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Abstract
Agency refers to the level of control the student has over learning. Most studies on
agency in computer-based learning environments have been conducted in the context of
educational games and multimedia learning, while there is little research done in the
context of learning with Intelligent Tutoring Systems (ITSs). We conducted a study in
the context of SQL-Tutor, an ITS that teaches database querying, with students solving a
fixed set of ten problems. Before each problem, students worked on a preparatory task,
which could be presented as a worked example, erroneous example, or another isomor-
phic problem. There were two conditions in the study. In the High-Agency condition,
students could select the type of preparatory task freely or skip it altogether. In the Low-
Agency condition, an adaptive strategy selected preparatory tasks for students on the
basis of their performance. The participants were classified as High Prior Knowledge
(HPK) or Low Prior Knowledge (LPK), based on their scores on the pre-test. Due to the
timing of the study, we had 40 participants who completed all elements of the study. The
participants in both Low- and High-Agency conditions improved significantly from the
pre- to post-test, and there was no difference between the LPK and HPK students on
post-test scores. Therefore, we have not found an effect of agency on learning. The Low
Agency condition was beneficial for both HPK and LPK students, while in the High
Agency condition there was significant improvement between the pre- and post-test
only for the LPK students. In the High-Agency group, the HPK students selected more
challenging learning activities, but did not outperform LPK students on the post-test
scores. The limitation of our study is the small sample size.
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Introduction

Agency, which is closely related to self-regulated learning (Zimmerman 2008), refers to
the capacity of students to make choices during learning. Self-regulation includes
monitoring one’s own behavior and its effects, judging it according to personal
standards, and affecting self-reaction (Bandura 1991). In order for a student to self-
regulate, he/she uses personal agency to make choices on future actions. Although there
are attempts to investigate how we can best leverage student agency, it is not clear from
literature in which circumstances agency may or may not be beneficial for learning. For
instance, advanced students are often good self-regulated learners (Schunk and
Zimmerman 2007; Zimmerman 2008), but novices are generally not good at regulating
their learning, and hence benefit from instructional choices being made for them
(Zimmerman 2000). Mitrovic (2001) and Mitrovic and Martin (2002) also demonstrat-
ed that advanced students were better at evaluating their knowledge, while novice
students were worse at selecting problems to work on.

Several studies investigated the effect of agency on learning, and reported conflict-
ing findings. Some studies found that increased student agency is associated with
higher levels of motivation and involvement, and resulted in better learning outcomes
(Snow et al. 2015; Rowe et al. 2011). Tabbers and de Koeijer (2010) demonstrated that
giving students control over the pace and order of instructions in an animated multi-
media presentation led to higher learning outcomes. Similarly, letting students custom-
ize game components has also shown to be positive for learning (Cordova and Lepper
1996; Snow et al. 2015).

On the other hand, Sawyer et al. (2017) focused on the variations in agency within
the game Crystal Island. The students in the high-agency condition could control how
they obtain knowledge by interacting with the environment and game characters, while
the students in the low-agency condition had to follow a prescribed order of actions.
The low-agency condition students acquired significantly higher learning gains com-
pared to their peers in the high-agency condition. Nguyen et al. (2018) compared
learners in two versions (low agency vs. high agency) in a mathematics educational
game. In the low-agency condition, learners were guided to play games in a prescribed
sequence, while their peers in the high-agency version could choose the games and the
order in which to play them. Unlike the study conducted by Sawyer et al. (2017), they
did not find any significant difference in learning between the low and high-agency
conditions.

Although there have been many studies on the benefits of learning from worked
examples and learning with Intelligent Tutoring Systems (ITSs), most of them represent
settings with limited student control. In studies with worked examples, most often
examples are presented in the fixed order. On the other hand, ITSs typically select the
best problems for students to attempt and students typically have control over asking
for help. Agency is not often studied in those kinds of experiments, which motivated us
to conduct an experiment reported in this paper.

In a previous study (Chen et al. 2017), we added an adaptive strategy to SQL-Tutor, an
ITS that teaches database querying, which selected learning activities to present to the
student as preparation for problem solving. The strategy selected either a Worked
Example (WE), an Erroneous Example (ErrEx), or a problem to be solved (PS), based
on the student’s performance, or skipped the preparation task completely in case the
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student had shown high performance on previous problems. We used PS, WEs and
ErrExs, as these types of learning activities have been shown to be effective learning
strategies across a broad range of domains (Kalyuga et al. 2001; van Gog 2011; McLaren
and Isotani 2011; Chen et al. 2016a; Durkin and Rittle-Johnson 2012; Stark et al. 2011).
Two low-agency conditions in that study were 1) the adaptive condition, and 2) the fixed
order condition, which restricted students to learn with a fixed sequence of worked
example/problem-solving pairs and erroneous example/problem-solving pairs. The re-
sults showed that the adaptive condition was more beneficial for learning: the students
who received learning activities adaptively achieved the same learning outcomes as their
peers in the fixed order condition, but with fewer learning activities.

However, researchers also warn about negative consequences of too much adaptive
support, which can be detrimental to students because it frees them from thinking
(Hübscher and Puntambekar 2001). The capability to select learning activities is
important for learning; a learner should be able to reflect on what is important to them
and what they ought to consider learning about next (Mitrovic and Martin 2003).

Consequently, in the study reported in this paper, we investigated the effects of
learning using variations of agency within SQL-Tutor. In the High-Agency version,
students freely selected preparation tasks (WE, ErrEx, PS or none) before solving
problems. In the Low-Agency version, the adaptive strategy selected preparation tasks
for students based on their performance. Previous research shows that worked exam-
ples are more beneficial for novices (Atkinson et al. 2000; McLaren et al. 2008; Sweller
et al. 1998). For advanced students, worked examples may become less effective or
even lose their effectiveness for learning (Kalyuga et al. 2001; Kalyuga et al. 1998),
because the support provided by worked examples is redundant for them. Erroneous
examples have so far been shown to be particularly beneficial to students who have
amassed a reasonable degree of domain knowledge (Große and Renkl 2007; Tsovaltzi
et al. 2012). Therefore, for high prior knowledge students, our adaptive strategy either
skips the preparation task altogether (when their performance on previous problems is
high), or provides an erroneous example or a problem to solve. Although past research
has demonstrated that erroneous examples are more beneficial for students with high
prior knowledge, it seems that even students with low prior knowledge can benefit from
erroneous examples (e.g., Durkin and Rittle-Johnson (2012), Chen et al. (2016b), Stark
et al. (2011)). Therefore, for low prior knowledge students, the adaptive strategy
presents either worked examples or erroneous examples, based on their performance
on the previous problem. We attempted to answer two research questions:

Research Question 1: Do the Low- and High-Agency conditions differ on learn-
ing outcomes? Given the results of the Sawyer et al. (2017) study, we expected that
the Low-Agency condition would lead to better learning outcomes compared to
the High-Agency condition (H1).
Research Question 2: Are learning outcomes different for students with low or
high prior knowledge? Given the past research showing that the HPK students are
good at self-regulating and self-assessing (Zimmerman 2008; Mitrovic 2001), but
LPK students commonly benefit from instructional choices being made for them
(Zimmerman 2000), we hypothesized that High-Agency would be more beneficial
for HPK students (H2a), and the effect of Low-Agency would be more pro-
nounced for LPK students (H2b).
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The paper is organized as follows. In the next Section, we overview some studies on the
effect of agency on learning in computer-based environments. The following section
presents a brief overview of learning from worked examples and erroneous examples,
which provides the background for our study. Next, we present the experimental
design, followed by the section on results, and finally discussion of our results.

