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Abstract
A successful instructional method is to engage learners with exploratory problem-
solving before providing explanations of the canonical solutions and foundational
concepts. A key question is whether and what type of guidance will lead learners to
explore more productively and how this guidance will affect subsequent learning and
transfer. We investigate this question through the design and study of the Invention
Coach, an adaptive, computer-based learning environment that problematizes students’
understanding as they invent fundamental physics equations. Problematizing guidance
(Reiser Journal of the Learning Sciences, 13(3), 273–304, 2004), which encourages
learners to grapple with domain complexity, is well-suited to the goals of Invention.
However, there are few examples of technology-based learning environments that were
explicitly designed to problematize and scant research on their efficacy. In an experi-
mental study, 199 middle schoolers worked with either motivational, task + motiva-
tional, or problematizing + task +motivational guidance versions of the Coach while
inventing. Students who engaged with the problematizing Coach were better able to
transfer their knowledge to novel domains in the short term, and their transfer gains
were comparable to those provoked by human tutors. While students in the
problematizing condition were less likely to invent the correct solutions, they engaged
in more targeted and efficient exploration of the solution space and were less likely to
report experiences of difficulty. Findings suggest that problematizing guidance has the
potential to effectively support exploratory problem-solving, when the goal is to
facilitate productive exploration and transfer from subsequent instruction. The work
also has implications for the design of problematizing guidance.
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Introduction

In many traditional forms of science and math instruction, teachers explain core
concepts and formula, then ask students to apply them in practice problems. In contrast,
explore-then-explain (ETE) instruction flips the traditional script on its head by first
engaging learners in exploratory problem-solving before teachers explain the canonical
solution and related concepts. While students often fail to successfully solve the
problem during the explore phase, their exploration is often productive. While explor-
ing, students may investigate a variety of problem solutions, developing well-
differentiated knowledge of the domain (Kapur 2008; Schwartz and Martin 2004).
This, in turn, may prepare students to learn and transfer from provided explanations of
the target knowledge, which often take the form of lectures or readings (Bransford and
Schwartz 1999). There are several classes of ETE approaches, such as productive
failure (Kapur 2008) and problem-solving prior to instruction (Loibl and Rummel
2014). In this article, we focus on an ETE approach called Invention (Schwartz and
Martin 2004). During Invention activities, students attempt to generate an external
representation of a deep domain structure that runs throughout a set of contrasting
cases. For example, in the current study, students attempt to invent equations for
physical science phenomena which contain the deep mathematical structure of ratio
(e.g. density = mass/volume, speed = distance/time) before receiving a lecture on ratio
structures in physics. Invention and other ETE approaches have been shown to improve
conceptual learning and transfer over traditional instruction, in several studies, span-
ning ages from adolescence to adulthood, and in many science and math domains
(Kapur 2008, 2010, 2011, 2014; Kapur and Bielaczyc 2012; Loibl et al. 2017; Schwartz
and Bransford 1998; Schwartz and Martin 2004; Schwartz et al. 2011).

A key question is whether and what type of guidance during the exploration phase
will lead learners to explore more productively and how this guidance will affect
subsequent learning and transfer. The literature on discovery learning, which is a close
cousin to exploration, has long established that discovery is more effective than direct
instruction, but only when it is guided (Alfieri et al. 2011; Mayer 2004). In the guided
discovery paradigm, the learner is typically guided towards discovering the correct
solution. This kind of structuring guidance, which generally simplifies the task for
learners, is a common form of scaffolding (Reiser 2004; Wood et al. 1976). However,
others suggest that only minimal guidance during the explore phase of ETE paradigms is
necessary. One study of guidance during the explore phase of ETE instruction found that
students who only received affective support learned as much as students who received
on-demand help from the teacher and intermittent whole-class lectures and discussions
(Kapur 2011). The author suggests that “it may well be more productive to delay help
even when students ask for it, and perhaps first give them an opportunity to find a way
out themselves.” From this viewpoint, failures and the further exploration they provoke
are valuable learning opportunities, and structuring forms of guidance which lead
learners to success only reduce that exploration. Thus, teachers should limit their
guidance. Others suggest that students’ exploration can be made even “more produc-
tive” by supporting students’ inquiry behaviors (Holmes et al. 2014). We also aim to
enhance the productivity of students’ exploration, but through the use of problematizing
guidance (Reiser 2004). In contrast to structuring forms of guidance which simplify the
task, problematizing guidance engages learners with domain complexity.
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Problematizing guidance helps learners realize that some aspect of their thinking is
problematic, encouraging learners to confront and grapple with key disciplinary ideas.

Problematizing guidance is an appealing alternative tomore structured forms of guidance
that lead learners by the nose down a correct solution path, cutting short students’ explora-
tion of the domain space. However, it is not clear how the construct of problematizing
guidance should be operationalized. There are few examples of technology-based learning
environments that were explicitly designed to problematize learners’ thinking, and even
fewer that problematize adaptively. Moreover, there is little research on the efficacy of
problematizing guidance. Finally, the research on ETE approaches has generated mixed
evidence on whether and which forms of guidance are beneficial during the explore phase.

In this paper, we describe the design and implementation of problematizing guidance in
the Invention Coach, an adaptive, computer-based learning environment designed to guide
students through the exploratory phase of Invention. We then present findings from an
empirical study that explores the efficacy of our full problematizing version of the Coach as
compared to two minimally guided versions, which receive only motivational guidance or
motivational guidance plus support for understanding task goals and constraints. We
examine how these different guidance configurations affect middle school students’
exploration, learning, and transfer of ratio structures in science. Note that we explicitly
use the broader term “guidance” instead of “scaffolding,” which implies later fading.

Structuring and Problematizing Guidance

A useful distinction in technology-based guidance is between structuring and
problematizing forms of guidance (Reiser 2004). Structuring forms of guidance sim-
plify the task in some way for learners, making it possible for a learner to accomplish
complex tasks or solve messy problems that they could not do on their own. Two
common ways to structure the task are to decompose it into component parts and to
narrow learners’ choices. For example, inquiry “checklists” can help learners follow the
steps of the inquiry process (Linn et al. 2004). In addition, many simulations narrow the
range of variables to test by providing options to vary only a few factors. Likewise,
many traditional intelligent tutoring systems provide extensive structuring guidance by
breaking the problem into subgoals and steps and providing correctness feedback
(VanLehn 2006). In our view, most forms of guidance in technology-based learning
environments structure the task in some way (Reiser 2004).

While structuring guidance makes the task easier, problematizing guidance strives to
engage the learner with domain complexity. Problematizing guidance helps learners
recognize that their understanding is problematic and encourages them to “encounter
and grapple with” key disciplinary ideas that they would otherwise overlook (Reiser
2004). Problematizing guidance often takes a cognitive conflict approach, leading
learners to bump up against key domain structures and principles which often contra-
dict their current understanding. Problematizing guidance differs from structuring
guidance in two key ways. First, structuring guidance supports completion of the task,
while problematizing guidance supports learners’ understanding of the domain.
Second, structuring guidance simplifies, while problematizing guidance complexifies,
provoking a desirable difficulty of sorts (Bjork 1994). In this way, problematizing
guidance can make the task more difficult in the short term but may ultimately prove
more productive for learning.
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Prompting learners for explicit articulation of ideas and decisions, engaging them
with the language and representations of the discipline, and surfacing knowledge gaps
or disagreements are specific ways in which guidance can problematize. For example,
ExplanationConstructor, a computer-based journal for supporting inquiry, requires
students to classify their scientific explanations according to a type of explanatory
framework, such as natural selection (Sandoval 2003). Ensuing discussions around this
task uncovered students’ disagreements about what constitutes a “trait” and ideas about
the relationship between structure and function (Reiser 2004). By eliciting decisions
that require learners to connect their work with key disciplinary ideas, a technological
tool can encourage students to grapple with deep domain principles and refine their
thinking. A second example comes from the Betty’s Brain teachable agent software
(Biswas, Leelawong, Schwartz, Vye, and The Teachable Agents Group at Vanderbilt
2005), in which learners teach by essentially programming their agents to reason
through a series of links in a causal concept map. The agents then go on to answer
questions in a gameshow, but first, learners have to make predictions about how their
agents will answer (Chase et al. 2009). Students often make a prediction based on their
own knowledge and are surprised when this conflicts with what their agent “knows”
(Chase et al. 2009). This can problematize learners’ understanding of how the agent
reasons through links in a causal chain, which relate to underlying biological mecha-
nisms and more general causal reasoning skills. This learning mechanic of predicting
then observing can problematize a learners’ understanding when the prediction con-
flicts with the outcome.

As may be evident from the above examples, problematizing is a large umbrella
term, which can take many different forms. For instance, problematizing forms of
guidance may encompass cognitive conflict (Piaget 1977) and socratic tutoring (Collins
et al. 1975) approaches, which both lead learners to a contradiction in their thinking,
provoking deeper engagement with domain complexity.

