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Abstract
Advances in computer technology and artificial intelligence create opportunities for
developing adaptive language learning technologies which are sensitive to individual
learner characteristics. This paper focuses on one form of adaptivity in which the difficulty
of learning content is dynamically adjusted to the learner’s evolving language ability. A
pilot study is presented which aims to advance the (semi-)automatic difficulty scoring of
grammar exercise items to be used in dynamic difficulty adaptation in an intelligent
language tutoring system for practicing English tenses. In it, methods from item response
theory and machine learning are combined with linguistic item analysis in order to
calibrate the difficulty of an initial exercise pool of cued gap-filling items (CGFIs) and
isolate CGFI features predictive of item difficulty. Multiple item features at the gap,
context and CGFI levels are tested and relevant predictors are identified at all three levels.
Our pilot regression models reach encouraging prediction accuracy levels which could,
pending additional validation, enable the dynamic selection of newly generated items
ranging from moderately easy to moderately difficult. The paper highlights further
applications of the proposed methodology in the area of adapting language tutoring, item
design and second language acquisition, and sketches out issues for future research.

Keywords Adaptivity . Intelligent language tutoring systems . Item difficulty prediction .

Item response theory .Machine learning . Second language acquisition

Introduction

Recently, there has been a growing interest in the development of digital
technologies that offer adaptivity and personalization as a way of supporting
and enhancing language learning (Kerr 2015). Among these technologies are
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intelligent language tutoring systems (ILTSs), which use artificial intelligence to
capture and analyze learner data and make appropriate adjustments to the in-
structional process (Shute and Zapata-Rivera 2012; Slavuj et al. 2016). The
language proficiency of the individual learner, including type and level of
knowledge, skills and misconceptions, typically represents a central source of
adaptation. Natural language processing techniques, for instance, make it increas-
ingly possible to perform fine-grained error analysis of learner input and to
deliver error-specific feedback and remedial activities (e.g. E-Tutor (Heift
2016) and Tagarela (Amaral and Meurers 2011)). The intelligent selection,
sequencing and mode of presentation of learning content may also be based on
long-term performance and can be influenced by further factors such as the
learner’s age, linguistic background, goals and styles, affective states, disabilities
or indeed the learning context itself (Brusilovsky and Millán 2007; Slavuj et al.
2016). This paper focuses on a form of adaptive sequencing sensitive to the
developing language ability of the individual learner and achieved by dynami-
cally matching the difficulty of new or remedial content to the learner’s current
level of ability (Wauters et al. 2010). This process is henceforth referred to as
dynamic difficulty adaptation (DDA) and the work reported here is primarily
concerned with the development of learning materials, and especially exercise
items, which lend themselves to DDA.

This paper presents a pilot study conducted in preparation of an ILTS for
practicing English tenses – a grammatical area notoriously challenging for
learners – which can be used as a complement to classroom instruction, as
well as for collecting data on the development of L2 grammatical ability and
researching the effectiveness of adaptive tutoring, including DDA. The pilot
study has two main objectives regarding the development of the exercise item
pool the ILTS will operate with. The first objective involves calibrating the
difficulty of an initial tense exercise pool consisting of cued gap-filling items
(CGFIs) using item response theory (IRT). Difficulty calibration is not only
crucial for DDA but can also help assess the appropriateness of the initial item
pool for the target population (currently 9th and 10th grade learners in Germa-
ny) and identify where item pool extensions are necessary.

Motivated by related research in psychological and educational measurement (e.g.
Gorin and Embretson 2006; Embretson 1983; Hartig et al. 2012), the second and
main study objective is to assess whether – and how well – various observable CGFI
features can be used to predict item difficulty. This approach has two potential
advantages in the context of ILTSs. First, reliable item difficulty models could
substitute prior calibration relying on expensive pilot testing or intuitive ratings, which
is commonplace in current ILTSs, and instead aid in the automatic or semi-automatic
scoring and generation of unlimited new items with desirable linguistic and psycho-
metric properties (cf. Embretson 1998; Gierl and Haladyna 2012). The second
advantage is that such models can provide valuable insights regarding the relative
difficulty contribution of learning targets and various other item features. In the future,
such data-driven insights can inform the overall structuring of learning content and
adaptive sequencing and help predict individual learners’ difficulties. More generally,
the methodology and findings of this study will also be of interest to test and exercise
developers, as well as to researchers of second language acquisition (SLA).
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Research Context

Current Approaches to DDA

To date, DDA has been applied predominantly in ILTSs targeting vocabulary and reading
skills (e.g. Dynamic e-book guidance system (Sung and Wu 2017), MEL-Enhanced
(Sandberg et al. 2014), PIMS (Chen and Hsu 2008), REAP (Heilman et al. 2010), U-
Reading (Wu et al. 2011), Chen and Chung 2008). In contrast, DDA in the area of grammar
appears to have been implemented only in two ILTSs, Moeyaert et al.’s (2016) system and
English ABLE (Zapata-Rivera et al. 2007), both of which focus on formal accuracy only.
The former offers exercises targeting a single learning dimension (French verb conjugation),
while the latter treats several grammatical features such as subject-verb agreement or
pronoun form, each with its own set of (error-correction) exercises.

DDA has its origins in computer adaptive testing (CAT), where test item difficulty is
adapted to quickly and accurately assess test takers’ ability level (cf. Van der Linden
and Glas 2010). Its purpose in ILTSs goes beyond just assessment and extends to the
promotion of learning and motivation (Eggen 2012; Shute et al. 2007). Timms illus-
trates the reasoning behind this approach as follows:

[T]he difficulty of the problem has a large effect on how productive the interac-
tion between the student and the learning materials will be. If the student finds the
problem too easy, little learning will occur. In contrast, if the problem is too
difficult […], they will learn nothing and may also become discouraged. (Timms
2007, p. 213)