Agency and Learning

Agency, which refers to the level of control that a student has to perform actions in a
learning environment, is an important factor and leads to engagement and learning
benefits (Bandura 1989; Zimmerman 2008). Scientific research has started to provide
evidence that agency can be effective for enhancing motivation, interest, and attitudes
that result in positive learning outcomes. Studies of agency have been done with
various types of educational environments, such as multimedia learning and educa-
tional games, and also with students of different ages. We review some of the
approaches in this section, which are summarized in Table 1.

Calvert et al. (2005) report on a study conducted with preschool children in the
context of a computer-based storybook. They compared four conditions: 1) full control
by an adult who was reading the story and controlling the mouse, while the child was
listening; 2) a joint control condition, with the adult reading the story and the child and
child controlling the mouse; 3) a child-control condition and 4) a no-exposure condi-
tion. The authors reported that children who had control were more attentive and
involved in learning than those who were guided by adults; however, they found no
difference in the children’s memory of the content.

Cordova and Lepper (1996) demonstrate that giving elementary school students
control over instructionally irrelevant aspects of an educational game resulted in higher
motivation and interest, and led to better learning outcomes on a subsequent math test.

Several studies in the area of multimedia learning showed the interactivity principle
(Mayer et al. 2003): giving students control over pace and order of instruction reduces
cognitive load and increases transfer performance. In one such study conducted with
university students, Tabbers and de Koeijer (2010) had a no-control condition, in which
students watched a slideshow containing 16 slides, with each slide shown for 13 s with
accompanying narration. Students in the other condition were given full control over
pace and order of instructional material: they could stop or replay the slides, decide
whether to listen to narration, and freely navigate between the slides. The results
showed that giving students control over the multiple interactive features led to higher
scores on transfer, but at the same time resulted in increased learning time.

Rowe et al. (2011) investigated the relationship between learning and engagement in
Crystal Island, a game-based learning environment for microbiology, in which students
explore an island where an epidemic has recently spread among a team of scientists. Crystal
Island promotes a strong sense of agency, as students decide how to obtain information
necessary to solve the problem, by interacting with game characters and other game objects.
The authors conducted a study with middle-school students, and found that increased
engagement was associatedwith better learning outcomes and problem solving. Particularly,
students who performed better in the game also performed better at post-test, and these
students were more successful at gaining information during play.
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Sawyer et al. (2017) explored variations in student agency in Crystal Island, in three
conditions. In the High Agency condition, students could freely explore the environ-
ment. The Low Agency condition required students to visit a series of game locations
in a prescribed order, where they had to complete specific problem-solving actions.
Finally, the No Agency condition provided students with a video of an expert playing
the game to model an ideal path for solving the problem scenario. The Low Agency
students made more incorrect actions, but also achieved the highest learning gains. The
authors explain that such results were likely due to the extensive engagement with
instructional materials.

Snow et al. (2015) conducted two studies with university students to investigate the
effect of agency by analyzing students’ choice patterns within the game-based system
iSTART-2. Student could choose various learning activities, and could also personalize
the environment, which provided students a sense of control. The results showed that
the higher quality self-explanations and better performance within the games were
closely related to a student’s ability to exercise control choice patterns, as opposed to
disordered (i.e., random) choice patterns.

Nguyen et al. (2018) also compared Low/High Agency conditions to investigate
whether limiting agency could lead to high engagement and improved learning
outcomes in a mathematics educational game, Decimal Point. The High Agency
condition allowed students to choose how many and in what sequence they will play
the game. The Low Agency condition guided students to play games in a prescribed
order. Unlike Sawyer et al. (2017) study, they did not find increase in learning with
Low Agency compared to when students learned with High Agency. The authors
attributed this result to the effects of indirect control or teachers’ pressure. Additionally,
students in the High Agency condition did not exhibit much agency, due to the design
of the game layout which led more than half of the High Agency students to play the
games in the same order as the students in the Low Agency condition.

However, research suggests that increasing student agency may not be beneficial for
all students (Katz et al. 2006). Agency may lead to non-optimal learning such as
increased learning time (Tabbers & de Koeijer 2010), or to difficulties with selecting,
organizing and integrating information (Mayer 2004; Kirschner et al. 2006).

Learning from Worked/Erroneous Examples

A worked example (WE) consists of a problem statement, its solution, and additional
explanations, and therefore provides a high level of assistance to students. Cognitive Load
Theory (CLT) states that problem solving without support produces a high level of
cognitive load for novices because of unproductive search procedures (Sweller et al.
1998), as a student needs to do a lot of reasoning while solving a problem with no
feedback. Intrinsic load, germane load, and extraneous load are three different loads for
the working memory in the CLT. Intrinsic load refers to the complexity of the learning
materials (the number of interacting information elements a task contains) and the
learner’s level of prior domain knowledge. The intrinsic load is higher when a novice
student is studying amore complicated problem. It is possible to appropriately manage the
intrinsic load by dividing the initial learning goal into a series of sub-goals that require
fewer processing resources.Germane load is considered as the information that is related
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to the learning materials, such as self-explanations, which is a metacognitive process in
which students explain provided learning material to themselves (Chi et al. 1994; Renkl
1997). Extraneous load is caused by information during learning that does not directly
contribute to learning. Extraneous load refers to the load imposed on students’ working
memory that does not contribute to learning. Extraneous load and germane load both
depend on the way the task is presented, but only germane load contributes to learning
(Clark et al. 2011). In order to solve a problem, a learner must consider both the current
problem description and the goal state, find the differences between the problem descrip-
tion and the goal state, and find the problem-solving operators to reduce these differences.
Many interacting elements associated with this learning process impose an extraneous
load that interferes with learning. WEs may significantly relieve this load on students’
working memory thus allowing the students to learn faster and solve more complex
problems (Sweller et al. 1998; Sweller 1988).