Another caveat is that many forms of guidance simultaneously structure and
problematize (Reiser 2004). For instance, ExplanationConstructor also structures by
providing learners with a limited set of explanatory frameworks to choose from, rather
than asking them to generate their own. Likewise, metacognitive prompts structure the
process of monitoring one’s understanding whilst helping learners notice problematic
gaps in their knowledge. Thus, it may be challenging to design guidance that effec-
tively problematizes without also providing some form of structure.

Problematizing guidance is well-suited to Invention and other exploratory problem-
solving tasks. This is because problematizing guidance and Invention tasks are
designed to provoke similar learning mechanisms. In a review of several studies of
ETE instruction, Loibl et al. (2017) identified three learning mechanisms that can be
provoked during the exploration phases of ETE: activating prior knowledge, revealing
knowledge gaps, and recognizing deep domain features. These overlap nicely with the
goals of problematizing, which are to realize that some aspect of one’s thinking is
problematic and encounter and grapple with key disciplinary ideas.

A potential danger of problematizing guidance is that it may be frustrating for
learners. A goal of problematizing guidance is to make learners realize that their
undertanding is problematic. This could lead learners to flounder and experience
negative affect. In addition, problematizing guidance might be ineffective for low
performers, who may experience the most floundering and frustration. Thus, we tested
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whether problematizing guidance had differential effects for learners with different
levels of prior knowledge. We also conducted exploratory analyses of learners’ expe-
rience of problematizing guidance.

Designing to Problematize

Few scholars have explicitly designed problematizing guidance for technology-based
learning environments (Efstathiou et al. 2018; Hicks and Doolittle 2008; Molenaar
et al. 2011). In addition, problematizing guidance has been operationalized in a variety
of different ways, including analysis questions (Hicks and Doolittle 2008), graphic
organizers (Chen et al. 2011), reflection prompts (Feng and Chen 2014), feedback on
one’s mistakes (Efstathiou et al. 2018), and self-regulatory prompts (Molenaar et al.
2011). This is perhaps because Reiser’s framework stops short of providing explicit
guidelines for designing software supports for problematizing. It is possible that
problematizing guidance is an open-textured concept – a concept whose meaning
becomes clear, and may even change, as it is applied to specific problems (Lynch
et al. 2009). Thus, it is necessary to further explore how problematizing guidance might
be optimally designed. We have created a set of design guidelines for our brand of
problematizing guidance, as it pertains to exploratory problem-solving.

Moreover, there is scant research on the efficacy of technology-based
problematizing guidance. Efstathiou et al. (2018) found that software with combined
problematizing and structuring guidance was more effective at enhancing students’
experimental design skills than a paper-and-pencil version that only structured the
task. Molenaar et al. (2011) pitted structuring and problematizing metacognitive
prompts against one another and found that problematizing prompts led to greater
learning of metacognitive knowledge and greater transfer of domain knowledge.
Hicks and Doolittle (2008) implemented both structuring and problematizing guid-
ance into a multimedia tutorial on historical inquiry and found that learners exposed
to this instruction made strides in retention and application of the taught inquiry
strategy. While these studies demonstrate positive effects for problematizing guid-
ance, considerably more research is needed to explore the efficacy of problematizing
guidance in its various forms.

Interestingly, the problematizing framework has rarely been instantiated in an
intelligent learning environment that is highly adaptive (but see Efstathiou et al.
2018, who problematized learners’ mistakes). Adaptive technologies can provide
highly customized, individualized feedback and guidance that adapts to a student’s
solution path, current knowledge state, or other individual characteristics (Aleven et al.
2016b; Shute and Zapata-Rivera 2012). Adaptive problematizing may be a particularly
effective form of guidance because it can be customized to target the precise aspect of
the learners’ understanding that is problematic. However, many adaptive, intelligent
learning environments, provide fairly explicit, structuring forms of guidance (VanLehn
2006). Few of them explicitly problematize.

Generativity & Exploration

Finally, an issue that neither Reiser’s (2004) framework nor existing empirical studies
of problematizing technologies address is how problematizing guidance influences
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learners’ generative and exploratory processes. While highly structured forms of
guidance can lead learners down a specific solution path, cutting exploration of other
solution paths short, problematizing guidance instead guides learners towards deep
structures and concepts that underlie a domain, without necessarily specifying a
solution path.

We view the exploration of the problem/domain space through generation of
multiple problem solutions as an important goal of ETE instruction. In general,
constructive learning activities that encourage learners to generate their own inferences
and ideas tend to be productive for learning (Chi 2009). Also, in much of the research
on ETE instruction, generating the right solution is less important than generating many
solutions. Several ETE studies have found a positive relationship between the diversity
of generated solutions and learning outcomes, suggesting that broad exploration begets
learning (Kapur, 2012; Kapur and Bielaczyc 2012; Wiedmann et al. 2012).
However, ETE studies conflict on how guidance influences students’ exploration.
One study found that extensive guidance from a teacher during exploratory
problem-solving reduced the number of solutions student generated compared to
a minimally guided condition (Kapur 2011). We suspect that this guidance may
have overly structured the task for learners, cutting off their exploration. For
instance, another study found that guidance in the form of meta-cognitive reflec-
tion prompts pushed students to generate a greater diversity of solutions compared
to an unguided condition (Roll et al. 2012). In this paper, we investigate how our
problematizing guidance affects not just learning but also learner’s generativity
and exploration of the problem space, relative to two minimally guided conditions.
We do this by examining the quantity, diversity, and quality of solutions generat-
ed, and also the rate at which solutions were generated.

The Current Study

In the current study, we explore how our designed problematizing guidance impacts
students’ exploration, learning, and transfer. We also test how our problematizing
guidance compares to two more minimal forms of guidance. In the motivational
guidance condition (M), students received motivational messages encouraging them
to persist. This is similar to the successful minimally guided condition in Kapur (2011),
in which students were only encouraged to “persist and think of solutions for them-
selves.” In the task +motivational guidance condition (TM), learners received motiva-
tional support plus reminders about task goals and constraints. Since the reminders
merely reiterate the given goals and constraints of the task, this guidance served to
clarify the nature of the task. This condition was added because pilot data indicated that
students often had difficulty understanding the Invention task itself. Thus, it is possible
that merely clarifying the nature of the task with some motivational support is all the
guidance learners need, leaving them the space to explore expansively. Our third
condition tests whether the addition of problematizing guidance provides benefits for
learners. In the problematizing + task +motivational guidance condition (PTM), stu-
dents received motivational messages, task reminders, and problematizing activities,
which were designed to adaptively problematize their understanding of ratio structures
in science. Conditions were designed to be incremental, testing the additive effect of
each form of guidance.
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In comparing these conditions, we tested the following hypotheses and exploratory
questions:

& Relative to comparison conditions, students in the PTM condition should develop
deeper learning (learning and application of concepts) that is more likely to transfer
to novel situations. These differences should hold up on a time delay.

& How will PTM, TM, and M forms of guidance impact Invention task performance
(i.e. invention of the correct solution)? We did not have a strong hypothesis going
into the study. On the one hand, problematizing guidance pushes learners towards
domain understanding rather than task success. One the other hand, deep under-
standing and task success are often linked.

& Relative to comparison conditions, students in the PTM condition should engage in
more productive exploration of the problem space as measured by breadth, quality,
and rate of solution generation. However, the quantity of generated solutions might
be lower in the PTM condition since problematizing guidance could take time away
from generating.

& What kinds of instructional experiences will PTM, TM, and M versions of the
Invention Coach system create for students? We examined how often and how long
students used various components of system guidance. We also explored sponta-
neous comments students made during reflection on the Invention tasks.

This study aims to make several contributions to the literature. First, our study
adds a data point to the debate about what form of guidance (if any) can
effectively support learners during the explore phase of ETE instruction.
Second, we test the efficacy of problematizing guidance, with a focus on how it
impacts students’ generativity and exploration, which has rarely been done. Third,
we provide a novel example of an adaptive technology that was explicitly de-
signed to problematize learners’ thinking. Finally, we generate a set of broad
guidelines for designing problematizing support for exploratory problem-solving,
to articulate our general problematizing approach.

Invention Coach Design

In developing technology-based guidance for Invention activities, we set out to explore
one small corner of the design space of problematizing guidance. It is an incredibly
large design space, as evidenced by the large variety of problematizing examples given
in Reiser’s (2004) article, and the variety of ways in which problematizing
scaffolds have been operationalized (Chen, Looi, & Wen, 2011; Efstathiou et al.
2018; Feng and Chen 2014; Hicks and Doolittle 2008; Molenaar et al. 2011). In
this section, we outline the design of the “full” Invention Coach system, which
includes problematizing guidance, task reminders, and motivational messages.
Note that we provide an intuitive description of the system here, rather than a
highly technical one, which is beyond the scope of this paper and has been
described elsewhere (Aleven et al. 2017). Likewise, we present the broad design
guidelines we followed, which we hope will prove applicable for other designers
of problematizing guidance for ETE instruction.
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Problematizing Design Guidelines

In the process of designing and building the Invention Coach, we generated our
own interpretation of problematizing guidance as it pertains to exploratory
problem-solving, and distilled these into a set of three problematizing design
guidelines.