Arguably, therefore, the optimal adaptive selection and sequencing of exercise items
should ensure that learners are challenged yet capable of succeeding. This idea has been
influential in learning theory for some time now, notably in Vygotsky’s (1978) zone of
proximal development theory, flow theory (Csikszentmihalyi 1991/2008), self-
determination theory (Deci and Ryan 1985) and Krashen’s (1985) input hypothesis.
It has also found support in recent CAT studies which show that DDA can lead to
higher achievement, test-relevant motivation and engagement, as well as to more
positive subjective test experiences and lower anxiety levels than non-adaptive tests
(Fritts and Marszalek 2010; Martin and Lazendic 2018; but see also Ling et al. 2017).
There has, however, been very little research on the precise effects of DDA in digital
learning environments and results have been mixed. The only controlled study in the
area of language learning was conducted on an ILTS targeting a single dimension,
French verb conjugation (Moeyaert et al. 2016). Using IRT to estimate item difficulty
and learner ability, the study tested five DDA algorithms, each selecting exercise items
with a specific success probability range (from 40 to 50% to 80–90%). Results indicate
that DDA did not affect learning and motivation significantly in any of the conditions
and, furthermore, did not differ from random sequencing, regardless of learners’
proficiency level. At the same time, a handful of studies investigating the impact of
DDA on learning in intelligent tutors/instructional games outside language learning
have reported more positive results (Camp et al. 2001 and Salden et al. 2004 on air
traffic control training; Kalyuga and Sweller 2005 on algebra; Yuksel et al. 2016 on
music instruction), although some studies point in the opposite direction. Orvis et al.
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(2008) on military training and Shute et al. (2007) on algebra, for instance, found no
correlation between DDA and increased learning outcomes. In addition, there is some
indication that there may not be a one-size-fits-all approach to DDA. Thus, Mitrovic
and Martin’s (2004) study on SQL programming shows that the positive impact of
DDA may be mediated by factors such as learners’ proficiency, with advanced learners
benefitting the most (see also Orvis et al. 2008, and the CATstudies cited above). Given
the lack of unanimity in previous studies and their different domain and task-type foci,
it is also possible that DDA may be effective in some learning (sub-)domains or task
types but not in others.

While the identification of optimal DDA algorithms – possibly tailored to different
learner profiles and especially in ILTSs targeting multidimensional learning domains
such as the English tense system – urgently requires more empirical research that would
also be of relevance for existing learning theories, this paper concentrates on the more
basic issue of implementing DDA in digital learning environments. As Wauters et al.
(2012) note, a prerequisite for DDA is having learning materials with a known
difficulty level. Yet, the measurement of difficulty in existing ILTSs has some limita-
tions. In some systems, difficulty is evaluated by human raters (system designers,
educators, learners) (cf. REAP), potentially introducing subjectivity and bias (Impara
and Plake 1998; Wauters et al. 2012) and increasing costs. Other systems implement
observable item attributes as predictors but with little or no empirical validation (MEL-
Enhanced; PIMS; U-READING; Chen and Chung (2008)). When more objective
methods (e.g. based on classical test theory or IRT) are used, items require calibration
using large numbers of real learners prior to or during system use (Wauters et al. 2012;
e.g. Dynamic e-book guidance system; English ABLE;MEL-Enhanced; Moeyaert et al.
2016). This may quickly become infeasible when a subject domain like the English
tense system requires a large pool of exercise items.

In light of these challenges, we propose predictive difficulty modelling as a more
objective and economical alternative for item pool generation and calibration in DDA-
enabling ILTSs. We also argue that this method can inform curriculum design and
adaptivity in our ILTS, including DDA at the level of learning targets, which seems to
be lacking in most existing ILTSs. We turn to these and related issues next.

Measuring and Predicting Item Difficulty

As mentioned in the “Current Approaches to DDA” section, there are different methods
for estimating item difficulty. In psychological and educational measurement, IRT has
long been influential. Psychometric models within IRT assume that a person’s response
to an item depends on qualities of both the person and the item (cf. Embretson and
Reise 2000). The simplest model, the one-parameter Rasch model, describes the
probability π of a correct answer y to an item i as a logistic function of the difference
between the person’s ability parameter (θp) and the item difficulty parameter (βi):

π ypi ¼ 1jθp; βi

� �
¼ exp θp–βi

� �

1þ exp θp–βi

� � ð1Þ

This makes it possible to map the ability and difficulty parameters on a common scale
and estimate a probability of success for each item and person. For example, if a person
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with an estimated ability level of 1 logit receives an item with a difficulty of 1 logit,
then according to the model, that person has a 50% chance of solving the item correctly.
For an item with a difficulty that is 1 logit above the person’s ability, the probability of
success falls to 27%, while an item with a difficulty 2 logits below the person’s ability
increases the probability to 88%.

Typically, reliable item difficulty estimates are obtained by piloting items with a
large sample of persons (recommendations vary between 50 and 1000; cf. Linacre
1994; Tsutakawa and Johnson 1990). These estimates, together with a choice of a
desired probability of success (e.g. 50%, considered neither too easy nor too difficult),
can help assess the ability of new persons and serve as the basis for computer-based
DDA. While the identification of an optimal probability of success for specific learner
groups remains an empirical question (see the preceding section), it should be pointed
out that item calibration can also inform item pool development in ILTSs, an issue
currently rarely discussed in ILTS literature, which has so far concentrated on techno-
logical issues (cf. Vajjala and Meurers 2012). Specifically, if the population sampled for
calibration is also the ILTS’s target population, the appropriateness of the calibrated
item pool can be determined, that is, whether the item pool contains enough items for
the range of learner abilities found in that population. This paper addresses this process
to some extent in the “Difficulty Calibration” section below, leaving a deeper investi-
gation for future work (for a CAT example, see Reckase 2010).

In psychology and educational measurement, IRT has been instrumental in the study
of construct representation and validity (Embretson 1983). It is assumed that if it is
possible to formulate hypotheses identifying the cognitive constructs (knowledge, skills
and other cognitive characteristics) involved in successful task performance and de-
scribe how they are represented by features of individual task items, these hypotheses
can be tested empirically. If differences in item difficulties are indeed explained by item
features, then empirical support is provided for assumptions about construct represen-
tation (e.g. Embretson 1998; Freedle and Kostin 1993; Gorin and Embretson 2006).
This is usually done by regressing item difficulties on item features.

The present study also seeks to model the relationship between item features and item
difficulty. As detailed in the “Candidate Predictors” section, we consider a range of
potential predictors specific to CGFIs targeting the English tenses. However, our long-
term goal is not to study construct representation but rather a) to inform curriculum
design and adaptivity in our ILTS and b) to predict the difficulty of new exercise items.