Numerous studies have investigated the effects of learning from WEs compared to
learning from tutored problems solving (TPS) when the ITS has control over learning
tasks (Schwonke et al. 2007; Schwonke et al. 2009; McLaren et al. 2008; Salden et al.
2010; McLaren and Isotani 2011). These studies showed that WEs result in shorter
learning times, but commonly there was no difference in the knowledge gain compared
to learning from TPS. Contrary to those results, Najar and Mitrovic (2014) conducted a
study with SQL-Tutor (Mitrovic 2003; Mitrovic and Ohlsson 1999; Mitrovic 1998).
(Mitrovic 2003; Mitrovic and Ohlsson 1999; Mitrovic 1998). They compared how
students learn from a fixed set of problems, presented to students as examples only
(EO), tutored problem only (PO) and alternating examples and tutored problems
(AEP). They found that students learned more in the PO and AEP conditions than
from EO condition; furthermore, presenting alternating isomorphic pairs of WE and
TPS (AEP) to students produced the greatest learning. Also, they found that AEP
significantly improved novices’ conceptual knowledge in comparison with PO condi-
tion, but advanced students did not improve significantly from EO condition. Najar
et al. (2014) later compared an adaptive strategy to the alternating worked examples
and problem-solving strategy (AEP). Similar to Kalyuga and Sweller (2005) study, the
adaptive strategy was based on a measure of cognitive efficiency, where the perfor-
mance (P) was calculated from the assistance the students received, and the students
rated their mental effort (R) after solving each problem. The results showed that the
adaptive condition led to better learning outcomes. Additionally, the adaptive condition
resulted in shorter learning times for novices compared to their peers in the AEP
condition. The advanced students in the adaptive condition learned more than their
counterparts in the AEP condition.

In contrast to WEs, erroneous examples (ErrExs) present incorrect solutions and
require students to find and fix errors. Presenting students with erroneous examples may
help them become better at evaluating problem solutions and improve knowledge of
correct concepts (van den Broek and Kendeou 2008; Stark et al. 2011), and procedures
(Große and Renkl 2007), which, in turn, may help students to learn material at a deeper
level. The presentation of ErrExs can vary, depending on the kind and amount of
feedback provided, and the choice and sequencing of the learning activities (e.g. ErrExs
provided in addition to problem solving, or WEs). Researchers have started to investi-
gate empirically the use of erroneous examples in order to better understand whether,
when, and how the erroneous examples make a difference to learning. Siegler (2002)
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demonstrated that learners were more likely to learn and think deeply about correct
concepts that applied to a range of problem types while they explained both correct and
incorrect solutions during a brief tutoring session in comparison to their peers who only
explained correct solutions. Siegler and Chen (2008) compared WEs to ErrExs for
mathematical equality problems. Children who studied and self-explained both the
correct and erroneous examples had better learning outcomes than those who received
and self-explained only correct examples. Große and Renkl (2007) found the learning
benefits of ErrExs for students with a high level of prior knowledge, but not for novices.

Tsovaltzi et al. (2012) indicated that 6th-grade students improved their
metacognitive abilities after learning from erroneous examples of fractions with inter-
active help using an ITS. Erroneous examples with interactive help also improved 9th
and 10th grade students’ problem-solving skills and conceptual knowledge. The
combination of WEs and ErrExs was shown to lead to improvements in both concep-
tual knowledge and procedural skills in Algebra (Booth et al. 2013). In our previous
study (Chen et al. 2016a), we investigated whether ErrEx in addition to WEs and
tutored problem solving would lead to better learning. We compared students’ perfor-
mance in two conditions: alternating worked examples and problem solving (AEP)
condition and a fixed sequence of worked examples/problem solving pairs followed by
erroneous examples and problem-solving pairs (WPEP). The results showed that the
addition of ErrExs improved learning on top of WEs and PS. When students were
asked to explain why incorrect solutions were wrong, they engaged in deeper cognitive
processing. Therefore, they were better prepared for the concepts required in the next
isomorphic problem.

The discussed studies focused on investigating the effect of presenting varying
levels of assistance (worked examples, tutored problems solving or erroneous exam-
ples) to students. However, there is a lack of studies that focus on the effect of agency
when learning with ITSs. Students who are attempting to self-regulate often face
limitations in their own knowledge and skills, which can cause cognitive overload
and decreased interest and persistence (Duffy and Azevedo 2015; Harley et al. 2015).
Mitrovic and Martin (2003) investigated the effect of scaffolding and fading problem
selection in SQL-Tutor. They found that the fading problem selection strategy was
effective, in which the system initially selected the problem for the students and
explained why particular problems are good, and over time released the control over
problem selection to students. Azevedo et al. (2016) demonstrated that deploying
adaptive scaffolding and feedback in self-regulated learning produced better learning
outcome compared to no scaffolding and feedback.

The goal of our study is to compare the learning benefits of variations of agency at
different levels of prior knowledge (lower, higher). To the best of our knowledge, there
are no studies that compare the effectiveness of low- and high-agency in ITSs.

Experimental Design

Participants

The study was performed with the volunteers from COSC265, a second-year database
course at the University of Canterbury. Before the study, the students had learned about
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SQL in lectures and also had one lab session. There were 67 volunteers who signed the
consent form, but 27 participants were excluded because they did not complete all
phases of the study. Of the remaining 40 students, 11 were females, 25 were in the age
range 18–20, 8 in the age range 21–23 and the remaining 7 were aged between 24 and
29. The majority (75%) were NZ Europeans, two participants were 2 British and the
others were Asian.

Pre/Post Tests

At the beginning of the session, the students took an online pre-test. The pre-test had
eleven questions. Questions 1 to 6 measured conceptual knowledge and were multi-
choice or true-false questions (with the maximum of 6 marks). Questions 7–9 focused
on procedural knowledge; question 7 was a multi-choice question (1 mark), question 8
was a true-false question (1 mark), while question 9 required the student to write an
SQL query for a given problem (4 marks). The last two questions presented incorrect
solutions to two problems and required students to correct them, thus measuring
debugging knowledge (6 marks). The maximum mark was 18. Students received the
post-test of similar complexity and length to the pre-test after completing all learning
activities. The pre/post-tests are given in the Appendix.

Cronbach’s alpha value for the pre-test is .386, and for the post-test it is .214. The
low values of Cronbach’s alpha for knowledge tests that cover a range of various
aspects are not unusual (Taber, 2018). There are additional reasons for such low values
of Cronbach’s alpha. Our pre/post-tests needed to be short, as the duration of the whole
session was 100 min. Therefore, we generated a set of questions to get an understand-
ing of the student’s domain knowledge. Cronbach’s alpha tends to increase with the
number of questions, and our tests were short (11 questions each). There are no
redundancies in the tests, as each question covers different SQL concepts.

