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Abstract
In the domain of programming, a growing number of algorithms automatically gen-
erate data-driven, next-step hints that suggest how students should edit their code to
resolve errors and make progress. While these hints have the potential to improve
learning if done well, few evaluations have directly assessed or compared the qual-
ity of different hint generation approaches. In this work, we present the QualityScore
procedure, a novel method for automatically evaluating and comparing the qual-
ity of next-step programming hints using expert ratings. We first demonstrate that
the automated QualityScore ratings agree with experts’ manual ratings. We then
use the QualityScore procedure to compare the quality of six data-driven, next-step
hint generation algorithms using two distinct programming datasets in two differ-
ent programming languages. Our results show that there are large and significant
differences between the quality of the six algorithms and that these differences are
relatively consistent across datasets and problems. We also identify situations where
the six algorithms struggle to produce high-quality hints, and we suggest ways that
future work might address these challenges. We make our methods and data publicly
available and encourage researchers to use the QualityScore procedure to evaluate
additional algorithms and benchmark them against our results.

Keywords Data-driven hints · Programming · Intelligent tutoring systems ·
Hint quality

Introduction

Intelligent tutoring systems (ITSs) increasingly use student data to drive their deci-
sion making. Rather than relying on extensive knowledge engineering, authors can
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employ data-driven methods to automate the development of both “outer loop”
and “inner loop” (VanLehn 2006) components of an ITS. Examples of this include
data-driven construction (Yudelson et al. 2014) and improvement (Koedinger and
Stamper 2013) of student models and data-driven hints (Barnes and Stamper 2010)
and worked examples (Mostafavi et al. 2015). Authors of data-driven systems argue
that these approaches avoid the need for experts to spend time constructing complex
domain models (Barnes and Stamper 2010; Rivers and Koedinger 2017) and can lead
to additional insights that experts alone would not achieve (Koedinger and Stamper
2013).

In the domain of programming, a growing number of algorithms generate data-
driven, next-step hints that suggest how students should edit their code to resolve
errors and make progress (Lazar and Bratko 2014; Price et al. 2017d; Rivers and
Koedinger 2017). These approaches are promising, as previous work shows the
potential of programming hints to improve learning (Corbett and Anderson 2001;
Fossati et al. 2015). However, many current evaluations of data-driven hints focus on
whether a system can reliably provide hints to students (Perelman et al. 2014; Wang
et al. 2017) and how much data is necessary to do so (Peddycord et al. 2014; Rivers
and Koedinger 2017). Some prior work has focused on evaluating the quality of these
hints (Hartmann et al. 2010; Price et al. 2017c, d), but only a few attempts have been
made to compare algorithms against each other (Piech et al. 2015b; Watson et al.
2012). Such comparisons of hint quality are especially important given prior work
showing that the quality of data-driven hints can vary considerably, and that even a
single low-quality hint can deter students from seeking help (Price et al. 2017c).

In this work, we present the QUALITYSCORE procedure, a novel method to auto-
matically benchmark the quality of next-step, data-driven programming hints by
comparing them to expert-authored hints. This allows researchers to evaluate and
refine data-driven hint generation algorithms before conducting high-cost user stud-
ies. The remainder of this work focuses on two experiments. In Experiment 1, we
validate the QUALITYSCORE procedure by showing that it agrees with expert ratings
of hint quality. In Experiment 2, we use the QUALITYSCORE procedure to compare
the quality of six data-driven algorithms. Our results show significant, consistent dif-
ferences in the quality of hints generated by the six algorithms across datasets and
problems. We then discuss the challenges uncovered by this analysis and how we
might better design algorithms to improve programming hint quality.

Data-driven Programming Hint Generation Algorithms

Data-driven hint generation algorithms leverage data from prior student attempts at
a given problem to automatically provide hints to new students attempting the same
problem, an approach pioneered by the Hint Factory (Barnes and Stamper 2010). For
programming data, we can represent each student’s attempt at a problem as a code
trace, consisting of a series of code-states at different points in time, as they progress
towards their final, submitted solution. These code-states are often stored as abstract
syntax trees (ASTs) that represent the syntactic structure of the source code.
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When a student requests a hint, hint generation algorithms use their current code-
state and trace to provide personalized feedback, such as next-step hints, useful
example code (Gross et al. 2014a, b), execution trace feedback (Suzuki et al. 2017),
recommended test cases (Chow et al. 2017), propagated feedback from instructors
(Head et al. 2017; Piech et al. 2015a), or explanations of relevant key concepts (Chow
et al. 2017). In this work, we focus on next-step, edit-based hints, a common form of
support that suggests the next edit a student should make to bring their code closer to
a correct solution, such as inserting, deleting or replacing a piece of code.

Hint Generation Algorithms Evaluated in this Work

In this work, we evaluate six next-step hint generation algorithms: TR-ER, CHF,
NSNLS, CTD, SourceCheck, and ITAP. Each algorithm takes a training dataset of
correct solution traces and a set of hint requests as inputs, returning a set of corre-
sponding hints. Each generated hint is represented as a hint-state, the new code-state
that results from applying the recommended edit to the student’s current code-state.
Most of these algorithms operate in two phases: first identify a target code-state
(often a correct solution) in the training dataset, then recommend edits that bring the
student’s code closer to this target state.

The Target Recognition – Edit Recommendation (TR-ER) algorithm (Zimmer-
man and Rupakheti 2015) defines the target state as the closest correct solution to the
student’s current code, calculated by the pq-Gram distance (Augsten et al. 2005), an
efficient approximation of tree edit distance (Zhang and Shasha 1989). This calcu-
lation involves representing an AST as a multiset of all of its subtrees of a specific
shape (called pq-Grams). The algorithm then suggests hints to insert, delete or replace
code based on the missing or extra pq-Grams in the student’s code.

