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Abstract
This article investigates the feasibility of using automated scoring methods to evaluate
the quality of student-written essays. In 2012, Kaggle hosted an Automated Student
Assessment Prize contest to find effective solutions to automated testing and grading.
This article: a) analyzes the datasets from the contest – which contained hand-graded
essays – to measure their suitability for developing competent automated grading tools;
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Dedication

Prof JimGreer, alongwith Prof GordMcCalla, in the late 90s supervisedmy (ViveKumar’s) doctoral research
at the ARIES lab, University of Saskatchewan. In those days, the pursuit of autonomous AIED was at its frenzy.
Jimwas one of the first ones to realize the need for the continued existence of an umbilical cord even after the birth
of a machine intelligence from its human creators. ARIES later formalized it as ‘human-in-the-loop’, where
humans co-create knowledge by cooperating, at various degrees of aggregation and abstraction, with an
autonomous learning machine. Jim’s vision was a companionship, where every piece of data, knowledge, advice,
decision, and policy that were in play would require an equal say from both the machine and its human creator.
The human might convince the machine, or the machine might explain away its reasoning for something to exist
in that world of companions. Jim and I had several thoroughly enjoyable conversations about the centrality of
humans in a machine-supplemented world and vice-versa. We even had one during a friendly faculty-student
baseball game, as he differentiated between a baseball catcher and a cricket wicketkeeper, on a beautiful spring
day, at the best university campus in North America. Jim argued for the continued existence of the cord, as a
precursor to building a notion of trust between the two entities. That was Jim, seeding his ideas in our minds, no
matter the place or the situation.

About a decade later, Jim was on the advisory board of the Faculty of Science and Technology at Athabasca
University where I had joined as a faculty member in 2008. Normally, he would attend the board meetings via
teleconference, but in one such meeting he was there in Edmonton, Alberta, in person. For some reason, he took
me aside during the lunch break for a chat. He said hewas looking deeply into analytics and urgedme to pursue the
low-hanging fruits of learning analytics! He wondered about the feasibility of doing analytics with smalldata while
not ignoring the compelling need for the AIED community to push the data boundary toward bigdata. We joked
about the luxury of our research colleagues in Physics, Astronomy and Biology working with truly big exabyte
datasets in subatomic data, astronomy data and genomic datasets, respectively. We talked about ways in which
AIED researchers could find a way to collect live educational data autonomously and continually, from a rather
large number of educational institutions, at a global level, for use as secondary data in exascale. That, we felt was a
way to target multiple sigma improvements in educational outcomes. That was the last time I saw Jim in his blue
shirt and that was also the last time I heard him passionately speak about AIED research, sharing a piece of his
wisdom with me. And, he must have triggered something then, as he always does. Since then our little research
group at Athabasca University managed to churn out a crop of publications, including this one, inspired a number
of budding researchers, including the second author of this article, based solely on open data, a sort of low hanging,
smalldata research. We will pursue several more harvests along the lines of deep-learned automated essay scoring,
human-in-the-loop, and trust models, in memory of Jim – a great soul, my supervisor, my inspiration – Vive
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b) evaluates the potential for deep learning in automated essay scoring (AES) to
produce sophisticated testing and grading algorithms; c) advocates for thorough and
transparent performance reports on AES research, which will facilitate fairer compar-
isons among various AES systems and permit study replication; d) uses both deep
neural networks and state-of-the-art NLP tools to predict finer-grained rubric scores, to
illustrate how rubric scores are determined from a linguistic perspective, and to uncover
important features of an effective rubric scoring model. This study’s findings first
highlight the level of agreement that exists between two human raters for each rubric as
captured in the investigated essay dataset, that is, 0.60 on average as measured by the
quadratic weighted kappa (QWK). Only one related study has been found in the
literature which also performed rubric score predictions through models trained on
the same dataset. At best, the predictive models had an average agreement level (QWK)
of 0.53 with the human raters, below the level of agreement among human raters. In
contrast, this research’s findings report an average agreement level per rubric with the
two human raters’ resolved scores of 0.72 (QWK), well beyond the agreement level
between the two human raters. Further, the AES system proposed in this article predicts
holistic essay scores through its predicted rubric scores and produces a QWK of 0.78, a
competitive performance according to recent literature where cutting-edge AES tools
generate agreement levels between 0.77 and 0.81, results computed as per the same
procedure as in this article. This study’s AES system goes one step further toward
interpretability and the provision of high-level explanations to justify the predicted
holistic and rubric scores. It contends that predicting rubric scores is essential to
automated essay scoring, because it reveals the reasoning behind AIED-based AES
systems. Will building AIED accountability improve the trustworthiness of the forma-
tive feedback generated by AES? Will AIED-empowered AES systems thoroughly
mimic, or even outperform, a competent human rater? Will such machine-grading
systems be subjected to verification by human raters, thus paving the way for a
human-in-the-loop assessment mechanism? Will trust in new generations of AES
systems be improved with the addition of models that explain the inner workings of
a deep learning black box? This study seeks to expand these horizons of AES to make
the technique practical, explainable, and trustable.

Keywords Automated essay scoring . Deep learning . Neural network . Natural language
processing . Feature importance . Rubrics

Introduction

Recent advances in deep learning and natural language processing (NLP) have chal-
lenged automated testing and grading methods to improve their performance and to
harness valuable hand-graded essay datasets – such as the free Automated Student
Assessment Prize (ASAP) datasets – to accurately measure performance. Presently,
reports about the performance of automated essay scoring (AES) systems commonly –
and perhaps inadvertently – lack transparency. Such ambiguity in research outcomes of
AES techniques hinders performance evaluations and comparative analyses of tech-
niques. This article argues that AES research requires proper protocols to describe
methodologies and to report outcomes. Additionally, the article reviews state-of-the-art
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AES systems assessed using ASAP’s seventh dataset to: a) underscore features that
facilitate reasonable evaluation of AES performances; b) describe cutting-edge natural
language processing tools, explaining the extent to which writing metrics can now
capture and indicate performance; c) predict rubric scores using six different feature-
based multi-layer perceptron deep neural network architectures and compare their
performance; and d) assess the importance of the features present in each of the rubric
scoring models.

The following section provides background information on the datasets used in this
study that are also extensively exploited by the research community to train and
evaluate AES systems. The third section synthesizes relevant literature about recent
developments in AES, compares contemporary AES systems, and evaluates their
features. The fourth section examines methodologies that support finer-grained rubric
score prediction. The fifth and sixth sections explore the distribution of holistic and
rubric scores, delineate the performance of naïve and “smart” deep/shallow neural
network predictors, and discuss implications. The seventh section initiates a discussion
on the linguistic aspects considered by the rubric scoring models and how each rubric
scoring model differs from each other. Finally, the last section summarizes conclusions,
highlights limitations, and discusses next stages of AES research.

Background: The Automated Student Assessment Prize

In 2012, the Hewlett-Packard Foundation funded an Automated Student Assessment
Prize (ASAP) contest to evaluate both the progress of automated essay scoring and its
readiness to be implemented across the United States in state-wide writing assessments
(Shermis 2014). Kaggle1 collected eight essay datasets from state-wide assessments of
student-written essays – which Grade 7 to Grade 10 students from six different states in
the USA had written. Kaggle then subcontracted commercial vendors to grade the
essays adhering to a thorough scoring process.

Each essay dataset originated from a single assessment for a specific grade (7–10) in
a specific state. The ASAP contest asked participants to develop AES systems to
automatically grade the essays in the database and report on the level of agreement
between the machine grader and human graders, measured by the quadratic weighted
kappa. This article argues that the performance comparison process was neither
effective nor balanced since, as Table 1 demonstrates, each dataset had a unique
underlying writing construct. Instead, AES performance should be analyzed per writing
task instead of being analyzed globally.

Both commercial vendors and data scientists from academia participated in the
contest. Officials determined the winners based on the average quadratic weighted
kappa value on all eight essay datasets. While this measure was useful for contest
purposes, it does not offer a transparent account of research processes and results. For
instance, it has been shown that more interpretable and trustworthy models can be less
accurate (Ribeiro et al. 2016). Following the publication of the contest results (Shermis
2014), Perelman (2013, 2014) warned against swift conclusions that AES could
perform better than human graders simply because it surpassed the level of agreement

1 https://www.kaggle.com/c/asap-aes
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among human graders. For example, Perelman (2013, 2014) illustrated how one could
easily mislead an AES system by submitting meaningless text with a sufficiently large
number of words.

The ASAP study design had several pitfalls. For example, none of the essay datasets
had an articulated writing construct (Perelman 2013, 2014; Kumar et al. 2017) and only
essays in datasets 1, 2, 7, and 8 truly tested the writing ability of students. Datasets 1, 2,
and 8 had a mean number of words greater than 350 words, barely approaching typical
lengths of high-school essays. Finally, only datasets 7 and 8 were hand-graded
according to a set of four rubrics.

The eighth essay dataset (D8) stood out from others because 1) it did not suffer from
a bias in the way holistic scores were resolved (Perelman 2013, 2014; Kumar et al.
2017), 2) it had the highest mean number of words (622), reflecting a more realistic
essay length, 3) the holistic scores had the largest scoring scale computed out of a set of
rubric scores (see Table 1), and 4) it had one of the lowest AES mean quadratic
weighted kappa values (0.67). Accordingly, D8 seemed both challenging and promis-
ing for both machine learning and for providing formative feedback to students and
teachers. However, a previous study (Boulanger and Kumar 2019) has shown that D8
was insufficient to train a model using feature-based deep learning and an accurate and
generalizable AES model, because it had both an unbalanced distribution of holistic
scores (high-quality essays were clearly under-represented) and a very small sample
size (every holistic score and rubric score did not have enough samples to learn from).
After the ASAP contest, only the labeled (holistic/rubric scores) training set was made
available to the public; the labels of the validation and testing sets were no longer
accessible. Thus, the essay sample totals currently available per dataset are less than the
numbers listed in Table 1; only 722 essays of D8 were available to train an AES model.
These limitations served as a key motivation for this study to target the seventh dataset
(D7), which contained 1567 essay samples, despite its having only a mean number of
words of about 171 words (about one paragraph). D7 was the only other available
dataset that had essays graded following a grid of scoring rubrics. D7’s holistic scoring
scale was 0–30 compared to D8’s 10–60, and D7’s rubric scoring scales were 0–3
compared to D8’s 1–6.

Table 2 (Shermis 2014) shows the level of agreement between the two human
graders’ ratings and the resolved scores for all eight datasets. Each essay was scored by

Table 1 Characteristics of ASAP’s original essay datasets (Shermis 2014)

D1 D2 D3 D4 D5 D6 D7 D8

G 8 10 10 10 8 10 7 10

T P P S S S S E N

N 2968 3000 2858 2948 3006 3000 2722 1527

MW 366 381 109 94 122 154 171 622

SS 2–12 1–6 0–3 0–3 0–4 0–4 0–24 10–60

R Yes Yes

G =Grade; T = Type of essay; N =Number of essay samples; MW=Mean # of words; SS = Scoring scale;
R =Usage of scoring rubrics; P = Persuasive; S = Source-based; E = Expository; N =Narrative
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two human graders except for the second dataset where the final score was decided by
only one human grader. For D7, the resolved rubric scores were computed by adding
the human raters’ rubric scores.2 Hence, each human rater gave a score between 0 and 3
for each rubric (Ideas, Organization, Style, and Conventions; see Table 3). Subsequent-
ly, the two scores were added together, yielding a rubric score between 0 and 6. Finally,
the holistic score was determined according to the following formula: HS = R1 + R2 +
R3 + (2 ∗ R4), for a score ranging from 0 to 30. All agreement levels are calculated using
the quadratic weighted kappa (QWK). For each essay dataset, the mean quadratic
weighted kappa value (AES mean) of the commercial vendors in 2012 is also reported.

D7’s writing assessment, intended for Grade-7 students, was of persuasive/narrative/
expository type, and had the following prompt:

Write about patience. Being patient means that you are understanding and
tolerant. A patient person experiences difficulties without complaining.
Do only one of the following: write a story about a time when you were patient
OR write a story about a time when someone you know was patient OR write a
story in your own way about patience.

Table 3 describes the rubric guidelines that were provided to the two human raters who
graded each of the 1567 essays made available in the training set.

Related Work

This section provides detailed analysis of recent advances in automated essay scoring,
by examining AES systems trained on ASAP’s datasets. Most of the published research
measured and reported their performance as the level of agreement between the
machine and human graders, expressed in terms of both the quadratic weighted kappa
on ASAP’s D7 and the average agreement level on all eight datasets. Table 13 (see
Appendix 1; due to the size of some tables in this article, they have been moved to
appendices so they do not interrupt its flow) compares the various methods and
parameters used to achieve the reported performances.