First, problematizing activities should draw on instructional strategies that
reveal knowledge gaps and encourage learners to notice deep features of the
domain. In our design we employed contrast and explain strategies. Prrompting
learners to contrast cases can help learners notice overlooked features
(Bransford et al. 1989). Explanation-based activities can activate prior knowl-
edge and reveal knowledge gaps (Chi et al. 1994). They can also be designed
to engage learners with disciplinary terms. These instructional strategies are
well-aligned with the goal of problematizing because they support learners in
realizing that their current understanding is problematic and confronting key
disciplinary ideas. Contrast and explain strategies have also been used success-
fully in the Invention Support Environment, a non-adaptive computer-based
system (described in Holmes et al. 2014).

Second, guidance should explicitly refrain from direct “telling,” such as explaining
to learners what to know or do. Avoiding direct telling forms of guidance maintains the
open nature of the task, giving learners space to explore. Also, our prior study revealed
that the more teachers posed generative questions and the less they explained while
guiding an Invention activity, the more students transferred their knowledge to novel
tasks (Chase, Marks, Bernett, Bradley, & Aleven, 2015). Therefore, the Coach never
tells students the correct solution, exactly what is wrong with their solution, nor what to
do next.

Our third design guide was to model interactions after human teachers. This
can make the guidance feel more naturalistic while revealing appropriate in-
structional strategies. Many of our ideas drew on activities we observed expe-
rienced teachers devising for students as they guided them through paper-and-
pencil Invention activities in an earlier study (Chase et al. 2015). These
activities included inviting learners to rank cases, contrast specific pairs of
cases, and explain their solution methods (which nicely overlap with the
instructional strategies discussed in our second guideline).

Invention Activities

Before describing the Invention Coach design, we must first describe Invention
activities in greater detail. Figure 1A shows one of the Invention activities guided by
the Coach (adapted from Schwartz et al. 2011). The objective is to design a
numerical index of “clown crowdedness” that expresses how crowded the clowns
are in each bus (the correct solution is # clowns / # bus compartments). Students
receive a few constraints: buses within the same company are equally crowded, a
larger index number means a bus is more crowded, and use the same method to find
the index index for each bus. In this activity, crowdedness is a proxy for density,
which is introduced during a subsequent lecture. Though they don’t know it,
students are essentially inventing the formula for density (density = mass/volume).
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Students are often unsuccessful in creating the target formula, but the process of
Invention prepares them to learn more from subsequent direct instruction. Although
the Invention activities have clear right answers, for the students, these activities are
highly unusual and ill-defined; typically, students have never seen this kind of task
before.

Invention often employs “contrasting cases,” which systematically vary on
deep features of a domain (Bransford et al. 1989). For example, in Fig. 1A, the
size of the bus and number of clowns vary across cases such that several pairs
of cases hold one feature constant while varying the other. Comparing and
contrasting cases may help students notice critical features of crowdedness and
identify the common ratio structure (clowns: compartments) that runs through-
out all cases (Schwartz et al. 2011). However, without prompts to compare and
generalize across cases, students may focus on surface features in the cases
(Shemwell et al. 2015; Roll et al. 2012).

System Overview

Figure 1 shows the main screen where students work on the Invention activities, with
guidance from the Coach. The students design and submit their invented solutions,
where a solution is a set or partial set of index numbers for each of the cases in Fig. 1A.
The Coach is represented by an avatar image (students can choose from several
possible Coach characters), shown in Fig. 1C. Each time a student submits a solution,
the Coach gives adaptive guidance that responds to the current state of the student’s
invention, taking into account the history of the interactions between the Coach and
student on the given Invention task. Below we describe the problematizing activities,
task reminders, motivational messages, and tools that comprise the full problematizing
version of the Invention Coach system.

Fig. 1 Main interface of the Invention Coach and tools. Lettered boxes (A, B, C, D, E, F, G) mark annotations
of key system components

International Journal of Artificial Intelligence in Education (2019) 29:283–316 291



Problematizing Activities

The Coach often responds to a submitted solution with one of several interactive
activities for problematizing student understanding. In these activities, the Coach
engages the student in an elaborate dialogue, asking the learner to make judgments
and articulate their ideas. Behind the scenes, these dialogues have elaborate branching
structures. Describing them in detail, however, is beyond the scope of this paper. In
descriptions of each activity below, we highlight only a small portion of the interactions
between Coach and student.

Feature Contrast Students often first attempt a basic “counting” solution type,
using the number of clowns in each bus as a measure of crowdedness, and neglect
to consider the size of the bus. The feature contrast activity (in Fig. 2) is meant to
problematize this simplistic interpretation of crowdedness. Learners are asked to
contrast specific pairs of cases that differ on a key feature while holding other
variables constant. It then asks the learner which of these two cases is more
crowded and why. In this ‘why’ prompt, learners must identify a specific feature
or pair of features that make one bus more crowded than another. If students
identify the wrong feature(s), the system confronts them with two new cases that
hold the selected feature constant while varying crowdedness and asks them again
which features matter for crowdedness. The point of these contrasts is to
problematize learners’ notion of the broader concept (e.g. crowdedness/density),
by helping them notice a deep feature of the domain their solution has overlooked.
After going through contrasts relevant to each feature (Fig 2A and B), students are
asked to put together what they learned from the contrasts into a singular expla-
nation (Fig. 2c). This should help learners to notice the importance of both deep
features of crowdedness (clowns and space) and consider their relation when
inventing their next solution. The feature contrast activity is called when a
student’s solution ignores a key deep feature.

Fig. 2 Feature contrast activity
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Ranking The ranking activity prompts students to rank the companies from least to
most crowded (Fig. 3). If learners rank incorrectly, the Coach tells them that their
ranking is not right, gives them the definition of the concept (“When something is
more crowded it means things are more packed together”), and gives them up to
three more attempts to rank the cases. When students complete the ranking
activity, which almost all students do successfully, the Coach reminds them that
their index numbers should rank the cases correctly.

The ranking activity is called when students’ ranking does not match their
index numbers. Here the ranking activity has the potential to problematize stu-
dents’ understanding by revealing this inconsistency to the learner. Most students
have an intuitive notion of crowdedness and can distinguish between more and
less crowded buses. They are often surprised when their calculated index numbers
don’t match their intuitive ranking. For example, in Fig. 3, the student has dragged
and dropped the cases so that they are correctly ordered from most to least
crowded, but their index numbers (demonstrating a single-feature counting clowns
solution) do not corroborate their ranking. The ranking activity is also called when
students submit “unclassifiable” solutions for which it is hard to discern a consis-
tent method of calculating index numbers across cases. These often constitute
“random guesses,” and the ranking activity signals the need to think more sys-
tematically about their index numbers. In this way, the ranking activity can push
the learner to evaluate the accuracy of her invented solution and may surface
problems with the learner’s reasoning.

Tell-Me-How The Tell-Me-How activity (Fig. 4) aims to problematize students’
understanding by asking them to articulate how they arrived at their answers using
disciplinary representations (e.g. numbers and operations). The Coach’s prompts
are meant to encourage students to reflect on their solution process, engage in
precise reasoning around disciplinary ideas, and surface knowledge gaps. Tell-Me-
How is called frequently, throughout an Invention session, and focuses on one
particular case (bus). Students are asked to explain their invented method in a

Fig. 3 Ranking activity
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write-in response, then select whether they “counted,” “estimated,” or “calculated”
their answer. Students are then asked to map the numbers in their solution method
to referents in the cases by labelling what each number represents. Through the
mere process of articulating their solutions in disciplinary terms, designating
precise calculations and referents for numbers, students often come to reveal
problems with their solution methods and think more deeply about mathematical
ideas. For example, the student in Fig. 4 has been asked to explain how she came
up with the index number 2 for one of the buses. While not shown in the figure,
this student has generated what we call an estimating solution type, in which she
has designated the crowdedness of the buses to be 1, 2, and 3, based on their
relative ranking. The student selected the option “I calculated” to describe her
method, but then realized she could not reproduce her solution using mathematical
operations on the calculator and needed to develop a more precise mathematical
understanding. These aspects of the activity problematize by guiding students to
engage deeply with mathematical ideas they often gloss over.

In addition to problematizing, all three activities add a layer of structure by focusing
the student on a specific subgoal of the task (e.g. comparing and contrasting cases), or

Fig. 4 Tell-me-how activity
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providing a constrained set of options to students (e.g. focusing students on two cases
in the feature contrast activity). In general, we found it challenging to problematize
without simultaneously providing more structure, one of the design tensions that Reiser
acknowledges (Reiser 2004). However, the main goal of each activity was for learners
to wrestle with key disciplinary ideas, and the additional structure sometimes guided
them in this.