The Continuous Hint Factory (CHF) (Paaßen et al. 2018) attempts to define the
target state as the next step that an average, capable student would have taken. First,
it computes the distance between the student’s trace (including code history) and
the traces of all students in the training dataset who got closer to a correct solution,
using a dynamic time warping (DTW) (Vintsyuk 1968) approach1. Second, the CHF
defines the target state based on predictions of how these capable students would
proceed in the student’s situation, using Gaussian Process Regression on the DTW
distances (Paaßen et al. 2017). Third, the CHF identifies tree edits which bring the
student closer to the target state, using a tree grammar to select only valid edits for a
given programming language.

The Next Step of Nearest Learner Solution (NSNLS) algorithm identifies the
closest code-state in the training dataset to the student’s current code-state (including
incomplete solutions), and defines the target state as the next code-state in that trace.
It is adapted from work by Gross et al. (2014a), which used tutor-authored code
traces. We use student data instead but consider only traces where the next state

1The CHF can also compute distances using only the current code-state of each trace, and we evaluated
this version as well. Both versions performed similarly, so we report only the DTW version.
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gets closer to a correct solution. To generate next-step hints from the target state,
the NSNLS policy uses the architecture of the CHF, as described in its third step.
Therefore, the NSNLS and CHF algorithms differ primarily in how they select the
target state.

The Contextual Tree Decomposition (CTD) algorithm (Price et al. 2016) was
designed to adapt the Hint Factory (Barnes and Stamper 2010) to the domain of pro-
gramming for use in the iSnap programming environment (Price et al. 2017a). Rather
than selecting a single target state from the training dataset, as the Hint Factory does,
it decomposes students’ ASTs into “subtrees” and matches these smaller pieces of
code to those of other students in the dataset. It uses these matches to generate hints
at each subtree, taking additional measures to ensure that subtree hints are appro-
priately contextualized by the code around them. iSnap annotates the student’s code
with indicators for each hint, allowing the student to select one.

The SourceCheck algorithm (Price et al. 2017d) was designed as a replacement
for CTD in iSnap (Price et al. 2017a), since CTD sometimes suggested contradictory
code from different solutions. SourceCheck selects a single target state, defined as the
closest submitted solution to the student’s code (as in TR-ER). It calculates this using
a code-specific distance metric, which, unlike tree edit distance, can match common
code elements from the two ASTs, even when they appear in different locations or
orders. SourceCheck suggests hints at each level of the AST based on the differences
between the children of these matched code elements. iSnap presents SourceCheck’s
hints with a combination of hint indicators that the student can select (as with CTD)
and code highlighting, as shown in Fig. 1.

The ITAP ITS (Rivers and Koedinger 2017) generates hints using a five-step pro-
cess: 1) Canonicalize all code to remove unimportant syntactic variations (Rivers and
Koedinger 2013). 2) Identify the closest correct, submitted solution to the student’s
current code. 3) Apply path construction to identify any closer, undiscovered correct

Fig. 1 A next-step hint presented by iSnap on the Squiral problem
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solutions. 4) Identify a target state on the path to the solution that will make a good
macro-level hint, as defined by a custom desirability metric. 5) Extract a single edit
to present to the student as a hint, usually the edit closest to the root node of the AST.
The ITAP system presents this edit as hint text, as shown in Fig. 2.

Additional Hint Generation Algorithms

Next-step, data-driven hint generation is still a relatively new research area, and some
of the earliest work in the domain of programming was published within the last
decade (Jin et al. 2012; Hartmann et al. 2010; Rivers and Koedinger 2014). However,
in this time, many approaches have been proposed, in addition to the six we evaluate
here. Some of these algorithms attempt to identify a desirable path through a space
of previously observed code states, as CHF, ITAP and CTD do. Piech et al. (2015b)
developed two “desirable path” hint policies designed to minimize expected comple-
tion time and probability of completion, respectively. Others have tried to increase
the overlap among students within the state space, for example by using canonicaliza-
tion (Rivers and Koedinger 2013) or a linkage graph representation (Jin et al. 2012)
to reduce syntactic variation, or by representing a student’s state using the output of
their program, rather than its source code (Peddycord et al. 2014).

Others generate hints using a cluster of solutions in the database that match a
student’s code. Gross et al. (2014b) cluster their database of student solutions into
different “solution strategies,” identify a cluster for the hint-requesting student, and
generate hints using a “prototype” solution for that cluster. The MistakeBrowser
(Head et al. 2017) identifies clusters of code states that have the same problem (e.g.,
failing a unit test) and uses program synthesis to propagate one student’s fix to others
in the cluster. Instructors can annotate these fixes with additional feedback. Simi-
larly, Chow et al. (2017) match the hint-requesting student to a cluster of code-states
that failed similar test cases and have similar structure, and recommend edits that the
majority of these students took.

Fig. 2 A next-step hint presented by ITAP on the OneToN problem
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Like the TR-ER and SourceCheck algorithms, the iGrader system (Wang et al.
2017) attempts to identify the closest submitted, correct solution to use for hint gener-
ation, using a distance metric similar to tree edit distance. Like the CHF, the DeepFix
(Gupta et al. 2017) and sk p (Pu et al. 2016) systems use machine learning (specif-
ically neural networks) on encoded code-states to generate hints. Similarly, Piech et
al. (Piech et al. 2015a) encode code-states using linear functions which map inputs to
outputs, and they propagate instructor feedback based on a classification of these lin-
ear functions. Like the CTD algorithm, some approaches attempt to break a program
down into smaller pieces and generate hints for the pieces individually. Lazar et al.
proposed breaking programs into individual lines of code to generate hints for each
line (Lazar and Bratko 2014). They later proposed a rule-based approach to hint gen-
eration, where they extracted common AST patterns from a dataset of both correct
and incorrect student attempts, and generated hints to add missing correct patterns or
remove problematic patterns (Lazar et al. 2017).