One of the most relevant research projects involved experimenting with an AES
system based on string kernels (i.e., histogram intersection string kernel), v-Support
Vector Regression (v-SVR), and word embeddings (i.e., bag of super-word embed-
dings) (Cozma et al. 2018). String kernels measure the similarity between strings by
counting the number of common character n-grams. The AES models were trained on
the ASAP essay datasets and tested both with and without transfer learning across essay
datasets. Transfer learning stores knowledge learned in one task and applies it to
another (similar) task, in which labeled data is not abundant.3 Accordingly, the
knowledge from the former task becomes the starting point for the model in the latter
task.4 The outcomes of this experiment are reported in Table 13.

2 As for D8, the resolved scores were determined by a set of adjudication rules, where a third human grader
was involved if the disagreement between the first two human graders was too significant, making the
adjudication process less biased (Kumar et al. 2017; Perelman 2013, 2014).
3 https://www.datacamp.com/community/tutorials/transfer-learning
4 https://machinelearningmastery.com/transfer-learning-for-deep-learning/
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A second, highly relevant study, using ASAP datasets, investigated how transfer
learning could alleviate the need for big prompt-specific training datasets (Cummins
et al. 2016). The proposed AES model consisted of both an essay rank prediction model
and a holistic score prediction model. The AES model was trained based on the
differences between the two essays, generating a difference vector. Accordingly, the
model predicted which of the two essays had higher quality. Subsequently, a simple
linear regression modeled the holistic scores using the ranking data. The process
reduced the data requirements of AES systems and improved the performance of the
proposed approach, which proved to be competitive.

Thirdly, the notable research from Mesgar and Strube (2018) effectively exhibited
how deep learning could help with crafting complex writing indices, such as a neural
local coherence model. Their architecture consisted of a convolutional neural network
(CNN) layer at the top of a long short-term memory (LSTM) recurrent neural network
(RNN). It leveraged word embeddings to derive sentence embeddings, which were
inserted in the coherence model. The coherence model was designed to analyze the
semantic flow between adjacent sentences in a text. A vector – which consisted of

Table 2 Agreement levels (QWK) among human raters and resolved scores for each of the eight essay
datasets; average performance (QWK) per essay dataset of commercial vendors participating to the 2012
ASAP contest

H1 H2 H1H2 Commercial AES Mean

1 0.77 0.78 0.73 0.77

2a – 0.80 0.80 0.70

2b – 0.76 0.76 0.66

3 0.92 0.89 0.77 0.71

4 0.93 0.94 0.85 0.77

5 0.89 0.90 0.74 0.80

6 0.89 0.89 0.74 0.74

7 0.78 0.77 0.72 0.76

8 0.75 0.74 0.61 0.67

Table 3 Rubric guidelines provided to the human markers of ASAP’s D7 writing assessment

Rubric Guideline

Ideas (R1) Is the story told with ideas that are clearly focused on the
topic and are thoroughly developed with specific, relevant details?

Organization (R2) Are organization and connections between ideas
and/or events clear and logically sequenced?

Style (R3) Does the command of language, including effective
and compelling word choice and varied sentence structure,
clearly support the writer’s purpose and audience?

Conventions (R4) Is the use of conventions of Standard English for grammar,
usage, spelling, capitalization, and punctuation consistent
and appropriate for the grade level?
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LSTM weights at a specific point in the sequence – modeled the evolving state of the
semantics of a sentence at every word. The two most similar states in each pair of
sentences were used to assess the coherence among them, and were given a value
within 0 and 1, inclusively, where 1 indicated no semantic change and 0 a major
change. The CNN layer extracted patterns of semantic changes that correlated with the
final writing task.

A two-stage featured-based learning and raw text-based learning AES model was
tested (Liu et al. 2019) and was found to be able to detect adversarial samples (i.e.,
essays with permuted sentences, prompt-irrelevant essays). Literature (Perelman 2013,
2014) identifies such samples as a major weakness of AES. In the first stage, three
distinct LSTM recurrent neural networks were employed to a) assess the semantics of a
text independent of the essay prompt (e.g., through sentence embeddings), b) estimate
coherence scores (to detect permutated paragraphs), and c) estimate prompt-relevant
scores (to detect when an essay complies with prompt requirements). These three scores
along with spelling and grammatical features were input in the second learning stage to
predict the final score of the essay.

Another study examined the data constraints related to the deployment of a large-
scale AES system (Dronen et al. 2015). Three optimal design algorithms were tested:
Fedorov with D-optimality, Kennard-Stone, and K-means. Each optimal design algo-
rithm recommended which student-written essays should be scored by a human or
machine (a noteworthy example of the separation of duties among human and AI
agents (Abbass 2019)). However, a few hundred essays were required to bootstrap
these optimal design algorithms. The goal was to minimize the teacher’s workload,
while maximizing the information needed from the human grader to improve accuracy.
The three optimal design algorithms were evaluated using ASAP’s eight datasets. Each
essay was transformed into a 28-feature vector based on mechanics, grammar, lexical
sophistication, and style, and extracted by the Intelligent Essay Assessor. The AES
system also leveraged a regularized regression model (Ridge regression) to predict
essays’ holistic scores. The Fedorov exchange algorithm with D-optimality delivered
the best results. Studies show that for certain datasets, training a model with 30–50
carefully selected essays “yielded approximately the same performance as a model
trained with hundreds of essays” (Dronen et al. 2015). Results were reported in terms of
Pearson correlation coefficients between the machine and human scores. However,
correlation coefficients were not provided for all ASAP essay datasets! For instance,
the correlation coefficient for D7 was not included in the report.

A feature-based AES system called SAGE was designed and tested using several
machine learning architectures such as linear regression, regression trees, neural net-
work, random forest, and extremely randomized trees (Zupanc and Bosnić 2017).
SAGE was unique in that it incorporated, for the first time, 29 semantic coherence
and 3 consistency metrics, in addition to 72 linguistic and content metrics. Interestingly,
SAGE appears to have been tested using the original labeled ASAP testing sets made
available during the 2012 ASAP contest. Unfortunately, those testing sets are no longer
available. Hence, most research on AES simply report their performance on the training
sets, which may prevent a fair comparison of performance and technique against reports
by Zupanc and Bosnić (2017). Nevertheless, SAGE distinguishes itself from other
systems because it undertook a deeper analysis at the rubric level for the eighth ASAP
dataset investigating D8’s second rubric ‘Organization’. SAGE’s capacity to both
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predict the Organization rubric, which will be discussed later in this article, and to
leverage metrics related to semantic coherence are of special interest.

Automated essay scoring (AES) comprises few but highly distinct areas of explo-
ration, and significant advances in deep learning have renewed interests in pushing the
frontiers of AES. Table 13 shows that most publication years range between 2016 and
2019. The table highlights the latest research endeavors in AES, including respective
algorithms. All models were trained on the ASAP’s datasets. As mentioned above, this
article investigates the underpinnings of AES systems on ASAP’s seventh dataset.
Accordingly, it reports both the performance of these models on that dataset and their
average performance on all eight datasets. Table 13 shows that Zupanc and Bosnić
(2017) reached the highest performance, i.e. a quadratic weighted kappa of 0.881 on the
seventh dataset. However, note that they seemingly had access to the original labeled
testing sets that were available during the 2012 ASAP competition, which should be
factored in efforts to compare their performances against other models.

Literature is scarce when it comes to measuring the level of agreement between the
machine and the human graders at the rubric score level (Jankowska et al. 2018). A
synthesis of rubric level comparison is presented in the Discussion section below. This
research investigates the prediction of rubric scores of ASAP’s D7 rubrics by applying
deep learning techniques on a vast range of writing features.

Methodology

Natural Language Processing

The essay samples (1567) were processed by the Suite of Automatic Linguistic
Analysis Tools (SALAT)5 – GAMET, SEANCE, TAACO, TAALED, TAALES, and
TAASSC. Each essay was subjected to a total of 1592 writing features. This study
opted for maximizing the number of low-level writing features, and the optimal
selection of features for the AES model was performed by a deep learning mechanism
in an automated fashion. The commercial AES system called Revision Assistant,
developed by Turnitin, demonstrated that automatically selected features are not less
interpretable than those engineered by experts (West-Smith et al. 2018; Woods et al.
2017). The following subsections describe the individual SALAT tools and the writing
indices they measure, while the Analysis subsection will describe how these tools have
been applied.

Grammar and Mechanics Error Tool (GAMET)

GAMET is an extension of the LanguageTool (version 3.2) API that measures struc-
tural and mechanical errors. LanguageTool has been demonstrated to have high
precision but low recall (e.g., poor recognition of punctuation errors). It can flag a
subset of 324 spelling, style, and grammar errors (Crossley et al. 2019a) and classify
them into six macrofeatures listed below:

5 https://www.linguisticanalysistools.org/
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& Grammar: errors related to verb, noun, adjective, adverb, connector, negation, and
fragment.

& Spelling: deviations from conventional dictionary spellings of words.
& Style: wordiness, redundancy, word choice, etc.
& Typography: capitalization errors, missing commas and possessive apostrophes,

punctuation errors, etc.
& White space: inappropriate spacing such as unneeded space (e.g., before punctu-

ation) or missing space.
& Duplication: word duplications (e.g., You you have eaten this banana.).

For analysis purposes, these macrofeatures are more efficient than individual
microfeatures. Literature shows that automated assessment of spelling accuracy had a
higher correlation with human judgments of essay quality than grammatical accuracy,
possibly due to certain interference that mechanical errors might have over meaning,
and because grammatical errors were weakly associated with writing quality (less than
0.15) (Crossley et al. 2019a).

Sentiment Analysis and Cognition Engine (SEANCE)

SEANCE is a sentiment analysis tool that calculates more than 3000 indices relying on
third-party dictionaries (e.g., SenticNet, EmoLex, GALC, Lasswell, VADER, General
Inquirer, etc.) and part-of-speech (POS) tagging, component scores (macrofeatures),
and negation rules.

This study configured SEANCE to include only word vectors from the General
Inquirer, which encompasses over 11,000 words organized into 17 semantic categories:
semantic dimensions, pleasure, overstatements, institutions, roles, social categories,
references to places and objects, communication, motivation, cognition, pronouns,
assent and negation, and verb and adjective types.

Since most essays in ASAP’s D7 are not high-quality writings, this study only used
the writing indices that were independent of POS. SEANCE includes a smaller set of
20 macrofeatures that combine similar indices from the full set of indices, which were
derived by conducting a principal component analysis on a movie review corpus. For
more information, please consult Crossley et al. (2017).

Tool for the Automatic Analysis of Cohesion (TAACO)

TAACO (Crossley et al. 2016, 2019b) provides a set of over 150 indices related to
local, global, and overall text cohesion. Texts are first lemmatized and grouped per
sentence and paragraph before TAACO employs a part-of-speech tagger and synonym
sets from the WordNet lexical database to compute cohesion metrics.

TAACO’s indices can be grouped into five categories: connectives, givenness, type-
token ratio, lexical overlap, and semantic overlap. Lexical overlapmeasures the level of local
and global cohesion between adjacent sentences and paragraphs. The overlap between
sentences or paragraphs is estimated by considering lemmas, content word lemmas, and
the lemmas of nouns and pronouns. TAACO not only counts how many sentences or
paragraphs overlap, but also assesses howmuch they overlap. Like lexical overlap, TAACO
estimates the degree of semantic overlap between sentences and paragraphs.
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TAACO assesses the amount of information that can be recovered from previous
sentences, called givenness, and computes counts of various types of pronouns (i.e.,
first/second/third person pronouns, subject pronouns, quantity pronouns). It calculates
the ratio of nouns to pronouns, the numbers of definite articles and demonstratives, and
the number and ratio of unique content word lemmas throughout the text. Moreover,
TAACO measures the repetition of words and provides indices to measure local
cohesion through connectives.

Tool for the Automatic Analysis of Lexical Diversity (TAALED)

TAALED calculates 38 indices of lexical diversity. At the basic level, TAALED counts
the number of tokens, the number of unique tokens, the number of tokens that are
content words, the number of unique content words, the number of tokens that are
function words, and the number of unique function words (6 metrics). Subsequently, it
calculates features of lexical diversity and lexical density (Johansson 2009).

Lexical diversity metrics include simple, square root, and log type-token ratios (TTR)
calculated on the sets of all words, content words, and function words (9 metrics).
Lexical density metrics calculate the percentage of content words and the ratio of the
number of unique content words over the number of unique tokens (2 metrics).

