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Abstract
The effect of metacognitive scaffolding for learning by teaching was investigated and
compared against learning by being tutored. Three versions of an online learning environ-
ment for learning algebra equations were created: (1) APLUS that allows students to
interactively teach a synthetic peer with a goal to have the synthetic peer pass the quiz
while the system provides students with metacognitive scaffolding on how to teach. (2)
APLUSTUTOR that provides cognitive tutoring (i.e., immediate feedback and just-in-time hint)
and metacognitive scaffolding on how to learn. And, (3) COGTUTOR+ that provides tradi-
tional cognitive tutoring on mastery learning. Two school studies were conducted with a
total of 444 6th through 8th grade students. 208 students completed the study and were
included in the analysis. The results show that (i) students’ proficiency in solving equations
increased after using our interventions for 4 days, but there was no difference in the
effectiveness across three interventions, and (ii) learning by teaching with metacognitive
scaffolding facilitated learning equally across various levels of students’ prior competency.
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Introduction

Learning by teaching is a promising style of learning that has been empirically studied
with remarkable positive effects in many subject domains (Cohen 1994; Cohen et al.
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1982; Hedin 1987; Roscoe and Chi 2007). The literature shows that peer tutoring is an
effective style of learning both for tutors and tutees—i.e., students learn by teaching
others. The phenomenon is often called tutor learning. Various empirical studies have
reported that tutor learning happens in various domains in various educational settings
(Annis 1983; Devin-Sheehan et al. 1976; Gartner et al. 1971).

Learning by teaching is known to be an effective style of peer learning even with
students at low proficiency levels (Britz et al. 1989; Robinson et al. 2005). Students
can be trained to be better tutors, which amplifies the effect of tutor learning (Fuchs
et al. 1997; King et al. 1998). Even simply switching tutor/tutee roles when
receiving individual tutoring, aka reciprocal teaching, enhances learning
(Palincsar and Brown 1984).

Despite its known effect, however, learning by teaching has some practical issues
when it is applied to actual classroom instruction. For example, students must take turns
to switch roles between tutor and tutee, which requires twice as much time as other
types of instructions that allow students to do the same exercise simultaneously. Other
researchers found that tutors learn at a cost of tutees, i.e., tutees might not learn as much
as tutors do (King et al. 1998; Walker et al. 2014).

To develop a transformative educational technology to make learning by teaching
practical in authentic learning settings, researchers have conducted studies using an
online learning environment that allows students to learn by teaching a synthetic peer
that is often called a teachable agent (Biswas et al. 2005; Schwartz et al. 2007). The
effect of learning by teaching a teachable agent has been studied in various domains for
different research questions as shown in the section for Related Works. However, the
reported effects of learning by teaching a teachable agent have been mixed—some
studies showed positive while others showed null effects.

We hypothesize that one reason for not seeing a stable effect with a teachable agent
technology is a lack of an underlying cognitive theory as a design principle when
building a teachable agent—i.e., a computational modeling perspective of learning by
teaching that can be transformed into an online learning environment. Too little is
known in the current literature about the critical factors for a successful implementation
of a teachable agent to induce the expected effect of learning by teaching.

Though the literature review shown in the Related Works section is not exclusive, it
provides some insight into the state-of-the-art knowledge about the effect of learning by
teaching with teachable agent. Among many factors, based on the lessons learned from
past studies, we are particularly interested in the effect of adaptive scaffolding while
students are teaching their teachable agent. A study on Betty’s Brain, for example,
indicates the importance of student’s self-regulation skills and adaptive guidance to
scaffold students to learn those skills (Roscoe et al. 2013).

The current study is also motivated by and built on our previous studies to
understand the effect of learning by teaching a teachable agent relative to learning by
being tutored (aka cognitive tutoring) with a particular focus on the impact of adaptive
scaffolding. We have developed an online learning environment, called APLUS—
Artificial Peer Learning environment Using SimStudent that allows students to learn
to solve algebra linear equations (generally taught in 7th and 8th grade math) while
teaching a teachable agent, called SimStudent (Matsuda et al. 2010). In our initial
attempt (Matsuda et al. 2011), an earlier version of APLUS that did not have the
adaptive scaffolding was compared with a commercial version of Carnegie Learning

International Journal of Artificial Intelligence in Education (2020) 30:1–372



Cognitive Tutor Algebra I™ that provides students with mastery learning on solving
equations. While the 2011 study found no condition difference on the post-test score
when the pre-test score was controlled, there was an aptitude-treatment interaction—
learning by being tutored was more beneficial to students with low prior (measured as
the pre-test score) whereas both treatments were equally beneficial to high prior
students. An analysis of the interactions between students and the system showed that
students often taught the teachable agent incorrectly and inappropriately without
knowing that they made such errors. For example, students taught incorrect solutions,
or taught only a particular type of problem when the teachable agent must learn
different skills. Students with low prior were more prone to commit such suboptimal
teaching behaviors than those with high prior.

To overcome this issue, we have developed a teacher agent (often called a meta-
tutor) that provides students with adaptive scaffolding while they are teaching the
synthetic peer and integrated it into the APLUS learning environment. One of the
obvious research questions was about a kind of scaffolding the meta-tutor should
provide for students. Based on our previous studies, we hypothesized that students
need scaffolding on how to solve problems (cognitive scaffolding), how to teach
(metacognitive scaffolding, which is described in detail in the “INTERVENTIONS”
section), or both.

We first implemented the metacognitive scaffolding on the APLUS learning envi-
ronment by embedding a meta-tutor agent that provides students with adaptive help on
bow to teach while they teach the teachable agent. Results from a classroom study
showed that adding metacognitive scaffolding amplified the effect of learning by
teaching more than the baseline learning environment where no metacognitive scaf-
folding was provided (Matsuda et al. 2014).

We then implemented cognitive scaffolding as a new functionality of the meta-tutor.
The cognitive scaffolding was driven by the model-tracing technique commonly used
by cognitive tutors (Anderson and Pelletier 1991). The meta-tutor with cognitive
scaffolding provided students with adaptive help on how to solve equations. We
conducted a further classroom study to compare the effect of cognitive and
metacognitive scaffolding (Matsuda et al. 2016). The results showed that metacognitive
scaffolding (again) facilitates the effect of learning by teaching, but cognitive scaffold-
ing does not. This finding that cognitive scaffolding does not facilitate tutor learning is
somewhat surprising given a well know effect of cognitive tutoring (Pane et al. 2014;
Ritter et al. 2007). The literature also suggests that the effect of learning by teaching is
rooted in the process of teaching preparation, aka the teaching expectancy principle
(Renkl 1995), which conjectures the benefit of cognitive scaffolding.

The current study is to build on the knowledge on the effect of metacognitive
scaffolding for tutor learning obtained from our three previous studies (Matsuda et al.
2016; Matsuda et al. 2014; Matsuda et al. 2011). The primary aim of the current paper
is to understand how the presence of metacognitive scaffolding changes our knowledge
about the relative effectiveness of learning by teaching against cognitive tutoring. In the
following text, we use the words “cognitive tutoring” and “learning by being tutored”
interchangeably.

Although, it is important to understand relative effectiveness among different
learning strategies to advance the theory of how people learn, learning by teaching
has been rarely compared with other types of learning strategies in the current literature.
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Learning by teaching has been mostly compared with studying by reading a text (Annis
1983) or regular classroom instructions (Sharpley et al. 1983; Zhao, and Ailiya,, and
Shen, Z. 2012). Klingner and Vaughn (1996) is one of the rare examples where learning
by teaching is compared with reciprocal teaching. Empirical studies with teachable
agents often only control functionality of the teachable agent hence comparing learning
by teaching with one characteristic against another characteristic—e.g., the amount of
prior knowledge (Jun 2003), the presence of adaptive scaffolding by the meta-tutor
(Matsuda et al. 2016; Matsuda et al. 2014; Roscoe et al. 2013; Tan et al. 2006), the
availability of a competitive gameshow (Matsuda et al. 2013a), and motivational
incentive (Uresti and du Boulay 2004). The current work will therefore contribute to
the literature by yielding a new insight into the effect of learning by teaching relative to
cognitive tutoring.

For the current study, we are particularly interested in answering the following
specific research question—does the aptitude-treatment interaction among learning
by teaching and learning by being tutored that we observed in the previous study still
exist with the presence of metacognitive scaffolding? To answer this question, the
current paper reports two classroom studies conducted at three public schools in their
business-as-usual settings. The effect of three types of learning strategies—i.e., learning
by teaching (APLUS with metacognitive scaffolding) was compared with the direct
instruction (two versions of cognitive tutors with and without metacognitive scaffold-
ing). The direct instruction was driven by a cognitive tutor (Anderson et al. 1985),
which provides a mastery learning on prespecified set of skills.

The effect of cognitive tutoring has been intensively studied (Anderson et al. 1995;
Pane et al. 2014; Ritter et al. 2007). However, very little is known about the comparison
between learning by being tutored and learning by teaching. As far as we are aware of,
Biswas et al. (2010) and Matsuda et al. (2011) are the only controlled studies in
authentic learning environment where learning by teaching a teachable agent was
compared with direct instructions (see the Related Works section for more details).

To investigate the effect of metacognitive scaffolding, we need a tight control
between learning by teaching and the direct instruction. When it comes to the imple-
mentation level, APLUS and a cognitive tutor have some notable difference other than
the availability of metacognitive scaffolding. The next section provides an overview of
how we operationalize learning by teaching and learning by being tutored.

A Tight Comparison between Three Proposed Interventions

The version of APLUS used in the current study is an extension of the one used in our
previous study (Matsuda et al. 2011) with the meta-tutor added to provide
metacognitive scaffolding. To make a tightly controlled comparison, we developed a
version of cognitive tutor, COGTUTOR+, that looks essentially identical to APLUS
(section “INTERVENTIONS” provides details about our interventions). We designed
COGTUTOR+ in such a way that it closely mimics the tutoring behavior of traditional
cognitive tutors (VanLehn 2006)—i.e., the adaptive cognitive scaffolding (i.e., imme-
diate feedback and just-in-time hint) driven by model tracing (Anderson et al. 1990)
and the adaptive problem selection based on knowledge tracing for mastery learning
(Corbett and Anderson 1995).
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However, using COGTUTOR+ as a comparative intervention for APLUS yields some
concerns for potential confounding, at least for the following two factors: (1) an agent
who selects problems for practice—a tutor vs. a student, and (2) a criterion for
graduation from practice—a student reaching to a mastery level vs. a teachable agent
passing a quiz. For the problem selection, traditional cognitive tutors select problems
adaptively based on a student’s competency. On the other hand, when using APLUS,
students select problems to teach their synthetic peers, apparently based on the syn-
thetic peer’s perceived competency. For the graduation criterion, traditional cognitive
tutors estimate a student’s competency in applying skills and stop the practice when the
estimation exceeds a given threshold. On the other hand, the goal for students using
APLUS is to have their synthetic peers pass the quiz.