The six algorithms we selected for comparison in this work were chosen because,
unlike the other algorithms in this section, they: 1) generated data-driven next-step
hints, 2) had clear implementation details or available source code, and 3) required
no unit tests or assumptions about the connectedness of the code-state space to oper-
ate (since our datasets did not have these properties). Our goal is not to produce a
comprehensive comparison of all next-step hint generation algorithms, but rather to
demonstrate how such a comparison can be used to gain insight. While we excluded
some of the above algorithms due to the second criterion (Chow et al. 2017; Head
et al. 2017; Lazar and Bratko 2014; Piech et al. 2015b) and the third criterion (Jin
et al. 2012; Pu et al. 2016; Wang et al. 2017), with some modification and available
code, they could still be evaluated by the QUALITYSCORE procedure. Our hope is
that others will do so, and compare their results to the six algorithms evaluated in this
work. Other data-driven systems are not comparable to those evaluated here, failing
our first criterion because they give feedback other than next-step, edit-based hints
(Gross et al. 2014b; Lazar et al. 2017; Peddycord et al. 2014; Piech et al. 2015a). Oth-
ers focus on resolving specific syntax or runtime errors (Gupta et al. 2017; Hartmann
et al. 2010; Watson et al. 2012), rather than semantic errors, or on improving the style
of already correct programs (Choudhury et al. 2016; Moghadam et al. 2015). Eval-
uating these algorithms is beyond the scope of this work, but we hope that similar,
rigorous measures of hint quality can be developed for these hints as well.

Evaluations of Next-step Programming Hints

We have previously identified six types of evaluations of automated and data-driven
programming hints (Price et al. 2018): availability, cold start, correction, student
choice, student outcomes, and expert evaluations. The first four are primarily techni-
cal evaluations, showing whether hints can be generated (Perelman et al. 2014), how
much data is necessary to do so (Chow et al. 2017; Rivers and Koedinger 2017), how
often they fully correct erroneous code (Gupta et al. 2017; Lazar and Bratko 2014;
Wang et al. 2017), and how well they predict students’ later progress on a problem
(Lazar et al. 2017; Price et al. 2016), respectively. These evaluations only indirectly
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address hint quality, since even hints that lead to a correct solution may not be easily
understood (Price et al. 2017a, b).

Student outcome evaluations are ideal for assessing learning, but they are also
rare and costly to implement. The iList tutor (Fossati et al. 2015), which provides
feedback including data-driven, next-step hints, led to learning gains comparable to
working with a human tutor. Choudhury et al. (2016) found that their data-driven
style feedback for already-correct programs, which included next-step hints, helped
students achieve significantly higher-quality solutions than a control group. Students
in the ACT Programming tutor (Corbett and Anderson 2001) who received any form
of feedback, including next-step hints, completed the tutor faster and completed a
later assessment faster and with fewer errors than a control group. In contrast, Yi et al.
(2017) found that their automated hints increased the time it took novice students to
complete a set of debugging tasks, compared to a control group with no hints. Impor-
tantly, most of these studies evaluated next-step hints along with other feedback, and
none of them evaluated students completing entire open programming tasks.

Expert Evaluations directly measure the quality of data-driven hints using experts,
which are useful for evaluating and improving algorithms before investing in a stu-
dent evaluation. Some expert evaluations ask experts to rate hints directly on a
validity scale (Hartmann et al. 2010; Price et al. 2017c; Watson et al. 2012). Oth-
ers compare expert judgements to those of the algorithm. Gross et al. (2014b) used
this approach to evaluate their algorithm’s ability to effectively cluster student code
for feedback generation. Piech et al. (2015b) asked a group of experts to generate
single, “gold standard” hints for a set of student code-states, and they evaluated hint
systems based on their accuracy in matching these gold standard hints. In our prior
work (Price et al. 2017d), we extended this gold-standard approach by having experts
identify a set of valid hints, rather than a single best hint, and by generating hints for
actual student hint requests.

Methods

In this work, we present a novel QUALITYSCORE procedure to benchmark the expert-
perceived quality of data-driven programming hints, and we use it to investigate four
research questions:

RQ1: How well do QUALITYSCORE ratings agree with manual expert hint
ratings?
RQ2: Which data-driven programming hint generation algorithms have the
highest-quality hints on our datasets?
RQ3: How do state-of-the-art programming hint generation algorithms compare
to human tutors?
RQ4: Under what circumstances do current state-of-the-art programming hint
generation algorithms fail to produce high-quality hints?
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Datasets

To investigate our RQs, we analyzed datasets from two programming environments
that offer on-demand, data-driven, next-step hints: iSnap (Price et al. 2017a), a
block-based programming environment, and ITAP (Rivers and Koedinger 2017), an
intelligent tutoring system for Python programming. Figures 1 and 2 show how
next-step hints are presented in both systems. Both datasets consist of log data
collected from students working on multiple programming problems, including com-
plete traces of their code and records of when they requested hints. The iSnap dataset
was collected from an introductory programming course for non-majors during the
Fall 2016, Spring 2017, and Fall 2017 semesters, with 171 total students completing
six programming problems. Fall 2016 and Spring 2017 data have been analyzed in
our prior work (Price et al. 2017c, d, 2018). The Python dataset was collected from
two introductory programming courses in Spring 2016, with 89 total students com-
pleting up to 40 Python problems (see Rivers et al. 2016, for details). Both datasets
are available2 from the PSLC Datashop (pslcdatashop.org) (Koedinger et al. 2010).

Our evaluation of data-driven hint quality required two sets of data: a set of hint
requests, and a set of training data used to generate the hints. From the iSnap dataset,
we randomly sampled one hint request per problem from each student who used hints.
This ensured that no student was overrepresented in the set of hint requests. From
the Python dataset, we randomly sampled up to two unique hint requests from each
student, since there were fewer students who requested hints than in the iSnap dataset.
We only sampled hint requests where the student’s Python code compiled, since this
is required by most of the algorithms we compare. We also extracted a set of training
data from each dataset, consisting of correct solution traces from students with no
hint requests. Although students in both the iSnap and Python datasets received hints
(from SourceCheck/CTD and ITAP, respectively), we analyze all hint requests before
the hints were delivered to minimize the impact of these hints on our analysis.