Task Reminders

The Coach also provides guidance in the form of brief “task reminders.” These
reminders are meant to help learners understand the task, since most students have
never encountered an Invention task and their first reaction is often confusion.
Reminders are brief messages that point out a specific goal/constraint the learners’
solution is violating. For instance, if students appear to be using different inven-
tion methods across cases, the Coach will remind the student that “you have to use
the exact same method to find the index for all of the buses.” Or if a student’s
index numbers do not correctly rank the cases from most to least crowded, the
Coach will say: “A big index number means the clowns are more crowded. A
small index number means the clowns are less crowded.” There were essentially
three kinds of reminders tied to problem constraints, which pushed the learner to
create a solution that is (1) general enough to work for all cases, (2) precise, and
(3) accurate. Reminders were given after students submitted their solution or
clicked “help.”

We do not view these reminders as problematizing forms of guidance because they
do not explicitly encourage learners to connect with disciplinary ideas. Whereas
problematizing activities guide learners to encounter the deep features of the content
(using feature contrast to highlight features, ranking to make relevant prior knowledge
salient, or tell-me-how to encourage explanations in disciplinary terms), reminders
focus solely on the problem solution. Moreover, since the goals and constraints of
the task are given as part of the initial Invention task instructions, these reminders are
not providing new information. They merely reiterate the given goals and constraints
adaptively, to point out when one of them is violated.

Motivational Messages

Every time students click “help” or submit a solution, they receive a brief motivational
message. Messages encourage effort and emphasize the progress students are making,
such as “Your brain is getting a workout! Keep it up!” or “You’re making good
progress!” These messages are meant to alleviate students' frustration and encourage
persistence during the very challenging task of Invention.

Tools

In addition, learners have access to several self-help tools (Fig. 1E, F, G), which they
can open at any time, including a calculator, a notepad where they can jot notes, and a
rules sheet that lists all task goals and constraints.
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Adaptivity

We designed the Invention Coach to be highly adaptive to the student’s approach to
Invention, because to truly problematize, the system must interpret the student’s
solution and respond with an appropriate form of guidance that helps learners realize
the flaw in their understanding that is reflected in their solution. Secondarily, the Coach
keeps track of guidance that has been tried before, so as to avoid repetition. The
Coach’s adaptive algorithm is described in our previous paper (Aleven et al. 2017).
Here we give a brief overview. We note that the algorithm assumes a ratio structure for
the correct invention.

Each time a student submits a solution or clicks on the help button, the Coach
interprets the solution and responds with a relevant form of guidance. The Coach
interprets the solution by classifying it into one of five broad categories, based on the
index numbers the student entered, and when available, explanations from the Tell-Me-
How module. The categories were generated based on our pilot studies. They represent
student attempts at inventing a ratio structure, with increasing sophistication. Single-
feature solutions count one of the deep features of the domain (e.g. clowns or bus
compartments in the crowdedness task). Two-feature solutions consider both deep
features in creating their index numbers, but do not relate them mathematically (e.g.
most of these solutions provide a rating or ranking of the cases along both dimensions).
Mathematical two-feature solutions relate the two deep features using an incorrect
mathematical operation (addition, subtraction, multiplication, etc.). Ratio-based solu-
tions relate the two deep features of the domain using any possible variant of a ratio
structure (e.g. inverse of correct ratio, correct ratio doubled, etc.). Finally, unclassifiable
solutions do not fall into any of the above categories and often represent seemingly
random guesses. To be placed into one of these categories, more than half the index
numbers submitted need to be consistent with the category.

Next, based on solution category, the Coach selects a form of guidance to confront
the learner’s most egregious problem in their thinking or gap in their knowledge. For
each solution category, there are several task reminders and problematizing activities
that the system can provide, ordered in terms of how specifically they address the
student’s solution. If the student continues to submit the same type of solution,1 the
Coach cycles through these options, alternating between reminders and activities.
When the student submits a different solution type, the system will start running
through the sequence of reminders and problematizing activities associated with that
new solution type. For example, if a student submits a Single-feature solution (e.g.,
counting the number of clowns in a bus), the Coach might initiate a Feature Contrast
activity, selecting a pair of contrasting cases that may help the learner realize the
importance of a second, overlooked feature of the domain. Alternatively, the Coach
could give a reminder that “a big index number means the clowns are more crowded”
(this constraint is violated when index numbers are based on single features). Similarly,
if a student has generated a mathematical 2-feature solution that uses the wrong

1 Note that in the TM condition, task reminders were adaptively selected using the same algorithm described
here, but problematizing activities were removed from the set of guidance options. Thus, adaptive guidance for
the TM condition consisted of adaptively selected task reminders only. Also the PTM condition had additional
adaptivity within the problematizing activities, in which the Coach’s selection of prompts depend on the
student’s input during the activity.
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mathematical operation, the guidance can prompt them either with a reminder that
“buses from the same company should be equally crowded” (this constraint is violated
when index numbers are computed with wrong math) or invoke the Tell-Me-How
activity, so the student can reflect on how she calculated the index.

This description omits many details that we do not have the space to describe. The
Coach’s classification strategy employs a detailed set of conditions for the five main
categories of student input, as well as 21 subcategories that make up variations within
the five main categories. The interactive activities Feature Contrast and Tell-Me-How
each have an elaborate branching structure specifying how the Coach’s next
prompt depends on the student’s answer to the previous prompt, with many
different paths through the dialogues. As a measure of its complexity, the Coach
is made up of 140 production rules and 150 functions. The Coach is implemented
in CTAT (Aleven et al. 2016a), with the adaptive algorithm (including the classi-
fication method and the method for selecting guidance based on the classification)
implemented as production rules.

Methods

Participants

The final sample2 contained 199 students from 9 seventh- and eighth-grade classes who
participated in all days of the study and made use of the guidance features in the
Invention Coach system. Overall, 92 seventh-graders and 107 eighth-graders partici-
pated. Student participants hailed from a low-to-average performing public middle
school in New Jersey whose population was 96% Hispanic, 56% male, and low
socio-economic status (87% of students receive free or reduced-price lunch). The study
was conducted during regular science class periods. Condition was randomized at the
student level. Students within the same class were randomly assigned to one of three
different conditions: PTM (n = 68), TM (n = 70), and M (n = 61). An ANOVA con-
firmed that conditions did not differ in prior knowledge as measured by pretest scores,
F(2, 196) = 0.04, p = .97.

Conditions

The study contrasted three conditions: M, TM, and PTM conditions, which
differed in how the Coach responded with guidance each time students submitted
a solution. The M condition received a motivational message along with “you’re
not quite there yet, keep going.” The TM condition received a motivational
message plus a task reminder stating a constraint the students’ solution violated.
The PTM condition alternated between receiving either a motivational message
combined with a task reminder or a problematizing activity. Both TM and PTM
conditions received guidance based on an adaptive algorithm that called guidance

2 Six students (evenly distributed across conditions) were excluded from our sample because they never
submitted an invented solution, and received no guidance. Thus, they did not receive the intended treatment of
their respective conditions.
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matched to the submitted solution type. The PTM condition also received addi-
tional adaptivity within each problematizing activity, which contained a series of
prompts and responses from the Coach. All conditions received contrasting cases
and had access to tools (calculator, note pad, and rules). Table 1 shows the main
components of each condition.

Procedure

Figure 5 shows the study procedure. One to two weeks prior to the start of
instruction, students took a paper and pencil pretest. The instruction phase took
place on three consecutive days, for 35 min per day. On the first two days,
students worked with the Invention Coach software to complete two Invention
activities: clown crowdedness and car fastness (i.e. speed). The next day they
received a lecture-and-practice session on ratio structures in physics. The follow-
ing day students took a posttest, and two weeks later they completed a delayed
transfer test. Note that the posttest was given after the lecture-and-practice session
because the exploratory Invention activities are meant to prepare students to learn
from later expository instruction. All activities and instruction were led by one
lead researcher, while 3 additional researchers helped to facilitate the study.

During both Invention activities, students worked individually with the ver-
sion of the Invention Coach that corresponded to their condition. Each
Invention task was introduced by a short video explaining the task goals and

Table 1 Design of conditions

Condition Problematizing
Activities

Task
Reminders

Motivational
Messages

Problematizing + Task + Motivational Guidance
(PTM)

X X X

Task + Motivational Guidance (TM) X X

Motivational Guidance (M) X

Fig. 5 Study procedure highlighting instructional activities and data collected
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constraints. The video also mentioned that the task was challenging and would
likely require multiple solution attempts.

In all versions of the Invention Coach, students stopped inventing when either they
entered the correct set of index numbers or 30 min had passed. At the end of the activity
students received a prompt asking them to describe their general solution method in
words and with a mathematical equation.