To gain an even tighter comparison between learning by teaching and learning by
being tutored while controlling the above-mentioned potential confounding, we
developed another version of cognitive tutor, APLUSTUTOR. The graphical user
interface of APLUSTUTOR is essentially identical to APLUS. APLUSTUTOR requires
students to pass the quiz by themselves while allowing them to select and enter
practice problems by themselves. As a cognitive tutor, APLUSTUTOR provides the
adaptive scaffolding (while students are solving a problem) and adaptive problem
selection as mentioned above. It also provides metacognitive scaffolding as APLUS
does.

The goal of student using APLUSTUTOR is to pass the quiz by themselves. Students
using APLUSTUTOR therefore must select problems by themselves to practice solving
equations to pass the quiz. We call this type of learning goal-oriented practice. For the
sake of explanation, we call the direct instruction driven by COGTUTOR+, Cognitive
Tutoring (though, APLUSTUTOR also technically provides cognitive tutoring).

In summary, in the current study, we compare three learning strategies—Learning by
Teaching (APLUS) that provides metacognitive scaffolding, Cognitive Tutoring
(COGTUTOR+) that provides cognitive scaffolding (immediate feedback and just-in-
time hint), and Goal-Oriented Practice (APLUSTUTOR) that provides both cognitive and
metacognitive scaffolding. In all three versions of interventions, the meta-tutor was
visually presented and provided students with cognitive and/or metacognitive
scaffolding.

Related Works

There has been essentially three types of teachable agents (TAs) developed so far. The
first type of TA is equipped with a genuine machine learning technique (e.g., Matsuda
et al. 2011; Michie et al. 1989)—we shall call this type of TA the knowledge-learning
teachable agent. The second type of TA adaptively controls pre-compiled knowledge to
imitate the performance improvement over time (e.g., Lenat and Durlach 2014; Pareto
2014)—the knowledge-tracing teachable agent. The third type of TA can interpret the
subject matter knowledge (e.g., a concept map) that students instructed and utilize the
knowledge to solve problems (e.g., Biswas et al. 2005; Zhao et al. 2012)—the
knowledge-sharing teachable agent. From students’ point of view, all three types of
teachable agents are capable of “learning” skills and knowledge to solve target prob-
lems through tutoring interactions.
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Despite a long history of learning by teaching in education literature, there have
been only a few studies with TA to investigate the theory of tutor learning. Below, we
review only those studies that involved an evaluation with actual students. As far as the
authors are aware of, there are 7 such studies. Only two of them involve a meta-tutor
whereas others did not. Of those 7, we first review 5 studies that do not involve a meta-
tutor.

Linear Kid Is for high school math that allows students solve math problems
collaboratively with a TA (Jun 2003). In an evaluation study with 28 students, the
impact of students’ prior competency on tutor learning was measured. In an evaluation
study, two groups of students were compared—low vs. intermediate prior competency.
It was found that, after using the intervention, the intermediate students outperformed
the low students on the accuracy of solving equations, while there was no condition
difference in the accuracy of explaining the process of solving equations.

DynaLearn Is an online learning environment that allows students to teach a TA to
learn scientific knowledge by manipulating diagrammatic representations, aka a concept
map that represent causal and conditional relations (Bredeweg et al. 2009). In addition to
the TA, the learning environment involves other types of agents including a teacher agent
that provides assistance on what, how, and why questions; a recommendation agent that
provides feedback on a concept map that a student made in comparison to the onemade by
an expert; a diagnosis agent that provides feedback on the results of running the concept
map; and a quiz master that provides feedback on the quiz that TA takes. In one evaluation
study in a graduate level class to learn complex systems, a contribution of a particular
question-format that TA asks to students’ causal reasoning was examined. Overall, no
significant treatment effect was observed. There was no evidence that scaffolding given by
agents improved the quality of the concept maps students made. The authors concluded
that the short-term intervention is insufficient to affect the model construction process in a
significant manner (Mioduser et al. 2012).

Motivated Teachable Agent (MTV) Has a model of intrinsic motivation for learning
science lessons to arouses students’ interests in learning (Zhao et al. 2012). MTV is
embedded into a 3D virtual learning environment that provides primary and secondary
school students in Singapore with a culturally familiar scenario to learn science lessons
(e.g. transport in living things). In an evaluation study, learning by teaching MTV was
compared with regular classroom instruction while the time on task was controlled. The
result showed an overall improvement of the test scores from pre- to post-tests, but no
condition difference was identified.

TAAG Is a teachable agent for the elementary-school level arithmetic. Students are
engaged in games that require arithmetic knowledge to solve—e.g., finding a pair of
numbers to match their sum to a given number. The teachable agent asks multiple-
choice questions about arithmetic knowledge and strategies to win the game. A quasi-
controlled field study (Pareto 2014) showed that while there was a main effect of the
treatment for learning conceptual knowledge, which was one of the four constructs, the
effect did not appear for other constructs—computing skills, strategy, and other skills
related to the task. Although, the AT has a capability to ask questions to students, the
impact of question asking on students’ learning was no reported.

LECOBA Acts as a learning companion that learns Binary Boolean Algebra (Uresti
and du Boulay 2004). Students teach a TA the preconditions under which a particular
theorem should apply and the prioritization among conflicting theorems. A meta-tutor
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(called the tutor-agent) is incorporated into the learning environment and provides
summative comments upon a completion of a solution. The evaluation study was a 2 ×
2 randomized controlled trial where a student’s motivation factor was crossed with a
TA’s competency factor—. There were two levels of motivation settings—in the
motivated condition, students were scored based on their tutoring activities hence
driven by the extrinsic motivation to score high, whereas in the free condition, students
were only encouraged to teach their synthetic peers. There were two levels of compe-
tency for the TA—a weak teachable agent vs. a strong teachable agent. The result
showed an overall improvement in students’ test scores from pre- to post-test, but no
condition difference was identified. The effect of meta-tutor for learning by teaching
was not measured.

Now, we introduce two studies that involve measuring the effect of a meta-tutor. A
pioneering example of TAwith a meta-tutor is Betty’s Brain (Biswas et al. 2005). It is a
knowledge-sharing teachable agent that helps students learn causal relations in the
ecosystem (e.g., a river system). Betty’s Brain is one of the few TAs that have an
intensive record of field studies in authentic learning environments. Betty’s Brain has
been used to investigate various factors of learning by teaching including, for example,
effective measures, adaptive scaffolding, and social factors (Biswas et al. 2016). A
meta-tutor (called the mentor agent) was introduced to the Betty’s Brain learning
environment from an early stage of the project (Tan et al. 2006).

In one study using Betty’s Brain, an impact on students’ self-regulated skills on tutor
learning was investigated while the role of the meta-tutor was controlled (Biswas et al.
2010). Three types of interventions were compared: Learning by Teaching (LBT)
where students learn by teaching Betty’s Brain while a meta-tutor agent provided
students with corrective feedback on the quiz results and the quality of concept maps
students made; Self-Regulated Learning (SRL) where students learn by teaching
Betty’s Brain while the meta-tutor agent provided students with feedback on self-
regulated strategies in addition to the corrective feedback same as LBT; Intelligent
Coaching System (ICS) where students learn by being tutored by the meta-tutor that
provides corrective feedback (hence no Betty’s Brain involved).

The results showed that SRL and LBT students tied on the test scores, but SRL students
outperformed LBT on the accuracy of the concept map they created. SRL and LBT
outperformed ICS on both the test scores and the map accuracy. A further analysis revealed
a hint on the effect of the metacognitive scaffolding while students were teaching Betty’s
Brain—SRL students (who received metacognitive strategy feedback from the meta-tutor)
committed to more advanced and focused monitoring behaviors than LBTstudents (Biswas
et al. 2010; Roscoe et al. 2013). An earlier study on Betty’s Brain also reported that
metacognitive feedback made students ask more while editing maps and reviewing
resources.

The Intelligent Coaching System can be seen as a type of direct instruction that is similar
to Goal-Oriented Practice in the current study, where students practice solving problems to
pass the quiz by themselves while receiving correct feedback from the system. It is therefore
interesting to see if the same effect, i.e., Learning by Teaching outperformed this type of
direct instruction even when the domain is different—causal relations vs. equation solving.

A second example of TAwith a meta-tutor is SimStudent, which is the knowledge-
learning teachable agent used in the current paper. SimStudent has been field-tested
with more than 2000 middle school students to learn to solve linear algebra equations
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(Matsuda et al. 2013b). As described earlier, our previous study showed that
metacognitive scaffolding provided by ameta-tutor facilitated tutor learning, but cognitive
scaffolding did not. In another study, we tested the effect of self-explanation while
students were teaching the teachable agent. SimStudent has a capability to ask “why”
questions to solicit students’ self-explanations about their tutoring decisions. For example,
if a student provides negative feedback on a step that SimStudent suggested, SimStudent
may ask why the student disagreed with the step it suggested. In two school studies
conducted in two different years, we compared learning by teaching SimStudent with and
without asking “why” questions. The results showed that, in both studies, there was a
statistically significant correlation between the amount of self-explanations given and the
student’s learning gain (Matsuda et al. 2013b). Therefore, asking “why” questions
becomes a permanent feature of SimStudent and used in the current study as well.

In sum, while it seems to be evident that students need adaptive scaffolding to yield
attested effect of tutor learning, the current literature has yet to accumulate knowledge
from empirical studies on the role of metacognitive scaffolding provided by the meta-
tutor. Without knowing how to facilitate tutor learning, the teachable agent technology
will not be advanced despite its promising potential for a broader dissemination in
authentic learning environments. It is therefore crucial to develop a theory on how the
meta-tutor facilitates tutor learning.

Research Questions and Hypotheses

The current paper focus on the relative effectiveness of Learning by Teaching with
metacognitive scaffolding to the two versions of learning by being tutored—Cognitive
Tutoring (that, by definition, does not provide metacognitive scaffolding) and Goal-
Oriented Practice (that provides metacognitive scaffolding). In particular, we will
investigate the following specific research questions:

& (Q1) Is Learning by Teaching with metacognitive scaffolding effective for students
with low prior competency?

& (Q2) Does Learning by Teaching with metacognitive scaffolding help students learn
algebraic conceptual understanding?

& (Q3a) Is Learning by Teaching with metacognitive scaffolding more effective than
Cognitive Tutoring?