From the iSnap dataset, we selected two representative problems to analyze,
GuessingGame and Squiral, which have been used in previous evaluations of iSnap
(Price et al. 2017c, d). The two problems had 31 and 30 hint requests, respectively
(61 total). Common solutions to these problems are approximately 13 and 10 lines
of code, respectively, and require loops, conditionals, variables and procedure defi-
nitions. From the Python dataset, we selected the 5 problems that had the most hint
requests, for a total of 51 hint requests (7-14 per problem). These simpler problems
had common solutions with 2-5 lines of code, which included variables, API calls,
arithmetic operators and, for one problem, loops. An important difference between
the datasets is that the iSnap problems are considerably longer and more open-ended,
while the Python problems often involve single-line functions that can be evaluated
with test cases.

2All datasets and procedures used in this study are available at: go.ncsu.edu/hint-quality-data.

go.ncsu.edu/hint-quality-data
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The QUALITYSCORE Procedure

We evaluate the quality of next-step, data-driven3 hints by comparing them to a set of
“gold standard” hints, authored by a group of three tutors familiar with the problems.
We used a two-phase process to generate the gold standard hints, and we carried
this process out independently for the iSnap and Python datasets, using two different
groups of tutors (in this case, the paper authors served as tutors).

In Phase I, the three tutors independently reviewed each hint request, including
the history of the student’s code before the hint request, and generated a complete set
of next-step hints that met the following validity criteria: All hints should be relevant
and useful given the student’s current code and history. They should be as minimal as
possible while remaining interpretable. Each hint should be independent, requiring
no additional hints or explanation. Each hint was represented as one or more edits to
the student’s code, and tutors could also include blanks ( ) in their hint to leave part
of it unspecified (e.g., “add x + ”), for the student to figure out.

In Phase II, each tutor independently reviewed the hints generated by the other
two tutors and marked each hint as valid or invalid by the same validity criteria used
above. Our gold standard set includes all hints considered valid by at least two out of
three tutors. Our goal was not to determine a definitive, objective set of correct hints
but rather to identify a large number of hints that a reasonable human tutor might
generate. Having two tutors agree on each hint provides a higher quality standard
than what is used in most classrooms, while also capturing a diversity of hints. This
produced between 1 and 11 gold standard hints per hint request for the iSnap dataset
(Med = 5) and between 1 and 5 for the Python dataset (Med = 2). For the iSnap
dataset, tutors met again to resolve disagreements, producing a set of consensus hints
that we used in Experiment 1.

We use the set of gold standard hints produced in Phase II to automatically assign
a QUALITYSCORE to a hint generation algorithm A for a set of hint requests R, as
shown below in (1). For each hint request r ∈ R we use the algorithm to generate a
set of candidate hints, HA,r . The algorithm must also assign a confidence weight wh

to each hint h it generates, with weights summing to 1. We calculate the validity of
each hint V (h) as 1 if it matches a gold standard hint (h ∈ Gr ) and 0 otherwise. The
QUALITYSCORE for a given hint request r is the sum of the weights of all valid hints
in HA,r , ranging from 0 (no valid hints) to 1 (all valid hints). We average this value
over all hint requests in R.

QUALITYSCORE(A,R) = 1

|R|
∑

r∈R

∑

h∈HA,r

wh · V (h); where V (h) =
{

1 if h ∈ Gr

0 if h �∈ Gr
(1)

To determine if a candidate hint h matches a gold standard hint g, we first normal-
ize their respective ASTs by standardizing the names of any newly-created variables,

3While the QUALITYSCORE was especially designed for data-driven hints, it can be used to evaluate any
next-step hint.
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methods and string literals and by removing compiler-generated AST structures (like
default child nodes). We used two thresholds for determining if h matches g: A full
match occurs when h and g are identical, while a partial match occurs when h sug-
gests exactly a subset of the edits in g, and at least one of these edits is an insertion.
We can calculate the QUALITYSCORE counting only full matches as valid, or count-
ing partial matches as valid also (which yields a higher score). Both QUALITYSCORE

values give insight into the quality of an algorithm.
The QUALITYSCORE procedure is capable of evaluating algorithms that generate

multiple hints, as many do, which allows the algorithm multiple opportunities to gen-
erate valid hints. However, algorithms are also penalized for generating invalid hints,
even if they are accompanied by valid ones. We believe that this is reasonable, since
low-quality hints have been shown to deter students from future help-seeking (Price
et al. 2017c). This raises the question of which hint is actually shown to the stu-
dent. In this work, we distinguish between the hint generation algorithm, responsible
for generating and prioritizing hints, and the help interface, responsible for choosing
which hints to show and how. Some help interfaces, such as iSnap’s, annotate a stu-
dent’s code with indicators for all available hints and allow the student to select one
(see Fig. 1), while others, such as ITAP’s, show only a single, highest-priority hint
(see Fig. 2). We could imagine other approaches, such as choosing which hints to
show adaptively, based on a student model. The QUALITYSCORE evaluates an algo-
rithm based on its ability to generate valid hints and weight them to inform a help
interface’s choice of what hints to show, regardless of the interface.

Experiment 1: Validating the QUALITYSCORE Procedure

Previous evaluations of programming hints have used human experts to manually rate
hints as valid or invalid (Paaßen et al. 2018; Watson et al. 2012). A primary advantage
of the QUALITYSCORE procedure over this manual expert rating is that it is consis-
tent and replicable, meaning that we can automatically and objectively apply it to
any number of hint generation algorithms, without requiring additional expert time.
In this experiment, we investigate RQ1, which asks whether the QUALITYSCORE

ratings are consistent with manual hint ratings.