More complex variants of TTR are provided by TAALED such as the Maas index,
which linearizes the TTR curve using log transformation (Fergadiotis et al. 2015) (3
metrics); the mean segmental TTR with 50 segments (MSTTR50) (3 metrics); and the
more effective moving average TTR with window size of 50 (MATTR50) (Covington
and McFall 2010) (3 metrics). These variants are all computed in relation to the sets of
all words, content words, and function words.

Still more advanced metrics include the hypergeometric distribution’s D index (HD-
D 42), which calculates the probability of drawing from the text a certain number of
tokens of a particular type from a random sample of 42 tokens (McCarthy and Jarvis
2010; Torruella and Capsada 2013) (3 metrics).

Finally, TAALED’s features include the original measure of textual lexical diversity
(MTLD), which “is calculated as the mean length of sequential word strings in a text
that maintain a given TTR value” (McCarthy and Jarvis 2010), along with two of its
variants, the bidirectional moving average (MTLD-MA-BI) and the wrapping moving
average (MTLD-MA-Wrap) (9 metrics).

Tool for the Automatic Analysis of Lexical Sophistication (TAALES)

TAALES (Kyle et al. 2018) measures over 400 indices of lexical sophistication related
to word and n-gram frequency and range, academic language, psycholinguistic word
information, n-gram strength of association, contextual distinctiveness, word recogni-
tion norms, semantic network, and word neighbors. Several of these metrics are normed
such as word and n-gram frequency and range metrics, which are measured according
to the number of word or n-gram occurrences found in large corpora of English
writings (i.e., Corpus of Contemporary American English (COCA), British National
Corpus (BNC), and Hyperspace Analogue to Language (HAL) corpus) and frequency
lists (i.e., Brown, Kucera-Francis, SUBTLEXus, and Thorndike-Lorge). These 268
frequency and range metrics are calculated according to five domains of literature:
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academic, fiction, magazine, news, and spoken. These metrics allow one to
measure the number of times a word or n-gram occurs in a corpus and the
number of texts in which it is found.

Fifteen academic language metrics measure the proportions of words or phrases in a
text that are frequently found in academic contexts but are less generally used in
mainstream language. Using the MRC database (Coltheart 1981), psycholinguistic
word information (14 metrics) gauges concreteness, familiarity, meaningfulness, and
age of acquisition observed in the text.

Further, age of exposure/acquisition values (7metrics) are derived from the set of words in
the Touchstone Applied Science Associates (TASA) corpus, which consists of 13 grade-level
textbooks from USA. This makes it possible to measure the complexity of the words
employed within a text and their links to semantic concepts as found in larger corpora.

Word recognition norms (8 metrics) make it possible to estimate the difficulty of
processing a given word, such as, the time it takes a person to recognize that a specific
word is an English word and the time it takes to read the word aloud. These word
recognition scores have been calculated on a bank of 40,481 real words from the
English Lexical Project, which includes the response latencies, standard deviations, and
accuracies of 816 native English speakers on lexical-decision and word-naming tasks.

Word neighborhood indices (14 metrics) report the similarity of a word in a text to
other similar orthographic (words that are formed by changing just one letter), phono-
graphic (words that differ by one letter and one phoneme), and phonological words
(words that differ by only one phoneme).

TAALES includes 8 metrics related to contextual distinctiveness, based on the diversity
of contexts in which a word occurs. It evaluates how much the words in a text are
contextually distinct using free association norms and corpus-driven statistical approaches
based on the Edinburgh Associative Thesaurus and the University of South Florida norms.

TAALES provides information (14 metrics) using the WordNet lexical database on
the polysemy and hypernymy semantic networks of a word making it possible to
measure the number of related senses and the number of superordinate terms that the
word has.

TAALES assesses the strength of association within n-grams by computing
the conditional probability that the words in bigrams and trigrams in a specific
text will occur together based on the n-gram frequency norms derived from
large corpora (75 metrics).

Tool for the Automatic Assessment of Syntactic Sophistication and Complexity
(TAASSC)

TAASSC (Kyle 2016) quantitatively evaluates the syntactic sophistication and com-
plexity of English writing. It calculates 367 indices, grouped into four categories: 14
Syntactic Complexity Analysis (SCA) indices (Lu 2010), 31 fine-grained indices on
clausal complexity, 132 indices related to fine-grained phrasal complexity, and 190
syntactic sophistication indices.

Basically, the 14 SCA indices are derived from the counts, ratios, and mean lengths
of the following syntactic structures within a text: words, verb phrases, complex
nominals, coordinate phrases, clauses, dependent clauses, T-units, complex T-units,
and sentences. Table 4 provides some definitions of these structures.
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TAASSC enhances the previous SCA set of indices by adding 31 new clausal
complexity indices, obtained by calculating the average number of every type of
structure per clause. In other words, TAASSC measures the length of clauses as the
number of direct dependents rather than words; it also provides separate counts of each
type of structure instead of combining them all; and, finally, it considers clauses as
being both finite and non-finite. See (Kyle 2016) for the complete list of clausal
dependent types.

TAASSC computes 132 indices of phrasal complexity by identifying seven types of
noun phrases and 10 types of phrasal dependents.

Finally, TAASSC supplies 15 basic indices related to syntactic sophistication
established on the empirical theories of language acquisition through reference corpora
such as the British National Corpus (BNC) and the Corpus of Contemporary American
English (COCA). Each index has 38 variants derived from the five COCA subcorpora
(academic, fiction, magazine, newspaper, and spoken), for a total of 190 indices.

How the Tools Were Applied

This article6 revises the methodology adopted in the previous work (Boulanger and
Kumar 2019) to predict rubric scores using feature-based deep learning (multi-layer
perceptron (MLP) neural network) and proposes a way to explain the reasons that
typically hide behind the deep learning algorithm. As mentioned in the the Background
section, Boulanger and Kumar trained an AES model that scored D8’s essays with a
feature-based approach, rather than training a sequence model such as a LSTM (long
short-term memory) recurrent neural network using the raw text data. In addition to the
inadequate sample size of D8, their study had one major limitation: feature selection.
Ninety-six (96) writing features that most correlated with the holistic scores were
selected to predict all four rubrics (Ideas and Content, Organization, Sentence Fluency,
Conventions) of the D8 writing assessment. In other words, unique writing features
should have been identified for each of the four rubrics instead of re-using the same
feature set for all four of them. The study also assesses feature importance per rubric.

The first step in the analysis was to look into D7’s distributions of holistic and rubric
scores and evaluate the number of essay samples per rubric score. The analysis

6 Code and data are available at: https://osf.io/puyvh/.

Table 4 Syntactic structures counted by Syntactic Complexity Analysis (SCA) (Kyle 2016; Lu 2010)

Structure Description

Verb phrase a finite or non-finite verb phrase that is dominated by a clause marker

Complex nominal nouns with modifiers, nominal clauses, gerunds/infinitives functioning as subjects

Coordinate phrase adjective/adverb/noun/verb phrases connected by a coordinating conjunction

Phrase clause a syntactic structure with a subject and a finite verb

Dependent clause a finite clause that is a nominal, adverbial, or adjective clause

T-unit an independent clause and any clauses dependent on it

Complex T-unit a T-unit that includes a dependent clause
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continues by quantitatively measuring the interrelationships between the underlying
rubrics. Next, the analysis establishes a baseline naïve predictor to precisely measure
and compare the performance of various deep neural network architectures.

The second step designs and applies a feature selection process for each of the four rubrics.
There are three types of feature selection methods: filter (use statistical method to determine
which features should be pruned), wrapper (an external predictive model is trained to evaluate
the impact of different combinations of features on model accuracy), and embedded (feature
selection occurs as the model is trained through regularization methods).7 This study applies
both the filter and embedded methods. First, feature data were normalized, and features with
variances lower than 0.01 were pruned. Second, the last feature of any pair of features having
an absolute Pearson correlation coefficient greater than 0.9was pruned (the one that comes last
in terms of the column ordering in the datasets).8 This second operation was performed
individually on the feature set of each SALAT’s tool to ensure fair representation among
grammar and mechanics, sentiment analysis and cognition, text cohesion, lexical diversity,
lexical sophistication, and syntactic sophistication and complexity. Third, any feature that
directly counted the number of words or tokens in the essays was also pruned to reduce the
rubric scoring models’ dependencies on the very influential counts of words (Perelman 2013,
2014). After the application of these filter methods, the number of features was reduced from
1592 to 397. All four rubric models fed upon these 397 features. Fourth and finally, the Lasso
(Fonti and Belitser 2017) and Ridge regression regularization methods (whose combination is
also called ElasticNet) were applied as part of the rubric scoring models’ training. Lasso is
responsible for pruning further features, while Ridge regression is entrusted with eliminating
multicollinearity among features. This final phase of feature selection allowed for the custom-
ized feature selection per rubric.

In the third step, six deep learning (MLP) architectures were tested. It is important to
indicate that seven of the most important hyperparameters were tuned to find a quasi-
optimal combination. They are 1) activation function (selu, elu, relu, tanh, sigmoid,
exponential), 2) optimizer (Adam, SGD, Adadelta, Adamax, Nadam), 3) L1 penalties
(10 equally distributed values between 0.0035 and 0.0125), 4) L2 penalties (10 equally
distributed values between 0.0035 and 0.0125), 5) number of hidden layers (2, 3, 4, 5),
6) number of neurons in the first hidden layer (128, 256), and 7) number of neurons in
the last hidden layer (16, 32). This hyperparameter space encompasses 48,000 different
combinations. A randomized search consisting of 200 randomly sampled combinations
of hyperparameters was tested for each of the six architectures. Table 5 delineates the
final hyperparameters of the six architectures. Only three architectures are shown in
Table 5, each of them being used again as part of a bagging ensemble technique.
Interestingly, all three architectures have only two hidden layers, below a recommend-
ed threshold of three to be considered “deep” learning (Rosebrock 2017). More
hyperparameters, larger ranges of and finer-grained hyperparameter values,
and a larger number of hyperparameter combinations should have been tested
to learn better model parameters. The smaller sample size and hyperparameter
space are a limitation of this study due to a lack of high-performance comput-
ing resources (HPC). As a follow-up study, we plan to re-design and re-run the
analysis when the HPC resources are secured.

7 For more information, consult https://machinelearningmastery.com/an-introduction-to-feature-selection/.
8 https://github.com/WillKoehrsen/feature-selector
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Finally, the last step estimates feature importance for each of the trained rubric
scoring models. A technique called permutation importance (Breiman 2001) random-
izes the values of a feature in the testing set multiple times, one feature at a time,
measures the average change (called the weight) in the model’s predictive power (e.g.,
percentage of accurate predictions), and ranks features by weight in descending order.
Rubric score predictions are presented in confusion matrices, and corresponding
precision, recall, and F1-score values are reported. However, only one set of
hyperparameter values has been optimized per deep learning architecture. Hence, all
four rubric scoring models pertaining to each architecture have been trained with the
same set of hyperparameter values. This is another limitation that we aim to address in
the follow-up study.

Results

This study investigated both the feasibility and benefits of applying automated essay
scoring at the rubric level. Rubric scores provide high-level formative feedback
that are useful to both student-writers and teachers. Most of the literature in this
domain focuses almost exclusively on predicting holistic scores. This article goes
one step further by analyzing the performance of deep/shallow learning on rubric
score prediction and by investigating the most important writing indices that
determine those rubric scores.

The first step in the process is to know the dataset that will train the rubric scoring
models. Figure 1 shows the distribution of D7’s holistic scores. Note that the scoring
scale is from 0 to 24.9 The distribution of holistic scores appears quite balanced
from score 6 up to 24. Very few or no essays have been assigned a final score
lower than 6, which is reasonable. The most frequently given scores are 16 (199
times) and 17 (160 times); other scores’ frequencies are relatively uniform (be-
tween 20 and 118), allowing an AES system to learn from high-quality, average,
and low-quality essays.

The human raters’ distributions of scores, all rubrics combined (R1 + R2 + R3 + R4),
are exhibited in Fig. 2. The figure highlights the raters’ biases. According to Table 2,
their agreement level, measured by QWK, is 0.72.