Regarding the first goal, some of the features considered, such as the tense and voice
prompted by an item, represent primary tutoring targets of our ILTS, while others relate
to contexts of use (e.g. conditionals and reported speech) or the overall syntactic and
vocabulary complexity of a CGFI (see the “Candidate Predictors” section for details).
If, as we expect, the primary targets and context types are influential correlates of item
difficulty, this may have implications for the structuring and adaptivity of the learning
content. First, data-driven insights may be useful for informing general content order-
ing. For example, as far as it also makes pedagogical sense, practice material can be
organized according to the relative difficulty contribution of each tense, concomitant
grammatical features (e.g. active/passive voice, (ir)regular morphology) and other
exercise characteristics causing difficulty. Second, an IRT-based sequencing algorithm
operating over this general content structure would enable the system to present
exercise materials whose difficulty is adapted to learners’ ability – both within and
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across learning targets – or to anticipate where additional scaffolding is necessary (e.g.
more or less detailed explanations and hints).1

The second, andmore immediate, goal is to build amodel that can predict the difficulty of
future CGFIs based on their features. A further step would be to train the system to identify
relevant features in new exercise material and rate difficulty automatically. As a conse-
quence, the systemwould also be able to generate or recommend exercise itemswith feature
constellations specifically tailored to the current needs of the learner.2,3

These goals, however, extend beyond this pilot study. Here, we focus on difficulty
prediction alone and evaluate the generalizability of several different item difficulty
models using statistical cross-validation. Details on the methods employed are present-
ed in the “Data and Methods” section below. First, however, a description of the item
pool and potential difficulty predictors is provided.

CGFIs Targeting the English Tenses

Exercise Format

This paper presents a model for predicting the difficulty of CGFIs targeting the English
tenses. The termCGFImimics Purpura’s (2004) cued gap-filling tasks, where learners read a
short text and fill in the gaps using cues usually consisting of a single word which must be
transformed to fit the context. The CGFIs in this study are shorter (spanning two sentences
on average) and contain a single gap. As the following examples show, each gap is followed
by a bracketed cue, typically a single lexical verb in the infinitive but sometimes also a
subject pronoun, an adverb and/or the negative particle not.

Though the primary focus of these items is on the form and meaning of the English
tenses, the examples above show that a number of epiphenomenal features, including voice,

1 English ABLE, an ILTS targeting grammatical form accuracy via exercises targeting a single category at a
time, takes a similar approach. There, exercises within each category are also sequenced using IRT, while
“[t]he next category is selected based on a predefined sequence of categories obtained through preliminary
difficulty analysis” and the learner’s previous performance (Zapata-Rivera et al. 2007, p. 327). The nature of
this difficulty analysis is not specified further.
2 Adaptive item selection can be implemented using thematroid optimizationmethod described inBengs et al. (2018).
3 For more on automatic item generation, to date mainly advanced in cognitive testing and STEM disciplines,
see, Attali (2018), Bejar et al. (2003), Embretson (1998, 1999, 2005) and Gierl and Haladyna (2012).

(1) The Taj Mahal __________________ (build) around 1640. 

(2) Laura: Where's Julie? Isn't she here?

Mark: She isn't, I __________ (not, see) her all day.

(3) That man looks familiar. I __________ (definitely, see) him somewhere before.
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polarity, person/number inflection, word order and irregular morphology, are also targeted
(see the “Candidate Predictors” section).

CGFIs belong to a group of limited-production exercise formats that have been
criticized for their repetitiveness, artificiality and unsuitability for the promotion of
broader communicative skills. At the same time, however, even a cursory overview of
standard textbooks, practice grammars and online platforms shows that they represent a
common and valued exercise format. Probable reasons for this are their relatively
straightforward design and utility in targeted grammar practice and assessment
(Purpura 2004). From a pedagogical perspective, they can be particularly effective in
focusing learners’ attention on specific linguistic forms and form-meaning relation-
ships. This approach is seen as especially advantageous for the development of explicit,
declarative knowledge, which plays an important role in early second language acqui-
sition (cf. e.g. DeKeyser 2005; Ellis 2012; Norris and Ortega 2000; Schmidt 1995).
Another distinguishing feature of CGFIs is that they target both receptive and produc-
tive skills. Compared to multiple-choice or error-recognition tasks, for instance, which
require recognition or recall of grammatical form and meaning, CGFIs require not only
the ability to reconstruct contextually implied grammatical meaning and retrieve the
necessary linguistic form, but also to produce this form accurately (Purpura 2004, p.
127). Thus, successful exercise completion depends on the development of each of
these abilities. Learner ability, however, is not the only determinant of success. Given
that some CGFIs are easy for most learners, while others represent a challenge even for
the strongest ones, it follows that variation in item difficulty must also be considered.
We discuss CGFI features that may be implicated in this variability next.

Candidate Predictors

To our knowledge, there have been no previous attempts to identify linguistic features
affecting or correlating with CGFI difficulty (or cued gap-filling tasks with multiple
gaps). To address this problem, we considered relevant candidates in the SLA and
psycholinguistic literature, as well as features known to affect the difficulty of related
task types (see especially Beinborn 2016, Beinborn et al. 2014, and Svetashova 2015
on C- and X-tests, as well as multiple-choice cloze tests). To systematize the investi-
gation, we distinguish three feature categories: gap-level, context and item-level fea-
tures. These are discussed next and listed in Table 4 in the appendix.

Gap-Level Features

Gap-level features refer to linguistic properties of the gap solution. The most obvious
and presumably strongest candidate predictor is tense.4 As Table 4 shows, not all
English tenses were considered in this study. Due to the practical difficulty of collecting
sufficient amounts of relevant learner data at this stage, both future tense forms (i.e.
tenses with will/shall) and future meanings (e.g. the future meaning of the simple
present) were excluded, as was the rare conditional perfect progressive (would have
been V-ing). However, the semi-modals used to and was/were going to, which express

4 The term tense is used here in its everyday sense, covering form-meaning pairings commonly known as, for
instance, the simple present or past perfect progressive.
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past habituality and past intention/predictability respectively (Declerck et al. 2006),
were included on par with the tenses. Despite extensive SLA literature on tense and
aspect in L2 English, it is difficult to anticipate the relative effect of these tenses and
semi-modals on item difficulty. First, although it is well known that progressive and
perfect tenses are generally acquired later than simple tenses (Bardovi-Harlig 2000) and
are especially challenging for (German) learners, usage patterns encompass both under-
and overuse (cf. e.g. Axelsson and Hahn 2001; Davydova 2011), with overuse entailing
that CGFIs targeting other presumably more straightforward tenses (e.g. simple tenses)
may be solved incorrectly due to perfect/progressive tense misconceptions.5 Second,
since this study distinguishes between correct and incorrect solutions only to enable the
implementation of the Rasch model (see the “Answer Coding” section), it is at this
stage impossible to differentiate tense misuses from mere errors in form, a distinction
usually made in SLA studies.