& (Q3b) How does the effect of learning by being tutored relative to Learning by
Teaching change if the adaptive problem selection for mastery learning (Cognitive
Tutoring) is replaced with self-paced practice where students select problems by
themselves to pass a pre-defined set of quiz problems (Goal-Oriented Practice)?

To answer these research questions, we will test the following specific hypotheses:

& (H1) If the metacognitive scaffolding provides students with hints on problem
selection (to teach the teachable agent with more appropriate problems), the timing
of the quiz (to quiz the synthetic peer at an appropriate time), and learning resource
use, Learning by Teaching with metacognitive scaffolding implemented as APLUS
will be effective regardless of the level of student’s prior competency.
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& (H2) If the metacognitive scaffolding provides students with hints on reviewing
learning resources on algebraic concepts, Learning by Teaching with metacognitive
scaffolding (APLUS) will facilitate students’ learning on algebraic concepts as well.

& (H3a) Since Learning by Teaching with metacognitive scaffolding is more effective
than Learning by Teaching without metacognitive scaffolding, which previously
tied with Cognitive Tutoring, Learning by Teaching with metacognitive scaffolding
is more effective than Cognitive Tutoring.

& (H3b) Learning by Teaching is as effective as Goal-Oriented Practice when
metacognitive scaffolding is available for both conditions.

To test these hypotheses, we conducted two classroom studies in business-as-usual
settings where we compared three different learning strategies—Learning by Teaching
(APLUS), Goal-Oriented Practice (APLUSTUTOR), and Cognitive Tutoring (COGTUTOR+
). In addition to the learning outcome data (i.e., test scores), detailed learning process
data (that show interactions between students and an online learning system) were
collected. By analyzing the learning outcome data in conjunction with the process data,
we will draw conclusions about the effect of Learning by Teaching relative to Cognitive
Tutoring and Goal-Oriented Practice.

The next section provides details for these three interventions. The “Classroom in-
vivo Evaluation Studies” section then shows the details of the classroom study follow-
ed by results and discussion.

Interventions

This section first describes details about each of the three interventions.We then provide
a summarization on the similarities and differences among the three interventions.

APLUS: Artificial Peer Learning Environment Using SimStudent

APLUS is an online learning environment where students learn to solve equations by
teaching a synthetic peer. Figure 1 shows an example screenshot of APLUS. While
details about APLUS have been published elsewhere (Matsuda et al. 2013b), we
provide a brief overview of the intervention below.

The synthetic peer is visualized as an avatar in the lower left corner. It is
implemented with the SimStudent technology (Matsuda et al. 2015). Prior to
using APLUS, students can customize the avatar by changing its hair style, skin
color and shirt color. The image of the avatar’s face is gender neutral—e.g.,
Tom in Fig. 1 looks like a male whereas Michelle in Fig. 2 looks like a female,
but they use the same image of the face. Students can also name it, e.g., Tom, as shown
in Fig. 1. Once students start tutoring SimStudent, they are not allowed to change the
avatar image or name.

SimStudent is a machine learning agent that interactively learns skills to solve
problems through guided-problem solving—i.e., a student using APLUS acts as a tutor
for SimStudent. SimStudent applies inductive logic programming to induce skills in the
form of production rules by generalizing given examples. The basic tutoring interac-
tions between a student and SimStudent include the following:
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(1) A student poses a problem (of their choice from problem bank or one they make
up) for SimStudent to solve.

(2) SimStudent attempts to solve the problem Each step performed by SimStudent is
shown on the Tutoring Interface. SimStudent then asks the student for feedback
on its correctness. SimStudent is pre-trained on a few one-step equations before
students start tutoring so that it has reached a certain level of background
knowledge. Thus, SimStudent may initially perform steps both correctly and
incorrectly.

(3) The student provides yes/no feedback on the correctness of the step performed by
SimStudent. When the student says “no” to SimStudent’s step, SimStudent then
makes another attempt by applying an alternative skill, if any.

(4) When SimStudent has no skills to apply, SimStudent asks the student for help.
The student must demonstrate the step by entering an expression in the Tutoring
Interface.

(5) The student may quiz SimStudent at any time during tutoring by clicking on the
[Quiz] button. SimStudent applies productions learned thus far to solve quiz
problems as explained below.

The goal for students using APLUS is to have their SimStudent pass the quiz. The quiz
has four sections ordered by difficulty—One Step Eq. (1 problem), Two Step Eqs. (2
problems), Equations with Variables on Both Sides (4 problems), and Final Challenge
(8 problems which are all equations with variables on both sides). When the [Quiz]
button is clicked, SimStudent solves a single problem at a time. When the problem is
solved, the individual steps made by SimStudent are displayed along with the

Fig. 1 Example screenshot of APLUS
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correctness of each step. The Cognitive Tutor Algebra-I™ grades the quiz
results (it does not interact with the student—it is used only for quiz and
logging purposes). For each section of the quiz, SimStudent must complete
the section by solving all problems correctly to proceed to the next section. To
“pass” the quiz, SimStudent must complete all quiz sections. Students therefore

Fig. 2 Sample solution checking dialogues for correct (a) and incorrect (b) solutions
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must teach SimStudent sufficient skills to solve equations with variables on
both sides to achieve the goal.

When a problem is completed, SimStudent occasionally checks a solution by
plugging the solution into the original equation and seeing if the equation balances.
The solution checking happens randomly with 30% of chance. This function was
introduced, because we observed in previous studies that students taught SimStudent
incorrectly (hence led to an incorrect solution) without knowing they made a mistake.
By checking the solution, SimStudent can at least bring an error to student’s attention.
The solution checking is implemented as a think-aloud monologue done by
SimStudent. Figure 2 shows sample monologues of solution checking for a correct
and an incorrect solution.

There are learning resources available for students to review: (1) Unit Overview that
provides a brief overview of how to solve algebra equations, (2) Examples that provide
worked-out examples for the target equations, (3) Intro Video that is a brief video
explaining how to use APLUS, and (4) Problem Bank that provides a list of suggested
equations to be used for teaching.

SimStudent is an instance of programming by demonstration (W. W. Cohen 1998;
Lau and Weld 1998) with inductive logic programming (Muggleton and de Raedt
1994), version space (Mitchell 1982), and iterative deepening search (Russell and
Norvig 2003). SimStudent generates a set of production rules (where each rule
represents a skill) as hypotheses that explain the positive and negative examples of
various skill applications. When students teach SimStudent on APLUS, positive and
negative examples are given to SimStudent as a combination of feedback and hints
provided by the student. The affirmative feedback (i.e., “yes”) and hints become
positive examples, whereas negative feedback (i.e., “no”) becomes negative examples
(Matsuda et al. 2005). For the current study, SimStudent must learn nine skills
to pass the quiz—four skills for steps under “Transformation” (see the Tutoring
Interface in Fig. 1), which are to add a same term to both sides, subtract a
same term from both sides, multiply both sides with a same term, and divide
both sides by a same term; four other skills to actually do arithmetic for steps
under “Equation”; and one skill to notice that a problem is solved. For example,
for an equation “3x+5 = 7”, the first skill to be applied is to subtract 5 from both sides (to
enter “subtract 5” in Transformation), and the second skill is to subtract 5 from 3x + 5 (to
enter “3x” in Equation).

APLUS includes a teacher agent (aka a meta-tutor), called Mr. Williams, as visual-
ized with an avatar on the lower right corner of the APLUS interface (Fig. 1). Unlike
the SimStudent avatar, the Mr. Williams’ avatar cannot be changed, and it always
appears as the one shown in Fig. 1. Mr. Williams provides students with help on how to
appropriately tutor SimStudent (called metacognitive tutoring help) for the following
five metacognitive skills of tutoring that have been identified to be the most trouble-
some for students in our previous studies:

(1) Selecting an appropriate next problem to teach to SimStudent—Mr. Williams
suggests the student teach a problem from the quiz that SimStudent failed to solve.
An example of a help message from Mr. Williams for the problem selection reads
“I see that Tom failed all quiz items. Tom can do better with some practice on two
step equations.”
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(2) Administering the quiz at an appropriate time—After teaching SimStudent, Mr.
Williams suggests the student administer the quiz to SimStudent. An example of a
help message from Mr. Williams for the quiz reads “I see Tom passed this quiz
section, it might be helpful to understand what else your student knows. So, it
would be a good idea to quiz Tom again now.”

(3) Reviewing resources, e.g., unit overview and examples, at an appropriate time—
When SimStudent does not make any progress on the quiz, Mr. Williams
suggests the student review the resources. An example of a help message
from Mr. Williams for reviewing resources reads “I think it’s a good idea
to go through the Examples - see the tab above. Make sure you under-
stand all the examples.”

(4) Providing Feedback—When SimStudent is asking the student for feedback on the
step it performed, Mr. Williams suggests the student provide yes/no feedback. An
example of a help message from Mr. Williams for providing feedback reads “Tom
is asking you to justify your answer. You should answer Tom’s question.”

(5) Demonstrating a step on which SimStudent gets stuck—When SimStudent is
asking the student for help on how to perform the next step, Mr. Williams suggests
the student enter a corresponding step in the Tutoring Interface. An example of a
help message from Mr. Williams for demonstration reads “Tom is asking for help.
You should tell Tom the next step.”

The last two types of metacognitive tutoring help are implemented because students are
sometimes confused how to use APLUS.

The metacognitive tutoring help is delivered either by request or proactively.
Students can click on Mr. Williams anytime to ask their questions about how to teach.
When Mr. Williams is clicked, a pop-up menu is then shown with available questions
for the student to ask. Mr. Williams also occasionally provides hints proactively
(without student’s request). Both for requested and proactive hints, a hint message
from Mr. Williams is displayed in a separate dialogue box so that students can perceive
it as a private message.

The metacognitive tutoring help, both requested and proactive, is driven by the
model-tracing technique (Anderson et al. 1990). We created a metacognitive model of
tutoring in the form of production rules. There are 19 productions in the metacognitive
model of teaching. An example of a production in the metacognitive model of tutoring
is for students to review examples when SimStudent failed on the same quiz problem
more than three times. To model trace students’ tutoring behavior, we apply a tradi-
tional model-tracing technique used for assessing the correctness of student’s solution
steps in the cognitive tutor. The system continuously model-traces student’s tutoring
activities using the metacognitive model of tutoring. Each time the student makes a
tutoring move (which corresponds to an action on the tutoring interface), the system
determines if there is a production in the metacognitive model of tutoring that yields the
same move. When the system fails to model trace the student’s move, then the system
flags a production in the metacognitive model of tutoring that should have been
matched with the students’ behavior—i.e., the production that shows an expected
behavior. When a particular production has been flagged three or more times, then a
hint message for the corresponding production (i.e., metacognitive tutoring help) is
proactively given with 60% of chance.
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There are two major differences between the versions of APLUS used for our
previous study (Matsuda et al. 2011) and the current study—i.e., the introduction of
the solution checking and the metacognitive tutoring help. Other than that, the behavior
of the two versions of APLUS (from the 2011 study and the current study) is the same
including the version of SimStudent, the learning resources available for students to
review, the structure and content of the quiz, and the goal of learning (e.g., passing all
quiz levels).