Additionally, to take advantage of this unique hand-graded set of essays, this article
was motivated by the idea that holistic scores could be better predicted through the
prediction of its constituent rubric scores. The rationale for that is simple. In the best
case, if the distribution of holistic scores was uniform, there would be about 1567/25 ≈
62 examples per score, which is not much to teach all the intricacies of English writing.
On the other side, the scale of rubric scores ranges from 0 to 6, implying that in the best
case there would be 1567/7 ≈ 223 essays per rubric score, which means more essays
from which to assess a narrower competence of English writing. However, it is beyond
the scope of this single study to verify whether the prediction of holistic scores is more
accurate through the prediction of its constituent rubric scores, especially given that less

9 As previously indicated, the actual scale of holistic scores is 0–30 because the Conventions rubric score
counts as twice: HS = R1 + R2 + R3 + (2 ∗ R4). For simplicity, the Conventions rubric will be counted just once
in this study so that the scoring scale is 0–24.
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accurate models may as well be more interpretable (Ribeiro et al. 2016) and that
predictive accuracy alone is not the only criterion to determine the trustworthiness of
an AES system (Murdoch et al. 2019). Figure 3 exhibits the distributions of scores by
rubric, while Table 6 presents their descriptive statistics.

Table 7 shows the level of agreement among rubrics, measured by both the quadratic
weighted kappa and the average agreement level per rubric. Note from Fig. 3 and
Table 6 that each rubric’s most frequent score is 4. Table 7 also indicates that the
rubrics generally have moderate-strong levels of agreement, suggesting that an AES
system could naively predict 4 as the rubric score for each rubric and a holistic score of
16 as per the formula: HS = R1 + R2 + R3 + R4.

The performance of this naïve AES system (also known as majority classi-
fier) is delineated in Table 8. Four metrics are used throughout this article to
measure the performance of an AES model. They are, a) the quadratic weighted
kappa; b) the percentage of exact predictions; c) the percentage of exact and
adjacent (±1) predictions (simply denoted by “adjacent (±1)” from now on); and
d) the percentage of exact, adjacent (±1), and adjacent (±2) predictions (simply
denoted by “adjacent (±2)” from now on).

The quadratic weighted kappa measures the level of agreement between two raters
by controlling for random guessing and by heavily penalizing higher distances
(squared) between pairs of ratings. The weighted kappa normalizes weight assignment
based on the agreement scale and ranges between 0 and 1. For example, holistic scores
are predicted on a 0–24 scale, while rubric scores lie between 0 and 6. Hence, the
penalty (weight) assigned to a predicted holistic score that is ‘off by 2’ will be less than
the penalty assigned to a predicted rubric score that is ‘off by 2’.

Percentage of exact matches measures the accuracy of the AES model in terms of
percentages of correct predictions in contrast to all other predictions that are wrong no

Fig. 1 Distribution of holistic scores

Fig. 2 Distributions of human raters’ scores (all rubrics combined)
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matter their distance from the expected value. Percentages of adjacent matches indicate
the numbers of predictions that fall within a certain distance of the expected value. This
study considers distances of one and two.

Both supervised classification and regression techniques have been leveraged to
model rubric scores. Table 9 reports the performance of six distinct deep learning MLP
architectures that are trained, validated, and tested on ASAP’s seventh dataset. Each
essay was converted to a vector of 397 writing features. The 1567 essays have been
randomly split into a training and testing set, that is, 80% of the essays formed the
training set (1254), while the remaining 20% formed the testing set (313). Although
validation results are not reported in this article, 15% of the training set was used as a
validation set to drive model training toward better accuracy (except in ensemble-based
models). A 5-fold cross-validation was performed for each ensemble-based architec-
ture, implying that the training set was randomly split into a smaller training dataset
(80% = 1003 essays) and a validation set (20%= 251 essays). Following recommen-
dations from the literature (Boulanger and Kumar 2019; Cozma et al. 2018; Taghipour
and Ng 2016), model performance was reported on the testing set as an average of
several testing iterations (various samplings) instead of choosing the “highest kappa”
produced, to avoid overfitting the AES models to the testing set. Hence, each archi-
tecture has been trained and evaluated five times and the resulting performance
measurements were averaged. Table 9 reports the average performance of each archi-
tecture for each rubric.

The first architecture called “Classification” selects the most likely rubric score
among a set of seven discrete scores between 0 and 6. The second architecture called
“Classification Ensemble” leverages a bagging ensemble technique. Essentially, each
model trained per fold during cross-validation makes up a machine grader. Thus, five
machine graders with distinct “expertise” determine the predicted score by averaging
their assessed score (alternatively it could be determined through vote by selecting the

Fig. 3 Distributions of rubric scores

Table 6 Descriptive statistics of rubric score distributions

Ideas Organization Style Conventions

Mean 3.68 4.05 3.99 4.34

Standard deviation 1.61 1.28 1.10 1.22

Median 4 4 4 4

Mode 4 4 4 4
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most frequent score (mode) or using the median score). The third architecture “Re-
gression” is similar to “Classification”. However, instead of selecting the most likely
score on a scale of seven discrete scores, it computes a single real-number score (e.g.,
4.3333) and rounds it to the nearest integer, truncating it to 0 or 6 if the real number
falls short or exceeds the scale. The fourth architecture is identical to “Classification
Ensemble”. However, it employs regression instead of classification. The fifth archi-
tecture (Multiple Regression), as Table 7 shows, considers the interdependencies
among rubrics that underlie the determination of the holistic score. Thus, instead of
predicting a single rubric score using a siloed approach, this approach predicts all four
rubric scores all at once. Subsequently, the agreement level between the machine and
the human graders is analyzed and reported per rubric. Finally, the sixth architecture
“Multiple Regression Ensemble” employs an ensemble technique on top of the fifth
architecture to predict rubric scores.

Given that on average classifiers have higher accuracy in terms of percentage of
exact matches (the most important metric), their performance was investigated further.
Figure 4 shows the normalized confusion matrix of each rubric along with the
precision, recall, and F1-score of each rubric score. Note that precision is the ratio of
essays within a rubric score category that were rightfully assigned the score of the
category. Conversely, recall is the ratio of essays that were assigned to a specific rubric
score by the human and that were also correctly predicted by the machine. The F1-score
is the harmonic mean of the precision and recall. Note that precision and recall do not
consider how much a prediction is off the expected value (the QWK does). For
example, Fig. 4 demonstrates that 25% of all essays were given a 4 for Ideas Rubric
by both the human graders and the machine grader (accurate predictions). By adding up
the ratios along the diagonal, it is possible to calculate the percentage of exact matches.
Hence, for Ideas Rubric, the percentage of exact matches is 0.05 + 0.06 + 0.25 + 0.04 +
0.05 = 0.45 (45%); for Organization Rubric, it is 0.08 + 0.02 + 0.23 + 0.05 + 0.07 =

Table 7 Levels of agreement among scoring rubrics (QWK)

Ideas Organization Style Conventions

Ideas – 0.79 0.60 0.46

Organization 0.79 – 0.75 0.64

Style 0.60 0.75 – 0.71

Conventions 0.46 0.64 0.71 –

Average 0.62 0.73 0.69 0.60

Table 8 Performance of a naïve AES system

Ideas Organization Style Conventions Average

QWK 0.0 0.0 0.0 0.0 0.0

Exact % 34.5 33.1 46.3 33.6 36.9

Adj. (±1) % 65.5 69.8 79.7 70.3 71.3

Adj. (±2) % 89.2 99.0 98.9 99.3 96.6
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0.45 (45%); Style Rubric, 0.05 + 0.04 + 0.37 + 0.04 + 0.05 = 55%; Conventions Rubric,
0.05 + 0.03 + 0.21 + 0.11 + 0.10 = 50%. Note that these are close to the exact percent-
ages in Table 9 under the Classification heading (Ideas Rubric: 45.1%, Organization
Rubric: 47.1%, Style Rubric: 54.3%, Conventions Rubric: 47.8%). They are slightly
different because the confusion matrices were derived from a single classifier per rubric
instead of being averaged (over five iterations). Similarly, adjacent matches (±1) are
calculated by adding the ratios along the diagonal plus the ratios that are directly above
and below each diagonal element.

Figure 5 shows the normalized confusion matrix of each rubric between the two
human graders for comparison with those of the machine grader. Notice how the rubric

Table 9 Rubric scoring models’ performance on training/testing sets

Ideas Organization Style Conventions

Classification

QWK 0.827 / 0.731 0.783 / 0.676 0.755 / 0.650 0.741 / 0.674

Exact % 58.1 / 45.1 57.1 / 47.1 63.9 / 54.3 59.8 / 47.8

Adj. (±1) % 90.0 / 85.7 93.1 / 86.2 95.2 / 92.5 90.9 / 88.2

Adj. (±2) % 98.0 / 97.4 99.3 / 99.4 99.9 / 99.8 99.6 / 99.7

Classification ensemble

QWK 0.835 / 0.751 0.769 / 0.697 0.747 / 0.654 0.737 / 0.677

Exact % 56.6 / 45.6 56.2 / 48.2 62.8 / 55.4 58.2 / 47.4

Adj. (±1)% 91.8 / 87.4 92.7 / 87.8 95.4 / 93.0 91.4 / 89.2

Adj. (±2)% 98.2 / 97.5 99.3 / 99.7 99.9 / 99.9 99.6 / 99.7

Regression

QWK 0.873 / 0.758 0.800 / 0.675 0.778 / 0.656 0.786 / 0.697

Exact % 54.4 / 38.4 53.1 / 41.7 58.9 / 50.6 55.2 / 50.1

Adj. (±1) % 96.1 / 88.5 97.1 / 91.1 98.6 / 94.5 97.0 / 91.7

Adj. (±2) % 99.7 / 97.7 99.9 / 99.5 100 / 99.8 99.9 / 99.7

Regression ensemble

QWK 0.875 / 0.770 0.790 / 0.700 0.793 / 0.694 0.774 / 0.726

Exact % 55.3 / 41.0 53.2 / 42.8 58.9 / 51.0 54.0 / 53.1

Adj. (±1) % 96.5 / 89.5 96.6 / 92.3 99.1 / 95.9 97.0 / 93.0

Adj. (±2) % 99.7 / 98.2 99.8 / 100 100 / 100 99.9 / 99.9

Multiple regression

QWK 0.823 / 0.745 0.761 / 0.680 0.753 / 0.652 0.734 / 0.716

Exact % 47.0 / 40.6 49.6 / 41.5 55.5 / 50.0 50.5 / 51.5

Adj. (±1) % 93.4 / 87.5 95.4 / 91.1 98.1 / 93.9 95.5 / 93.5

Adj. (±2) % 99.2 / 97.5 99.8 / 99.9 100 / 100 99.8 / 99.7

Multiple regression ensemble

QWK 0.822 / 0.757 0.758 / 0.691 0.744 / 0.646 0.737 / 0.721

Exact % 46.1 / 42.5 49.9 / 42.7 54.0 / 48.9 51.8 / 53.1

Adj. (±1) % 93.6 / 88.7 95.1 / 91.9 98.1 / 94.3 95.6 / 93.1

Adj. (±2) % 99.2 / 97.8 99.7 / 100 100 / 100 99.8 / 99.7
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score scales vary between Figs. 4 and 5. The machine grader predicts rubric scores on a
0–6 scale, the scale of resolved rubric scores derived by adding the two human raters’
rubric scores which were originally on a 0–3 scale. Thus, the resolved scores are used
to benchmark the performance of the machine marker, as depicted in Fig. 4. Once the
performance of the machine marker is measured, it is important to compare it against
human performance to determine whether the AES system can minimally meet human
expectations. Hence, measuring human performance implies assessing the level of
agreement between human raters, which in this case can only be measured by com-
paring the two human raters’ rubric scores on the 0–3 scale, creating a scale discrep-
ancy between machine and human performances.