As stated in the “Exercise Format” section, the item pool also targeted a number of
epiphenomenal grammatical features, including voice, polarity, subject-verb agreement,
word order, adverb placement and (ir)regular lexical verb morphology. These features
may be correlated with item difficulty since they require distinctive morphological and/or
syntactic knowledge and skills. In line with Eckman (1977) and White (1989), we hypoth-
esize that marked realizations (e.g. passive voice, negative polarity, marked person/number
morphology, etc.) are more challenging than unmarked or non-realizations.6

Because CGFI difficulty may be affected by the interaction between the tense/semi-
modal and one or more of the epiphenomenal features described above, two gap-level
measures, morpho-syntactic edit distance (MSED) and cue size, were adopted as simple
proxies. MSED refers to the number of syntactic and morphological transformations
necessary to arrive at a target form or construction.7 In the present study, the initial
stimulus is the bracketed material after the gap, the target may or may not be
grammatically composite and MSED in the data ranges from 0 to 7. To illustrate, in
‘cue: go → solution: go’ no transformations are required, while that of ‘cue: still,
consider → solution: is still being considered’ requires seven.8 Since the second target
solution is morpho-syntactically more complex than the first, the chances of commit-
ting an error may be higher. Hence, we hypothesize that MSED may also predict CGFI
difficulty.9 Cue size is a more rudimentary measure, referring to the number of words in
the cue and reflecting increases in syntactic complexity. In the present data, it ranges

5 Bardovi-Harlig (2000, p. 419) posits the following sequence of emergence of tense forms used expressing
past temporality: (simple) present (default) > (simple) past > past progressive > present perfect > past perfect.
She also offers some evidence that present and past perfect progressive forms emerge after present and past
perfect forms respectively (Bardovi-Harlig 2000, Ch. 3). In addition, Bailey (1987) finds that the present
progressive is acquired before the past progressive. We are not aware of studies shedding light on the location
of the simple conditional and the conditional progressive in the acquisition sequence.
6 Following Rice (2007, p. 80), marked forms are “less natural”, “more complex”, “less common” and/or
“harder to articulate” than their counterparts.
7 This measure represents a slightly modified version of Spada and Tomita’s (2010) linguistic complexity measure.
8 These include: 1) supply the auxiliary be 2) in the simple present 3) third person singular; 4) supply the
auxiliary be 5) in its present participle form; 6) supply the past participle form of the lexical verb; 7) place the
adverb between the first and second auxiliary.
9 As Collins et al. (2009: 339) point out, however, previous research shows that the relationship between the
difficulty of a linguistic structure and LC may be mediated by other factors such as input frequency and
salience. The same applies to the markedness feature discussed above.
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from 1 to 3, including the lexical verb and, optionally, an adverb, the negative particle
not and/or a pronoun.

Lastly, previous studies on the difficulty of related text completion tasks, such as C-
tests and cloze tests, have hypothesized that successful gap-filling depends partly on
word familiarity (e.g. Beinborn et al. 2014; Svetashova 2015). Since word familiarity
cannot be measured directly, word frequency in language corpora is usually employed
as a proxy and has been shown to positively correlate with task and/or gap-item
difficulty. Unlike cloze and C-tests, CGFIs provide the lexical material needed to fill
the gap explicitly and so frequency could be deemed unrelated to CGFI difficulty.
Despite this, lexical verb frequency measures were included, since semantic familiarity
arguably plays a role in the reconstruction of the propositional meaning expressed by
the gapped sentence, including its temporal, aspectual and voice meanings. Frequency
information comes from the spoken and written components of the British National
Corpus (henceforth BNC-S and BNC-W; Hoffmann et al. 2008) and SUBTLEXus
(Brysbaert and New 2009). Several related measures were employed (features 37–54
in Table 4). For the BNC, these include frequencies of the verb lemma and the specific
verb form required, as well as the verb form percentage. The latter two measures were
included to capture the likelihood of having encountered a morphological form. The
SUBTLEXus measures are similar, except that lemma frequencies were replaced with
type frequencies. The number/proportion of SUBTLEXus documents containing a type
was also considered (Brysbaert and New 2009).

Context Features

Several features were defined to examine whether the type of context in which a gap
appears affects item difficulty. A first feature group refers to clause type and is
categorized according to whether the gapped clause is a simple sentence, part of a
compound sentence, superordinate and/or subordinate. The last two contain further
grammatical and semantic subcategories:

– superordinate clause: conditional consequent; head of a temporal clause;
miscellaneous

– subordinate clause: conditional antecedent; object of the verb wish; reported clause;
relative clause; temporal clause; miscellaneous

These features were included under the heading of context based on the fact that
different clause types (e.g. central conditional antecedents and temporal clauses vs.
main clauses) tend to select for different tense/aspect combinations (cf. e.g. Haegeman
2006). We therefore hypothesized that clause type (and the nature of neighboring
clauses, if any) can function as a kind of contextual cue to the solution of an item.
The classification above is still fairly coarse, however, partly due to the small number
of items in the current dataset. Future work should address this.

The second group refers to gap position within the CGFI (beginning, middle or end).
Gap position has been used in studies on cloze and C-tests (e.g. Beinborn et al. 2014;
Svetashova 2015) on the hypothesis that a gap difficulty is increased by the number of
preceding gaps. For the present CGFIs, the reverse could be true: the later the gap
appears in the CGFI, the more contextual information will be available to solve it.
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Finally, since the item pool contains multiple items representing dialogic exchanges,
we included a binary dialogic/monologic feature to assess its effect.

Item-Level Features

Item-level features describe global syntactic and lexical characteristics that may affect
CGFI readability and hence difficulty.

Syntactic measures include the number of a) sentences, b) clauses and c) dependent
(finite) clauses within a CGFI, as well as the ratio between c) and b). Total CGFI length
and mean sentence length in words were also calculated. These features have been
found to be good predictors of text readability and C-test difficulty (cf. Beinborn 2016;
Svetashova 2015; Vajjala and Meurers 2012).

Several different features describe CGFI vocabulary. Psycholinguistic research
shows word frequency plays an important role in language comprehension, with
high-frequency vocabulary enabling faster lexical access and therefore increasing
readability (Brysbaert and New 2009). To test this hypothesis, we calculate for each
CGFI the mean word type frequency and corpus range in SUBTLEXus. This is done
separately for content words, function words and all words per CGFI (features 83–94).
A related measure is McDonald and Shillcock’s (2001) contextual distinctiveness score,
which represents the co-occurrence probability of a word with 500 highly frequent
lemmas in the BNC. We include average CGFI scores over all words for this measure.