Manipulation of conditions occurred only on days 1 and 2 of instruction, when
students worked on Invention activities using their condition’s version of the
Coach. On day 3 of instruction, all students participated in a whole-class, com-
bined lecture-and-practice session on the importance of ratio structures in science.
During a PowerPoint lecture, the lead experimenter revealed the scientifically
accurate solution to the crowded clowns Invention task and related crowdedness
to the concept of density. Students were presented with the equation for density
(density = mass / volume) and were shown a worked example of a density calcu-
lation problem. Students were then given an opportunity to practice applying the
equation with similar problems on a paper worksheet. Afterwards, the lead
experimenter presented an analogous lecture and practice session for the cars task,
introducing the concept of speed and its formula and engaging students in practice
computing it. The lecture concluded with an explanation of ratio structures. It
described the purpose of ratio structures – to compare two quantities with a
persistent, inverse relation. The lecture also discussed how ratio-based equations
are common in the physical sciences.

Measures

Measures include assessments of learning and transfer, Invention task performance,
metrics of exploration and generativity, and measures of the student experience of
guidance.

Learning and Transfer

Students took three paper tests which assessed various learning and transfer metrics: a
pretest, posttest, and delayed test. Example test items are shown in Fig. 6.

Pretest The pretest contained 6 items: 2 procedural learning, 3 conceptual learning, and
1 transfer item. The procedural learning items assessed whether students had prior
knowledge of the equations for density and speed and could apply them accurately (e.g.
“Imagine a chocolate heart that is 6 cubic centimeters big. If it has a mass of 48g, what
is the density of the chocolate?”). The conceptual learning items targeted students’
qualitative understanding of ratio relationships in the context of density and speed,
which were explicitly taught in the post-invention lecture. The transfer item, which was
identical to one of the posttest transfer items, served as a baseline. An average pretest
score was computed, averaging across all items.

Posttest The posttest contained 8 items: 3 conceptual learning, 2 application of
learning, and 3 transfer items. The conceptual learning items were isomorphic
versions of the pretest items (counterbalanced). Application of learning items
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asked students to reason about density and speed ratios in novel ways (e.g. solving
for volume or mass instead of density). Transfer questions assessed whether
students could notice and implement ratio structures in novel domains that were
not explicitly taught (e.g. pressure, spring constant). Transfer items were adapted
from Schwartz et al. (2011). An average item score was computed for each item
type on the posttest.

Delayed Test The delayed test was conducted to assess whether any condition differ-
ences in application of learning or transfer3 would remain two weeks after the instruc-
tion ended. It contained 2 application and 4 transfer items, which were isomorphic to

3 Due to limited classroom time, we were unable to include conceptual items on the delayed test.

Fig. 6 Example test items
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items on the pretest and posttest. The delayed test also contained 2 additional
preparation-for-future-learning (PFL) items (Bransford and Schwartz 1999) that
assessed how well students were prepared to learn new ratio-based concepts such
as power (p = work/time) and acceleration (a = speed/time). These test items provid-
ed some instruction on the test (e.g. a worked example of an acceleration problem, a
written passage explaining power) before posing a novel question about the new
topic. PFL items constitute a measure of remote transfer, since they differ from the
initial learning situation on multiple dimensions (e.g. time, task, content, see Klahr
and Chen 2011). An average item score was computed for each item type on the
delayed test.

All test items were scored for correctness ranging from incorrect to fully correct
(some items had finer-grained scales than others). Item scores were then scaled from 0
to 1. All summative scores represent average item scores (max score = 1).

Each test item was scored by two coders. Reliability for each item was satisfactory,
with Cohen’s κ ranging from 0.7 to 1.0. All disagreements were discussed and
adjudicated. Cronbach’s α was 0.33 for the pretest, perhaps due to the small number
of pretest items and because students had very little prior knowledge of the subject and
may have been guessing the answers. Cronbach’s α was 0.58 for the posttest, which is
acceptable given the inclusion of diverse item types. Cronbach’s α was 0.70 for the
delayed test, which is satisfactory. Thus, tests had reasonable internal consistency.

Invention Task Performance

For each Invention task (see Fig. 1 for an example), students received a score of 1 if
they invented a completely correct solution (i.e. all 6 index numbers correct). This
number was summed across the crowded clowns and cars tasks to create a 0–2 score.

Exploration and Generativity

Log data was collected from all student interactions with the Coach, using the
DataShop tools (Koedinger et al. 2010). Each student’s logs were used to calculate
measures related to their generativity and exploration, derived from learners’ submitted
solutions. A “solution” is a set of index numbers submitted to the Coach. A “solution
type” is a particular class of solution (e.g. unclassifiable, single-feature, two-feature,
mathematical two-feature, or ratio-based). Measures of exploration and generativity
include the quantity and breadth of solutions generated, rates of solution generation,
and solution quality.

Quantity Quantity was measured by the total number of complete solutions submitted.
Solutions were considered complete when they contained index numbers for 4 or more
cases (out of 6 total).

Breadth The breadth of solutions explored was computed as the total number of viable
solution types submitted. There were four viable solution types: one-feature, two-
feature, mathematical two-feature, and ratio (excluding the unclassifiable type), yield-
ing a max score of 4.
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Rate of Generation We also calculated the rate at which solutions and solution types were
generated each minute. The rate of solution generation was computed by dividing the total
number of solutions by time spent generating. The rate of solution type generation was
computed by dividing the total number of solutions types by time spent generating.

Quality To get a sense for whether students were generating higher quality solution
types, we also computed the relative proportions of solutions submitted of each type:
unclassifiable, single-feature, two-feature, mathematical two-feature, and ratio-based
solutions, which are listed in order from lower to higher quality (see Adaptivity
section). Note that ratio-based solutions were in ratio form but were not necessarily
the correct solution.

Instructional Experience

To capture the students’ experience of the guidance in each condition, we examined
students’ spontaneous comments on task difficulty, the guidance received in each
condition, and time spent on activities within the system.

Difficulty An exploratory post-hoc analysis of reflection prompts revealed interesting
data about students’ perceptions of task difficulty. In response to a post-invention
prompt asking for a description of their general solution method, many students
spontaneously mentioned experiencing difficulty during the task, either discussing
how challenging the task was (e.g. “it was hard”) or how they could not succeed
(e.g. “I failed!!!” or “I kept getting the wrong answer”). We coded responses to this
question for whether students mentioned difficulty or not. Two coders scored 25% of
the data and achieved excellent reliability, κ = .95. The remainder of the data was
scored by a single master coder.

Guidance Frequencies were calculated for each of the various forms of guidance
students received or accessed. Tool use frequency was computed by summing instances
of opening the notepad, rules, and calculator. Frequencies were also generated for
motivational messages (M and TM conditions), task reminders4 (all conditions), and
problematizing activities (PTM condition only).

Time We first calculated total time on task, as the time between log in and log out of the
system for each Invention task. The mean time spent on the two Invention tasks
differed significantly by condition, F(2, 196) = 4.27, p = .02. Posthoc tests revealed
that the PTM condition spent significantly more time in the system compared to the M
condition, MP = 29.9, SDP = 4.7; MNP = 27.6, SDNP = 8.0; MM = 26.2, SDM = 8.8,
though the difference is only a few minutes. This is likely because the PTM group
was less successful at the Invention tasks. Given this difference in total time, we
calculated proportions of times spent on various system components, to assess how
students distributed their time in each version of the Invention Coach.

4 Note that motivational messages and task reminders were given even for incomplete solutions, so the total
amount of messages should be greater than the total amount of complete solutions submitted.
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Tool use time was calculated by summing time spent in calculator, rules sheet, and
notepad. The time spent reading messages (motivational messages + task reminders)
was inferred from the time a message appeared on the screen until the next user-
performed action. We could not distinguish between time spent on motivational
messages and task reminders, since they appeared in the same on-screen pop-up.
Activity time was calculated as the time a problematizing activity started to the time
it ended (generally students were locked into an activity once it started and could not
access tools or change their index numbers). Generation time was defined as the time
students were not reading messages, completing activities, or using tools. All time
metrics were converted to proportions by dividing by total time on task.

Results

In the following analyses, we use variants of ANCOVAmodels to explore the effects of
condition on continuous, normally distributed outcome measures, and we use ordinal or
logistic regression to explore condition effects on ordinal and dichotomous outcomes.
Some of the log data constitutes over-dispersed count data, and thus, negative binomial
regression (a form of poisson regression) was used to analyze these data. All post-hoc
tests use the Bonferonni correction, to correct for Type I error.

In almost all analyses, we controlled for pretest scores and time in the Invention Coach,
by including them as covariates in our analysis. We controlled for time because (1) the
PTM condition spent slightly more time in the Coach and (2) because students stopped the
task once they were successful, time inventing impacts the number of actions in the
system. To control for differences across class, a class variable was included as a factor in
all analyses (we did not have enough classes to conduct hierarchical linear models).

We explored condition x pretest and condition x time interactions but found none. This
suggests that high and low performing students did not respond differently to conditions.
Given the lack of interactions, all models contain main effects of variables only.

Four participants were excluded from all log data analyses because the number of
solutions they submitted was greater than 3 standard deviations above the mean and
these individuals were skewing results within their respective conditions.