Finally, to assess the role that each writing feature played in the essay scoring per
rubric, a method called permutation importance was run. It estimates the impact that
randomizing the values of a single feature in the testing set has on the accuracy of the
trained model (classifier), while keeping all other feature values intact. Five randomized
permutations are performed and the average impact on the percentage of exact matches
along with the standard deviation are reported for the selected feature. The process is
repeated for all writing features selected for training. Finally, the writing features are
listed in order of importance. Tables 14 and 15 (see Appendix 2) delineate the 20 most
important writing features by rubric. For example, the ‘you_gi’ feature (Rank 1) in
Table 14 has a weight of 2.10% and a standard deviation of 0.25% (the weight will tend
to vary by 0.25% depending on the selected permutation). This means that on average,
the accuracy of the rubric scoring model in terms of exact matches drops by 2.10%

0 1 2 3 4 5 6 Precision Recall F1-score
0 0.05 0.01 0.01 0.00 0.59 0.74 0.65
1 0.03 0.02 0.01 0 0 0
2 0.01 0.06 0.03 0.39 0.61 0.47
3 0.04 0.11 0.00 0 0 0
4 0.01 0.03 0.25 0.03 0.01 0.45 0.76 0.57
5 0.11 0.04 0.03 0.45 0.25 0.32
6 0.04 0.02 0.05 0.52 0.45 0.48

Ideas
0 1 2 3 4 5 6 Precision Recall F1-score

0 n/a n/a n/a
1 0.01 0 0 0
2 0.08 0.03 0.04 0.00 0.53 0.53 0.53
3 0.04 0.02 0.09 0.01 0.01 0.28 0.13 0.18
4 0.03 0.02 0.23 0.05 0.02 0.48 0.66 0.56
5 0.00 0.08 0.05 0.05 0.35 0.29 0.32
6 0.04 0.04 0.07 0.47 0.5 0.48

Organiza�on

0 1 2 3 4 5 6 Precision Recall F1-score
0 n/a n/a n/a
1 0.01 0 0 0
2 0.05 0.02 0.04 0.64 0.44 0.52
3 0.01 0.04 0.08 0.37 0.33 0.35
4 0.01 0.05 0.37 0.03 0.02 0.59 0.78 0.67
5 0.00 0.01 0.12 0.04 0.03 0.5 0.21 0.29
6 0.00 0.02 0.05 0.52 0.71 0.6

Style
0 1 2 3 4 5 6 Precision Recall F1-score

0 n/a n/a n/a
1 0.01 0 0 0
2 0.05 0.02 0.04 0.00 0.57 0.47 0.52
3 0.02 0.03 0.06 0.00 0.41 0.26 0.32
4 0.01 0.02 0.21 0.07 0.02 0.48 0.65 0.55
5 0.01 0.10 0.11 0.06 0.47 0.38 0.42
6 0.04 0.04 0.10 0.54 0.55 0.54

Conven�ons

Fig. 4 Normalized confusion matrices and classification reports for all rubrics (classifier). Human and
machine scores are represented by the vertical and horizontal axes, respectively

0 1 2 3
0 0.07 0.02 0.01 0.00
1 0.02 0.10 0.06 0.00
2 0.01 0.07 0.34 0.10
3 0.00 0.00 0.08 0.13

Ideas
0 1 2 3

0 0.00 0.00
1 0.00 0.14 0.08 0.01
2 0.08 0.32 0.11
3 0.00 0.01 0.10 0.16

Organiza�on
0 1 2 3

0 0.00 0.01 0.00
1 0.00 0.09 0.07
2 0.09 0.46 0.10
3 0.00 0.07 0.10

Style
0 1 2 3

0 0.00 0.00 0.00
1 0.00 0.09 0.06 0.00
2 0.00 0.06 0.33 0.13
3 0.01 0.12 0.20

Conven�ons

Fig. 5 Confusion matrices for all rubrics between the two human raters. Rater 1 and Rater 2 are represented by
the vertical and horizontal axes, respectively
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when this piece of information is unknown. According to Table 9, the accuracy of the
‘Classification’ architecture for Ideas Rubric is 45.1% (exact matches). Thus, dropping
the feature will result in a model with a lower accuracy, that is, approximately 43.0%.

The next table (Table 16; see Appendix 2) shows by order of importance, all rubrics
combined, the writing features that influenced the determination of essays’ holistic
scores the most. The ‘Avg. Weight’ column indicates by how much each writing
feature on average improves each rubric scoring model’s accuracy. The ‘Avg. Std.
Dev.’ column is the average level of uncertainty (standard deviation) about the
improvement that each feature brings to the four rubric scoring models. Table 16
identifies which writing features are of global importance to all four rubrics. By
comparing every rubric’s list of most important features (Tables 14 and 15) against
Table 16, it is also possible to determine which features are of local importance to a
specific rubric.

Discussion: Performance of Linguistic Indices-Based Deep Learning

The four rubric score distributions in Fig. 3 look relatively like each other, with their
means ranging from 3.68 to 4.34 and their standard deviations from 1.10 to 1.62.
Nevertheless, they all show that the most frequent score for all rubrics is 4. Table 7
shows that the rubric scores are moderately-strongly dependent on each other. The
quadratic weighted kappa values all range from 0.46 to 0.79. Ideas Rubric scores on
average agree at 0.62 with the other rubrics, Organization Rubric on average agrees at
0.73, Style Rubric at 0.69, and Conventions Rubric has the lowest average agreement
level at 0.60. The following adjacent pairs of rubrics have strong levels of agreement:
Ideas-Organization, Organization-Style, and Style-Conventions. In contrast, the non-
adjacent Ideas-Conventions pair shows the weakest agreement. This implies a partial
overlap but also a progression among the rubrics.

Table 8 reveals from the distributions of rubric scores that 34.5% of scores in the
Ideas rubric are given a 4, 33.1% of scores in the Organization rubric are also assigned
a 4, 46.3% for the Style rubric, and 33.6% for the Conventions rubric. Thus, assigning
systematically a 4 to all rubrics would “predict” on average accurate scores 36.9% of
the time. Similarly, giving 4 as scores to all rubrics as well as all essays would result in
65.5% of adjacent (±1) matches for Ideas Rubric, 69.8% for Organization Rubric,
79.7% for Style Rubric, and 70.3% for Conventions Rubric, equating to an average of
71.3%. This certainly is an “awesome” performance for a completely naïve AES
model. Interestingly, the quadratic weighted kappa metric proves to be an effective
indicator to detect random guessing as shown by the zeroes in every rubric. The fact
that every predicted score is always 4 on the 0–6 scale while the resolved scores
significantly vary on the same scale exhibits some gaming behavior that the QWK
formula can detect. To be relevant, performance of an autonomous (or a human-in-the-
loop) AES system should significantly exceed the baseline model.

By aggregating and selecting the best performance by rubric on the testing set, all
architectures combined, as demonstrated in Table 10, it can be observed that the QWKs
lie between 0.69 and 0.77. The average QWK of the four rubrics is equal to the level of
agreement on holistic scores between the two human raters (0.72) and close to the 2012
commercial vendors’ mean agreement level (0.76) (see Table 2). This is remarkable
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because 1) the models were trained, validated, and tested with a smaller essay dataset,
that is, the equivalent of the original training dataset, and 2) smaller rubric score scales
tend to produce lower QWKs than larger scales such as the holistic score scale (0–24
for D7), the scale of the performances reported in Table 2 (Perelman 2013).

Table 10 presents the agreement level between the two human raters at the rubric
level. Notice that the original rubric scores given by the human raters were on a 0–3
scale. It can be seen from Table 10 that AES rubric models have a mean agreement
level of 0.72 with the resolved scores, which is significantly greater than the mean
agreement level between the two human raters (0.60). Nevertheless, as aforementioned,
the human raters’ scoring scale is smaller than the scale of resolved scores, the
prediction scale of the machine marker, producing smaller QWKs as agreement levels
between the human raters are measured. Since the difference of performance between
the machine marker and the human markers is quite large, it is very likely that the
accuracy of the trained rubric scoring models is equivalent if not superior to human
performance, even when controlling for this scale discrepancy.

This study’s best exact match percentages range between 45.6% and 55.4%, a 9.1–
19.5% improvement in comparison to the majority classifiers previously discussed. The
least accurate rubric is the Ideas rubric, which intuitively requires more background
knowledge than the other rubrics. On average 89–96% of the predicted rubric scores are
adjacent (±1) matches, compared to 65–80% for the naïve predictor. In other words, on
average 50.6% of rubric scores are exact, 42.2% are off by 1, 6.7% are off by 2, and
0.5% are off by 3 or more.

Table 11 summarizes the information from the confusion matrices in Figs. 4 and 5.
On average the human raters assigned identical rubric scores and adjacent (±1) scores
63% and 99% of the time, respectively. On the other side, the machine marker’s
predictions on average are exact, adjacent (±1), and adjacent (±2) 49%, 88%, and
99% of the time, respectively. The fact that the scale of resolved scores is almost twice
as large as the human raters’ rubric score scale can justify the fact that the machine
marker’s percentages of exact matches are smaller than its human counterpart. This can
provide extra evidence that the machine marker is almost or as accurate as the human
markers. For instance, the machine marker is 45% accurate on Ideas Rubric, and 85%
− 45% = 40% of predictions are off by one. If the predicted rubric scores are rescaled
on a 0–3 scale, approximately half of this 40% of predicted scores, that are off by one
on Ideas Rubric, would be rounded toward their rescaled resolved score and the other
half would be rounded away from their rescaled resolved score. The percentage of

Table 10 Best AES performance on testing set by rubric, all deep learning architectures combined

Ideas Organization Style Conventions Average

H1H2 0.69 0.58 0.54 0.57 0.60

QWK 0.77 (RE) 0.70 (RE) 0.69 (RE) 0.73 (RE) 0.72

Exact % 45.6 (CE) 48.2 (CE) 55.4 (CE) 53.1 (RE) 50.6

Adj. (±1) % 89.5 (RE) 92.3 (RE) 95.9 (RE) 93.5 (MR) 92.8

Adj. (±2) % 98.2 (RE) 100 (RE) 100 (RE) 99.9 (RE) 99.5

RE=Regression Ensemble; CE = Classification Ensemble; MR =Multiple Regression
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exact matches would then reach approximately 45% + (0.5 × 40%) = 65%, and the
percentage of rescaled adjacent (±1) scores would be close to 100%. Note that this
calculation is made on the machine marker’s performance on the Ideas rubric, which is
the most faraway, among the four rubrics, from the human raters’ one.

To the best of our knowledge, only one study attempted to predict rubric scores
using D7 (Jankowska et al. 2018), only one study investigated rubric score prediction
on D8 (Zupanc and Bosnić 2017), and very few AES systems in general predict essay
scores at the rubric level (Kumar et al. 2017). Zupanc and Bosnić (2017) reported an
agreement level (QWK) of 0.70 on Organization Rubric (D8). Their feature-based AES
model included 29 coherence metrics, which greatly contributed to the observed
performance (alone these coherence metrics achieved a QWK of 0.60).

Similarly, Jankowska et al. (2018) trained an AES system on D7 using Common N-
Gram, Support Vector Machines, and Naïve Bayes classifiers. The 13 feature sets used
to train the various classifiers consisted of character n-grams, with n ∈ {1, 2, 3,…, 10},
and word and stemmed word n-grams of length 1 and 2. Rubric scores were predicted
on the 0–3 scale, the scale of human raters, and two machine markers were trained per
rubric, one by human rater. Table 12 reports the best agreement levels between each
machine marker and its corresponding human rater and between the two human raters
(Jankowska et al. 2018). It is interesting to observe that the typical agreement level on
holistic scores reported in the literature (between 0.76 and 0.88; see Tables 2 and 13)
did not translate into as high agreement levels on rubric scores (between 0.428 and
0.657). The agreement levels on rubric scores between the two human raters (between
0.544 and 0.695) were also smaller than their agreement level on holistic scores (0.72;

Table 12 The best QWKs per rubric and machine marker generated from Jankowska et al.’s best rubric
scoring models

Ideas Organization Style Conventions Average

M1 0.657 0.508 0.480 0.428 0.518

M2 0.628 0.515 0.493 0.486 0.531

H1H2 0.695 0.577 0.544 0.567 0.596

M1 = First machine marker trained on the first human rater’s rubric scores; M2 = Second machine marker
trained on the second human rater’s rubric scores; H1H2 =Agreement between both human raters

Table 11 Comparison of machine marker’s and human raters’ performances, which are derived from
confusion matrices in Figs. 4 and 5

Ideas Organization Style Conventions Average

Machine marker/resolved scores (0–6)

Exact % 45% 45% 55% 50% 49%

Adj. (±1) % 85% 86% 92% 90% 88%

Adj. (±2) % 97% 100% 98% 100% 99%

Human raters (0-3)

Exact % 64% 62% 65% 62% 63%

Adj. (±1) % 99% 99% 99% 99% 99%
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see Table 2). The exception is the Ideas rubric: the feature sets were likely more suited
to the scoring of this rubric than to the other rubrics, which are more concerned with
how ideas are formulated.

It can also be observed that this study’s models (Table 10) on average outperform
results reported by Jankowska et al., although this study’s prediction scale is larger (0–6
instead of 0–3). Tables 10 and 12 reveal that the mean agreement level (QWK) between
the two human raters is 0.60, averaged over all four rubrics. Jankowska et al.’s rubric
scoring models at best had an average agreement level (QWK) of 0.531 with the human
raters, below the human raters’ agreement level. In contrast, this study reports a mean
agreement level with the human raters’ resolved scores of 0.72, well beyond the
agreement level between the two human raters.

To evaluate whether the parallel prediction of the four rubrics could accurately predict
and explain essay holistic scores, this study predicted holistic scores as the sum of the
rubric score predictions. It was found that 1) the agreement level with the human raters’
resolved scores, as measured by QWK, was 0.785; 2) 17.2% of holistic score predictions
were accurate; 3) 46.1%were adjacent ( ± 1); and 4) 64.0%were adjacent (±2). Remember
that holistic scores range from 0 to 24 and that these performance indicators were averaged
over five iterations to avoid reporting some overfit performance.