Age of acquisition (AoA) is another possible predictor that has been shown to
explain variance in word recognition and reading (Weekes et al. 2006) and SLA
experiments (Izura et al. 2011). We calculate average AoA of CGFI vocabulary using
Kuperman et al.’s (2012) database of informant ratings for 30,000 English words.
Another measure associated with lexical processing behavior is Brysbaert et al.’s
(2014) vocabulary concreteness, involving reference to easily perceptible entities. We
obtain scores for content, function and all words from Brysbaert et al.’s database
containing ratings of 40,000 words (features 95–97).

Finally, we adopt two lexical features previously tested in readability studies (cf.
Vajjala and Meurers 2012): lexical density (percentage of content words) and mean
word length in characters. To examine the effect of word length variation, we also
include the word length standard deviation.

Having introduced the three categories of features potentially associated with CGFI
difficulty, we next provide details of the data and methods employed in this study,
followed by the results.

Data and Methods

To estimate item difficulties in the CGFI pool and build a predictive model, a paper-
and-pencil test was conducted with a sample of German 9th and 10th grade learners of
English. In Germany, students begin learning English as a foreign language in the 3rd
grade or earlier and are expected to reach proficiency levels A2 to B1 by the end of the
9th and 10th grades respectively (cf. e.g. Niedersächsisches Kultusministerium 2015a,
b). At this stage, all tenses and semi-modals targeted by the initial item pool have been
introduced and are reviewed and practiced extensively. The next subsections detail the
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item pool development, the administration and scoring of the test, the feature extraction
procedure and the statistical methods employed.

Item Pool Development and Test Administration

To ensure item pool appropriateness for the target learner group, CGFIs were collected
from current print and digital EFL materials for the 9th and 10th grades by the three
major education publishers in Germany (Cornelsen, Diesterweg, Klett) and practice
grammars for intermediate students. Item quality and possible solutions were evaluated
by four native speaker experts and items were modified or discarded if they were
topically or stylistically awkward or ambiguous in terms of the range of acceptable
solutions (ignoring non-standard/marginal alternatives). In total, 330 items were select-
ed for the test.

After obtaining all necessary permissions and informed consent, the test was
administered to 787 9th and 10th graders in two preparatory high schools (Gymnasium)
and two integrated comprehensive schools (Integrierte Gesamtschule) in Lower Sax-
ony. After discarding empty and aborted tests, the number was reduced to 689. Table 1
shows a relatively equal split between school grades but not school forms: approxi-
mately 73% of the participants were preparatory high school students.

Test instructions were provided prior to administration, including an example item
and answer. Participants were not informed which specific tenses the test would cover
but told that the semi-modals going to and used to were admissible. 40 min were
provided to complete the test.

Due to the impracticality of asking students to solve all 330 items, a matrix design
consisting of 90 unique booklets containing a subset of 44 items in random order was
used. Despite our efforts, 38 items were retrospectively found to permit more than one
solution and had to be omitted from the analysis. Each of the remaining 292 items was
seen by a mean of 91.68 students (SD = 3.86), with each student working on a mean of
38.86 items (SD = 2.42).

Answer Coding

Test data collection produced 26,772 data points and the coding process distinguished
between ‘correct’ and ‘incorrect’ answers. Correct answers include a) complete
matches (N = 7788) and b) correct answers with a spelling mistake unrelated to
irregular morphology (e.g. *tought vs. thought or *finaly vs. finally; N = 94). Incorrect
answers include a) morpho-syntactic inaccuracies (N = 17,865), b) unfilled gaps (N =
842) and c) illegible, stricken through or unserious responses (N = 183). Two authors

Table 1 Test participants according to school type and grade

Grade nine Grade ten Total

Preparatory high school 242 261 503

Integrated comprehensive school 108 78 186

Total 350 339 689
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and four student assistants participated in the coding. Interrater reliability was main-
tained via a coding manual and a workshop, joint discussions of uncertainties and
frequent sample checks by one author.10

Feature Extraction

The linguistic features tested in the present study were extracted as follows. Features
37–46 were extracted using BNCweb (Hoffmann et al. 2008). Features 47–54 were
extracted from a SUBTLEXus wordlist available at https://www.ugent.
be/pp/experimentele-psychologie/en/research/documents/subtlexus. Features 73–76
and 78–79 were extracted with WordSmith Tools 6 (Scott 2011). Features 77 and 83–
99 were extracted using Taales 2.2 (Kyle and Crossley 2015). All remaining features
were coded and double-checked manually by two authors.

Statistical Analysis

Difficulty calibration was performed based on the Rasch model (Eq. 1) as implemented
in the R package TAM. Four items were excluded from the analysis due to low
informativeness (they were solved by all or none of the participants). The remaining
288 items were rescaled and their difficulties were subsequently used in the prediction
analysis (see the “Difficulty Calibration” section for details).

To model CGFI difficulty, several ridge regression models with different CGFI
feature sets were built using the scikit learn library for Python. Ridge regression was
chosen over other approaches to avoid overfitting and tackle multicollinearity.11 As a
pre-processing step, continuous attributes were scaled to the interval [0,1], while
categorical ones were binarized. This resulted in 99 individual features tested in the
prediction experiments. No regression intercept was included to obtain difficulty
estimates for all features. Nested cross-validation was used for hyper-parameter setting
and prediction performance evaluation (five-fold cross-validation repeated 10 times).
The following evaluation criteria were used: the average root mean squared error
(RMSE)12 and the Pearson correlation coefficient r between predicted and observed
difficulties. Finally, prediction intervals were calculated for the best performing model
to estimate its precision on future data.

Results

Difficulty Calibration

The results of the item pool calibration are displayed in Fig. 1. The overall reliability of
the items in measuring tense-related grammatical ability was high (RelEAP = 0.88).

10 As a slight drawback, no rater consistency measures were calculated. However, the handful of coding
mistakes that were made (approximately one hundred in total) were corrected during an independent learner
error analysis study belonging to a different strand of the research project out of which this study originates.
11 Lasso regression and decision trees yielded similar results.
12 RMSE represents the square root of the mean of the squared prediction errors. Here, it expresses the
standard deviation of predicted from observed difficulties.
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However, eight items did not fit the model well (infit mean square > 1.33; cf. Wilson
2004) and were excluded from subsequent analysis.