Procedure

In this experiment, we selected a set of automatically generated hints from the iSnap
dataset and rated these hints both with the QUALITYSCORE procedure and man-
ually with experts. High agreement between these two ratings would suggest that
QUALITYSCORE is a reasonable substitute for manual hint ratings and accurately
reflects expert judgement. Our goal was to evaluate this agreement on a diverse set
of data-driven hints, with different levels of hint quality. We used four hint genera-
tion algorithms (Zimmerman, CHF, CTD, and SourceCheck)4 to generate these hints

4Our implementation of the NSNLS algorithm was completed after this experiment, and the ITAP
algorithm only operates on the Python dataset, so we did not include them.
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for each hint request in the iSnap dataset. We used the QUALITYSCORE procedure to
rate each hint as valid (matches a valid hint), partially valid (matches a subset of the
edits in a valid hint) or invalid (matches no valid hints). The QUALITYSCORE rating
marked over 80% of all generated hints as invalid, so in order to avoid overrepresent-
ing invalid hints in our evaluation, we created a more balanced sample as follows:
For each hint request, we randomly selected 1 hint per algorithm (if present) that had
a QUALITYSCORE rating of valid, partially valid, and invalid, respectively, resulting
in 119 valid, 84 partially valid and 233 invalid hints. We then randomly sampled 84
of each type for a balanced sample of 252 total data-driven hints.

The same three human tutors who created the gold standard hints for the iSnap
dataset then manually rated the data-driven hints. First, each tutor individually viewed
each of the 252 hints, along with the respective hint request and code history, and
assigned each hint a rating of valid, partially valid, or invalid. The tutors were told
to use the same validity criteria that they used to rate each other’s hints in Phase
II of the gold standard hint generation. They were instructed to rate a hint as “par-
tially valid” if all of its suggested edits were useful and important, but a student
would need additional information to interpret the hint. For example, imagine a stu-
dent who has used a for-loop where they should have used a while-loop instead. A
data-driven hint that suggested this replacement would be “valid,” but one that sim-
ply suggested adding the while-loop (without replacing the for-loop) might be rated
“partially valid,” since that is useful but incomplete information. The pairwise agree-
ment between the tutors, as measured by weighted Cohen’s kappa, ranged from 0.65
to 0.69, indicating substantial agreement, and the three tutors reached perfect agree-
ment on 166 out of 252 hint requests (65.9%). Any disagreements were discussed by
the tutors until a consensus validity rating was reached for all 252 hint requests.

Results and Discussion – RQ1

To address RQ1, we calculated the agreement between the automated QUALI-
TYSCORE hint ratings and the manual tutor ratings. The weighted Cohen’s kappa was
0.78, indicating substantial agreement5, with the QUALITYSCORE matching 82.9%
of the manual hint ratings exactly. As described earlier, the QUALITYSCORE proce-
dure includes any hint approved by at least 2 out of 3 tutors in Phase II in the gold
standard hint set. Recall that on the iSnap dataset, we also had tutors discuss and
come to consensus on each gold standard hint. We investigated whether this con-
sensus phase offers any advantage by calculating the QUALITYSCORE using this
consensus gold standard instead. Doing so raises the kappa value slightly to 0.81.
Similarly, counting all hints generated by any tutor in Phase I as gold standard hints
(without any tutor Phase II agreement) produces a kappa of 0.83. We conclude that
the choice of gold standard criteria simply biases the QUALITYSCORE to be more or
less permissive, but it does not meaningfully change the overall agreement with man-
ual hint ratings. For comparison, the agreement between the three tutors’ individual

5Originally the kappa was 0.64, which prompted us to change the way the QUALITYSCORE identifies
partial matches (requiring at least one overlapping insertion), and this substantially improved agreement.
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manual ratings and their eventual consensus ratings was 0.85, 0.76 and 0.78, respec-
tively. This indicates that the QUALITYSCORE matches the consensus ratings about
as well as any individual tutor.

We conclude that the QUALITYSCORE generally captures our human tutors’
understanding of hint quality. However, the agreement was not perfect, so we also
manually inspected the 43 hints where the QUALITYSCORE disagreed with the man-
ual hint ratings. We found that the majority of these disagreements (67%) involved a
rating of “partially valid,” indicating that the QUALITYSCORE procedure may have
some trouble distinguishing partially valid hints from valid and invalid hints. For the
remaining hints, almost all disagreements involved substantial discussion among the
human tutors. Often the tutors even changed their minds, for example including a hint
in the gold standard during Phase II, but rating the same hint as invalid during Exper-
iment 1, or vice versa. This underscores the subjective nature of human hint quality
ratings. Our QUALITYSCORE reflects those same subjective tutor judgements, but
unlike human tutors, it is consistent in applying those judgements to different algo-
rithms. While there are other, valid ways to assess hint quality (e.g., asking students
to rate hints, or evaluating hints’ impact on learning outcomes), with the QUALI-
TYSCORE procedure, we can easily evaluate and compare hints from any number of
algorithms, as we do in the following section.

Experiment 2: Comparing Algorithms

In this experiment, we investigated RQ2 and RQ3, evaluating how the quality of data-
driven hint generation algorithms compared with each other and with human tutors.

Procedure

We used the QUALITYSCORE procedure to compare the six data-driven next-step
hint generation algorithms described in detail earlier: TR-ER, CHF, NSNLS, CTD,
SourceCheck and ITAP. We evaluated each algorithm on the 2 assignments in the
iSnap dataset and 5 assignments in the Python dataset. For each assignment, we
trained the hint generation algorithm on the training dataset and then calculated the
QUALITYSCORE on the full set of hint requests.