CogTutor+

COGTUTOR+ is a cognitive tutor that has the same graphical user interface as APLUS,
Fig. 3 shows an example screenshot. COGTUTOR+ provides the student with mastery
learning driven by the knowledge tracing technique (Anderson et al. 1990). We
designed COGTUTOR+ so that it provides the same adaptive instruction that Carnegie
Learning Cognitive Tutor Algebra I™ does—i.e., immediate feedback, just-in-time
hint, and adaptive problem selection.

The first two types of adaptive instruction (i.e., immediate feedback and just-in-time
hint) are driven by model tracing (Anderson et al. 1992) that compares students’
solutions with model solutions. We use the model-tracing engine embedded in Carnegie
Learning Cognitive Tutor Algebra I™— COGTUTOR+ is connected to the Cognitive
Tutor Algebra I™ through the application programming interface. There are nine skills
that are subject to model tracing, all of which are the same skills that SimStudent learns
on APLUS. Each step a student enters in the Tutoring Interface of CogTutor+ is colored
either red, which indicates that the step is incorrect, or green, which indicates that the
step is correct (just like Cognitive Tutor Algebra I™ does). While using COGTUTOR+,

Fig. 3 Example screenshot of COGTUTOR+
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the student can ask for a hint for the next correct step (i.e., just-in-time hint, e.g., “What
should I do next?”) by clicking on Mr. Williams in the bottom right corner of the
screen.

The third type of adaptive instruction (i.e., adaptive problem selection) is driven by
knowledge tracing (Corbett and Anderson 1995) that computes the mastery level of
individual skills as a probability of applying them correctly. We implemented
the Bayesian Knowledge Tracing (BKT) technique. To apply BKT, the initial
parameters (mastery, guess, slip, and learning) must be estimated. To make an
estimation for the initial parameter valued, we used an existing dataset from
DataShop—called “Algebra I 2007-2008 (equation solving units)” available
from the project “Algebra I Course”. These data were collected from a school
study where participants used Carnegie Learning Cognitive Tutor Algebra I™.
We only used data that correspond with the nine skills mentioned above. We
applied the contextual estimation method (Baker et al. 2010) to compute the
initial parameter values.

The goal for a student using COGTUTOR+ is to achieve a mastery proficiency level for
all nine skills across all types of equations that are the same as APLUS—one-step
equation, two-step equation, and equations with variables on both sides (as shown in
Fig. 3). Student’s progress on the proficiency level is displayed as a bar graph on the
right-hand side of the COGTUTOR+ interface. A bar graph shows an average of the
proficiency of the skill learning for each quiz level where the “proficiency” is repre-
sented as the L parameter of the BKT. For each quiz level, the average L value is
computed across skills that are involved in the quiz problems in that level.

We designed COGTUTOR+ to control for the learning resources for students to review
with APLUS—i.e., the same Introduction Video, Unit Overview, and Worked-out
Examples as APLUS are available. However, there is no metacognitive help provided
by CogTutor+ to suggest when students should review these resources.

AplusTutor

APLUSTUTOR is a cognitive tutor that provides the same adaptive instruction as
COGTUTOR+, i.e., immediate feedback and just-in-time hint. APLUSTUTOR uses the same
model tracing back-end in Cognitive Tutor Algebra I™ as COGTUTOR+. The same 9
skills used for APLUS and COGTUTOR+ as mentioned earlier are used for APLUSTUTOR

for model tracing. In other words, the set of skills are controlled across all three
versions of systems used in the current study.

Unlike COGTUTOR+, knowledge tracing is not implemented in APLUSTUTOR, i.e., the
adaptive problem selection is not provided by APLUSTUTOR. Instead, students choose
problems from the Problem Bank or make them up and enter them into the Tutoring
Interface by themselves. The lack of knowledge tracing implies that APLUSTUTOR does
not compute student’s mastery level, which further implies that the learning goal is not
achieving a mastery proficiency. Instead, the goal for students using APLUSTUTOR is to
solve all quiz problems correctly by themselves. The quiz sections in APLUSTUTOR are
organized in the same way as APLUS. The student may click on the [Quiz] tab to take a
quiz at any time. The student is asked to submit a solution for one quiz problem at a
time (just like SimStudent solves a single quiz problem at a time), and the system
provides feedback on the correctness of the solution. The student can modify an
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incorrect solution and resubmit as many times as they want (even without practicing on
a problem with cognitive tutoring).

The interface of APLUSTUTOR is almost identical to APLUS except there is no
synthetic peer present (Fig. 4). A student enters a problem in the interface and then
the cognitive-tutor backend provides the adaptive scaffolding (i.e., immediate feedback
and just-in-time hint) while the student is solving the problem. Likewise, APLUS and
COGTUTOR+, students may click on Mr. Williams anytime to ask for a hint. In addition
to the just-in-time hint (on how to solve a problem), Mr. Williams also provides the
following three types of metacognitive hints that are equivalent to the metacognitive
tutoring help provided by APLUS: (1) Selecting an appropriate next problem to
practice. (2) Taking the quiz at an appropriate time. (3) Reviewing resources. Like
APLUS, these types of metacognitive hints are delivered either upon students’ request
or proactively by Mr. Williams.

Comparison Among Three Interventions

The three online learning systems mentioned above provide different learning oppor-
tunities, though all three systems have the same learning objective—i.e., learning to
solve three types of equations that is, one-step equations, two-step equations, and
equations with variables on both sides. We suppose that for each system, the learning
opportunities shown in Table 1 most essentially influence students’ learning as de-
scribed below.

All three conditions have learning resources—i.e., Unit Overview, Intro Video, and
Examples. The Problem Bank is available only for APLUS and APLUSTUTOR. For

Fig. 4 Example of screenshot of APLUSTUTOR
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APLUS, students teach the synthetic peer where they provide immediate feedback and
just-in-time hint to their synthetic peer by themselves. On the other hand, for
APLUSTUTOR and COGTUTOR+, students practice solving equations through the direct
adaptive instruction (aka, cognitive help)—i.e., immediate feedback and just-in-time
hint—provided by an embedded cognitive tutor.

For APLUS the synthetic peer takes the quiz, whereas for APLUSTUTOR students take
the quiz. Both APLUS and APLUSTUTOR provide a review for the quiz. Passing the quiz
is the criteria for completion. COGTUTOR+ does not have a quiz. Instead it provides
mastery practice.

Both APLUS and APLUSTUTOR provide metacognitive help on problem selection,
timing of quiz, and resource review. In addition, APLUS also provides metacognitive
help on feedback and step demonstration.

Classroom Evaluation Studies

To test the specific hypotheses discussed in section “Research Questions and Hypoth-
eses,” we conducted two evaluation studies in authentic business-as-usual classroom
settings.

Method and Participants

The two evaluation studies were held in 2016 and 2017, both in late spring.
For the 2016 study, two public schools participated with a total of 184 7th and
8th grade students in 12 algebra classrooms. For the 2017 study, one public
school participated with a total of 260 6th and 7th grade students in 12 algebra
classrooms.

Table 1 The most essential learning opportunities in each online learning system. (*) Guided problem-solving
means the adaptive instruction driven by the cognitive tutor, i.e., immediate feedback and just-in-time hint

APLUS (LBT) APLUSTUTOR (GOP) COGTUTOR + (CT)

Reviewing learning resources Reviewing learning resources Reviewing learning resources

Teaching the synthetic peer (i.e.,
students provide cognitive help to
their peer)

Guided problem-solving (i.e.,
students receive cognitive help
from the cognitive tutor)

Guided problem-solving (i.e.,
students receive cognitive help
from the cognitive tutor)

Reviewing quiz results (taken by the
synthetic peer)

Reviewing quiz results (taken by
the student)

Receiving metacognitive tutoring help
(problem selection, quiz, resource
review, feedback, and step
demonstration)

Receiving metacognitive tutoring
help (problem selection, quiz,
and resource review)

Completion upon the teachable agent
passing Quiz

Completion upon the student
passing Quiz

Completion upon the student
reaching to the mastery
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Three study conditions were implemented: (1) Learning by Teaching (LBT) condi-
tion where students used APLUS. The students’ goal was to have their synthetic peer
pass the quiz. (2) Cognitive Tutoring (CT) condition where students used COGTUTOR+.
The students’ goal was to reach the mastery level in solving eqs. (3) Goal-Oriented
Practice (GOP) condition where students used APLUSTUTOR. The students’ goal was to
pass the quiz by themselves.

In the 2016 study, all three conditions were used. However, for the 2017 Study, we
decided to only compare LBT and GOP, because the 2016 Study showed that GOP is as
effective as LBT and CT even when GOP students did not commit to practicing on
solving equations (as shown in the RESULTS section below). Since GOP is a new type
of intelligent tutoring system with no adaptive problem selection, we assumed that it
was important to replicate the observation that GOP tied with LBT, and wanted to gain
more statistical power (by dropping the third condition). GOP is also a tighter control
for LBT than CT as mentioned above.

Both evaluation studies were randomized controlled trials based on the within-class
randomization—i.e., for each classroom, individual students were randomly assigned
in one of the study conditions.

A study session at a school ran for six days, one classroom period per day (45 to
50 min). On the first day, all participants took an online pre-test. On the 2nd through 5th
day, participants used a corresponding version of the software. At the beginning of the
2nd day, all participants watched the video explaining how to use the software (for
about 6 min). Since the video was embedded in the software, participants were able to
watch it again anytime if needed. On the last day, participants took an online post-test
that was isomorphic with the pre-test. There were two versions of online tests that were
randomly assigned to students as pre- and post-test to counterbalance the version
difference—i.e., the half of students took the test version A for pre-test and version
B for post-test whereas the other half went the other way. The next section provides
details about the tests and other measures.

Measures

We measured learning outcomes and activities. Students’ learning outcomes were
measured using an online test that consisted of two parts: The Procedural Skill Test
and the Conceptual Knowledge Test. It is sometimes reported that a standardized test
can be less sensitive to learning gains than an assessment specifically designed around
particular intervention content (Cook et al. 1986; Rohrbeck et al. 2003). Since the
primary purpose of our intervention, APLUS (and its control, APLUSTUTOR and
COGTUTOR+), is to learn to solve a particular type of questions (i.e., one- and two-
step equations, and equations with variables on both sides), we created our own online
tests that are intervention oriented, instead of using an existing standardized test.