The participants were labeled as LPK students if their pre-test score was less than the
Split score (S), defined in Eq. 1. In the equation, M represents the median pre-test score
(67%) from our previous study (Chen et al. 2017), while Xn represents the pre-test
score of student n. Sn represents the Split score after student n completed the pre-test.
Please note that the value of S changes dynamically as students complete the pre-test.

Sn ¼ Sn−1 þ Xn

2
S0 ¼ M ; n≥1ð Þ ð1Þ

Materials

The study was conducted in the context of SQL-Tutor, which is a mature, constraint-
based ITS for teaching SQL (Structured Query Language) (Mitrovic 2003; Mitrovic
and Ohlsson 1999; Mitrovic 1998). We developed three modes of SQL-Tutor to
correspond to WE, ErrEx, and PS. Figure 1 shows a screenshot of the problem-
solving mode we used in the study. The left pane shows the structure of the database
schema, which the student can explore to gain additional information about tables and
their attributes, as well as to see the data stored in the database. The middle pane is the
problem-solving space. The right pane displays the feedback on the student’s solution
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once s/he submits his/her solution. SQL-Tutor supports six levels of feedback (Mitrovic
and Martin 2000). Simple (positive/negative) feedback, which is the lowest level of
assistance, specifies whether the solution is correct or not. Error Flag feedback
indicates the part of the solution that is incorrect (as shown in Fig. 1). The Hint level
addresses a specific error and states the domain principle violated by the student’s
solution. Partial Solution provides the correct version of a clause in which the student
made a mistake. Other two feedback levels are List All Errors, which provides Hint-
level feedback messages for all mistakes, and Complete Solution, which provides the
full solution. The default feedback level is Simple feedback for the first submission
unless overridden by the student. The feedback level is automatically moved up to the
Hint level, but the student can ask for any feedback level at the time of submitting the
solution.

The interface of the WE mode is illustrated in Fig. 2. An example problem with its
solution and explanation is presented in the center pane. A student can click the
BContinue^ button to confirm that they s/he has studied the example. The ErrEx mode
is illustrated in Fig. 3. An incorrect solution is provided, and the student’s task is to
analyse the solution, find and correct the error(s). The student can submit the solution to

Fig. 1 Problem-solving mode of SQL-tutor

Fig. 2 Worked example mode of SQL-tutor
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be checked by SQL-Tutor multiple times, similar to the problem-solving mode. In the
example illustrated in Fig. 3, the student has marked the WHERE clauses as being
incorrect and has entered answers that s/he believes is correct.

Erroneous solutions presented as ErrEx were selected from the set of incorrect
solutions submitted by the participants of the Najar and Mitrovic (2013) study, which
used the same set of problems as in our study. We analyzed the 465 submissions to the
ten problems corresponding to the erroneous examples in our study from the 2013
problem-only condition. There were on average 5.59 submissions per problem (sd =
2.19). We identified the most frequent misconceptions (or the top two misconceptions)
that students had about the relevant domain concepts. Erroneous examples include
errors that address these misconceptions.

The students were additionally asked to rate the mental effort (R) and answer the
self-explanation prompts required to complete a learning activity (i.e. WE, PS, or
ErrEx). Figure 4 illustrates the interface of the mental effort rating bar (Lowest: yellow
color, Highest: red color). Research has shown that WEs improve conceptual knowl-
edge more than procedural knowledge, whereas problem solving results in higher levels
of procedural knowledge (Schwonke et al. 2009; Kim et al. 2009). For that reason,
different types of self-explanation should be provided. Consequently, Najar and
Mitrovic (2013) designed the conceptual-focused SE (C-SE) prompts and the
procedural-focused SE (P-SE) prompts, to complement learning with WEs and PS.
C-SE prompts require the student to answer questions about relevant domain concepts
after PS, while P-SE prompts required explanations of solution steps after WEs. A C-
SE prompt is presented after a problem is solved, in order to aid the student in reflecting
on the concepts covered in the problem they just completed (e.g.What does DISTINCT
in general do?). On the other hand, P-SE prompts are provided after WEs to assist
learners in focusing on problem-solving approaches (e.g. How can you specify a string
constant?). Therefore, C-SE and P-SE prompts were used in the previous study (Najar
and Mitrovic 2013) to increase learning. In our study, in order to keep our experimental
design consistent with that of (Najar and Mitrovic 2013), participants received C-SE
prompts after problems, and P-SE prompts after WEs, to complement learning activ-
ities so that both conceptual and procedural knowledge is supported. Since erroneous

Fig. 3 Erroneous example mode of SQL-tutor
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examples provide both correct and incorrect steps and require students to solve the
incorrect steps, which refer to the properties of problems and WEs, we provided P-SE
and C-SE prompts alternatively after ErrExs. Figure 4 also illustrates a C-SE prompt,
located at the bottom right. The student answered the prompt incorrectly; in return, the
system indicated the correct option and provided feedback on the option the student
selected. Figure 5 shows a similar example, but with positive feedback in response to
the student’s answer to the P-SE prompts. Students can attempt each SE prompt only
once.

Procedure

The study was conducted in a single, 100-min-long session. Figure 6 illustrates the
design of the study. Once participants completed the online pre-test, they were classi-
fied as Low Prior Knowledge (LPK) or High Prior Knowledge (HPR) students, based

Fig. 4 Mental effort rating and conceptual self-explanation

Fig. 5 Procedural self-explanation
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on their pre-test scores. Then they were randomly assigned to one of the two instruc-
tional conditions: (1) Low-Agency condition, which adaptively selected preparation
tasks (WE or ErrEx for LPK, and ErrEx or PS for HPK students), or (2) High-Agency
condition, in which students could select preparation tasks (WE, ErrEx, PS or skip) by
themselves. The participants worked on 20 tasks, organized into ten isomorphic pairs
and sorted by increasing complexity. Even-numbered tasks were problems to solve.
Odd-numbered tasks are preparatory tasks, and could be presented either as WEs,
ErrExs (with one or two errors), or problems to solve. The first preparatory task was
different from the others because the student models were empty. For that reason, we
used the pre-test score to determine the type of the first preparatory task. If the
conceptual score on the pre-test was lower than the procedural and debugging scores,
the first preparation task was presented as a worked example. If the student’s procedural
score was lower than the other two scores, s/he received a problem as the first task. If
the lowest score was on debugging questions, the first task was presented as an ErrEx.