The rubric-based AES system proposed in this article exhibits comparative perfor-
mance to contemporary related works (see Table 13), where these cutting-edge AES
tools generate agreement levels between 0.766 and 0.811 (Cozma et al. 2018; Taghipour
and Ng 2016; Wang et al. 2018). Note that Cozma et al., Taghipour and Ng, and Wang
et al. are the only ones having averaged their reported performance by repeatedly
training their AES models multiple times, which tend to lower performance numbers.

Discussion: What are the Most Important Features per Rubric?

As previously mentioned, D7’s writing assessment, written by Grade-7 students, had an
average number of words of approximately 171 words, was of persuasive/narrative/
expository type, and required of students to write a story about patience. The marking
guidelines provided to the two human raters were described in Table 3. Each essay was
processed by the Suite of Automatic Linguistic Analysis Tools (SALAT), converting
each essay into a 1592-metric vector. After having performed feature selection through
filter (i.e., pruning of low-variance and correlated features) and embedded methods
(i.e., ElasticNet regularization) and after having deleted all features which directly
counted the number of words/tokens in an essay (Perelman 2013, 2014), 397 writing
features were selected to train the four rubric scoring models, presented in the previous
section. From the 397 selected features, 12 were generated by GAMET (grammar and
mechanics), 97 by SEANCE (sentiment analysis and cognition), 76 by TAACO
(cohesion), 14 by TAALED (lexical diversity), 108 by TAALES (lexical sophistica-
tion), and 90 by TAASSC (syntactic sophistication and complexity).

Tables 14 and 15 list the 20 most important features per rubric based on the
classification model trained for each of them. It can be noted that for Rubrics 1, 2,
and 4, writing features from all six SALAT’s tools rank among the top 20; as for Style
Rubric, no linguistic indices generated by GAMET were included in the list of the 20
most important features.
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Each rubric has a distinct set of most important features and feature weights
are relatively small, which leads to the hypothesis that the models do not
significantly suffer from dependence on a single or a few dominant features.
For example, Ideas Rubric’s most important feature (you_gi: number of 2nd-
person pronouns divided by number of words) carries a weight as low as
2.10% on the model’s performance. In other words, knowledge about the usage
of second-person pronouns (suggesting a direct dialogue) allowed the rubric
scoring model (Ideas Rubric) to increase the accuracy of its predictions by
2.10%. Similarly, when the Organization rubric scoring model is informed of
the usage of words associated with infants and adolescents (nonadlt_gi, a
category of words expressing social relations), the accuracy of its predictions
is improved by 1.21%. The measure of textual lexical diversity assessed on
content words (mtld_original_cw) (Fergadiotis et al. 2015; McCarthy and Jarvis
2010) improved the accuracy of Style Rubric’s predictions by 3.12%. The type-
token ratio of function words calculated by taking the square root of the total
number of function words (root_ttr_fw) (Torruella and Capsada 2013) is re-
sponsible for 2.68% of the Conventions rubric scoring model’s accuracy. This
linguistic index is an example of the indirect influence that text length has on
rubric score predictions; although word-count variables have been removed
from consideration, the ‘root_ttr_fw’ feature is actually dependent on text
length (see Table 17 in Appendix 3).

Table 16 lists the 20 most important features, all rubrics combined, by
averaging the weights and standard deviations that each feature carries across
the four rubrics. It demonstrates the potential importance of each feature on the
prediction of essays’ holistic scores. For instance, the most important feature,
the hypergeometric distribution’s D index which assesses the diversity of
function words, has an average weight of 1.53% across all four rubrics. This
implies that the accuracy of each rubric scoring model is improved by approx-
imately 1.53 % ± 0.87%.10 Only two writing features of global importance
(‘pos_gi’ and ‘rcmod_nsubj_deps_nn_struct’) are not listed in at least one of
the rubrics’ list of 20 most important features. Similarly, among the 66 linguis-
tic indices forming the four lists of 20 most important features per rubric, only
18 of them are of global importance for all four rubrics. This offers a new
perspective from which to analyze the importance of a feature. This confirms
the necessity of performing customized feature selection at the rubric level.

Ideas Rubric

Five types of words (SEANCE) are of interest to the Ideas rubric scoring
model. Together, their usage improves the model’s accuracy by 2.5% to 4.9%
(3.7% ± 1.2%). These types of words are a) any direct reference to another
person, b) abstract nouns (e.g., ability, accuracy, action, activity, administra-
tion), c) words expressing non-work social rituals (e.g., adjournment, affair,
ambush, appointment, armistice), d) words introducing a time dimension in the

10 Ranges of accuracy, as reported in this section, are rough estimates based on ±1 standard deviation from the
weight.
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story (e.g., abrupt, advance, after, afternoon, afterward), and e) words express-
ing the idea of fetching (denoting effort) (e.g., acquire, altruistic, apprehend,
bandit, benefactor). In summary, the usage or the non-usage of these types of
words might be indicative of whether the essay writer tries to tell a story about
a tangible situation that happened in one’s life.

From a grammar and mechanics perspective (GAMET), the rubric scoring model
only notices the number of grammatical errors and the number of misspellings of
English contractions, representing between 0.3% and 2.3% of the model’s predictive
power. This requires further verification to confirm whether the non-trivial presence of
grammatical errors might prevent effective transmission of ideas.

The Ideas Rubric’s machine marker is attentive to four metrics of lexical
diversity (TAALED) and six metrics of lexical sophistication, which account for
3.5–6.8% and 1.6–7.2% of its predictive power, respectively. It also takes
notice of the variety of function words and content words through the lens of
the measure of textual lexical diversity (MTLD) and the hypergeometric distri-
bution’s D index (see Table 17 in Appendix 3 for more information about these
indices). The machine marker also considers criteria such as the strength of
association within trigrams and the number of occurrences of bigrams and
content words in general usage (measured with COCA magazine corpus and
HAL corpus). It looks at the mean range of content words, that is, the average
number of texts in the COCA fiction corpus in which a content word is
included. The rubric scoring model also feeds upon the proportion of trigrams
in an essay text that are among the 10,000 most frequent trigrams in the COCA
fiction corpus. In addition, it looks at the average generality or specificity
(number of senses) of the adverbs used.

The rubric scoring model is not sensitive to text cohesion, except for the number of
sentences with any verb lemma repeated somewhere in the next two sentences (0.4–
1.5% of the predictive power). Likewise, syntactic sophistication and complexity play a
limited role in determining the rubric score as they account for between 0.2% and 1.2%
of the accuracy of the rubric score predictions.

Overall, the 20 most important features explain 16.2% ± 7.7% of the model’s
predictive power. Consequently, they are arguably responsible for the increase in the
percentages of exact and adjacent (±1) predictions in comparison to the naïve predictor,
improving exact matches from 34.5% to 45.6% and improving adjacent (±1) matches
from 65.5% to 89.5%.

Organization Rubric

The following vocabular elements play an important role in predicting the score
of the Organization rubric: a) reference to children and adults (e.g., baby, boy,
child, childish, children); b) expressions of positive affect through adjectives; c)
usage of positive adjectives; d) expressions of increase in quality or quantity
(e.g., abound, absorbent, absorption, accelerate, acceleration); and e) allusions
to physical body parts and tangible objects. Together, they explain between
1.4% and 5.9% of the model’s predictive power. It is important to note that
feature importance does not indicate whether important features are desirable
traits to be found within an essay (e.g., high usage of body part words), but

563International Journal of Artificial Intelligence in Education  (2021) 31:538–584



that the inclusion or exclusion of the information that they provide contributes
to a more accurate scoring of the Organization rubric. Nevertheless, it can be
hypothesized that these categories of vocabulary are desirable since they are
indicative of storytelling, a requirement of the writing assessment’s prompt.

The rubric scoring model considers the following four TAALES lexical sophistica-
tion metrics: a) the frequencies of content words in general usage as in the HAL corpus,
b) the degree of concreteness expressed by concrete words, c) the genericity and
specificity of adjectives used (average number of senses per adjective), and d) the
proportion of trigrams in an essay that are among the 10,000 most frequent trigrams in
the COCA fiction corpus. Their contribution to the model’s accuracy is a bit ambig-
uous, that is, between −0.7% and 5.2%. Inclusion of certain features was, therefore,
sometimes found to degrade the model’s predictive power.

The rubric scoring model uses only one punctuation-related metric from grammar
and mechanics, that is, the number of times a comma is missing after a conjunctive/
linking adverb at the beginning of a new sentence (e.g., however, besides, nonetheless,
etc.). This writing feature contributes rather minimally to the model’s predictive power
(between 0.4% and 1.0%).

Organization Rubric’s machine marker considers three writing features that measure
aspects of text cohesion (0.8–2.6%). They are, a) the types of all connectives, b) the
variety of adjectives used, and c) the presence of negative connectives (e.g., admittedly,
alternatively, although).

Among the most important features are linguistic indices that describe the complex-
ity of the noun phrases and clauses used (syntactic sophistication and complexity), such
as a) the number of adjectival modifiers per direct object, b) number of modal
auxiliaries per clause, c) prepositions per object of the preposition, and d) the number
of phrasal verb particles per clause. Together they explain between −0.1% and 4.16%
of the model’s accuracy. However, their impact shows some uncertainty because their
interval crosses zero.

The list of 20 most important features includes only one metric pertaining to lexical
diversity. This classical type-token ratio metric (the ratio of unique words to the total
number of words (Gregori-Signes and Clavel-Arroitia 2015)) has a negligible effect on
the model’s performance (−0.1–1.1%).

Overall, the 20 most important features explain 11.8% ± 10.5% of the
model’s predictive power. Consequently, it is hypothesized that they are re-
sponsible for the increase in the percentages of exact and adjacent (±1) matches
in comparison to the naïve predictor, improving from 33.1% to 48.2% for exact
predictions, and improving from 69.8% to 92.3% for adjacent (±1) matches.
Remarkably, there is no dominant feature, with all weights ranging between
0.45% and 1.21%.

Style Rubric

Six features of lexical diversity carry a heavy weight on the rubric scoring
model’s predictive power, between 9.8% and 21.7%. Noticeably, the feature
‘lexical_density_type’ is counted twice since it is included in both TAALED’s
and TAACO’s sets of linguistic indices. This is a minor limitation that will be
addressed in future work.
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In terms of vocabulary, the model considers whether words are indicative of:
a) an assessment of moral approval or good fortune (the writing assessment’s
prompt requires writing about patience), b) quantities such as cardinal numbers,
c) frequency or pattern of recurrence, and d) socially-defined interpersonal
processes (e.g., abolish, absentee, absolve, abuse, accept). Between 3.8% and
9.7% of the overall predictive power of the rubric scoring model is explained
by these features.

The machine marker examines the number of sentence linking words (e.g.,
nonetheless, therefore, although), the number of sentences with any lemma
overlap with the next two sentences, and the variety of content word lemmas,
accounting for 2.3–5.7% of the rubric scoring model’s accuracy.

Information about lexical sophistication is also important to the model and improves
its accuracy by 1.5–6.3%. In particular, the model considers word neighbor information
such as the average number of phonological neighbors for each word in text (number of
words that differ by one phoneme, excluding homophones), the degree of
academic language within the essay, and the average strength of association
inside any bigrams of words, that is the mean probability that any two
consecutive words will occur together (Kyle et al. 2018).

The machine marker considers the number of relative clause modifiers per nominal,
variety of dependents per nominal complement, and the number of nominal comple-
ments per clause. These measures of noun phrase/clause complexity and variety
together explain 1.5–5.4% of the model’s predictions.

In sum, Style Rubric’s 20 most important features explain 33.8% ± 14.9% of
the model’s predictive power. Consequently, it is hypothesized that they are
responsible for the increase in the percentages of exact and adjacent (±1)
predictions in comparison to the naïve predictor, improving from 46.3% to
55.4% for exact matches and improving from 79.7% to 95.9% for adjacent
(±1) matches. Notably, this set of 20 most important features is the most
predictive among the four rubrics and it most accurately determines the scores
of the Style rubric. At minimum, it represents 18.9% of the predictive power
and at a maximum, 48.7%. Style Rubric scoring model has both the highest
naïve predictor’s performance and the best trained model’s performance of all
four rubrics.

Conventions Rubric

Conventions Rubric scoring model uses two metrics of lexical diversity to determine
rubric scores. Both measure the variety of function words within an essay and carry a
weight of 2.6–7.4% of the scoring model’s total accuracy.