The Procedural Skill Test (PST) had three sections: (1) The Equation section with 10
equation solving items for the same levels of equations (but actually different problems)
as the ones included in the quiz used in APLUS and APLUSTUTOR—2 one-step
equations (e.g., a + 7 = 15), 2 two-step equations (e.g., 5 – 2p = 10), and 6 equations
with variables on both sides (e.g., −x + 3 = 2 – 4x). Students only need to enter a
solution (can be an integer, a decimal, or a fraction) into the online test form. This
section also had a corresponding paper form for students to show their work. (2) The
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Effective Next Step section with 2 equation problems that were half solved (e.g., an
equation “8x+5 = 5x+7” was transformed into an equation “3x+5 = 7” by “subtracting
5x from both sides”) and four operations were proposed for a next step (e.g., “add 3 to
both sides,” “subtract 5 from both sides,” etc.). Students were then asked to identify the
correctness by selecting a “yes/no” option of each proposed operation. (3) An Error
Detection section with 3 equation problems that were solved incorrectly with interme-
diate solution steps shown (e.g., an equation “10w + 1 = 6 – 4w” was solved with 3
steps; (i) 10w = 5 – 4w, (ii) 6w = 5, (3) w = 5/6). Students were asked to identify the
incorrect step and explain their reasoning.

The Conceptual Knowledge Test (CKT) consisted of 24 true/false questions about
basic algebra vocabulary—6 items asking about variable terms (e.g., In 3 = 4 – 5b, 3 is
a variable term in the equation. True or false?), 6 about constant terms, 6 about like
terms (e.g., 3d is a like term for 7a. True or false?), and 6 about equivalent terms.

As mentioned earlier, there were two isomorphic versions of the online tests. The
two versions are identical in their structures and corresponding pair of problems can be
solved with the same skills—roughly speaking, they only differ by the numbers and
variable letters used.

For each question item both in the PST and CKT, students were encouraged to select
the “I don’t know” option when they were not certain about the answer. We introduced
this option to discourage students from making a non-educated guess. In our past
classroom studies where the same PST and CKT tests were used, the reliability of the
online test (Cronbach’s alpha) ranged from 0.76 to 0.84 depending on a test version and
a school (Matsuda et al. 2011). For the 2017 study, the Cronbach’s alpha was 0.87 and
0.89 for pre- and post-test respectively.

Students’ learning activity was measured using learning process data that showed
detailed interactions between individual students and the system. The interactions were
automatically collected by the system including problems used for tutoring or practice,
solutions entered by the student and the synthetic peer, quiz progress, hint requested,
etc. In all three versions of the system, there was a Cognitive Tutor embedded for a
logging sake. The correctness of each step made by students and the synthetic peer was
judged by the Cognitive Tutor and logged.

Analysis

To test hypotheses mentioned earlier (H1, H2, H3a, and H3b), we evaluated how the
intervention affected students’ test scores. We started with applying a repeated-
measures ANOVA for each measure (i.e., Equation, PST, and CKT), with test score
as the dependent variable, and test-time (which is the timing of the test, i.e., pre- vs.
post-test) and condition (LBT vs. GOP vs. CT) as independent variables.

The aptitude-treatment interaction (ATI) was tested by splitting into three groups
based on their prior competency measured by pre-test scores followed by a two-way
ANCOVAwith post-test as a dependent variable and condition (LBT vs. GOP vs. CT)
and prior competency (Low vs. Mid vs. High) as the independent variables while
taking pre-test as a covariate.

We also analyzed learning process data to better understand how students in different
conditions interacted with the given system and how the difference in the interaction
yielded different learning outcomes. We conducted basic descriptive statistics such as
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counting the number of problems practiced, hint messages received, quiz submitted,
and learning resources reviewed. We then conducted correlational and regression
analyses to understand if and how some of those descriptive statistics were relate with
learning.

Results

For the analysis below, we only include students who took both the pre- and post-tests
and attended class while using the intervention for at least 3 (out of 4) days. For the
2016 Study, there were 84 students (out of 184 in two schools) who met these criteria—
123 students took the pre-test and 152 took the post-test; 114 students met the
attendance criteria. Among these students, we excluded 17 ceiling students who scored
100% correct on the pre-test in the Equation section of the Procedural Skill Test. As a
result, there are 67 students in the following analysis: 24 in Learning by Teaching
(LBT), 22 in Goal-Oriented Practice (GOP), and 21 in Cognitive Tutoring (CT).
For the 2017 Study, 3 ceiling students were excluded who scored 100% on the
pre-test in the Equation section. There are 141 students in the following
analysis: 71 in LBT and 70 in GOP.

For the 2017 Study, there was a technical issue during the post-test that 75 students
(which is 54% of the students who met the inclusion criteria) could not open the online
test form. All 75 students were 7th graders. As a consequence, for the 2017 Study, only
66 qualified students had PST and CKT test scores and were mostly 6th graders
(whereas students in the 2016 Study are all 7th and 8th graders). There was no notable
difference in the number of students in each condition who did and did not take the
online test form: for 75 who did not take the online test form, 36 were in GOP and 39
were in LBT; whereas for 66 who took the online test form, 34 were in GOP and 32
were in LBT.

Although students could not use the online test form, they were able to work on the
Equation section, because this section had a paper form to show their work. Those who
used the online test form were also asked to show their work on the paper form and
only enter the solution (e.g., x = 8) in the online form. We therefore anticipate that the
media difference (paper vs. online) made no significant influence of on students’
performance. As a consequence, in the following analysis, we only show the Equation
section (which is the most essential part of the PST) for the 2017 Study. The Equation
section is also shown for the 2016 Study as a comparison.

Learning Outcomes

Table 2 shows the average test scores for both studies comparing the pre- and post-test
across study conditions. For the Equation section (of PST), the two studies show the
same pattern that test-time (pre vs. post) was a main effect (2016-F(1,64) = 10.52,
p < 0.01; 2017-F(1,139) = 45.91, p < 0.001), but there was no condition difference
(2016-F(1,64) = 1.27, p = 0.77; 2017-F(1,139) = 3.48, p = 0.06). For the overall PST
(which is available only for the 2016 Study), test-time was also a main effect (F(1,64) =
15.43, p < 0.001), but no condition difference was detected (F(2,64) = 0.56, p = 0.58).
For CKT (only for the 2016 Study), neither test-time (F(1,64) = 2.36, p = 0.13) nor
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condition (F(2,64) = 0.67, p = 0.52) were main effects, and no interaction between test-
time and condition was detected.

In sum, for learning to solve equations, there was no condition difference, and
students showed improvement from pre-test to post-test measured by the PST test.

To investigate how students’ prior competency (measured by the pre-test score)
affected the effect of each intervention, we split students into three groups of equal
size—Low, Mid, vs. High—based on their pre-test score of the Equation section.
Table 3 shows the average post-test score on the Equation section for each condition
and prior. Figure 5 is an interaction plot showing the Equation post-test score compar-
ing each condition crossed with the prior. We then ran a two-way ANOVA with the
post-test score as the dependent variable, and prior (Low, Mid, and High) and condition
(LBT vs. GOP vs. CT for the 2016 Study, whereas LBT vs. GOP for the 2017 Study) as
independent variables (in this order). The interaction term (among condition and prior)
was not statistically significant for either study; for 2016, F(4, 58) = 0.76, p = 0.56; for
2017, F(2, 135) = 0.16, p = 0.85; indicating that there was no aptitude-treatment
interaction observed.

It is worthwhile to notice that numerical definitions of the level of prior (Low, Mid,
and High) are slightly varied between 2016 and 2017 Studies as shown in Table 3 as the
differences in the mean pre-test scores. Overall, students in the 2017 Study had
relatively lower prior than the 2016 students. This implies that LBT was equally
effective as GOP for a wide variety of students in terms of their prior competency.

In summary, hypothesis H1 was supported. By adding metacognitive scaffolding,
learning by teaching realized by APLUS became effective for students with various
prior competencies (measured as the pre-test), in particular even students with low
prior competency were benefit from learning by teaching when metacognitive

Table 2 Test scores for the 2016 Study (a) and the 2017 Study (b). A number in parentheses shows a standard
deviation

(a) The 2016 Study

Equation PST CKT

Pre Post d Pre Post d Pre Post d

LBT (N = 24) .46 (.32) .55 (.25) .28 .55 (.27) .62 (.22) .26 .49 (.23) .53 (.22) .17

GOP (N = 22) .46 (.31) .50 (.31) .13 .48 (.25) .56 (.20) .32 .48 (.21) .51 (.14) .14

CT (N = 21) .45 (.32) .54 (.29) .28 .54 (.22) .62 (.24) .36 .43 (.23) .47 (.16) .17

Total (N = 67) .45 a (.31) .53 a (.28) .26 .53 b (.24) .60 b (.22) .29 .47 (.18) .50 (.18) .17

(b) The 2017 Study

Equation

Pre Post d

LBT (N = 71) .23 (.24) .34 (.29) .46

GOP (N = 70) .24 (.24) .42 (.32) .75

Total (N = 141) .23c (.24) .38 c (.31) .63

(*) Equation: The equation section of PST. PST: Procedural Skill Test. CKT: Conceptual Knowledge Test.
LBT: Learning by Teaching. GOP: Goal-Oriented Practice. CT: Cognitive Tutoring. PST except the Equation
section and CKT were not available for the 2017 Study. a F(1, 64) = 10.52, p < 0.01, b F(1, 64) = 15.43, p <
0.001, c F(1, 139) = 45.91, p < 0.001
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scaffolding was available. The same pattern was observed for the other two conditions.
As a consequence, there was no aptitude-treatment interaction observed in the current
study.

Hypothesis H2 was not supported. There was no evidence for the current imple-
mentation of learning by teaching with metacognitive scaffolding (APLUS) being
effective for learning conceptual knowledge measured with the Conceptual Skill Test
for the 2016 Study.

Hypothesis H3a was not supported. Learning by Teaching with metacognitive
scaffolding was as effective as the traditional Cognitive Tutoring (which did not have
metacognitive scaffolding). H3b, on the other hand, was supported. The current data
showed that Learning by Teaching with metacognitive scaffolding was as effective as
Goal-Oriented Practice with metacognitive scaffolding.