As described earlier, the QUALITYSCORE procedure requires that each algorithm
assign a confidence weight to each hint that it generates, where higher-weighted hints
contribute more to the final QUALITYSCORE. The CHF and NSNLS algorithms asso-
ciate an error with each hint they generate, representing how far the hint-state is
from the target state, which is translated into a weight6, such that higher errors cor-
respond to lower weights. SourceCheck uses a voting-based approach that assigns
weights to hints based on their representation in the top-k closest matching target
solutions (Price et al. 2018).The ITAP algorithm generates only one hint per hint

6The weight wi for a hint with error ei is given by wi = exp(−(ei − min(E))/(Ē − min(E)), where E is
the set of all generated hint errors for a given hint request and Ē is the average error.
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request, which is given a confidence weight of 1. The TR-ER and CTD algorithms
present no method for weighting the importance of hints. Rather than attempting to
define a reasonable weighting approach ourselves, we assigned each hint a uniform
weight. While we acknowledge that this uniform weighting is likely not optimal (c.f.
Price et al. 2018), we argue that it fairly reflects that algorithm’s current inability to
prioritize hints, which represents an important area for future work.

For most of the algorithms we evaluated, we used an implementation written by
the original paper authors, and we adapted these implementations to use our training
data and to output code-states compatible with our gold standard hints. One excep-
tion is the NSNLS algorithm, where we base the implementation off of the CHF and
use student data rather than the expert-authored traces used by the original authors
(Gross et al. 2014a). The other exception is the ITAP algorithm which is designed
specifically for the Python programming language and cannot operate on the generic
ASTs in our training dataset. ITAP also requires a set of unit tests to operate most
effectively, which our dataset did not include. Instead of generating a new set of ITAP
hints, we used the historical hints that the ITAP algorithm originally generated when
the Python dataset was collected. We were therefore only able to evaluate the ITAP
algorithm on the Python dataset, and these hints are different in a few key ways.
First, since ITAP built up its training dataset over time as solutions were submitted
throughout the study, each hint was generated using a different subset of the total
training data. This training data may have also included students who requested hints,
which our training dataset does not. Second, ITAP used a Python-specific canoni-
calization process (Rivers and Koedinger 2013), which none of the other algorithms
could do, since they had to operate on generic ASTs. Third, ITAP used unit tests for
path construction, which were unavailable to the other hint generation algorithms.
Lastly, ITAP’s hints were conveyed in natural language, rather than as AST edits. In
order to represent these as code-states, we manually carried out each hint that ITAP
described and saved the resulting Python AST as the hint-state. This process guaran-
tees that the resulting hints are syntactically valid, making them easier to match to
the gold standard hints. These differences mean that the comparison between ITAP
and the other hint generation algorithms is not exact, and may favor ITAP, since it is
able to use Python-specific features, unit tests, and hand-authored hint-states.

Results

Figure 3 shows the QUALITYSCORE ratings for each algorithm on the iSnap and
Python datasets. As a reference, the figure also shows the QUALITYSCORE of the
Tutors, the original hints produced by all the human tutors in Phase I, before the hints
were rated and filtered to make the gold standard set. This gives an upper baseline
for the QUALITYSCORE for a given assignment. Recall that the QUALITYSCORE can
be calculated to count only hints that have a full match to a gold standard hint as
valid, or to also count partial matches, which have a meaningful subset of the edits.
The figures report the QUALITYSCORE calculated with both full and partial matches,
but since they are similar, in the remaining analysis we focus on full matches unless
otherwise stated.
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There is a clear difference between the QUALITYSCORES of the six algorithms,
and a Kruskal-Wallis test confirms that this overall difference was significant for
the iSnap dataset (H(4) = 63.5; p < 0.001). We performed post hoc, pairwise
Wilcoxon signed-rank tests, using the Benjamini-Hochberg procedure (Benjamini
and Hochberg 1995) to control the false discovery rate at 5%. We find that TR-ER
< NSNLS = CHF < CTD < SourceCheck < Tutors on the iSnap dataset. These
trends hold when including partial matches, with the exception that there is no signif-
icant difference between CTD and SourceCheck. The highest-performing algorithm,
SourceCheck, performed 47.9% and 54.4% as well as the human tutors, without and
with partial matches, respectively.

For the Python dataset, we also see a significant difference between the QUALI-
TYSCORES of the algorithms (Kruskal-Wallis test; H(5) = 35.4; p < 0.001). The
overall ranking of the algorithms is similar to the iSnap dataset, with the addition of
the ITAP algorithm, which performs best. Post hoc pairwise Wilcoxon signed-rank
tests show that TR-ER = CTD < CHF = NSNLS < SourceCheck = ITAP < Tutors
on the Python dataset. However, we do see differences in the ranking of the algo-
rithms on the Python dataset when including partial matches: TR-ER < NSNLS =
CHF < CTD = SourceCheck < ITAP =Tutors. This second ordering is consistent

0.05 (0.05)

0.13 (0.14)

0.17 (0.18)

0.26 (0.46)

0.40 (0.46)

0.85 (0.85)

0.04 (0.05)

0.12 (0.14)

0.12 (0.16)

0.22 (0.29)

0.37 (0.43)

0.76 (0.78)

Squiral (n=30) GuessingGame (n=31)

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

TR−ER

NSNLS

CHF

CTD

SourceCheck

Tutors

QualityScore

A
lg

o
r
it
h

m

Match

Partial

Full

QualityScore Ratings − iSnap
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with the iSnap dataset. The highest-performing algorithm, ITAP, performed 64.5%
and 83.9% as well the human tutors, without and with partial matches.

Figures 4 and 5 show the QUALITYSCORE ratings for each assignment in the iSnap
and Python datasets, respectively. The two iSnap assignments follow similar trends,
with the algorithms achieving similar scores and rankings on both assignments. The
Python dataset features 5 simpler assignments, and there are larger differences in
the QUALITYSCORES and ranks of the algorithms across assignments. However,
the ITAP algorithm consistently performs best across assignments, approaching the
human tutors’ QUALITYSCORE on some. Many algorithms also perform much bet-
ter when including partial matches in the QUALITYSCORE on the Python dataset,
such as on FirstAndLast and KthDigit, where four algorithms more than double their
QUALITYSCORE with partial matches.