Syntactic sophistication and complexity play an important role in the predic-
tive power of the rubric scoring model, that is, between 5.0–11.2%. It pays
attention to a) the number of complex nominals per clause; b) variety in the
number of dependents per nominal complement; c) factors related to the
preferential lexical company kept by a verb-construction (interface between
lexis and grammar) measured in relation to an academic corpus; d) the usage
of less frequent verb-construction combinations (based on the lemmas of the
constructions); e) use of possessives in nominal subjects, direct objects, and
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prepositional objects (e.g., my, his, her, their, etc.); and f) the number of
relative clause modifiers per nominal (Kyle 2016).

Between 4.4–10.4% of the model’s accuracy depends on information about
aspects of lexical sophistication. For instance, the model is interested in the
contextual distinctiveness of vocabulary employed, that is, the likelihood to
which a word will come to mind in response to a variety of stimuli (Kyle
et al. 2018). It also looks at the average probability that any two consecutive
words in an essay will co-occur. Further, it considers how frequently words
occur in general usage; low-frequency is indicative of more sophisticated
vocabulary and carries more information, while higher-frequency denotes more
familiar vocabulary and is less informative. Similarly, the average scope in
which words are used in the literature (normed as per the SUBTLEXus corpus)
is taken into account by the model, including the mean number of orthographic
neighbors for each word in the essay (the average number of words that can be
formed by changing just one letter) (Kyle et al. 2018) and word recognition
norms in terms of response latency and accuracy.

Regarding text cohesion, the model considers a variety of nouns and pronouns,
lexical diversity in terms of lemmas leveraged in the essay text, and the average
similarity between any pair of adjacent sentences. Their combined impact on the
model’s accuracy adds up to between 1.6–5.4%.

Surprisingly, Conventions Rubric’s list of 20 most important features in-
cludes only one metric directly related to grammar and mechanics, which is
the number of all grammatical errors. This confirms the findings of Crossley
et al. (2019a) that GAMET’s macrofeatures are more efficient than individual
microfeatures. The number of grammatical errors plays a limited role in the
determination of the Conventions rubric score, that is, 1.0% ±0.7%, again
confirming the weaker association that grammatical accuracy has with human
judgment of essay quality as reported by Crossley et al. (2019a). This study
hypothesizes that the Conventions rubric is more sensitive to complex aspects
of grammar than to the simple grammar/spelling rules tracked by GAMET.
Alternatively, low-quality essays may not exhibit a minimum level of quality
for effective parsing, preventing further detection of grammatical and spelling
errors. The follow-up study will test the hypothesis that the effect of grammat-
ical and spelling accuracy on the Conventions rubric scoring model’s perfor-
mance is mediated through features measuring aspects of syntactic and lexical
sophistication and complexity.

Conventions Rubric’s 20 most important features explain 27.1% ± 12.0% of the
model’s predictive power. It is hypothesized that they are responsible for the increase in
the percentages of exact and adjacent (±1) matches in comparison to the naïve predictor,
improving from 33.6% to 53.1% for exact matches and improving from 70.3% to 93.1%
for adjacent (±1) matches. Notably, Conventions Rubric scoring model is the most
improved over its corresponding naïve predictor’s performance. This set of 20 most
important features is the second most predictive among the four rubrics. At minimum,
they represent 18.9% of the predictive power and at maximum 48.7%.

This article notes that writing features could be grouped more consistently
among the rubrics. For example, all SEANCE writing features could have been
grouped under the same rubric, that is, either Ideas or Style. Accordingly, this
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study hypothesizes that the moderate-strong levels of agreement among rubrics
(Table 7) influence this phenomenon.

Conclusion

This study investigated the potential of feature-based deep learning (multi-layer perceptron)
in AES to predict rubric scores. It explained how rubric scores are derived. The 1567 Grade-
7 essays of the Automated Student Assessment Prize contest’s seventh dataset trained the
rubric scoring models of this study. The Suite of Automated Linguistic Analysis Tools
processed each essay, converting them into a vector of 1592 writing features.

This study was a continuation and an improvement of a previous study,
which had certain limitations in training generalizable rubric scoring models.
The previous study used the 722 Grade-10 essays of ASAP’s eighth dataset,
which had a small sample size, large scale, and imbalanced distribution of
holistic and rubric scores, with high-quality essays that were underrepresented
(Boulanger and Kumar 2019). The previous study suffered from a limited
feature selection process, and the fact that the rubric scoring models were all
trained on the same set of features, which hindered the ability to select features
with the best fit. The research discussed in this article employed a larger essay
dataset, applied thorough feature selection that was customized to each rubric,
and tested six different deep learning architectures trained on a sample of 200
combinations of hyperparameter values randomly selected out of a space of
48,000 possible combinations. Training revealed that the best deep learning
architectures had only two hidden layers, suggesting that shallower MLP neural
networks were more accurate than deeper ones (three and more hidden layers).

Based on thorough analyses of the distributions of rubric score predictions
and distributions of resolved and human raters’ rubric scores, this study reveals
that the rubric scoring models closely approximate the performance of human
raters. Consequently, it begs the question: if a machine marker’s performance
can become equivalent to that of human raters’ one, is it possible to teach the
machine to absolutely outperform humans, from whom it learns? What quantity
and variety of data are needed to carry out research into this issue? What
additional writing features need to be developed? These questions will be
considered in a longitudinal follow-up study.

This study adopted a series of good practices to train generalizable rubric
scoring models and made these practices completely transparent. The black box
of each rubric scoring model was then scrutinized to determine the features and
the degree to which they contributed to the determination of rubric scores. A
set of the 20 most important features for each rubric emerged, in which at least
15 features were unique to every rubric and did not significantly contribute to
the prediction of the other rubric scores. The study also revealed that rubric
score prediction does not directly depend on a few word count-based features
(all word count features were pruned). Moreover, many intuitive features were
found and selected by each rubric with no particularly dominant features,
making it more difficult to trick the AES system.
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The results of the study are innovative for the AES research community
because 1) they are derived from non-linear models, that is, no linear assump-
tion is made, 2) they provide explanations behind the “reasoning” of the AES
system as to why it gave the rubric scores it gave, and 3) this study sets
forward a methodology that promotes transparency and understanding of
feature-based deep/shallow neural networks. Mechanisms to introduce AI ac-
countability and build trust between AI and human agents are crucial for the
reliable and large-scale deployment of AES systems.

This study has limitations. For example, the feature selection filter methods
were applied on the entire original training set (from which a labeled validation
and testing set was created). To minimize further overfitting, they should have
been applied on the training set alone (not the derived validation and testing
sets). However, it is expected that this had a trivial impact on the rubric
scoring models’ performance. Nonetheless, it is recommended that feature
selection filter methods be applied on the unlabeled original validation and
testing sets provided by ASAP. Another limitation relates to how the study
estimated feature importance by randomizing the values of a single feature at a
time, allowing to observe the impact of the feature on the rubric scoring
model’s accuracy. It remains obscure whether this approach helped to measure
the interaction effects between features on rubric score prediction. This should
be clarified and considered when explaining the AI’s reasoning. An additional
limitation of this study is a lack of testing of the rubric scoring models against
gaming behaviors. These types of tests will assess how well the most important
features work together in detecting counterfeit essays. Finally, the rubric scoring
models could be retrained using only the most important features to thwart
disinformation introduced by less important and/or even detrimental features.
This will be a part of a follow-up study.

This article envisions an end-to-end AES system that provides student writers with
predicted holistic and rubric scores, and that clearly identifies the scoring criteria behind
each rubric. It can detect suboptimal characteristics in student essays to offer formative
feedback, which can help students navigate the learning plateau in English writing.
Future work will target the clustering of student essays in clusters relative to the number
of rubric scores, to discover discriminative patterns in student essays to improve
formative and remedial feedback. Alternatively, statistical methods such as ANOVA
or the non-parametric Kruskal-Wallis test could be used to detect differences in feature
distributions per rubric score. Further, a LSTM recurrent neural network with an
attention mechanism (Alikaniotis et al. 2016; Dong et al. 2017) could be trained to
locate spots in student essays that influence the AES system’s decision when assigning
rubric scores.

Appendix 1

This appendix lists the related works in the literature that have used the Automated
Student Assessment Prize’s seventh essay dataset like this paper to train their automat-
ed essay scoring models. Table 13 is referenced in the Related Work section.
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Table 16 List of 20 most globally important writing features, all rubrics combined, having greatest impact on
essays’ holistic scores (see Table 17 in Appendix 3 for more information on the writing features)

Rank Feature Avg. Weight Avg. Std. Dev.

1 hdd42_fw 1.53% 0.87%

2 root_ttr_fw 1.46% 1.03%

3 mtld_ma_bi_cw 0.96% 0.68%

4 lexical_density_types* 0.86% 0.69%

5 cn_c 0.80% 0.60%

6 you_gi 0.62% 0.62%

7 ortho_n 0.59% 0.34%

8 phono_n 0.57% 0.57%

9 coca_fiction_bi_dp 0.54% 0.38%

10 usf_cw 0.51% 0.28%

11 coca_fiction_tri_prop_10k 0.46% 0.45%

12 coca_fiction_bi_mi 0.45% 0.40%

13 pos_gi 0.43% 0.34%

14 adjacent_overlap_binary_2_all_sent 0.43% 0.18%

15 bodypt_gi 0.41% 0.12%

16 content_ttr 0.41% 0.51%

17 wn_mean_accuracy 0.41% 0.21%

18 sentence_linking 0.41% 0.34%

19 acad_collexeme_ratio 0.41% 0.24%

20 rcmod_nsubj_deps_nn_struct 0.40% 0.49%

*This feature’s global importance is only roughly approximated given it is a duplicate feature measured by
both TAACO and TAALED
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Appendix 3

This appendix lists and describes, along with their corresponding automated linguistic
tools, the important writing indices mentioned in this article. Table 17 is mainly referenced
in the “Discussion: What are the Most Important Features per Rubric?” section.

Table 17 Definitions of important writing features (68 out of 397)

Feature Tool Description

abs_gi_neg_3
Word category: Cognition

SEANCE Number of abstract nouns with a negation
word preceding it (in the three previous
words) divided by the number of words in
text. (Crossley et al. 2017)

acad_collexeme_ratio
Syntactic sophistication

TAASSC Number of collexemes in text divided by the
number of lexemes in text (normed as per
the COCA academic corpus). (Kyle 2016;
Stefanowitsch and Gries 2003)

A collexeme is a lexemea that is attracted to a
particular grammatical constructionb more
strongly than expected.

adj_ttr
Lexical density

TAACO Number of unique adjective lemmas (types)
divided by the number of total adjective
lemmas (tokens). (Crossley et al. 2016)

adjacent_overlap_binary_2_all_sent
Lexical overlap (sentence)

TAACO Number of sentences with any lemma
overlap with the next two sentences.
(Crossley et al. 2016)

adjacent_overlap_binary_2_verb_sent
Lexical overlap (sentence)

TAACO Number of sentences with any verb lemma
overlap with the next two sentences.
(Crossley et al. 2016)

all_awl_normed
Academic language

TAALES Number of words in text found in Coxhead’s
Academic Word List (AWL) divided by
the number of words in text. (Kyle et al.
2018)

all_connective
Connectives

TAACO Number of all connectives divided by the
number of words in text. (Crossley et al.
2016)

all_negative
Connectives

TAACO Number of negative connectives divided by
the number of words in text. (Crossley
et al. 2016)

amod_dobj_deps_struct
Noun phrase complexity

TAASSC Average number of adjectival modifiers per
direct object. (Kyle 2016)

argument_ttr
Lexical density

TAACO Number of unique noun and pronoun
lemmas (types) divided by the number of
total noun and pronoun lemmas (tokens).
(Crossley et al. 2016)

av_pobj_deps_nn
Noun phrase complexity

TAASSC Average number of dependents per object of
the preposition (excluding pronouns).
(Kyle 2016)

bodypt_gi
Word category: Physical

SEANCE Number of words in text found in the General
Inquirer’s list of 80 body parts divided by
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Table 17 (continued)

Feature Tool Description

the number of words in text. (Crossley
et al. 2017)

brysbaert_concreteness_combined_aw
Psycholinguistic norms

TAALES The sum of concreteness scores over number
of words with concreteness scores. (Kyle
et al. 2018)

Brysbaert et al.’s (2014) concreteness norms
consist of a list of lemmas, where each
lemma is associated with some concrete-
ness score, depending on the degree of
concreteness that the lemma exhibits
(concreteness norms collected for 37,058
lemmas and 2896 bigrams).

card_gi
Word category: Quality and quantity

SEANCE Number of cardinal numbers divided by the
number of words in text. (Crossley et al.
2017)

cn_c
Syntactic complexity

TAASSC Average number of complex nominals per
clause (e.g., nominal clauses; infinitives or
gerunds in the subject position; and nouns
in combinations with adjectives, adjective
clauses, appositives, prepositional phrases,
and/or possessives). (Kyle 2016; Lu 2010)

coca_fiction_bi_dp
Ngram association strength

TAALES Mean Delta P Association Score (left to
right): sum of Delta P scores divided by
the number of bigrams in text with Delta P
scores (normed as per the COCA fiction
corpus).