Learning and Transfer

Posttest AMANCOVA analyzed condition differences on conceptual, application, and
transfer posttest items, using condition and class as factors, while covarying pretest and
time. There were significant umbrella effects for all variables, including class, F(24,
558) = 2.05, p = .02, ηp2 = .08, pretest, F(3, 184) = 10.27, p < .001, ηp2 = .14, and time,
F(3, 184) = 8.19, p < .001, ηp2 = .12. Of most interest is the significant effect of
condition, F(6, 370) = 2.41, p = .03, ηp2 = .04. Follow-up univariate ANCOVAs re-
vealed that conditions only differed on posttest transfer scores, F(2, 186) = 4.76,
p = .01, ηp2 = .05. Post-hoc tests on transfer scores showed that the PTM condition
outperformed the M condition, p = .007, while the TM condition did not differ signif-
icantly from other conditions, p’s > .27. Thus, by inference, the TM group’s transfer
score fell somewhere in between the other conditions (see Fig. 7). In sum, the PTM
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condition had higher posttest transfer scores than the M condition, while the TM group
fell somewhere in the middle. However, conditions did not differ in their performance
on either conceptual or application posttest items.

To explore the efficacy of the full version of our Invention Coach, we compared the
transfer gains made by the PTM condition to those made by students being tutored by
humans in a previous study (Chase et al. 2015). We conducted paired t-tests on transfer
items that were common to pre and posttests, then computed effect size gains. The
PTM condition made significant gains on transfer items, t (67) = 5.31, p < .001, an
effect size gain of d = .7, which is comparable to the transfer gain achieved by students
coached by human tutors, d = .7.

Delayed Test To explore effects on the delayed test, A MANCOVA was run using
application, transfer, and PFL average item scores as outcomes, with condition and
class as factors, covarying pretest and time on task. There were significant umbrella
effects for class, F(24, 558) = 2.67, p < .001, ηp2 = .10, pretest, F(3, 184) = 7.47,
p < .001, ηp2 = .11, and time, F(3, 184) = 9.63, p < .001, ηp2 = .14. However, there was
no main effect of condition, F(6, 370) = 0.77, p = .59, ηp2 = .01. Thus, conditions did
not differ in their scores on the delayed posttest items (Fig. 8).

Invention Task Performance

Success on Invention Tasks To test whether conditions differed in their performance on
the Invention tasks, we conducted an ordinal regression predicting the total number of
successfully solved Invention tasks (0, 1, or 2), using condition as our main predictor,
with class and pretest as control variables. Given that students stopped the task once
they were successful, resulting in shorter time on task, we did not include time on task
as a covariate in this model. Pretest was not a significant predictor of performance,
p = .99, but several classes had significant effects, p’s < .003. Dummy variables for TM
and M conditions were both significant predictors of performance, BNP = .85, Wald =

Fig. 7 Adjusted mean scores on posttest items. Error bars = ±1 SE. ** significant difference at p < .01
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4.77, p = .03, BM = .81, Wald = 4.11, p = .04. Thus, being in the M condition led to a
2.34 increase in the odds of performing better, while being in the TM condition led to a
2.25 increase in the odds of performing better, relative to the PTM condition. However,
the TM and M conditions did not differ in their performance, p = .91. Table 2 shows the
percent of students in each condition who invented a correct solution on zero, one, or
both Invention tasks. Overall, we found that students in the PTM condition were less
likely to invent the correct solution during the problem-solving sessions.

Exploration and Generativity

Quantity To test whether conditions differed in the quantity of solutions they generat-
ed, a negative binomial regression was run with the total number of solutions submitted
as the outcome variable, using condition as our predictor of interest, with class, pretest,
and time included as controls. The model predicted better than chance, χ2 (12, N =
195) = 48.16, p < .001. Significant predictors were class variables, Wald = 24.36,
p = .002 and time, B = 0.04, OR = 1.04, Wald = 35.63, p < .001. However, neither
pretest nor dummy variables of condition had significant effects, p’s > .16.

Fig. 8 Adjusted mean scores on delayed test items. Error bars = ±1 SE

Table 2 Percent students inventing the correct solution on 0, 1, or both Invention tasks

0 tasks 1 task 2 tasks

PTM* 70.6% 26.5% 2.9%

TM 61.4% 17.1% 21.4%

M 60.7% 19.7% 19.7%

*significant condition differences at p < .05
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Breadth Another measure of exploration is the breadth of solution types generated, or
the total number of viable solution types students generated. Since this variable was
normally distributed, we explored condition differences with an ANCOVA, while
including class as a control factor, and pretest and time as covariates. There were
significant effects of time, F(1, 182) = 13.72, p < .001, ηp2 = .07 and class, F(8, 182) =
3.46, p = .001, ηp2 = .13. Pretest did not have a significant effect, p = .34. However,
condition was a significant factor, F(2, 182) = 15.15, p < .001, ηp2 = .14. Posthoc tests
revealed that the PTM condition generated fewer types of solutions than the other two
conditions, p’s < .02. The TM andM conditions did not differ from one another, p = 1.0.

Rate of Generation To test whether conditions differed in the rate at which they
generated solutions and solution types, a MANCOVAwas run with the rate of solution
generation and rate of solution type generation as outcome variables, using condition
and class as factors, with time and pretest as covariates. The MANCOVA revealed
significant umbrella effects for time, F(2, 181) = 38.59, p < .001, ηp2 = .30, and class,
F(16, 364) = 1.81, p = .02, ηp2 = .08. Most importantly, there was a significant condition
effect, F(4, 364) = 4.93, p = .01, ηp2 = .05. Individual ANOVAs demonstrated
significant condition effects for both rate of solution generation, p = .005 and rate of
solution type generation, p < .001. Posthoc tests revealed that the PTM condition had
higher rates of both solution generation and solution type generation compared to both
TM and M conditions, p’s < .03. Table 3 shows summary statistics of quantity, breadth,
and rate of solution generation.

Quality To explore how the quality of solutions differed across conditions, we exam-
ined the relative proportions of various types of solutions students generated (Table 4).
Since these data were normally distributed, we conducted a MANCOVAwith condition
and class as factors, pretest and time as covariates, and proportions of each solution
type (unclassifiable, 1-feature, 2-feature, mathematical 2-feature) as outcomes. Note
that because proportions add to 1, including all solution types in this analysis would
violate assumptions of collinearity. Thus we excluded the proportion of ratio-based
solutions from our analysis. However, proportions of ratio solutions are reported in
Table 4, and it is obvious that these do not differ significantly by condition.

The MANCOVA revealed that time had a significant effect, F(4, 179) = 36.36,
p < .001, ηp2 = .45, while class had a near-significant effect, F(32, 728) = 1.37,
p = .09, ηp2 = .06, and pretest was not significant, p = .16. Importantly, condition was
a significant factor, F(8, 360) = 2.02, p = .05, ηp2 = .04. Follow-up univariate

Table 3 Mean number of solutions, solution types, and rates of each, per Invention task (SD)

# solutions
(quantity)

rate of solution
generation*

# solution types
(breadth)*

rate of solution
type generation*

PTM 19.7 (22.9) 2.4 (2.4) 1.7 (0.8) 0.19 (0.08)

TM 22.6 (24.1) 1.3 (2.4) 2.1 (1.0) 0.14 (0.08)

M 19.5 (20.0) 1.1 (2.4) 2.4 (0.8) 0.14 (0.08)

*significant condition differences at p < .05
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ANCOVAs revealed that conditions differed on the proportion of unclassifiable solu-
tions only, F(2, 182) = 6.92, p = .001, ηp2 = .07. Post-hoc tests revealed that the PTM
condition submitted a lower proportion of unclassifiable solutions compared to the M
condition, p = .001, while other condition comparisons were non-significant, p’s > .05.

In sum, conditions did not differ in the quantity of solutions they generated, however
the PTM condition explored a narrower breadth of solution types relative to other
conditions. The PTM condition also generated solutions at a faster rate, particularly
when compared to the M condition. Finally, conditions generated similar proportions of
1-feature, 2-feature, mathematical 2-feature, and ratio-based solutions,5 but students in
the PTM condition generated a lower proportion of “unclassifiable” solutions, relative
to the M condition.

Instructional Experience Data

Difficulty For this analysis, we examined the number of students who spontaneously
mentioned difficulty during the post-invention task reflection prompts. To test for
condition differences, we ran a logistic regression predicting whether or not a student
described experiencing difficulty, with condition as our main predictor, controlling for
class, pretest, and time on task. The model predicted better than chance, χ2 (12, N =
199) = 26.24, p = .01. Dummy variables for class were not significant predictors,
p’s > .18. Students who worked longer on the task were more likely to experience
difficulty, B = .04, Wald = 3.99, p = .05, such that every additional minute of work on
the task led to a 9% increase in the likelihood of experiencing difficulty. More
importantly, students in the TM and M conditions were more likely to experience
difficulty relative to students in the PTM condition, BNP = 1.30, Wald = 4.27, p = .04,
BM = 1.96, Wald = 9.78, p = .002. In other words, compared to students in the PTM
group, students in the TM condition were 3.66 times as likely to report difficulty, and
those in the M condition were 7.08 times as likely to report difficulty during the
Invention tasks. However, the likelihood of reporting difficulty did not significantly
differ across the TM and M conditions, p = .17. The raw data demonstrate this pattern
as 25% of M students, 17% of TM students, and 6% of PTM students reported
experiencing difficulty on at least one of the Invention tasks. Thus, even though

5 The fact that proportion of ratio-based solutions does not differ by conditions seems at odds with the
Invention task performance results, which showed that the PTM group was less likely to generate the correct
solution. However, the measure of ratio solutions here counts any form of ratio-based solution, not just correct
ones.