The QUALITYSCORE procedure can also be used to calculate detailed statistics
about the performance of each algorithm, which are shown in Table 1. We see that
the algorithms with the highest QUALITYSCORES are also generally more likely to
produce any valid hint for a given request, and they generally produce more valid
hints per hint request on average, suggesting that the QUALITYSCORE reflects these
metrics of hint quality as well. However, there is a less clear relationship between the
QUALITYSCORE and the number of hints an algorithm generates per hint request.
For example, while both ITAP and SourceCheck had a high QUALITYSCORE on
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the Python dataset, SourceCheck generated on average over twice as many hints,
resulting in both more valid hints on average, and also more invalid hints.

It is important to consider these different aspects of the quality of a hint generation
algorithm, especially when trying to diagnose problems with an algorithm (as we
discuss in the following section).

However, it can also be difficult to reconcile multiple quality metrics when com-
paring algorithms, or when determining whether changes to an algorithm produced
an improvement. The QUALITYSCORE addresses this by capturing many meaningful
properties of hint quality in a comprehensive value.

Discussion – RQ2 and RQ3

The SourceCheck algorithm performs significantly better than all others on the
iSnap dataset, and the ITAP and SourceCheck algorithms perform significantly
better than all others on the Python dataset (not counting partial matches). Impor-
tantly, SourceCheck was originally designed to generate hints for iSnap, and ITAP
was designed specifically for Python, which suggests that one element of these
algorithms’ success is their attention to context-specific and programming-language-
specific aspects of hint generation. This may partially explain why the TR-ER and
NSNLS algorithms performed poorly, since the other algorithms had been previ-
ously evaluated using programming logs from either iSnap (CTD, SourceCheck,
CHF: Price et al. 2016, 2017d; Paaßen et al. 2018) or Python (ITAP: Rivers and
Koedinger 2017). However, more than dataset-specific factors contributed to hint
quality, since SourceCheck performed quite well across datasets, and all algorithms
ranked similarly on both datasets.

There were clear differences in the performances of the algorithms, with the top-
ranked algorithm performing 9 and 7 times better than the bottom-ranked algorithm
on the iSnap and Python datasets, respectively. Figure 3 shows a wide range of hint
quality across the algorithms on both datasets, suggesting that no binary factor sep-
arates “good” and “bad” algorithms. The performance ranks of the algorithms are
also consistent across problems and datasets. All algorithms achieved the same ranks
on both problems in the iSnap dataset (see Fig. 4), which also matches the overall
rankings in the Python dataset (counting partial matches). There is more variance
among the rankings on the Python problems (see Fig. 5), but the top-two performing
algorithms are consistently ITAP and SourceCheck, respectively.

There are meaningful differences in the algorithms’ scores and ranks, depending
on whether we include partial matches in the QUALITYSCORE, especially on the
Python dataset. The CTD algorithm provides the clearest example, since its QUAL-
ITYSCORE on the Python dataset rises from 0.10 (rank 5) to 0.48 (rank 3) if partial
matches are included. Recall that a hint partially matches a gold standard hint if it
consists of a subset of the edits suggested by a gold standard hint, and some of these
edits add code. Table 2 gives examples of partial matches generated by CTD on each
problem. Partial matches often occurred when a hint inserted new, correct code that
failed to incorporate the student’s existing, correct code (e.g., rows 1, 2, 3 and 6). On
Python problems, the specifics of the AST caused issues, for example when a hint
would suggest adding a binary operator node (BinOp), without adding an additional
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node to specify which operator (e.g., rows 4 and 6). Often, partial matches simply
provided less specific information (e.g., row 2, 3, 4, 6, 7), but rows 1 and 5 show
how they can also fail to remove erroneous code. Partial matches represent a variety
of hint types, each containing possibly useful information but also falling short of a
high-quality hint. These hints may still be useful to students, especially those with
more ability to self-explain the hint, but they are clearly distinct from full matches.

RQ3 asks how state-of-the-art algorithms compare to humans for the task of
next-step hint generation. On the iSnap dataset, the best algorithm (SourceCheck)
performed about half as well as human tutors, while on the Python dataset, the best
algorithm (ITAP) performed up to 84% as well (including partial matches), and
the difference between them was not significant. This suggests that for the simpler
Python problems, a data-driven algorithm can approach the quality and consistency of
human-authored, next-step hints. This is very impressive, especially considering how
new the research area is. However, this does not mean that access to data-driven hints
will always improve student learning. Previous work has shown that many students
will not request on-demand hints, even when they would benefit from them (Aleven
et al. 2003; Price et al. 2017c; Roll et al. 2011). Additionally, even human-quality
next-step programming hints are still effectively “bottom-out” hints, which may not
be the most effective form of help (Aleven et al. 2016), since students may need to
self-explain the hint in order to learn from it (Shih et al. 2008). Still, these results
strongly suggest the need for controlled, classroom studies on data-driven, next-step
hints to accurately measure their impact on student learning. For the more complex
problems in the iSnap dataset, data-driven hints still fall well short of human-authored
hints on average. However, we argue that they still succeed in many situations, and
in the next section we explore how we can better identify these situations.