Adaptive Strategy

The adaptive strategy uses Cognitive Efficiency (CE) to decide what the preparation
task should be, based on the student’s problem-solving performance on the previous
problem. CE is computed as the quotient between the problem-solving score on the
most recent problem (P) and the self-reported mental effort score (R), CE = P ÷ R, as
originally proposed in (Kalyuga and Sweller 2005). Both scores had the same range, 0
(lowest) to 9 (highest). The participants were asked to report the effort and answer the
SE prompt after each task they completed (Fig. 4).

In constraint-based tutors, domain knowledge is represented as a set of constraints
(Mitrovic 2003; Ohlsson 1994). Each constraint has two conditions, the relevance and
satisfaction condition. When the student’s solution is matched to a constraint, if the
relevance condition of a constraint is met, the satisfaction condition is checked next.
Therefore, a relevant constraint can either be violated (when the satisfaction condition
is not met) or satisfied. A solution is incorrect if it violates one or more constraints;
therefore, the solution can be scored based on the violated or satisfied constraints. SQL-
Tutor contains six key concepts, represented by the SELECT, FROM, WHERE,

Low Agency High Agency
Online Pre-Test

10 Problems and 10 preparation tasks in isomorphic pairs

Pair 1
1st task: Lowest conceptual score: WE; Lowest procedural score: PS;

Lowest debugging score: ErrEx
2nd task: problem

Pair 2 to 10

1st task: 
LPK: WE, 1- or 2-error ErrEx;
HPK: 1- or 2-errors ErrEx, PS 

or skip
2nd task: problem

1st task:
WE, 2- or 1-error ErrEx, PS or skip

2nd task: problem

Each problem followed by a C-SE prompt
and

each example followed by a P-SE prompt
Online Post-Test

Fig. 6 Study design
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GROUP BY, HAVING and ORDER BY clauses. Each concept can be scored accord-
ing to how many constraints are violated for that concept. The student’s score for a
clause is calculated using Eq. 2, in which Cv represents the number of violated
constraints, while Cr represents the number of relevant constraints. When a solution
does not violate any constraints for a clause, its score C is 1.

C ¼ 1−Cv=Cr ð2Þ

However, Eq. 2 does not produce accurate scores when there are several violated
constraints that come from the same mistake. For instance, if a solution missed one
attribute in the FROM clause, several constraints will be violated. Equation 2 results in
a big penalty in that case. To deal with this situation, we investigated Eq. 3 instead.

C ¼ log 1=Crð Þ Cv=Crð Þ; 0 < Cv < Cr

1; Cv ¼ 0

�
ð3Þ

We compared the scores produced by a human marker for the problem-solving question
from the pre-test (Question 9). The mean score for 58 solutions was .77 (sd = .303).
Equation 3 produces scores with the mean of .84 (sd = .26). The correlation between
manual scores and the scores produced by Eq. 3 is significant and high (r = .864, p = 0).
However, a student’s incorrect solution may not violate all relevant constraints. For
example, one solution for Question 9 violated 5 out of 10 relevant constraints, and the
human marker allocated 0 marks to it, while Eq. 3 resulted in the score of .301. For
solutions with a higher number of relevant constraints, the difference between manual
and automatically-calculated scores was larger. To handle this situation, we used Eq. 4.
C is 0 if the number of violated constraints is equal to the number of relevant
constraints, as in Eq. 2. The scores produced by Eq. 4 had the mean of .808 (sd =
.282), and the correlation was stronger (r = .921, p = .000).

C ¼
log 1=Crð Þ Cv=:5Crð Þ; 0 < Cv < Cr

1; Cv ¼ 0
0; Cv ¼ Cr

8<
: ð4Þ

Equation 5 calculates the solution score P as the sum of scores for all clauses the
student specified (with a maximum of 6 clauses). Note that the clause score is zero and
Eq. 4 is not applied if the clause is empty. The weight of a clause (Wi) is calculated on
the basis of the ideal solution for a problem. Ct is the number of constraints relevant for
the ideal solution. The weight of a clause (Wi) is calculated as a quotient of the number
of relevant constraints for that clause (Cci) and Ct, as shown in Eq. 6.

P ¼ ∑
n

i¼1
Wi Ci ð5Þ

Wi ¼ Cci=Ct ð6Þ
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The maximum value for P when using Eq. 5 is 1 (when the student’s solution is
correct). Since the maximum value of R is 9, we need to have the same maximum value
for performance, which gives us the final Eq. 7:

P ¼ 9 ∑
6

i¼1
WiCi ð7Þ

The CE score is computed after the student provides the mental effort rating. Figure 7
shows the relationship between CE and preparation tasks, while Figs. 8 and 9 illustrate
how the preparation task (i.e. the first element of a pair of learning activities) is selected,
based on CE and students’ prior level of knowledge. There were two types of erroneous
examples: ErrExs with one error (1-error ErrEx) or two (2-error ErrEx). For HPK
students, if CE was higher than 1, that illustrated very high problem-solving perfor-
mance, and the preparation task was skipped. CE below 1 and greater than 0.75 showed
a relatively good performance on the previous problem, and the preparation task chosen
was a problem to be solved. An HPK student received a 2-error ErrEx before the next
problem if CE was between 0.75 and 0.5, otherwise, they received a 1-error ErrEx if
CE was lower than 0.5. For LPK students, if CE was higher than 0.5, the preparation
task was a 2-error ErrEx. If CE was below 0.5 and greater than 0.25, they received a 1-

Fig. 7 Relationship between CE and preparation tasks

410 International Journal of Artificial Intelligence in Education (2019) 29:396–424



error ErrEx as the preparation task. Aworked example was provided to an LPK student
if his/her CE was below 0.25.

Learning Activity Selection in the High-Agency Condition

The High-Agency condition allowed students to select preparation tasks on their own,
as illustrated in Fig 10.

Results

Our study was conducted at a time when the participants had assessments due in other
courses they were taking. Since participation was voluntary, only 40 students complet-
ed all phases of the study. Such a big attrition rate necessitated further investigation. We
compared the incoming knowledge (i.e. the pre-test scores) of the participants who
completed the study with those who abandoned it, in order to identify whether they
were comparable or whether it was the weaker students who did not complete the
study.When comparing the pre-test scores (Table 2), we found no significant differ-
ences between the scores of those students who completed or abandoned the study. As
we mentioned above, the pre−/post-test consisted of conceptual, procedural, and
debugging questions. There were also no significant differences in the scores for

Fig. 8 Adaptive selection of learning activities for LPK students

Fig. 9 Adaptive selection of learning activities for HPK students
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conceptual, procedural, and debugging questions. Therefore, the 40 remaining partic-
ipants had the same level of background knowledge as the other participants.

Research Question 1: Do the Low- and High-Agency Conditions Differ on Learning
Outcomes?