For the remaining 280 items, difficulties ranged from −2.56 to +5.78 logits.
As visible from Fig. 1, the overlap between student abilities (M = 0.00, SD =
1.30) and item difficulties (M = 1.51, SD = 1.78) is not ideal. Overall, the latter
significantly exceed the former (two-sample t = 14.645, df = 967, p < 0.0001). It
is also noticeable that the item pool contains a number of items that were too
difficult for most students, and very few items suitable for learners at the
bottom of the scale. This suggests that the item pool tends to be overly
demanding for German 9th and 10th graders and that the most pressing need
for additional items is at the lower end of the scale. These findings, however,
do not reveal what item content characteristics affect item difficulty and, hence,
offer no guidelines for designing future item pool extensions. In order to begin
bridging this gap, we next examine the ability of a number of CGFI features to
predict item difficulty.
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Fig. 1 Wright map displaying the distribution of estimated test participants’ abilities (left) and item difficulties
(right). Misfitting items (N = 8), excluded from subsequent analysis, are marked in dark grey
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Difficulty Prediction

The prediction experiments are based on the CGFI difficulty estimates obtained from
the calibration and the three feature groups described earlier: gap-level, context and
item-level features. We compare the predictive performance of several feature combi-
nations to a baseline model (a featureless model always predicting the overall mean
difficulty) to identify the best approach.

Table 2 shows that feature models B–K all represent an improvement over the
baseline. Model B, which contains only the 11 tenses and two semi-modals, checks
how well these features can predict item difficulty by themselves, given that they
represent core targets of the CGFIs. Indeed, this model clearly outperforms the baseline,
with a considerably lower RMSE and a stronger correlation between predicted and
observed item difficulties. Adding the remaining gap-level features improves the results
somewhat (Model C). Still, this improvement is fairly small relative to the much larger
number of features, suggesting that most of the additional features have low predictive
power. The same holds for context and item-level features, which perform poorly both
on their own and in combination (D, E and H), yielding RMSE values close to the
baseline. However, the moderate correlation with observed difficulties means that they
capture some variability in the data.

To better understand the usefulness of the three feature categories, we next assess the
performance of different feature combinations. The first, F, contains all 99 features. As
shown in Table 2, the full model delivers considerably better results than C (a 18%
decrease in RMSE and a 6% correlation increase), confirming that context and item-
level features hold some promise. We also check whether a sparser model can be
obtained. Models G–I each omit a different category. G, containing gap-level and
context features, is the best of the three. Interestingly, it delivers results equivalent to
those of the full model but with almost 30% less features. It also represents a
considerable improvement over gap-level features alone. H and I are substantially
worse, with H performing slightly better than gap-level features alone and I being the

Table 2 Cross-validation results for eleven predictive models with different feature combinations.

Models Features RMSE r

A Baseline – 1.78 −0.10
B Tenses and semi-modals 13 1.08 0.79

C Gap-level features 54 0.95 0.85

D Context features 18 1.62 0.41

E Item-level features 27 1.64 0.39

F Full model 99 0.78 0.90

G Gap-level and context features 72 0.78 0.90

H Gap-level and item-level features 81 0.93 0.86

I Context and item-level features 45 1.55 0.50

J Recursive feature elimination I 56 0.75 0.91

K Recursive feature elimination II 36 0.77 0.90

All Pearson correlation values are significant at the p < 0.0001 level
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weakest by far. Taken together, these findings suggest that gap-level features have the
strongest predictive power, followed by context and item-level features.

Removing entire blocks of features as described above, however, may obscure the
predictive power of individual features. To examine this possibility, we perform
recursive feature elimination of the least influential features. Table 2 reports two of
the obtained models, J and K, with 56 and 36 features respectively. Model J delivers the
best results, reducing the RMSE by 5% and increasing the Pearson correlation by 1%
compared to F and G. Model K is the sparsest model within a 3% tolerance of Model J.
It performs virtually equally well as F and G but with far fewer features.

The results of Model K are displayed in Table 3, which shows that features from all
three categories contribute to CGFI difficulty/ease. However, the gap-level category is
clearly the most important, accounting for 72% of all features in the model. As expected,
the type of tense/semi-modal required has a major impact (apart from the past progressive
and past perfect).13 The effect of epiphenomenal grammatical features is confirmed too,
though of these, subject-verb agreement appears to play no role whatsoever.14 Interest-
ingly, the selection of MSED and cue size indicate that there are important interactions
between (and within) tenses/semi-modals and epiphenomenal features. Finally, the
frequency of the lexical verb form, lemma or type also appear influential, suggesting
that our CGFIs require not only grammatical but also lexical knowledge.

Further influence is exerted by clause type and especially certain subordinate clauses
associated with special tense constraints (e.g. reported clauses, objects of wish). Gap
position and dialogic/monologic context are deselected, although they are present in the
larger Model J. Item-level features include syntactic embedding (number of dependent
clauses), word length and word length variation, AoA, concreteness and mean docu-
ment range. The latter five suggest once again that various aspects of vocabulary
quality play a role in CGFI processing.

Lastly, we examine the predictive precision of Model K to assess its poten-
tial utility in the context of DDA. Here, we estimate the prediction interval in
which individual future observations are expected to fall with a 90% probability

13 The tenses/semi-modals inModel K are ranked from highest negative impact to highest positive impact as follows:
(i) (−)simple past > (−)simple present > (−)simple conditional > (−)present perfect > (−)conditional perfect >

(−)present progressive > {(−)past progressive > (−)past perfect} > (+)used to > (+)conditional progressive >
(+)past perfect progressive > (+)present perfect progressive > (+)was/were going to.
The past progressive and the past perfect do not feature in Model K due to their negligible (negative) impact.

They are included here in brackets to show larger recursive elimination models place them in intermediate
position between the present progressive and used to. We note two interesting tendencies emerging from this
ranking. First, morpho-syntactically simpler forms tend to decrease item difficulty, while more complex forms
tend to increase it, a finding which is in line with previous SLA research on linguistic difficulty (cf. e.g.
DeKeyser 2005; Hulstijn and De Graaff 1994; Spada and Tomita 2010). It is also noticeable that simple tenses
precede perfect tenses, which in turn tend to precede progressive tenses. The progressives do not have
gnrammaticalized equivalent in German and so our finding is also very much in line with previous research,
which shows that such forms are particularly troublesome for German learners (cf. e.g. Götz 2015; Kämmerer
2012; Rogatcheva 2012). It should be emphasized, however, that these results are still preliminary. As pointed
out in the discussion, larger and more balanced datasets are needed to examine their validity and support
broader generalizations.
14 In line with our hypothesis, the passive voice, irregular morphology, wh-interrogative word order, which
were defined as ‘marked’, in the "Context Features" section boost item difficulty in comparison to their
‘unmarked’ counterparts (active voice, regular morphology, declarative word order). Again, the generalizabil-
ity of these findings remains to be examined in future research.