Table 4 Adjusted mean proportion of solution types (with SD)

unclassifiable* 1-feature 2-feature math 2-feature ratio

PTM .22(.28) .38(.28) .15(.24) .04(.10) .22(.23)

TM .29(.28) .34(.28) .13(.23) .02(.10) .23(.23)

M .41(.28) .28(.28) .08(.23) .03(.10) .20(.23)

*significant condition differences at p < .05
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students in the PTM condition performed worse on the Invention tasks, they were less
likely to spontaneously report experiencing difficulty during the task.

Guidance We then conducted exploratory analyses of log data to get a feel for how
frequently students received various forms of guidance as they worked in each version
of the Invention Coach (Table 5). To identify these condition differences, we conducted
separate negative binomial regressions predicting tool use, motivational messages, task
reminders, and guidance cycles, each time using condition as our main predictor, with
class, pretest and time included as controls. For the sake of brevity, we report only the
results of condition effects for each regression.

We first explored condition differences in tool use. The M condition was associated
with more tool use than the PTM condition, BM = .60, Wald = 9.45, p = .002, such that
students in the M condition used the tools 1.82 times more frequently than those in the
PTM condition. There were no other significant condition differences, p’s > .08.

The frequency of motivational messages also differed by conditions. The PTM
condition received fewer motivational messages relative to the TM condition,
BTM = .59, Wald = 10.67, p = .001 and fewer than the M condition as well, BM = .53,
Wald = 7.02, p = .008. Given that motivational messages co-occur with task reminders
in PTM and TM conditions, we can also infer that the PTM group received signifi-
cantly fewer task reminders than the TM condition.

Overall, we found that conditions differed in frequency of tool use (sum of calcu-
lator, notes, and rules sheet access), motivational messages, and task reminders
received. Not surprisingly, the M group had more frequent tool use than the PTM
condition. The TM condition received more task reminders than the PTM group. The
TM and M groups received similar numbers of motivational messages. This suggests
that conditions were implemented as intended – the TM group received the most task
reminders, the PTM group received fewer reminders but also worked through the
Coach’s problematizing activities, and the M guidance group was more likely to
provide self-help by using the tools.

Time To examine how each condition spent their time in the system, we compared
conditions on the proportion of time they spent on each of the main activities within the
Invention Coach system: generation, tools, reading messages (combined motivational +
task reminder), and problematizing activities.

An initial MANCOVA was run on proportions of generation, tool, and message
time, with condition and class as factors, covarying pretest and total time. All effects
were significant, but we focus on the condition effect, F(6, 362) = 53.45, p < .001,

Table 5 Mean guidance frequencies per Invention task (with SD)

Condition Tool Use* Motivational Messages* Task Reminders* Problematizing Activities

PTM 7.1 (4.3) 17.4 (20.0) 17.4 (20.0) 7.9 (4.5)

TM 8.7 (6.3) 27.8 (27.6) 27.8 (27.6) N/A

M 11.3 (9.6) 22.6 (21.4) N/A N/A

*significant condition differences at p < .05
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ηp2 = .47. Follow-up individual ANCOVAs revealed significant condition effects for
generation, F(2, 182) = 95.79, p < .001, ηp2 = .51, tools, F(2, 182) = 4.85, p = .009,
ηp2 = .05, and messages, F(2, 182) = 27.68, p < .001, ηp2 = .23. Post-hoc tests revealed
that PTM students had significantly lower proportions of generation and tool use time
compared to the other two conditions, p’s < .03. Also, the TM group spent a greater
proportion of time on messages, compared to the PTM and M conditions, p < .001.

Overall, we found that the PTM condition spent less time generating solutions,
reading messages, or using tools and instead spent this time in problematizing activi-
ties. It is interesting to note that from the perspective of how learners spent their time in
the system, M and TM conditions look fairly similar, spending roughly the same
proportion of time generating solutions, accessing tools, and reading messages.
Moreover, the largest proportion of their time was spent generating, followed by tools,
then reading messages (according to descriptives). In contrast, the PTM condition looks
qualitatively different from the other conditions, by spending the largest proportion of
their time in problematizing activities, followed by generation time, tool time, and then
messages. Of course, the PTM students spent less time generating and using tools
relative to other conditions. Figure 9 demonstrates this pattern of results.

Discussion

We developed the Invention Coach – an intelligent learning environment to support the
exploratory phase of Invention, an explore-then-explain (ETE) form of pedagogy. Our
full version of the system contains adaptive problematizing guidance that encourages
learners confront and grapple with domain complexity and key disciplinary ideas. To
test the impact of problematizing guidance, we compared the problematizing Coach
(PTM) to two minimally guided versions of the system: a version that provides only

Fig. 9 Proportions of time spent in various components of the Invention Coach
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motivational support (M) and a version that provides both motivational support and
additional clarification of task goals and constraints (TM). Critical outcome measures
included learning and transfer of mathematical structures in science and generative and
exploratory behaviors. We also explored how task performance and the experience of
guidance differed across conditions.

We had hypothesized that the PTM version of the Coach would outperform the
minimally guided versions on three posttest measures (conceptual, application, and
transfer items). This hypothesis was confirmed with respect to the transfer items only.
Across all conditions, students performed similarly on items assessing learning of
concepts and their application. However, the PTM version of the Coach facilitated
superior transfer, particularly when compared to the most minimally guided version of
the Coach (M). The transfer gains achieved by the problematizing version of the Coach
were comparable to those accomplished by human tutors in a similar study (Chase et al.
2015). This is a significant achievement, as human tutors are often touted as the “gold
standard” in providing individualized, nuanced, and effective guidance to students
(Cohen et al. 1982; Lepper et al. 1997). We would also like to point out that we did
not find, in any of our analyses, that the effect of guidance was moderated by students’
prior knowledge. Thus, we found no evidence that problematizing guidance might be
beneficial only for high performers.

Why did problematizing guidance enhance transfer but not learning? This result is not
entirely surprising, as some studies have found that Invention tasks enhance transfer but
not learning (Schwartz and Martin 2004). It is possible that the different Coach versions
were equally effective at facilitating learning, or that most of the learning occurred
during the lecture-and-practice session which all conditions received. Alternatively,
these results may be due to problematizing’s focus on helping learners “attend to and
engage with key disciplinary ideas they would otherwise overlook” (Reiser 2004). One
of the keys to successful transfer is noticing or perceiving key deep structures (such as
ratio) in novel situations (Chase et al. 2019; Day and Goldstone 2012; Gick and Holyoak
1983). However, in non-transfer situations, there are strong cues to help learners notice
the relevant concepts (e.g. our learning test items explicitly use the word “density” or
“crowdedness”). Thus, perhaps our problematizing guidance was driving students to
learn to notice the deep features and structures of ratio, which is particularly important
for successful transfer. Another possibility is that the problematizing guidance taught
learners effective problem-solving strategies or what others have called inquiry strate-
gies (Holmes et al. 2014), such as critically analysing and contrasting examples,
searching for general explanations or models that will work across a set of examples,
and reflecting on their solution method, all of which students are being pushed to do in
our problematizing activities, and which could contribute to successful performance on
our transfer items (which are similar to novel Invention tasks). While other research has
found that standard unguided Invention activities do not lead learners to transfer
problem-solving strategies (Schwartz et al. 2011), it is possible that our problematizing
guidance had this effect.

Unfortunately, transfer effects did not hold up on a 2-week delay. However, we
believe this result is inconclusive since the delayed test was compromised. After the
study was completed, teachers revealed that students had received instruction on ratio
and speed problems in their math classes between the post and delayed tests. Moreover,
when coding students’ answers to delayed test questions, some students used common
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solution methods and terms that did not appear on the posttest and were not part of our
instruction (e.g. comparing ratios using a common unit). Our interpretation of the
delayed test results is that condition differences may have been washed out by the
incidental instruction students received during the delay. However, it is also possible
that the effects of the problematizing version of the Invention Coach simply did not last.