Fig. 10 Self-selection prompt

Table 2 Pre-test scores (%) for participants who completed/abandoned the study

Completed
(N = 40)

Abandoned
(N = 27)

Overall 61.08 (13.5) 57.65 (11.82)

Conceptual 47.92 (16.96) 50.62 (18.19)

Procedural 72.97 (19.2) 66.38 (25.59)

Debugging 62.36 (23.55) 55.95 (16.36)

Note: all tables present means and standard deviations (given in parentheses).
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There were 20 participants in the Low-Agency condition. We removed an outlier from
the High-Agency condition, leaving 19 participants. Table 3 presents the test scores for
the participants in the two conditions. We developed a repeated measures mixed effects
model, with the knowledge score as the within-subject factor with two levels (pre- and
post-test score), and the group as the between-subject factor. There was no significant
interaction between the test scores and the group, F(1,37) = .002, p = .963. There was a
significant difference in test scores between the pre- and post-test, F(1,37) = 55.56,
p < .001, partial ƞ2 = .661, but not a significant difference between groups, F(1,37) =
1968.506, p = .094, partial ƞ2 = .074. Therefore, the participants in both group
significantly improved their knowledge from the pre- to the post-test.

We calculated the effect size (Cohen’s d), with the following assumption: d ≥ 0.8
(large effect), d ≥ 0.5 (medium effect) and d ≥ 0.2 (small effect) (Cohen 1988). The
effect size for the post-test (d = 0.47) was average. In the Low-Agency condition, the
pre-test and post-test scores were positively correlated, and the correlation was



significant. On average, the participants spent 94 min interacting with the learning
tasks, and there was no significant difference in interaction time between the two
conditions.

As explained earlier, preparation tasks for the Low-Agency condition were selected
depending on Cognitive Efficiency (CE) scores on the previous problem and the
students’ prior knowledge. Therefore, HPK students in the Low-Agency condition
could receive PS, 2-error/1-error ErrEx as the preparation task, or skip to the next PS,
while LPK students in the Low-Agency condition could receive a 2-error/1-error ErrEx
or a WE. The students in the High-Agency condition could select any type of learning
activity as the preparation task or choose to skip the preparation task entirely to move
on to the next PS. The CE scores were calculated in both conditions after each problem
was solved. Table 4 reports the CE scores, and the number of activities of different
types the participants completed in the two conditions. There was no significant
difference between the two conditions on the CE scores. On average, the students
completed 18 learning activities, ten of which were problems to be solved.

Table 4 also reports the number of preparatory tasks the students in the two
conditions completed. The Low-Agency group received significantly fewer problems
(p = .001) and WEs (p < .001), but more ErrExs (p < .001) than the High-Agency
group. The participants in the High-Agency group selected approximately the same
number of preparation tasks of different types (i.e. problems, ErrExs, WEs and skips),

Table 3 Statistics for the two conditions

Condition

Low Agency (N = 20) High Agency (N = 19)

Pre-Test (%) 63.50 (12.42) 58.17 (14.62)

Post-Test (%) 82.46 (9.07) 76.92 (13.98)

Pre/Post-test Correlation r = .48, p = .032 r = .075, ns

Learning time 91.82 (40.13) 97.06 (49.54)

Table 4 Student performance in the two conditions

Condition U, p

Low Agency (N = 20) High Agency (N = 19)

Cognitive Efficiency (CE) 1.9 (0.78) 1.76 (0.62) ns

Post-Test/CE Correlation r = .53, p = .009 r = .59, p = .008

Number of learning activities 18.1 (3.21) 17.79 (2.92) ns

Number of problems 0.50 (0.95) 2.37 (2.45) 305, .001***

Number of ErrExs (1/2-error) 6.80 (3.58) 2.47 (2.46) 64.5, .000***

Number of WEs 0.80 (0.77) 2.89 (2.42) 66.5, .000***

Skips 1.90 (3.21) 2.21 (2.92) ns

***, ** and * denote significance at the p = .001, .01 and .05 levels; Bns^ stands for Bnot significant^)
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while for the Low-Agency group the adaptive strategy selected the activities according
to the CE scores.

Research Question 2: Are Learning Outcomes Different for Students with Low/High
Prior Knowledge?

Table 5 Detailed test scores for LPK/HPK students

Pre-test % Post-test % Normalized learning gain

Low Agency (N = 20) LPK (10) 53.62 (8.84) 78.40 (9.82) .53 (.24)

HPK (10) 73.38 (5.53) 86.59 (6.33) .49 (.27)

High Agency (N = 19) LPK (12) 49.05 (8.51) 77.20 (14.69) .55 (.28)

HPK (7) 73.80 (7.53) 76.45 (13.79) .10 (.49)
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Once a student submitted the pre-test, SQL-Tutor classified him/her immediately as
HPK or LPK, as described previously. To confirm whether Eq. 1 identified HPK/LPK
students correctly, we additionally used the median split on the pre-test to classify
students. The median split on the pre-test results in 22 LPK and 18 HPK students,
which is the same as using Eq. 1.

Table 5 presents the test scores and the normalized learning gains for the LPK/HPK
students in the two conditions. We constructed a generalized mixed model with the
normalized learning gain as the response variable, and the group (i.e. agency) and the
level of student’s prior knowledge (i.e. LPK or HPK) as the between-subject factors.
The interaction between group and level was not significant, F(1,35) = 4.062, p = .052,
partial ƞ2 = .104. There was a significant main effect of the level, F(1,35) = 5.87,
p = .021, ƞ2 = .144. Therefore, the normalized gain of LPK students was significantly
higher than the normalized gain of HPK students.

Table 6 presents the CE scores and information about the activities the students
performed in the two groups. We developed a general linear model, with the
student level (LPK or HPK) and group (i.e. agency) as fixed factors. There was no
significant interaction between group and level for CE, but there was a significant
main effect of level, F(1.35) = 5.386, p = .026, partial ƞ2 = .133. For the total
number of learning activities the participants completed, there was no significant
interaction between group and level, but there was a significant main effect of
level, F(1.35) = 6.337, p = .017, partial ƞ2 = .153. For the number of problems
received as preparatory activities, there was no significant interaction between
group and level, but there was a significant main effect of group, F(1.35) = 9.997,
p = .003, partial ƞ2 = .222. For ErrEx, there was a significant interaction between
group and level, F(1,35) = 6.68, p = .014, partial ƞ2 = .16. For the number of WEs,
there was no significant interaction between group and level, but there was a
significant main effect of group, F(1.35) = 11.225, p = .002, partial ƞ2 = .013. For
the number of skips, there was no significant interaction between group and level,
but there was a significant main effect of level, F(1.35) = 6.337, p = .017, partial
ƞ2 = .072.