356 International Journal of Artificial Intelligence in Education (2019) 29:342–367



via the formula β̂i±1.64*RMSE. Thus, for example, the actual value of an item
with a predicted difficulty of 1 logit may fall anywhere between −0.22 and 2.22
logits. For a DDA setting, this means that a student with an ability level of 1

Table 3 Features selected in Model K (36 features; RMSE= 0.77, r = 0.91), ranked according to their impact
on item difficulty (+1 = highest positive impact; −1 = highest negative impact)

Feature groups Selected features Ranking

Gap-level features (N = 26, 72%) Simple present −4
Simple past −3
Simple conditional −5
Present progressive −15
Conditional progressive 7

Present perfect −10
Conditional perfect −14
Present perfect progressive 5

Past perfect progressive 6

Was/were going to 4

Used to 11

Voice: passive 20

Adverbs: absent 12

Polarity: positive 13

Word order: declarative 8

Word order: wh-interrogative 16

Lexical verb morphology: irregular 17

MSED: 7 14

Cue size 1

BNC-S normalized verb lemma frequency −13
BNC-S normalized verb form frequency −9
BNC-S log10 normalized verb form frequency −2
BNC-W log10 normalized verb lemma frequency 3

SUBTLEXus normalized type frequency −1
SUBTLEXus normalized verb form frequency 2

SUBTLEXus log10 type document range −12
Context features (N = 4, 11%) Subordinate clause type: reported clause 19

Subordinate clause type: object of wish 15

Subordinate clause type: temporal clause −7
Simple sentence: no 18

Item-level features (N = 6, 17%) Number of dependent clauses −8
Mean word length in characters 9

Word length SD −6
Age of acquisition (AW) 21

Concreteness (AW) −11
SUBTLEXus log10 mean document range (AW) 10
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logit would have an estimated probability of success on this item ranging
between 22% and 78% (using the formula π=eθ-β/1 + eθ-β). The more accurate
but larger Model J would lead to almost the same margin (π=50% ± 27%). With
this, we turn to the discussion of the results.

Discussion and Conclusion

One aim of this pilot study was to estimate the difficulty of a set of cued gap-filling
exercise items to be used in an ILTS for practicing the English tenses/semi-modals.
The IRT calibration showed that the large majority of items measure the same set of
abilities required for successful completion and can be ordered on a joint scale. In
the future, these items can therefore be deployed in DDA directly. Somewhat
surprisingly, the overall difficulty of the item pool tended to surpass a range of
abilities found in the learner population (9th and 10th grade students in Germany),
even though the items were sourced largely from learning materials intended for
their level. This could be explained by the fact that individual exercises in the
learning materials typically targeted a small set of tenses explicitly, whereas the
participants in this study received no such indication (except for the possibility of
using the semi-modals was/were going to and used to). Furthermore, the pool
included items from 10th grade textbooks and intermediate practice grammars
which might have been too challenging for the 9th graders. In any case, the
mismatch highlights that item pool appropriateness relative to a well-defined target
group of learners should be taken seriously in the development of pedagogically
sound ILTSs. Thus, in our case, there is a clear need for items at the lower end of the
difficulty/ability scale that must be addressed.

The second study aim was to attain a better understanding of the factors that
affect CGFI difficulty in order to enable a difficulty-oriented item design which
could eliminate the need for independent calibration via subjective ratings or
costly pilot testing in the future. The prediction results show that CGFI
difficulty is associated with a range of SLA, psycholinguistic and some spe-
cially formulated features concerning the linguistic properties of the required
solution, the context surrounding the gap and, more globally, the syntactic and
lexical characteristics of the CGFI as a whole. The results also show that of
these, gap-level features are the most predictive, echoing previous findings on
related text-completion formats (Beinborn 2016; Beinborn et al. 2014). All
grammatical features at the gap level except for subject-verb agreement were
shown to be useful predictors. Interestingly, MSED and cue size were also
found to be influential, suggesting that item difficulty is affected by the
interaction between grammatical categories, which may increase the processing
load and lead to more errors. In the future, larger, more balanced datasets will
make it possible to explore these interactions further. Finally, even though our
CGFIs have been described as limited-production tasks strictly targeting gram-
matical ability (cf. Purpura 2004), it appears that this is not all they do. In
particular, several lexical measures capturing various lexical verb or global
vocabulary qualities are relevant for CGFI processing. This is hardly surprising
given that inferring the intended grammatical meaning of the gapped verb
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requires the ability to understand the context. Thus, it is possible that CGFIs
targeting the same grammatical features may vary in difficulty due to lexical
(and possibly other) factors. This means that when referring to grammatical
phenomena in score interpretation, such features need to be controlled for on
the one hand. On the other hand, the significant effects of lexical features
present the opportunity to include them in score interpretations as well. This
would require the systematic inclusion of those features in item construction.

That said, the cross-validation results of the regression experiments are not
entirely satisfactory from a DDA perspective. The size of the prediction inter-
vals of our best models cannot guarantee exact ability-difficulty matching.
However, the predictions could, upon additional validation, enable a form of
DDA in which students are provided with items ranging from moderately easy
to moderately difficult. Since the probability of success increases/decreases
exponentially with the size of the difficulty/ability mismatch, a much greater
number of overly easy and overly difficult items would effectively be filtered
out. We consider these results encouraging and possibly even practical, given
the dearth of research on what forms of DDA work best (e.g. exact ability/
difficulty matching at some to-be-established success probability level or indeed
alternating between moderately easy and difficult items). The results should also
be seen in the light of state-of-the-art studies on related text-completion formats
which report comparatively higher RMSE and lower Pearson correlation values
(e.g. Beinborn 2016; Beinborn et al. 2014; Svetashova 2015).