Table 3 The average post-test score on the Equation section with a three-way split based on the pre-test score
for the 2016 Study (a) and the 2017 Study (b)

Low (N = 23) Mid (N = 22) High (N = 22)

Pre Post d Pre Post d Pre Post d

(a) The 2016 Study

LBT (N = 24) .09 (.08) .37 (.21) 3.25 .41 (.12) .51 (.19) .42 .84 (.07) .76 (.16) −1.14
GOP (N = 22) .13 (.07) .23 (.19) 1.42 .48 (.10) .53 (.18) .50 .81 (.09) .81 (.20) 0

CT (N = 21) .10 (.04) .24 (.21) 3.75 .43 (.12) .56 (.19) .08 .82 (.08) .81 (.07) .13

Total .11a (.07) .27 a (.20) 2.29 .44b (.12) .54b (.18) .83 .82 (.08) .80 (.15) .25

(b) The 2017 Study

LBT (N = 71) .02 (.04) .19 (.22) 4.25 .20 (.05) .26 (.24) 1.2 .54 (.20) .62 (.25) .40

GOP (N = 70) .01 (.03) .26 (.26) 1.42 .17 (.06) .33 (.21) 2.66 .46 (.21) .63 (.31) .81

Total .01c (.04) .22c (.25) 5.25 .19d (.06) .30d (.23) 1.83 .50e (.21) .62e (.28) .57

a F(1, 20) = 11.56, p < 0.01, b F(1, 19) = 8.77, p < 0.01 c F(1, 45) = 29.60, p < 0.001, p < .0.01, d F(1, 45) =
8.76, p < 0.01, e F(1, 44) = 11.59

(a) The 2016 Study (b) The 2017 Study

Fig. 5 Interaction plots on the Equation PST post-test score across condition and prior (Low, Medium, and
High based on the Equation PST pre-test score) for the 2016 Study (a) and the 2017 Study (b). The ATI was
not confirmed for either study
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Learning Process

To further understand how the process of learning differs among different study
conditions, the learning process data were analyzed.

Learning Activities

The following learning activities were analyzed: (1) the number of times that just-in-
time hint was provided by the cognitive tutor (i.e., Mr. Williams), (2) the number of
equation problems practiced or tutored, (3) the number of quiz taken and/or reviewed,
and (4) the number of times learning resources are reviewed.

Table 4 shows the average frequency of each type of learning activity per individual
student. Problem Entered shows the number of equation problems entered into the
system. The term “enter” is used slightly differently for each learning strategy. For
Learning by Teaching (LBT), it corresponds to students entering problems for tutoring
their synthetic peer. For Goal-Oriented Practice (GOP), it is about students entering
problems for themselves to practice while receiving the adaptive scaffolding from the
cognitive tutor. For Cognitive Tutoring (CT), it is about the system posing problems for
students to practice while providing them with the adaptive scaffolding. Cog-
nitive Hint Received shows the number of cognitive hints students received.
Note that no cognitive hint is available for LBT (as indicated as ‘n/a’ in the
table). Quiz shows the number of times quiz problems were submitted either by
SimStudent in LBT or students in GOP. Either case, quiz problems were
submitted one at a time. As a reminder, for LBT, when a quiz problem is
solved incorrectly, students need to teach SimStudent on more problems and
have SimStudent solve the same quiz problem again—simply having SimStudent
to redo the quiz without teaching does not change the quiz result at all. For GOP,
students may submit the same quiz problem multiple times with different solutions until
it is solved correctly. Resource Review shows the number of times the four types of
learning recourses were reviewed—Unit Overview, Problem Bank, Introduction Video,
and Example Solutions. Table 5 shows the breakdown of the frequency count for
Resource Review.

To our surprise, Goal-Oriented Practice (GOP) students submitted the quiz a notable
amount of times (labeled as Quiz in Table 4) while practicing on a notably small
number of problems with cognitive tutor (Problem Entered). A detailed analysis of the
process data revealed that GOP students spent a remarkable amount of time “editing”

Table 4 Average frequency of each type of learning activities per individual student

Problem Entered Cognitive Hints Received Quiz Resource Review

2016 2017 2016 2017 2016 2017 2016 2017

LBT 21.7 12.8 n/a n/a 18.0 15.4 22.5 21.0

GOP 7.3 9.6 11.5 16.3 54.7 46.5 15.7 16.3

CT 34.8 - 40.7 - n/a - 13.5 -

An ‘n/a’ indicates that corresponding learning activity is not available. The table compares 2016 and 2017
Studies. A ‘-’ indicates that the corresponding condition was not included in the study
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and re-submitting their quiz solutions, rather than entering problems to the system and
practicing on them with cognitive tutoring. Since the system provides corrective
feedback on quiz solutions, students knew which step was wrong. It is therefore likely
that they simply made modifications on the incorrect steps and submitted the “edited”
solution. For the 2016 Study, the average total number of times individual students
submitted a quiz problem is 54.7 ± 41.3 (which is 4.8 ± 6.6 submiss per quiz problem).
For the 2017 Study, it was 46.5 ± 30.3 (5.3 ± 6.7 submissions per quiz problem).
Students seem to have learned to solve equations on a trial-and-error basis by simply
“editing” quiz solutions based on the feedback from the system and resubmitting until
they pass the quiz. We shall call this curious style of learning, Learning by Editing.
Quite interestingly, even though Learning by Editing could be considered as “gaming”
the system (Baker et al. 2008), GOP students, on average, achieved the same profi-
ciency level as students in other conditions.

Not surprisingly, Cognitive Tutoring (CT) students (who did not work on the quiz
and were given problems by the cognitive tutor based on the mastery criteria driven by
the Bayesian knowledge tracing) practiced on more problems than students in any other
condition.

These patterns appeared repeatedly in both studies. Figure 6 shows the
number of problems practiced during the four days of intervention comparing
the 2016 and 2017 Studies. The t-test revealed that GOP students practiced on
fewer problems than LBT students; for the 2016 Study, MLBT = 22 ± 8.9 vs.
MGOP = 7 ± 7.5; t(34) = 5.42, p < 0.001; for the 2017 Study MLBT = 13 ± 6.6 vs.

Table 5 Average frequency of reviewing each type of resource per individual student

Unit Overview Problem Bank Introduction Video Example Solution

2016 2017 2016 2017 2016 2017 2016 2017

LBT 2.3 3.8 16.0 7.7 2.2 3.5 2.0 6.0

GOP 2.3 2.6 5.6 3.4 2.1 2.4 5.6 7.9

CT 1.3 – 1.1 – 1.9 – 9.1 –

The table compares the 2016 and 2017 study. A ‘-’ indicates that the corresponding condition was not included
in the study

(a) The 2016 Study (b) The 2017 Study

Fig. 6 Boxplots showing the number of practiced problems by students in each condition during four days of
intervention comparing the (a) 2016 Study and (b) 2017 Study. An asterisk shows a mean
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MGOP = 10 ± 9.4; t(81) = 2.07, p < 0.05. Figure 6 shows that CT students in the
2016 Study practiced on the greatest number of problems (MCT = 35 ± 11.1)
among three conditions.

A regression analysis revealed that the number of times quiz submitted was not a
reliable predictor of the post-test score when the pre-test score was entered into the
model as the primary factor: For the 2016 Study, the pre-test score had a statistically
reliable predictive power, F(1, 19) = 43.93, p < 0.0001; whereas the number of quiz
submission did not, F(1, 19) = 0.03, p = 0.87. For the 2017 Study, the pre-test score was
a reliable predictor, F(1, 66) = 33.05, p < 0.0001; whereas the number of quiz submis-
sion was not, F(1, 66) = 0.04, p = 0.84.

In summary, regarding the number of problems practiced, the CT students
were exposed to the most practice problems among the three conditions. The
GOP students were exposed to the least practice problems, but instead they
submitted and re-submitted the quiz for a notable amount of times. Since GOP
students practiced on less than two equations per day on average, it is arguably
the case that GOP students learned to solve equations through a quiz cycle—submitting
a quiz, receiving corrective feedback, revising (or “editing”) solutions, re-submitting the
quiz, and repeat. Most interestingly, despite the difference in the learning activities
among three learning strategies, there was no difference in students’ achievement
observed in the current studies. The number of quiz submissions, however, does not
have a statistically reliable predictive power for learning when students’ prior
competency (measured as pre-test score) is entered into the model, which
suggests that it is not merely the number of times the quiz is submitted that
contributes to learning. Further study is necessary to investigate how Learning
by Editing contributes to learning.

Quiz Progress

We analyzed how students in Learning by Teaching (LBT) and Goal-Oriented Practice
(GOP) made progress on the quiz. Both APLUS (LBT) and APLUSTUTOR (GOP) have
four quiz levels (as described in the “Interventions” section). To measure the progress
on the quiz, we quantified the quiz levels such that One-step Equation is coded as level
1, Two-step Equation is 2, Equations with Variables on Both Sides is 3, and Final
Challenge is 4. In the following analysis, we use these numeric levels.

For the 2016 Study, there were 8 students in Learning by Teaching (LBT) who
passed all quiz levels and 18 students in Goal-Oriented Practice (GOP) who passed all
quiz levels over the 4 intervention days. For the 2017 Study, 5 and 30 students in LBT
and GOP respectively passed all quiz levels.

Figure 7 shows the average quiz level passed on each intervention day for the 2016
Study (a) and the 2017 Study (b). Notice that the GOP condition plots the quiz levels
that students passed, whereas the LBT condition plots the quiz levels that teachable
agents passed. The data show that GOP students reached higher quiz levels than LBT
students on Day 1. The average highest quiz level passed on Day 4 was 3.0 for LBT
and 3.3 for GOP in the 2016 Study whereas 2.4 and 2.8 for LBT and GOP respectively
in the 2017 Study. These differences on Day 4 are not statistically significant; for the
2016 Study t(3.5) = 0.45, p = 0.67; and for the 2017 Study t(8.6) = 1.20, p = 0.26.
However, when the quiz progress is aggregated across all days, the differences were
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statistically significant; for the 2016 Study t(79.9) = 3.69, p < 0.001; and for the 2017
Study t(230.2) = 10.45, p < 0.001.

On the other hand, there is no difference in the “rate” of the quiz progress. Linear
regression analyses with quiz-level as the dependent variable and intervention-day and
condition (GOP vs. LBT) as independent variables did not reveal a difference in the
slope (i.e., the “rate” of the quiz progress) among the two conditions in the 2016 nor the
2017 Study.

In summary, GOP students reached to a higher quiz level quicker than LBTstudents,
but there was no notable condition difference in the “rate” of the quiz progress. A
reason for LBT students starting at a lower quiz level than GOP students on Day 1 is
arguably because some of them taught SimStudent incorrectly at the beginning, which
screwed up SimStudent’s competency on the quiz and took long time to recover.
SimStudent was pre-trained on one-step equation, which means that if LBT students
quizzed SimStudent before they taught anything at all, SimStudent had passed the first
quiz level. Once SimStudent is taught incorrectly and (as a consequence) learns
incorrect productions, it often takes a long time for SimStudent to re-learn correct
productions. GOP students might have been equally likely to make mistakes on the first
quiz level, but it is arguably the case that they re-submitted the failed quiz several times
and eventually made it correct, which is quicker than teaching SimStudent. It is
interesting, though, that both conditions showed a comparable “rate” of improvement.