In the High-Agency condition, students selected the preparation task on their own.
There was no significant difference between LPK and HPK students on the post-test
scores (Table 5). Surprisingly, the CE scores of HPK and LPK students in the High-
Agency condition were approximately the same, and they completed the same number
of activities (Table 6). To further investigate this interesting finding, we analyzed the
student’s task selection ‘step size’ and self-assessment accuracy between LPK/HPK
students in the High-Agency condition, based on the Cognitive Efficiency and students’
task selection. Figure 11 presents the relationship between the student’s selection
(High-Agency) and the system’s selection (Low-Agency), which could be used to infer
a recommended ‘step size’ for task selection (e.g., a student selected WE as the
preparation task and the system selected PS as the preparation task means a step size
of +3). A positive step size means a recommendation to select a more challenging
preparation task, a step size of 0 means a student selected the same preparation task as
the system’s selection, and a negative step size means a recommendation to select a
simpler preparation task.

Table 6 CE and the number of activities for LPK/HPK students

Condition Level

LPK HPK

Cognitive Efficiency (CE) Low Agency 1.59 (.49) 2.21 (.90)

High Agency 1.62 (.51) 2.01 (.74)

Number of learning activities Low Agency 20 (0) 16.20 (3.71)

High Agency 18.08 (2.71) 17.29 (3.40)

Number of problems Low Agency 0 (0) 1 (1.16)

High Agency 2.25 (2.45) 2.57 (2.64)

Number of ErrExs (1/2-error) Low Agency 9 (0.82) 4.60 (3.95)

High Agency 2.42 (2.15) 2.57 (3.10)

Number of WEs Low Agency 1 (0.82) 0.60 (0.70)

High Agency 3.33 (2.67) 2.14 (1.86)

Skips Low Agency 0 (0) 3.80 (3.71)

High Agency 1.92 (2.71) 2.71 (3.40)

Student 

Selection

WE +4 +3 +2 +1 0

2-error ErrEx +3 +2 +1 0 -1

1-error ErrEx +2 +1 0 -1 -2

PS +1 0 -1 -2 -3

Skip to next PS 0 -1 -2 -3 -4

Skip to 

next PS

PS 2-error 

ErrEx

1-error 

ErrEx

WE

System Selection

Fig. 11 Step Size of Preparation Task Selection
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The mean step size for the High-Agency students is 0.49 (sd = 1.28). Specifically,
the mean step size for the HPK students is 1.32 (sd = 1.14), while for the LPK students
the mean step size is −0.07 (sd = 1.08). The difference is significant (U = 21, p = .038).
The selections of LPK students were close to the selections the adaptive strategy would
make, which explains the significant improvement for LPK students from the pre- to
post-test.

Discussion and Conclusions

Some previous studies found that the increased student agency resulted in better
learning outcomes (Snow et al. 2015; Rowe et al. 2011), while Sawyer et al. (2017)
found that in their study the Low-Agency condition led to higher learning gains. In our
study, the participants in both Low- and High-Agency conditions needed to solve a
fixed sequence of 10 problems. Before the problems, the students received preparatory
tasks. The adaptive strategy used in the Low-Agency condition provided WE or ErrEx
as preparatory tasks to students with lower prior knowledge; for the students with
higher prior knowledge, the preparatory tasks could have been skipped, if the students
demonstrated high performance on previous problems, or they received ErrEx or
problems to solve. In the study, we compared this Low-Agency condition to the
High-Agency condition, which enabled students to select preparatory learning activities
on their own.

The students improved significantly from the pre-test to post-test in both groups.
Even though Low-Agency students had higher means of post-test scores and CE scores
than High-Agency students, we found no significant differences in post-test scores and
CE scores between the Low- and High-Agency students; therefore Hypothesis 1 was
not confirmed.

We were also interested in whether Low- and High-Agency had differential
effects for students with different prior knowledge. The LPK students had
significantly higher learning gain compared to HPK students. The HPK students
improved significantly from pre- to post-test only in the Low-Agency condition.
Unlike other studies, such as (Zimmerman 2008; Mitrovic 2001), in which
advanced students performed better when given freedom and control to perform
actions, we did not find any significant improvements for HPK students in the
High-Agency condition. On the contrary, HPK students in the Low-Agency
condition had higher post-test scores than the counterparts in the High-
Agency condition with a large effect size (d = .95). Therefore Hypothesis 2a
was rejected. There was no significant difference in learning gains between
LPK students in the two conditions; therefore, Hypothesis 2b was also not
confirmed. The Low-Agency condition was beneficial for both LPK/HPK
students.

To determine why LPK and HPK students performed similarly on the post-test in the
High-Agency condition, we proposed the ‘step size’ to infer whether students selected
harder or simpler preparation tasks compared to the adaptive strategy used in the Low-
Agency group. The results revealed that HPK students selected significantly more
challenging learning activities in comparison to LPK students, but the selections made
by LPK students were similar to the system selections. The findings suggest that the
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adaptive strategy in the Low-Agency condition was efficient in selecting learning
activities for both LPK and HPK students.

One limitation of the presented study is the small sample size. In order to achieve a
power of 0.8, with the effect size d = 0.47 (i.e. the effect size on the post-test scores for
the two conditions), it is necessary to have 138 participants (69 in each condition). Our
study was conducted in an introductory database course taught at the University of
Canterbury, which normally has about 200 enrolled students. The timing of the study
coincided with assignments and lab tests in other courses the participants were taking,
therefore, many students did not attend the scheduled labs, and some participants did
not complete the study.

Another limitation of the study is in the difference in the types of preparatory
activities the participants worked on in the two conditions. We found significant
differences in the types of activities students from the High Agency group selected in
comparison to the Low Agency group. In the Low Agency group, the adaptive strategy
selected a high number of erroneous examples, while in the High Agency group the
participant worked relatively equally on all types of learning activities. The preparatory
activities affect learning differently; therefore our conclusions are not solely due to the
difference in agency.

Several exciting research questions remain to be answered. We need to understand
better the role of prior knowledge in learning from examples. All participants in our
studies were familiar with SQL because they learned SQL in the lectures before
participating in the studies. Even though our adaptive strategy is beneficial for students
with different levels of prior knowledge, the results of our studies may be different with
students who are fresh to the domain of SQL queries; it would be interesting to
investigate the learning effect of using examples with this group of students.