Delta P scores represent the probability of an
outcome (i.e., a particular word) based on
a cue (i.e., another word). Delta P scores
are directional, meaning that word order
affects the score, unlike Mutual
Information (MI)… Delta P is calculated
via the following formula: Delta P = P(O |
C) – P(O | –C); that is, Delta P is the
probability of an outcome given a cue
minus the probability of an outcome
without the cue. (Kyle et al. 2018)

coca_fiction_bi_mi
Ngram association strength

TAALES Mean Mutual Information Score (item
1 = first word, item 2 = second word): sum
of Mutual Information scores divided by
the number of bigrams in text with Mutual
Information scores (normed as per the
COCA fiction corpus).

Mutual Information (MI) scores represent the
joint probability that two items will co--
occur. (Kyle et al. 2018)

coca_fiction_range_cw
Word range

TAALES Mean range score: the average number of
documents that a content word occurs in
(normed as per the COCA fiction corpus).
(Kyle et al. 2018)

coca_fiction_tri_2_dp
Ngram association strength

TAALES Mean Delta P Association Score (left to
right) (item 1 = first bigram, item

577International Journal of Artificial Intelligence in Education  (2021) 31:538–584



Table 17 (continued)

Feature Tool Description

2 = remaining word): Sum of Delta P
scores divided by the number of trigrams
in text with Delta P scores (normed as per
the COCA fiction corpus).

See description for ‘coca_fiction_bi_dp’ for
more information on Delta P scores. (Kyle
et al. 2018)

coca_fiction_tri_prop_10k
Ngram frequency

TAALES Proportion of trigrams in text that are among
the 10,000 most frequent trigrams in the
COCA fiction corpus. (Kyle et al. 2018)

coca_magazine_bigram_frequency_log
Ngram frequency

TAALES Mean bigram frequency score (log
transformed): sum of bigram frequency
scores divided by the number of bigrams
in text with frequency scores (normed as
per COCA magazine corpus). (Kyle et al.
2018)

content_ttr
Lexical density

TAACO Number of unique content word lemmas
(types) divided by the number of total
content word lemmas (tokens). (Crossley
et al. 2016)

en_contraction_spelling
Misspelling

GAMET Number of misspellings of English
contractions. (Crossley et al. 2019a)

fetch_gi
Word category: Effort

SEANCE Number of words in text found in the General
Inquirer’s list of 79 words in the ‘Fetch’
(including carrying) movement category,
divided by the number of words in text.
(Crossley et al. 2017)

freq_gi
Word category: Quality and quantity

SEANCE Number of words indicating an assessment of
1) frequency or pattern of recurrences and
2) nonoccurrence or low frequency,
divided by the number of words in text.
(Crossley et al. 2017)

freq_hal_cw
Word frequency

TAALES Mean content word frequency score: sum of
content word frequency scores divided by
the number of content words in text with
frequency scores (normed as per
Hyperspace Analogue to Language (HAL)
corpus). (Kyle et al. 2018)

grammar
Grammatical accuracy

GAMET Number of grammatical errors. (Crossley
et al. 2019a)

hdd42_fw
Lexical diversity

TAALED The D index, derived from the
hypergeometric distribution, computes the
average type-token ratio (TTR) of func-
tion words over multiple samples of 42
tokens (function words) randomly drawn
from text. This index of lexical diversity is
measured non-sequentially, which avoids
the bias of local clusters of function
words. However, HD-D is dependent on
text length and may become problematic
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Table 17 (continued)

Feature Tool Description

when text length varies (McCarthy and
Jarvis 2010; Torruella and Capsada 2013).

increas_gi
Word category: Quality and quantity

SEANCE Number of words in text found in the General
Inquirer’s list of 111 words in the
‘Increase’ change process category,
divided by the number of words in text.
(Crossley et al. 2017)

lemma_ttr
Lexical density

TAACO Number of unique lemmas (types) divided by
the number of total running lemmas (to-
kens). (Crossley et al. 2016)

lexical_density_tokens
Lexical density

TAACO Percentage of text tokens that are content
words. (Crossley et al. 2016)

lexical_density_types
Lexical density

TAACO Percentage of text types that are content
words. (Crossley et al. 2016)

modal_per_cl
Clause complexity

TAASSC Number of modal auxiliaries per clause.
(Kyle 2016)

mtld_ma_bi_aw
Lexical diversity

TAALED The measure of textual lexical diversity
(MTLD) over all words is evaluated se-
quentially making it sensitive to the order
of words in the text, contrary to HD-D
which constantly produces the same index
no matter how words are randomized in a
text. While some features measure lexical
diversity by calculating the average TTR
over a fixed length of text, MTLD mea-
sures the average text length (in words)
with a fixed minimum TTR value (by
default 0.72), segment after segment,
making it an index independent of text
length. This specific MTLD implementa-
tion computes the average text length per
TTR by applying a moving window and
by running it in both directions to smooth
out the error introduced by partial seg-
ments at the end of the text. (McCarthy
and Jarvis 2010; Torruella and Capsada
2013)

mtld_ma_bi_cw
Lexical diversity

TAALED See description under ‘mtld_ma_bi_aw’,
except that here it is computed over
content words only.

mtld_original_cw
Lexical diversity

TAALED See description under ‘mtld_ma_bi_aw’,
except that here it is computed over
content words only and in only one
direction. No moving average is applied.

ncomp_per_cl
Clause complexity

TAASSC Average number of nominal complements
per clause. (Kyle 2016)

ncomp_stdev
Noun phrase variety

TAASSC Standard deviation of the numbers of
dependents per nominal complement.
(Kyle 2016)

news_av_lemma_construction_freq
Syntactic sophistication

TAASSC
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Table 17 (continued)

Feature Tool Description

Average lemma construction combination
frequency (normed as per the COCA news
corpus). (Kyle 2016)

nonadlt_gi
Word category: Social relations

SEANCE Number of words associated with infants
through adolescents (non-adults) divided
by the number of words in text. (Crossley
et al. 2017)

numb_gi
Word category: Quality and quantity

SEANCE Number of numbers in the text divided by the
number of words in text. (Crossley et al.
2017)

objects_component
Word category: Reference to objects

SEANCE PCA (Principal Component Analysis)
component made of 4 indices from GI
(General Inquirer) objects and the GALC
(Geneva Affect Label Coder) database.
(Crossley et al. 2017)

ortho_n
Word neighbor information

TAALES Average number of words that can be
obtained by changing one letter of each
original word in text while preserving the
identity and positions of the other letters.
(Balota et al. 2007; Kyle et al. 2018)

our_gi
Word category: Reference

SEANCE Number of pronouns referring to the
inclusive self (we, let’s, our, ours,
ourselves, us) divided by the number of
words in text. (Crossley et al. 2017)

ovrst_gi
Word category: Evaluation

SEANCE Number of words indicating emphasis in
realms of speed, frequency, causality,
inclusiveness, quantity or quasi-quantity,
accuracy, validity, scope, size, clarity,
exceptionality, intensity, likelihood,
certainty, and extremity, divided by the
number of words in text. (Crossley et al.
2017)

phono_n
Word neighbor information

TAALES Average number of words (called
phonological neighbors) that can be
obtained by changing one phoneme of
each original word in text, regardless of
their orthography. Excludes homonyms.
(Balota et al. 2007; Kyle et al. 2018)

poly_adj
Semantic network

TAALES Average number of senses per adjective.
(Kyle et al. 2018)

poly_adv
Semantic network

TAALES Average number of senses per adverb. (Kyle
et al. 2018)

positive_adjectives_component
Sentiment analysis

SEANCE PCA component made of 9 indices from Lu
Hui positive adjectives, Vader positive, GI
(General Inquirer) positive adjectives, and
Laswell positive affect adjectives.
(Crossley et al. 2017)

possessives
Noun phrase complexity

TAASSC PCA component made of 4 indices capturing
the use of possessives in general, and
specifically the use of possessives in
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Table 17 (continued)

Feature Tool Description

nominal subjects, direct objects, and
prepositional objects. (Kyle 2016)

pos_gi
Word category: Time and space

SEANCE Number of words in text found in the General
Inquirer’s list of 35 words indicating
position divided by the number of words
in text.

A specialized category of the superset of
words indicating a consciousness of
location in space and spatial relationships.
(Crossley et al. 2017)

prep_pobj_deps_struct
Noun phrase complexity

TAASSC Average number of prepositions per object of
the preposition. (Kyle 2016)

prt_per_cl
Clause complexity

TAASSC Average number of phrasal verb particles per
clause. (Kyle 2016)

rcmod_all_nominal_deps_struct
Noun phrase complexity

TAASSC Average number of relative clause modifiers
per nominal. (Kyle 2016)

rcmod_nsubj_deps_nn_struct
Noun phrase complexity

TAASSC Average number of relative clause modifiers
per nominal subject (no pronouns). (Kyle
2016)

ritual_gi
Word category: Social relations

SEANCE Number of words for non-work social rituals
divided by the number of words in text.
(Crossley et al. 2017)

root_ttr_fw
Lexical diversity

TAALED The number of types of function words
divided by the square root of the number
of function words (tokens) in text. The
root TTR index is not independent of text
length. (Malvern et al. 2004)

sent_start_conjunctive_linking_adverb_comma
Punctuation

GAMET Number of commas forgotten after a
conjunctive/linking adverb in front of a
new sentence. (Crossley et al. 2019a)

sentence_linking
Connectives

TAACO Number of sentence-linking words (e.g.,
nonetheless, therefore, although) divided
by the number of words in text. (Crossley
et al. 2016)

socrel_gi
Word category: Social relations

SEANCE Number of words for socially defined
interpersonal processes divided by the
number of words in text. (Crossley et al.
2017)

subtlexus_range_aw_log
Word range

TAALES Mean range score: average number (log
transformed) of documents that a word
occurs in (normed as per the SUBTLEXus
corpus). (Kyle et al. 2018)

time_2_gi
Word category: Time and space

SEANCE Number of words indicating a time
consciousness, including when events take
place and time taken in an action (includes
velocity words as well), divided by the
number of words in text. (Crossley et al.
2017)

usf_cw
Contextual distinctiveness

TAALES Average number of different stimuli that
elicit each content word in text as response

581International Journal of Artificial Intelligence in Education  (2021) 31:538–584



References

Abbass, H. A. (2019). Social integration of artificial intelligence: Functions, automation allocation logic and
human-autonomy trust. Cognitive Computation, 11(2), 159–171.

Alikaniotis, D., Yannakoudakis, H., & Rei, M. (2016). Automatic text scoring using neural networks. ArXiv
Preprint ArXiv:1606.04289.

Balota, D. A., Yap, M. J., Hutchison, K. A., Cortese, M. J., Kessler, B., Loftis, B., Neely, J. H., Nelson, D. L.,
Simpson, G. B., & Treiman, R. (2007). The English lexicon project. Behavior Research Methods, 39(3),
445–459.

Boulanger, D., & Kumar, V. (2019). Shedding light on the automated essay scoring process. In Proceedings of
the 12th International conference on educational data mining (EDM). Retrieved from
http://educationaldatamining.org/edm2019/proceedings/

Table 17 (continued)

Feature Tool Description

in free association task as per the
University of South Florida (USF) norms.

The contextual distinctiveness of a content
word is measured by the diversity of
contexts in which it is encountered.

The USF norms report the number of stimuli
words that result in production of a given
content word as an associate in a free
association task. Content words elicited by
a greater range of stimuli are considered
more likely to come to mind in response to
a variety of cues. (Kyle et al. 2018)

virtue_gi
Word category: Evaluation

SEANCE Number of words indicating an assessment of
moral approval or good fortune, especially
from the perspective of middle-class
society, divided by the number of words
in text. (Crossley et al. 2017)

wn_mean_accuracy
Word recognition norms

TAALES Average naming accuracy of each word in
text with a mean naming accuracy score.
(Kyle et al. 2018)

wn_sd_cw
Word recognition norms

TAALES Standard deviation of the mean naming
response time of each content word in text
with a mean naming response time. (Kyle
et al. 2018)

word2vec_1_all_sent
Semantic overlap
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