starting point for a student’s remediation and
learning in the ALEKS PPL system.

Finally, motivated by the practical issues resulting from the implementation of the
stopping algorithm, we introduce and evaluate an alternative model that is trained in
a different fashion. While this modified stopping algorithm lags behind the original
model in terms of performance, it still results in a large gain over the current 29 ques-
tion assessment. Furthermore, this modified version is much more flexible when it
comes to evaluating its performance and retraining future models. Thus, our current
take is that both of these models have their uses, and we imagine a scenario in which,
depending on the situation, one or the other model may be deployed. For exam-
ple, given a large institution with lots of previous ALEKS PPL assessment data, we
believe that the use of the model with labels from the full-length assessment would
be preferred. In this scenario, the machine learning model can be evaluated on the
large set of historical data associated to this institution; while this may not be as ideal
as having fully labeled data from subsequent assessments, observing consistent per-
formance on several years of historical data would give us more confidence in the
applicability of the model to future student populations. Additionally, a large institu-
tion would also generate more external data, such as course grades, that can be used
to continually evaluate the accuracy of the course placement predictions.

Now, contrast this with the situation that occurs if an institution is small and has
little historical data, or has never used ALEKS PPL previously. In these cases, the
lack of existing data would make it difficult to validate the performance of the RNN
model on this new student population, as we would not have access to enough labeled
data from full-length assessments. Thus, in such situations we would prefer to deploy
the modified model with the n + k question labels. Using this model would give us
the flexibility to more thoroughly evaluate the performance of the stopping algorithm
on this new population, and it would allow us to retrain the classifier and fine-tune
it if necessary. Eventually, once we are confident in the performance of the stopping
algorithm (say, after a year or two), it’s possible the institution could then be moved
over to the full model that is more efficient.

There are a couple of directions for further improvements to the stopping algo-
rithm that we are currently exploring. In regards to the aforementioned practical
issues associated with the loss of ground truth labels, a promising approach is to use
simulated data to make up the deficit. Previous works have used simulated students
to analyze the possible effects of changes to productions systems (Dickison et al.
2010; Fancsali et al. 2013). In the specific case of ALEKS PPL, the detailed approach
for simulating student responses developed in Doble et al. (2019) could be used to
generate additional training data for the RNN models.

We are also in the process of exploring the possible benefits of using a differ-
ent architecture from the RNN models we applied. In particular, the Transformer
(Vaswani et al. 2017) is a newer architecture that is also designed to handle sequential
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data. Transformers have surpassed RNN models as the state-of-the-art in many areas
of natural language processing (Brown et al. 2020; Devlin et al. 2019; Liu et al. 2019;
Yang et al. 2019). Compared to RNN models, Transformers can be trained faster and
more efficiently (Vaswani et al. 2017), and they can handle longer sequences of data,
with training being possible on sequences of length greater than 12,000 (Child et al.
2019).

While our analysis of the Transformer architecture for the current task is very
preliminary, we can say that the initial results have not yielded any significant
improvements, either in training time or predictive performance. However, while our
models and data set are relatively large for the field of AIED, both are substantially
smaller than the largest such examples that appear in the more general artificial intel-
ligence field. For example, the largest Transformer model to date has 175 billion
parameters (Brown et al. 2020); as the largest model we built has roughly 41 million
parameters, it is smaller by over a factor of 4000. Additionally, our sequences have
length 29, which falls far short of the longest sequences Transformers are capable
of handling. If our initial results hold and we do not see a major benefit to applying
Transformer models, these large differences in scale may be at play; that is, the major
benefits of Transformers may not appear at these smaller sizes.
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