Our adaptive strategy selects the learning activities for students based on their
cognitive efficiency score on previous problems. The performance is computed
from the student’s score on the first submission of a problem. However, students
may simply ask for feedback by submitting an empty solution initially. Therefore,
in future work, the performance scores could be calculated more precisely by
adding the time control as well as the feedback element that may affect students’
learning during problem solving. Additionally, as we mentioned above, constraint-
based SQL-Tutor models students by comparing students’ solutions to ideal
solutions provided by the teacher. A violated constraint represents an error, which
translates to incomplete or incorrect knowledge. Our adaptive strategy is based on
the number of violated and relevant constraints, but it does not consider how well
the student knows each constraint. One of the future directions is to further
enhance the adaptive strategy, in which the calculation of performance will take
into account the complete student model rather than only violated/satisfied con-
straints from the most recent problem.

We proposed a High-Agency strategy that allowed students to select learning
activities on their own. We found, like the Mitrovic and Martin (2003) study, that
LPK students who selected learning activities themselves performed as well as LPK
students who received learning activities adaptively. HPK students chose more chal-
lenging learning activities when they did not receive any instruction on the activity
selection. Thus, they may not have been able to identify gaps or misconceptions in their
knowledge, which could have helped them to select appropriate learning support on
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their own. Furthermore, students who are attempting to self-regulate often face limita-
tions in their own knowledge and skills, which can cause cognitive overload and
decreased interest and persistence (Duffy and Azevedo 2015; Harley et al. 2015).
Azevedo et al. (2016) demonstrated that deploying adaptive scaffolding and feedback
in self-regulated learning produced better learning outcome compared to no scaffolding
and feedback. Therefore, using adaptive scaffolding or feedback to guide students in
High Agency would be an interesting topic for future research, particularly for HPK
students.
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Appendix

Pre-test

1. What clause of the SELECT statement allows tuples to be retrieved?

a. SELECT
b. FROM
c. WHERE
d. GROUP BY
e. HAVING
f. ORDER BY

2. What clause of the SELECT statement allows conditions to be specified on groups
of tuples?

a. SELECT
b. FROM
c. WHERE
d. GROUP BY
e. HAVING
f. ORDER BY

3. What is the effect of the ORDER BY clause?

a. Sorts tuples in a specified order
b. Eliminates duplicate tuples
c. Groups tuples
d. Eliminates tuples that do not meet a specified condition

4. Which of the following clauses is mandatory in a nested query?

a. ORDER BY
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b. WHERE
c. SELECT
d. GROUP BY

5. Which predicate allows to check whether the value of an attribute is a member of
the list of pre-specified values?

a. NOT EXISTS
b. MEMBER
c. EXISTS
d. IN

6. The attributes of tables specified in the outer query are accessible in the nested
query. (True or False)

7. Which of the following should be used to fill the blank below to find the mean price?
SELECT ________ FROM BOOK

a. MAX(price)
b. COUNT(price)
c. AVG(price)
d. SUM(price)

8. Two tables are given:

STUDENT(StudNo, Name, Department)
GRADES(StudNo, Course, Grade)

What is the effect of the following statement:

SELECT name FROM student
WHERE EXISTS (select * from grades

where student.studno = grade.studno AND
Course LIKE ‘MATH___’);

a. Find students who have passed no mathematics courses.
b. Find students who have passed no courses.
c. Find students who have passed some mathematics courses.
d. Find students who have passed at least one course.

Questions 9 and 11 are based on the following schema:

DEPARTMENT(dname, dnumber, mgr, mgrstartdate)
EMPLOYEE(ird, lname, minit, fname, bdate, address, sex, salary, supervisor, dno)
DEPT_LOCATIONS(dnumber, dlocation)
PROJECT(pname, pnumber, plocation, dnum)
WORKS_ON(eird, pno, hours)
DEPENDENT(eird, dependent_name, sex, bdate, relationship)
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9. Find the first and last names of all employees who work in the Research depart-
ment. (4 marks)

10. We need to find IRDs of employees who have no dependents. Is the following
query correct? If not, specify the correct query. (3 marks)

Select ird
From employee
Where 0 = (select count(*) from dependent where ird = eird);

11. We Need to Show for each Employee his/her IRD and how Many Projects he/she
Works on. Is the FollowingQueryCorrect? IfNot, Specify theCorrectQuery. (3Marks)

Select eird, count(*)
from works_on;

Post-test

1. What clause of the SELECT statement allows the resulting table to be sorted?

a. SELECT
b. FROM
c. WHERE
d. GROUP BY
e. HAVING
f. ORDER BY

2. What clause of the SELECT statement allows conditions to be specified on tuples?

a. SELECT
b. FROM
c. WHERE
d. GROUP BY
e. HAVING
f. ORDER BY

3. What does Distinct do in an SQL query?

a. Sorts the records in ascending order
b. Returns only different values
c. Sorts the result using a specified attribute
d. Allows to have duplicated records in a database

4. Which aggregate function can be used to return the number of tuples?

a. SUM
b. COUNT
c. MAX
d. AVG
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5. NOT IN allows you to specify a condition on an attribute checking that the value of
the attribute does not appear in the enumerated set of values. (True or False)

6. The HAVING clause is applied to each group of tuples. (True or False)
7. We need to find the mean price of books for each genre. The query below is

incorrect because:

SELECT GENRE, TITLE, AVG(PRICE) FROM BOOK

GROUP BY GENRE;

a. TITLE should be added to the GROUP BY clause
b. The GROUP BY clause is not needed
c. TITLE should be removed from the SELECT clause
d. PRICE should be added to the GROUP BY clause

8. Two tables are given:
STUDENT(StudNo, Name, Department)
GRADES(StudNo, Course, Grade)

What is the effect of the following statement:
SELECT StudNo, Name FROM student
WHERE StudNo IN (select StudNo from grades
where Course = ‘COSC265’);

e. Find students who have failed COSC265.
f. Find students who have passed some courses.
g. Find students who have taken COSC265.
h. Find students who have passed COSC265.

Questions 9 and 11 are based on the following schema:

DEPARTMENT(dname, dnumber, mgr, mgrstartdate)
EMPLOYEE(ird, lname, minit, fname, bdate, address, sex, salary, supervisor, dno)
DEPT_LOCATIONS(dnumber, dlocation)
PROJECT(pname, pnumber, plocation, dnum)
WORKS_ON(eird, pno, hours)
DEPENDENT(eird, dependent_name, sex, bdate, relationship)

9. Select names of all departments located in Auckland. (4 marks)
10. We need to retrieve the IRDs of employees who work on any project controlled

by the Planning department. Is the following query correct? If not, specify the
correct query. (3 marks)

Select distinct eird From works_on, project
Where pno = pnumber and dnum = ‘Planning’;

11. We need to retrieve the IRD of each employee who works on more than two
projects. Is the following query correct? If not, specify the correct query. (3
marks)
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Select eird
From works_on
Group by eird
Having count(pno) > 2;
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