Usage of the Metacognitive Scaffolding

To understand how students were exposed to metacognitive scaffolding—i.e., five
types of metacognitive tutoring help of APLUS (for LBT) and three types of
metacognitive help of APLUSTUTOR (for GOP)—we counted the number of hint mes-
sages that individual students received. We are particularly interested in understanding
how students requested help by themselves vs. received proactive help that Mr.
Williams provided. Table 6 shows the average frequency count of receiving hint
messages from Mr. Williams by request vs. proactively, broken down into different
types of metacognitive help. Since there is a notable condition difference (LBT vs.

(a) The 2016 Study (b) The 2017 Study

Fig. 7 Transition of quiz levels for Goal-Oriented Practice (GOP) and Learning by Teaching (LBT) for the
2016 Study (a) and 2017 Study (b). The X-axis shows intervention days and the Y-axis shows the average quiz
level passed where One-Step Equation is 1, Two-Step Equation is 2, Equation with Variables on Both Sides is
3, Final Challenge (which involves only equations with variables on both sides) is 4
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GOP) in the number of problems students practiced as mentioned above, the table
shows the average number of hints received per practice problem aggregated across
students. Although, two types of metacognitive-hint delivery (by request vs. proactive)
were available in both the 2016 and 2017 Study, it was only for the 2017 Study that the
information about the type of hint delivery was logged. Therefore, Table 6 only shows
data from the 2017 Study.

Figure 8 is a visualization of Table 6 with the distribution of each type of
metacognitive hint received. Hashed (blue) bars show APLUSTUTOR (GOP) and solid

Table 6 The frequency of metacognitive help received per problem by students in each condition in the 2017
Study

Review Resource Quiz Problem Demonstrate Step Justify Answer Total

LBT Proactive 0.3 0.6a 1.7 0.0 0.0 2.6

Requested 0.2 0.2 0.6b 0.01 0.03 1.0

Total: 3.6

GOP Proactive 0.3 1.5a 2.1 n/a n/a 3.9

Requested 0.2 0.2 0.2b n/a n/a 0.5

Total: 4.4

a: t(102) = 3.81, p < 0.001

b: t(95) = 3.77, p < 0.001

Fig. 8 The distribution of the average amount of hints received by individual students for each type of
metacognitive hint represented as a ratio to the total hints received. A solid (red) bar shows APLUS and a
hashed (blue) bar APLUSTUTOR. A darker area shows hints requested, whereas a lighter area shows hints
provided by Mr. Williams proactively
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(red) bars show APLUS (LBT). A darker area shows hints requested by students,
whereas a lighter area shows hints proactively provided by Mr. Williams. The X-axis
shows hint type, and the Y-axis shows a transformation of values shown in Table 6 into
a ratio relative to the total for each condition—for example, the LBT students received
0.3 hints on Review Resource proactively in average with the total of 3.6 hints received
hence the ratio is 0.08.

As the graph shows, students rarely requested help. In total, GOP students received
more help proactively than LBT students (3.9 vs. 2.6), whereas LBT students requested
more help than GOP students (1.0 vs. 0.5). Table 6 indicates that these differences are
due to the differences in Quiz and Problem—GOP students received more
metacognitive helps on Quiz proactively than LBT students (1.5 vs. 0.6), whereas
LBT students requested more metacognitive helps on Problem than GOP students (0.6
vs. 0.2). Both of these differences were statistically significant as shown in the table
with t-statistics.

The above observation implies that the LBT students asked Mr. Williams what
problem they should teach next on about every other problem whereas the GOP
students did so once for every five problems. The LBT students were apparently
concerned about selecting appropriate problems for teaching, whereas GOP students
rarely practiced on problems.

It is also interesting to see that GOP students received more than twice as many
metacognitive helps on Quiz proactively than LBT students. Both APLUS (for LBT)
and AplusTutor (for GOP) were equipped with the same algorithm to proactively
provide metacognitive help based on a status of the completion of quizzes and practice
problems. The reason that GOP students received more proactive Quiz helps is likely
because they completed more quiz levels—when a quiz level is completed, the system
occasionally provide a suggestion (i.e., “help”) to proceed to a next quiz level.

There is a general trend shown in the table—students seldom received hints on
Demonstrate Step and Justify Answer (these types of help are about how to use the
system when teaching the teachable agent and not available for GOP students hence the
n/a in the table). Students also very rarely received a help on Review Resources. Given
there are students who did not make a steady progress on the quiz, the system should
have proactively provided more help on reviewing resources. Fine tuning the timing of
the metacognitive help on resource review and evaluate its effect on tutor learning is an
important agenda for a future research.

To understand how receiving metacognitive help facilitated students’ learning, a
correlation analysis was conducted for post-test score as dependent variable with pre-
test (as the first term in the regression model) and the total number of helps received as
independent variables. The results show that it is only the pre-test score that has
statistically reliable predictive power for the post-test score, and the same trend
appeared both for LBT and GOP students. For LBT: Pre-test F(1, 178) = 93.93,
p < 0.001, Number of Helps F(1, 178) = 0.38, p = 0.54; for GOP: Pre-test F(1,178) =
93.93, p < 0.001, Number of Helps F(1, 178) = 0.38, p = 0.54. As mentioned earlier,
since only the 2017 Study had the data about hint type, this analysis was conducted
only for the 2017 Study.

To see whether students with different levels of prior competency were exposed to
the metacognitive help differently, the frequency count shown in Table 6 was broken
down into three groups based on students’ prior competency measured by the pre-test
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score. Table 7 shows the breakdown where each cell shows an average number of
metacognitive help received per problem aggregaged across students. As shown in the
table, there was no notable difference in the number of megacognitive help received
among students with different level of prior competency for the LBT students. On the
other hands, for the GOP students, there is a general trend that the lower group of
students received more help on Review Resource and Quiz.

The data shown in Table 7 do not inform much about why we did not see the
apptitude-treatment interaction (ATI) between the intervention (LBT vs. GOP) and
students’ prior (Low vs. Mid vs. High) when the metacognitive hint was available. If
the lack of ATI was due to the amount of metacognitive hint, then Table 7 might have
shown a notable difference between Low, Mid, and High prior students.

In sum, the current data do not confirm any direct correlation between the amount
of metacognitive helps received and learning gain. We also found that a simple count of
metacognitive helps received did not explain why a formerly found aptitude-treatment
interaction was not present this time. Further study is needed to investigate how the
metacognitive scaffolding facilitated tutor learning.

Discussion

The primary focus of the current study is to compare three learning strategies—one
implementation for learning by teaching (APLUS) and two implementations for learn-
ing by being tutored (APLUSTUTOR and COGTUTOR+). In particular, the results from two
classroom studies showed that by adding metacognitive scaffolding to the online

Table 7: A breakdown of the frequency of metacognitive help received (Table 6) based on students’ prior
competency (High vs. Mid vs. Low)

Review Resource Quiz Problem Demonstrate Step Justify Answer

(a) LBT.

Low Proactive 0.3 0.7 2.0 0 0

Requested 0.1 0.2 0.5 0 0.02

Mid Proactive 0.3 0.4 1.7 0 0

Requested 0.2 0.2 0.8 0 0.1

High Proactive 0.3 0.8 1.6 0 0

Requested 0.2 0.2 0.5 0.02 0

(b) GOP.

Low Proactive 0.5 2.1 1.8 n/a n/a

Requested 0.2 0.4 0.4 n/a n/a

Mid Proactive 0.2 1.9 2.9 n/a n/a

Requested 0.1 0.3 0.1 n/a n/a

High Proactive 0.2 1.0 2.0 n/a n/a

Requested 0.1 0.1 0.1 n/a n/a

Table (a) shows students in LBT and (b) in GOP.
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learning environment for learning by teaching, a previously observed aptitude treatment
interaction (Matsuda et al. 2011) that students with low prior competency benefit more
from learning by being tutored disappeared. Regardless of the prior competency, the
current data did not suggest any differences among students in all three learning-
strategy conditions for the level of proficiency achieved after using the interventions for
four days. The metacognitive scaffolding might have well helped all levels of students
understand how to teach appropriately, which facilitated tutor learning.

Figure 9 depicts this result. In the figure, the y-axis shows whether the metacognitive
scaffolding in the online learning environment is available or not. “OFF” shows the
results from our previous study (Matsuda et al. 2011) where metacognitive scaffolding
was not available, whereas “ON” shows the results from the current study with
metacognitive scaffolding.

Other than the availability of the metacognitive scaffolding, the behavior of the
interventions was the same—i.e., the same goals, the same learning resources, the same
quiz levels, etc. The two bars on the bottom half of the figure show that when
metacognitive scaffolding is not available, learning by teaching is less beneficial for
students with low prior, but they are equally beneficial for other students. Two bars on
the upper half of the figure show that there is no aptitude-treatment interaction when
metacognitive scaffolding is available. Along with the results from our previous studies
where the availability of cognitive and metacognitive scaffolding was controlled
(Matsuda et al. 2016; Matsuda et al. 2014), the current study implies the effect of
metacognitive scaffolding for successful Learning by Teaching.

The presence of metacognitive scaffolding for learning by teaching, however, does
not affect student’s learning on conceptual knowledge. The current study replicated
lessons learned from previous studies (Matsuda et al. 2016; Matsuda et al. 2013b) that
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Fig. 9 Comparison of the effect of two learning strategies—learning by teaching vs. learning by being tutored.
The x-axis shows student’s prior competency. The y-axis shows whether the metacognitive scaffolding in the
online learning environment is available or not. The height of a bar area metaphorically shows an effect of a
learning strategy—the higher the bar, the more effective the corresponding learning strategy is. Two bars on
the bottom half of the figure show that when metacognitive scaffolding is not available, learning by being
tutored is more beneficial for students with low prior, but they are equally beneficial for other students. Two
bars on the upper half of the figure show that there is no aptitude-treatment interaction when metacognitive
scaffolding is available
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the current implementation of APLUS does not necessarily impact students’ perfor-
mance on the Conceptual Knowledge Test regardless of the availability of
metacognitive scaffolding. Simply pointing students to the learning resources that
contains detailed explanations about conceptual knowledge at an appropriate time did
not help. Further investigation is necessary to understand how best we can help students
learn conceptual understanding.

Of course, the absence of statistics to reject a null hypothesis, however, does not
mean that all three proposed interventions are indeed equally effective or the learning
by teaching does not promote learning on conceptual understanding. The current data
might reflect a flaw in the validity of the measure used for pre- and pos-tests. The
measured reliability of the test (the Cronbach alpha) was reasonably high—0.76~0.89
as mentioned in the section “Measures.” However, those tests might have missed the
adequate sensitivity of the latent skills for which the students’ learning was actually
facilitated by the system.