The pilot study was constrained primarily by the amount of data available,
notably with regard to the coverage of some binary CGFI features and feature
combinations. Despite the use of a matrix design, logistical limitations and the
dangers of test fatigue prohibited the inclusion of more test participants and
items. In follow-up work, this problem can be addressed easily with an anchor
item design, in which a small set of previously calibrated items is incorporated
into subsequent tests covering underrepresented features and feature combina-
tions. A simple linking transformation can then be used to express the new
item difficulty scale in terms of the existing one (Wauters et al. 2012). Larger
datasets will also allow for further statistical validation and model adjustment.
Furthermore, it is possible to include additional features in the analysis. NLP
tools such as L2SCA (Lu 2010) and TAASSC (Kyle 2016) offer a large
number of additional morphological, syntactic and lexical measures that can
be tested in the future. On the semantic-pragmatic side, the polyfunctionality/
polysemy of the tense forms and semi-modals and the availability of contextual
cues pointing to the correct solution, for instance, likely hold high predictive
power. The inclusion of the former was constrained by insufficient variability
regarding some tenses and will be addressed when more data is available.
Incorporating the latter, in contrast, requires additional research into what
actually counts as a cue from a learner perspective.

Several directions for future research can be identified. First, as noted above,
more data is required to evaluate and improve our prediction models and to
obtain a larger item pool that is more balanced and covers a wider range of
abilities in the target population. Achieving this would, on the one hand, enable
(semi-)automatic evaluation and manipulation of the difficulty of newly
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generated items for use in the ILTS. On the other hand, it would permit us to
investigate the precise contribution of grammatical, contextual and other
features of CGFIs on item difficulty and its implications for the content
structure and adaptivity of the ILTS. Subsequently, different content structure
and DDA scenarios can be constructed and tested in order to assess the precise
benefits of DDA on learning outcomes and motivation. To our knowledge, no
research exists in these areas with regard to learning environments targeting
multidimensional content areas.

Second, as Moeyaert et al. (2016) caution, future research should also consider that
simple feedback indicating the correct response is likely not enough to promote
learning and that the effect of different types of corrective feedback should also be
taken into account.

Third, this study focused on a single exercise format and involved adminis-
tering a test with a fixed length and a uniform set of instructions. From a
pedagogical and language-learning perspective, an ILTS should ideally offer a
range of different exercises and exercise variants, involving, for instance,
different scaffolding techniques, in order to provide learners with more varied
practice opportunities. One avenue for future research, therefore, would be to
compare multiple exercise types, as well as variations in exercise instructions,
modes of presentation and item selections. Indeed, doing this would offer a
window into a whole host of non-linguistic, task-related item characteristics that
could have an effect on item difficulty. Here, it should also be mentioned that
the items studied in this paper were piloted with a paper-and-pencil test for
logistical reasons. In subsequent testings, a computer-based setting should be
preferred in order to better approximate an ILTS setting.

And fourth, it must be noted that the present analysis employed a two-stage
approach in which item difficulties and the effects of item characteristics were
estimated separately. It is technically possible to include the item characteristics
directly in the difficulty measurement model. However, Hartig et al. (2012) have shown
that this approach delivers practically identical results. We chose the two-stage ap-
proach since the direct approach is limited with respect to cross-validation techniques.
Nevertheless, including the item characteristics within the measurement model (e.g. a
multifaceted Rasch model) is a promising perspective for future studies.

To conclude, this pilot study provides initial evidence regarding the possible
features of CGFIs targeting the English tenses that affect exercise item diffi-
culty. Despite the limited scope of the study, this approach has much potential
in the context of (semi-)automatic difficulty scoring and manipulation for DDA
in ILTSs and CAT in general. We believe that it will also be useful for
educational content designers and empirical SLA researchers interested in un-
derstanding the factors that underlie learner performance.
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Appendix

Table 4 CGFI features used in the prediction experiments

GAP-LEVEL FEATURES Items per
category

Nr.

Tenses and modals Simple present 51 1

Simple past 41 2

Simple conditional 25 3

Present progressive 19 4

Past progressive 22 5

Conditional progressive 10 6

Present perfect 17 7

Past perfect 41 8

Conditional perfect 19 9

Present perfect progressive 8 10

Past perfect progressive 7 11

Was/were going to 9 12

Used to 11 13

Voice Active 251 14

Passive 29 15

Polarity Positive 232 16

Negative 48 17

Subject-verb agreement Unmarked 189 18

Marked 91 19

Adverbs Absent 259 20

Present 21 21

Word order Declarative 252 22

Yes/no interrogative 9 23

Wh-interrogative 9 24

Imperative 10 25

Past-tense and participial morphology Regular 202 26

Irregular 78 27

MSED 0 15 28

1 41 29

2 41 30

3 66 31

4 73 32

5 32 33

6 10 34

7 2 35

Cue size – 36

BNC-S Normalized verb lemma frequency – 37

Log10 normalized verb lemma frequency – 38

Normalized verb form frequency – 39

Log10 normalized verb form frequency – 40

Verb form percentage – 41

International Journal of Artificial Intelligence in Education (2019) 29:342–367 361



Table 4 (continued)

GAP-LEVEL FEATURES Items per
category

Nr.

BNC-W Normalized verb lemma frequency – 42

Log10 normalized verb lemma frequency – 43

Normalized verb form frequency – 44

Log10 normalized verb form frequency – 45

Verb form percentage – 46

SUBTLEXus Normalized type frequency – 47

Log10 normalized type frequency – 48

Type document range – 49

Log10 type document range – 50

Type document range (%) – 51

Normalized verb form frequency – 52

Log10 normalized verb form frequency – 53

Verb form percentage – 54

CONTEXT FEATURES

Gap position Beginning 92 55

Middle 97 56

End 91 57

Subordinate clause type Conditional antecedent 40 58

Object of wish 20 59

Relative clause 5 60

Reported clause 30 61

Temporal clause 16 62

Other 5 63

Type of superordinate clause Conditional consequent 51 64

Head of temporal clause 25 65

Other 9 66

Simple sentence No 63 67

Yes 217 68

Coordinated clause No 256 69

Yes 24 70

Dialogic context No 248 71

Yes 32 72

ITEM-LEVEL FEATURES

SUBTLEXus CGFI length in words – 73

Mean word length in characters – 74

Word length standard deviation – 75

Type count – 76

Lexical density – 77

Number of sentences – 78

Mean sentence length – 79

Number of clauses – 80

Number of dependent clauses – 81

Dependent clauses/clauses ratio – 82

Mean normalized type frequency (AW) – 83

Log10 mean normalized type frequency (AW) – 84
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