Despite their superior transfer, the PTM condition performed worse on the Invention
tasks (were less likely to invent the correct solutions), relative to more minimally
guided conditions. On reflection, this finding makes sense for a number of reasons.
First, in ETE paradigms, there is no strong expectation that students will invent the
correct solution, only that attempting to invent a solution will prepare students to learn
from later expositions. Some ETE studies have demonstrated that high performance on
the exploratory task is not necessary for transfer to occur (Schwartz and Martin 2004).
Second, problematizing can “make things more difficult in the short run but be
productive for learning” (Reiser 2004). Thus, instead of spending their time working
out correct solutions, these students were working on problematizing activities, grap-
pling with the deep ideas that underlie the domain. Moreover, this finding is consonant
with related research on productive failure (Kapur 2008) and desirable difficulties
(Bjork 1994), which suggest that difficulties during learning experiences may actually
facilitate later learning, or in this case, transfer. Thus, it is entirely plausible that while
students in the PTM condition performed poorly on the Invention task relative to other
conditions, they displayed superior transfer.

While students in the PTM condition were less successful on the Invention tasks,
they were also less likely to spontaneously report experiencing difficulty during the
tasks. On the one hand, we found this surprising, since one potential danger of making
an aspect of the situation “problematic” for students is that it could also make the
subjective experience of the task more frustrating. On the other hand, the
problematizing activities also provide an added degree of structure (which is difficult
to separate from problematizing), in that the activities contain several prompts and
decisions that are designed to focus learners on the relevant content. If students are able
to succeed at these simpler subtasks, then they may feel as if they are making progress
on the task or mastering the content, which could reduce the experience of difficulty
within the Invention task. Nonetheless, the problematizing guidance succeeded in
mitigating students' perceptions of task difficulty on the inherently challenging
Invention tasks.

We also investigated how these forms of guidance would shape learners’ exploratory
and generative activity in the Invention tasks. One reason we chose problematizing
guidance for the “full version” of our Coach is because we predicted it would not
reduce productive exploration, as other forms of highly structured, direct guidance
might (Schwartz et al. 2011). We found that even though students in the PTM
condition spent less time generating solutions, they generated the same quantity of
solutions compared to students in more minimally guided conditions (about 20 per
task!). This is because PTM students generated solutions at a faster rate than
students who received other forms of guidance. Moreover, relative to other
conditions, PTM students generated the same proportion of high quality solutions
(e.g. ratio-based and mathematical 2-feature solutions) but fewer random guesses
(e.g. unclassifiable solutions). We also found that PTM students generated fewer
solutions types, meaning they explored less broadly. Thus, one interpretation of
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the problematizing group’s behavior is that they were exploring the solution space
less broadly but in a more targeted way, possibly avoiding trial-and-error ap-
proaches, which partially confirms our hypothesis.

Despite this fairly productive exploration, students in the PTM condition were still
less likely to produce the correct ratio solution on the Invention tasks, which is curious.
One possibility is that for some students, the problematizing guidance pushes them
towards productive exploration, while for others, it may confuse or distract them. While
we did not find interactions between condition and prior knowledge in any of our
analyses, it is possible that for students who are able to problematize and explore
deeply on their own, the problematizing guidance slowed down or hindered their
problem-solving process in some way.

An interesting pattern in the results is that that the two minimal guidance conditions
either performed similarly or the TM condition performed somewhere in the middle, in
between the PTM and M conditions, on most measures. This suggests that task
reminders had some positive, though not always significant, effects on exploration,
experience of difficulty, and transfer. Thus, adding clarification of the goals and
constraints of the Invention task – pointing out the constraint a solution violated –
only slightly helped learners. On the other hand, learners in the TM and M conditions
apportioned their time in the system in similar ways (e.g. lots of time generating and
using self-help tools), which was quite different from the PTM condition. In this regard,
the learning experience of the TM and M conditions was fairly similar, and this may be
why differences between these two conditions on most measures were small to none.

Implications

This study demonstrated that the problematizing guidance provided by the Invention
Coach engaged students in more productive exploration that was both faster and more
targeted towards deep domain features and structures. Thus, it would seem that
adaptive problematizing styles of guidance can effectively support Invention without
quelling the exploratory nature of the task, and in fact, the guidance seems to enhance
the quality and rate of solution generation. Moreover, this work demonstrated that our
brand of problematizing guidance was effective in enhancing transfer in the short term
while reducing the experience of difficulty during the task. Thus, problematizing
guidance is a promising method of support for exploratory problem-solving activities,
particularly those that follow an ETE pattern. This work also adds to the small body of
work supporting the efficacy of problematizing guidance (Efstathiou et al. 2018; Hicks
and Doolittle 2008; Molenaar et al. 2011) and the even smaller body of work exploring
adaptive problematizing guidance (Efstathiou et al. 2018).

Moreover, while the construct of problematizing guidance is broad and open-
textured, our work provides a specific example of one brand of adaptive problematizing
guidance in the form of interactive activities. While the tell-me-how activity is similar
to other forms of structured explanation tools that force learners to explain in the
semantics of the discipline (e.g. ExplanationConstructor), the contrast-focused ranking
and feature contrast activities which are sometimes used to support Invention (Holmes
et al. 2014) present a form of problematizing guidance that was not mentioned in
Reiser’s (2004) framework and is unique amongst technology-based scaffolds designed
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for the express goal of problematizing (Efstathiou et al. 2018; Hicks and Doolittle
2008; Molenaar et al. 2011).

In addition, we have generated three broad design guidelines for developing
problematizing guidance for ETE activities: (1) refrain from explicit telling forms of
guidance (2) use instructional strategies, such as contrast and explain, that reveal
knowledge gaps and focus learners on deep ifeatures (3) draw on instructional strate-
gies used by real teachers. These guidelines are provisional, and it remains to be seen
how well they will generalize to other systems. At minimum, we believe they can be
applied to design guidance for the exploratory phase of other forms of ETE instruction,
where the goal is to facilitate productive exploration of a domain.

Finally, research findings on the efficacy of guidance for the explore phase of
ETE instruction is mixed, with some scholars advocating for guidance that pro-
motes task success (Wood et al. 1976), limiting guidance to make space for task
failure (Kapur 2011), or guiding learners to engage in inquiry around those
failures (Holmes Holmes et al., 2014). Our work suggests that guidance which
promotes deep exploration of the underlying concepts by problematizing learners’
understanding can enhance learner’s ability to transfer.

Limitations and Future Directions

One limitation of this work is that we have not isolated exactly what makes the
problematizing version of the Invention Coach effective in comparison to the motiva-
tional guidance condition. We have argued that problematizing guidance is particularly
well-suited for exploratory problem-solving where the goal is to encourage learners to
encounter and struggle with deep domain ideas. However, it is possible that our results
are due to differences in the amount of guidance or interactivity between conditions. In
this first study, we provided an existence proof that our designed guidance could be
efficacious relative to minimal forms of guidance. Future studies could identify the
precise ingredients of effective problematizing guidance by isolating the effects of
adaptivity, amount of guidance, type of guidance, the mixture of problematizing and
structuring, and so on.

A second limitation is that our delayed test measure was likely compromised to the
point that we cannot draw valid conclusions from it. It will be important to conduct
future studies to explore the long-term effects of problematizing guidance on learning
and transfer, in addition to replicating the effects described here. Likewise, our explor-
atory analysis revealed that problematizing guidance may have reduced learners’
perceptions of task difficulty. In future work, it will be important to assess the influence
of motivational and affective components on students’ exploratory problem-solving
(but see Lamnina & Chase, 2018).

A third limitation of this work is that the current Coach is only equipped to support
invention of ratio-based equations. The Invention process itself has had good results
with a fairly wide range of equation types (Holmes et al. 2014; Kapur 2008; Schwartz
et al. 2011). In future work, we aim to adapt the Coach to support invention of a broader
variety of equation types (additive, multiplicative, exponential, etc.). There is every
reason to believe that the same problematizing activities (Ranking, Feature Contrast,
Tell-Me-How) will prove useful, as variants of them have been used effectively with
paper-and-pencil versions of Invention (Roll et al. 2012) and in one other
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computerized system (Holmes et al. 2014). Generalizing our current implementa-
tion would require substantial redesign and re-implementation. Our development
process involved observing one-on-one sessions of experienced teachers guiding
students, pilot testing Wizard-of-Oz prototypes (Marks et al. 2016), identifying
categories of student-generated solutions, then generating and testing a solution
classification algorithm and branching structure for the interactive dialogue. We
could imagine undertaking a similar development process to expand the Coach’s
capabilities beyond simple ratio equations. A different approach would be to
develop a more elaborate set of solution categories, which might enable us to
build a more generalized algorithm for solution classification.

Conclusion

We have created the first technology that was designed to adaptively problematize
learners’ understanding while they engage in Invention activities: The Invention Coach.
This work suggests that problematizing guidance of explore-then-explain activities can
support short-term transfer, reduce subjective task difficulty, and provoke targeted and
efficient exploration of the domain space. This research also demonstrates the efficacy
of the full version of the Coach, while adding to a small body of evidence suggesting
that technology-based guidance designed explicitly to problematize can be effective.
This work also provides a provisional set of design guidelines for developing guidance
that problematizes, which other researchers and developers could apply. Finally,
problematizing guidance shows potential as a viable way to guide other forms of
exploratory problem-solving tasks, where a major goal is to help learners explore
productively, so they are better prepared to transfer from later expository instruction.
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