The difference of the test media (online vs. paper) might have also affected the
results. The current data suggest that students who were able to “correctly” teach the
teachable agent during the intervention period failed to solve the same type of equations
correctly on the post test. We speculate that this is arguably due to a difference between
recognition and production. While teaching the teachable agent, students often provide
yes/no feedback to the steps made by the teachable agent. Providing the yes/no
feedback is supposedly easier for students to do than suggesting a next step by
themselves, which is what students needed to do on the test. Students might have
learned a skill to recognize correct steps that might not necessary increase the level of
proficiency in solving equations.

Alternatively, it might be the case that the proposed interventions were in fact
equally effective. To investigate if this is the case, an additional study needs to be
conducted with different measures (i.e., pre- and post-test) to see if the results are
replicated.

The current paper explored the similarities and dissimilarities among learning by
teaching and learning by being tutored. First, we found a notable difference in the
amount of problems students practiced while achieving the same level of learning gain.
Cognitive Tutoring (COGTUTOR+) students needed to practice on 60% more problems
than Learning by Teaching students. However, the comparison for the amount of
problems practiced by students in three different learning strategies needs some caution.
We must consider the fact that Goal-Oriented Practice (APLUSTUTOR) students appar-
ently learned quite a lot from editing and re-submitting the quiz with the feedback from
the system (in addition to the small number of practice problems). Learning by
Teaching (APLUS) students, on the other hand, might have learned by teaching on
relatively a larger number of problems (in addition to observing the teachable agent
solving quiz problems). Furthermore, during the 2016 Study where COGTUTOR+ was
used, we received anecdotal input from students expressing their discontent that the
tutor insisted them to continue practicing on excessive number of problems, which
implies that the number of problems practiced for CogTutor+ reported in the current
paper might be unnecessarily inflated.

Nonetheless, since the time on task was controlled for both studies (all students
spent the same amount of time on the intervention in the classroom), it is arguably fair
to say that all three learning strategies used in the two studies require a relatively equal
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amount of time to achieve the same proficiency level. Future studies must be conducted
to replicate the results to clarify potential confounding due to the system
implementation.

Second, it is interesting to see that two different learning goals (a) students passing
the quiz by themselves (Goal-Oriented Practice with APLUSTUTOR) and (b) having the
synthetic peer pass the quiz (Learning by Teaching with APLUS) have the equal impact
on student’s learning outcome. This result somewhat contradicts a previous finding on
the ego protective buffer (Chase et al. 2009)—students’ learning is facilitated when
they perceive a third party agent (e.g., a synthetic peer) as the target for blame of a
failure, i.e., “it is the synthetic peer that failed on the quiz, not me!” Further investiga-
tions are necessary to understand why we do not observe this phenomenon.

Third, yet another interesting observation, though rather serendipitous, is that
Goal-Oriented Practice (GOP) students primarily focused on editing quiz solutions
with corrective feedback from the system and re-submitted them repeatedly until
passing the quiz (aka Learning by Editing as discussed earlier). This peculiar
students’ tendency is reasonable (though it is an after the fact), given that GOP
students’ goal is to pass the quiz. GOP students might have wanted to be “done”
many times just as they like to win a game. Learning by Teaching (LBT) students
who did not actually take the quiz (but their agents did) do not have this pleasure.
Therefore, we argue to consider this behavior as a nature of GOP (as opposed to a
confounding factor). What is striking us is that this Learning by Editing strategy
lead students to an equal level of learning as the other two learning strategies. The
underlying cognitive mechanism of learning-by-editing must be explored in the
future. One might argue that GOP students were gaming the system. There was no
data collected this time to determine if students were gaming or not. Therefore, we
cannot really draw any inference about the impact of gaming the system on tutor
learning. The potential of gaming must be addressed in future studies, perhaps by
integrating a technology to detect a moment of gaming.

The current data suggest a very little about students’ motivation and their engage-
ment. Yet, the data have some indications that Learning by Teaching (LBT) students in
the current study were indeed engaged in tutoring their synthetic peers—e.g., consistent
improvement on the agent’s performance measured as the progress on quiz, relatively
frequent request for help on problem selection, and a fair amount of problems actually
tutored. The anecdotal observations during classroom study indicate that LBT students
were very excited about themselves teaching a computer agent and watching their
synthetic peer taking a quiz (successfully, in particular). LBT has a potential to
externally motivate students—e.g., by adding motivative and attractive avatars (e.g.,
Bredeweg et al. 2013; Zhao, and Ailiya,, and Shen, Z. 2012). Yet, in the current
literature, there is a lack of knowledge to the connection between the behavioral
characteristics of the teachable agent and the tutor learning outcome. Further study is
needed to investigate the theory of students’ motivation when learning by teaching and
its implication to tutor learning.

Related to the issue of gaming, there is a concern regarding the current design of
Goal-Oriented Practice about “shallow” learning that by definition allows students to
learn skills to solve equation based on surface features (such as a number following a
mathematical symbol, i.e., + or -) rather than understanding mathematical principles.
When students commit to shallow learning, they might be able to solve problems with a
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particular surface feature. However, such knowledge does not transfer to other prob-
lems with different surface appearance but should be solved with the same mathemat-
ical principle.

For example, students might learn to subtract b from ax + b = c where a, b, and c are
numbers. This is an application of a mathematical principle of balancing an equation by
applying a same operation to both sides of the equation. If students learn this principle
only with the problems where b follows a plus sign, they might subtract b from ax –
b = c (which indeed is one of the most frequently observed common errors that students
make (Booth and Koedinger 2008; Matsuda et al. 2009). For Learning by Teaching, we
observed that when SimStudent committed to shallow learning, the student’s learning
also tended to be shallow (Matsuda et al. 2012). In this past study, the shallow learning
happens most notably on equations with variables on both sides, presumably because
there are many combinations of the element-level features (e.g., the order of variable
and constant terms, a sign of a term, etc.).

The above-mentioned findings on the suspicious shallow learning motivated us to
structure the quiz with the Final Challenge, which is indeed the same difficulty level as
Equations with Variables on both Sides (i.e., Final Challenge contains 8 more equations
with variables on both sides). This means that, to pass the quiz, students must solve a
set of 4 equations with variables on both sides and then another 8 equations of the same
type. Since these 12 equations are carefully designed not to have the same surface
features (e.g., the order of variable and constant terms, the signs of terms, etc.), it is
therefore unlikely that students can pass the quiz merely learning surface features.
Furthermore, the Equation section of the online test have 10 equations that never appear
in the quiz. Therefore, it is arguably unlikely that our measure failed to detect students’
“shallow” learning. The shallowness of the “shallow” learning is, of course, open to
question. Further investigation on the skill transfer (e.g., near vs. far transfer) is
necessary.

It is surprising that the current data show that Goal-Oriented Practice (APLUSTUTOR),
which is driven by a cognitive tutor without global student modeling (i.e., knowledge
tracing), is as effective as a fully functional cognitive tutor (COGTUTOR+) with adaptive
problem selection. Goal-Oriented Practice is a variant of cognitive tutoring that does
not have knowledge tracing (it is only equipped with model tracing to provide
immediate feedback and just-in-time hint). Instead, APLUSTUTOR allows students to
enter problems to practice by themselves while it also provides a pre-compiled set of
quiz problems and Problem Bank. It is therefore an interesting version of the double-
loop model for an intelligent tutor (VanLehn 2006) with an outer-loop that is controlled
by the students selecting problems by themselves.

Studies show that an adaptive problem selection made by an intelligent tutoring
system yields better learning than random selection (Metcalfe and Kornell 2005) and
fixed order (Corbett 2000). The current study showed that cognitive tutoring on
problems that students selected by themselves along with a fixed set of problems
(i.e., Problem Bank) is as effective as cognitive tutoring with adaptive problem
selection. However, the current findings have an obvious confounding with the pres-
ence of quiz that allowed students to obey leaning by editing. Since APLUSTUTOR is goal
oriented—students must pass a set of pre-defined quiz by themselves, students were
simply able to “adaptively” enter a failed quiz item as a practice problem on the
cognitive tutor, and have the tutor provide scaffolding on how to solve it. Further
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investigation on the effect of problem selection (adaptive vs. self-selection vs. goal
oriented, etc.) in the context of learning by editing is necessary to advance the theory of
adaptive tutoring.

An extension of this line of research on the problem selection is to have APLUS
provide a student with the next problem to teach based on the student’s competency
computed by model tracing. For example, the teachable agent could ask students to
teach a particular problem next. The student’s competency can be computed based on
the accuracy of feedback and hints that the student provided to the teachable agent. This
might be interesting for future research.

The current two studies show relatively small effect sizes. Although a meta-analysis
reported that learning by teaching in face-to-face settings tended to show a small effect
size (Roscoe and Chi 2007), we anticipate that the effect of learning by teaching will be
amplified with the adaptive technology support. Further investigation is necessary to
understand if and how innovative learning technology can magnify the effect of tutor
learning.

Conclusion

We found that learning by teaching a teachable agent with metacognitive scaffolding on
how to teach is effective for students with various levels of prior competency, and it is
as effective as learning by being tutored across all levels of students’ prior competency.
The lessons learned on the importance of metacognitive scaffolding from the current
study provide insights into a successful implementation of a teachable agent that
promotes the tutor-learning effect.

In the current article, two versions of cognitive tutors were implemented—one
with a traditional mastery learning with an adaptive problem selection based on
students’ competency (Cognitive Tutoring) and another one that does not provide
mastery learning but students needed to pass the quiz by themselves while
receiving cognitive tutoring and metacognitive scaffolding (Goal-Oriented
Practice).

We also compared learning processes for Learning by Teaching, Goal-Oriented
Practice, and Cognitive Tutoring. There was no notable difference in the way
students received metacognitive scaffolding between LBT and GOP. For both
conditions, students rarely request metacognitive hints by themselves, but instead
mostly received those that Mr. Williams, the meta-tutor agent, proactively
provided.

Learning by teaching is a promising style of learning with a proven effect in the
current literature. Developing an effective online environment with a teachable
agent will therefore make a significant contribution to students’ learning with a
substantial impact on the current education system. Although our current imple-
mentation of learning by teaching (APLUS) produces an actual learning gain
(measured by pre- and post-tests), its effect size is relatively small. The current
work is focused on a value added by the metacognitive scaffolding to learning by
teaching. Additional research is needed to further enhance the effect of tutor
learning—e.g., letting the teachable agent ask constructive and reflective questions
might be an interesting research topic.
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