Challenges for Data-driven Hint Generation

RQ4 asks what factors contribute to poor-quality hints and how we can improve
current data-driven hint generation algorithms. To answer this, we manually investi-
gated hint requests in both the iSnap and Python datasets where the hint generation
algorithms generally performed poorly. We created a simple metric for the diffi-
culty of a given hint request, defined as 1 minus the second-highest QUALITYSCORE

achieved by any algorithm on that request, calculated using partial matches. We used
the second-highest QUALITYSCORE (80th percentile), rather than median (50th per-
centile) because we were most interested in challenges faced by the best-performing
algorithms. We manually inspected 51 hint requests that had a difficulty greater
than 0.75, meaning that at most one algorithm performed even remotely well, with
a QUALITYSCORE of 0.25 or higher. Based on this investigation, along with our
results from Experiment 1, we developed several hypotheses about what factors
may make data-driven hint generation difficult, which are presented in this section.
We also investigated whether the data supported these hypotheses, analyzing all
112 hint requests. To investigate these hypotheses across algorithms, we also define
the difficulty of a hint request for any given algorithm as 1 minus the algorithm’s
QUALITYSCORE on that request (including partial matches).
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Difficulty from the Hint Requests

We hypothesized that some difficulties may be inherent in the hint requests them-
selves. There were significant differences in all algorithms’ QUALITYSCORE ratings
between different hint requests on both the iSnap (Kruskal-Wallis test; H(60) =
99.9; p < 0.001) and Python (H(50) = 108.4; p < 0.001) datasets, which supports
this hypothesis. We investigated the following hypotheses about which attributes of
a hint request make it difficult:

Large Code We hypothesized that when a student has written a lot of code, hint
generation algorithms may have difficulty identifying the key areas where a stu-
dent needs help, leading to lower-quality hints. This hypothesis was supported, as
we found a positive, significant Spearman’s correlation between the size of a hint
request’s AST and the difficulty of that hint request for both the iSnap (rs = 0.376;
p = 0.003) and Python (rs = 0.389; p = 0.005) datasets. As shown in the third
column of Table 3, this correlation is positive for each algorithm on each dataset, sug-
gesting that AST size makes hint generation difficult for all algorithms. One reason
for algorithms’ difficulty with larger hint requests may be a tendency to generate too
many hints, as explored in the next section.

Divergent Code We hypothesized that divergent hint requests, which feature code
that is unlike most other student solutions, would be more difficult for hint gener-
ation. For example, on the GuessingGame, one student started by asking, “Do you

Table 3 Correlations between each of the variables we hypothesized may contribute to hint generation
difficulty and the difficulty metric (1 - QUALITYSCORE) for each algorithm on each dataset, calculated
across all hint requests

Algorithm Spearman’s correlation between variable and difficulty Deletion CLI

Dataset Size Divergence # GS hints # Alg hints

TR-ER iSnap 0.357 0.142 −0.096 0.169 7.662

TR-ER Python 0.309 0.140 −0.029 0.460 4.129

NSNLS iSnap 0.220 0.137 −0.241 0.178 4.431

NSNLS Python 0.262 0.171 0.099 0.427 −0.463

CHF iSnap 0.100 0.164 −0.155 0.179 2.600

CHF Python 0.118 0.333 0.042 0.244 1.265

CTD iSnap 0.428 0.461 −0.272 0.275 14.963

CTD Python 0.163 0.070 −0.223 0.220 2.967

SourceCheck iSnap 0.094 0.177 0.068 0.535

SourceCheck Python 0.347 0.346 0.031 0.675

ITAP Python 0.059 0.196 −0.134

The final column gives the comparative likelihood of a deletion hint being invalid (CLI) compared to
a non-deletion hint, calculated across all hints generated. Empty cells indicate no variance within the
algorithm (e.g., ITAP always produce 1 hint and no deletions)
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want to play the game?” and put their remaining code inside of a conditional state-
ment, requiring the player to say “yes.” This was a unique design choice, and none of
the six algorithms generated a valid hint for this request. To investigate this hypothe-
sis, we defined the divergence of a given hint request as the median tree edit distance
between that hint request’s code and each solution in the training dataset for that
problem. We found a significant, positive correlation between the divergence of a hint
request and its difficulty in the iSnap (rs = 0.356; p = 0.005) and itap (rs = 0.432;
p = 0.002) datasets. As shown in the fourth column of Table 3, this correlation is
positive for each algorithm on each dataset, suggesting it is a consistent trend. This
supports our hypothesis that divergent code is more difficult for the algorithms. How-
ever, we also found a significant correlation between the hint request’s divergence
and AST size (as discussed above) for the iSnap (rs = 0.385; p = 0.002) and Python
(rs = 0.458; p = 0.001) datasets, so these effects may be related.

Few Correct Hints The number of valid, gold standard hints varied considerably
among hint requests, from 1 to 11 in the iSnap dataset (Med = 5) and 1 to 6 in
the Python dataset (Med = 2). We hypothesized that hint requests with fewer gold
standard hints would be more difficult for hint algorithms, as there were fewer pos-
sible ways to produce a valid hint. However, the data did not support this hypothesis,
as there was no significant Spearman’s correlation between the difficulty of a hint
request and the number of gold standard hints generated by tutors for the iSnap
(rs = −0.225; p = 0.081) or Python (rs = 0.072; p = 0.614) datasets. As shown
in the fifth column of Table 3, this correlation had no consistent trend across algo-
rithms.This may be because those hint requests which elicited fewer gold standard
hints were also more straightforward, reducing difficulty.

Difficulty from the Algorithms

While some hint requests proved more difficult than others, there was also a clear
difference in quality between algorithms. In this section, we investigate hypotheses
for why some algorithms achieved lower QUALITYSCORES. We report all QUALI-
TYSCORES calculated with partial matches, but the general trends hold whether or not
partial matches are included. Part of our analysis is informed by Experiment 1, where
tutors were asked to rate the quality of the algorithms’ hints. When they rated a hint
as invalid, they also supplied a reason: Incorrect, Too Much Information, Unhelpful,
Too Soon, or Impossible.

Unfiltered Hints The average number of hints generated per hint request ranged from
5.1 to 15.5 for algorithms on the iSnap dataset and from 1 to 8.1 on the Python
dataset (the ITAP algorithm always generated 1 hint). We hypothesized that an algo-
rithm generating a large number of hints might indicate a failure to identify the most
important hints, leading to lower-quality hints overall. This hypothesis was supported
by the data, as there was a significant, negative Spearman’s correlation between the
number of hints an algorithm generated for a given hint request and its difficulty on
that request for both the iSnap (rs = 0.437; p < 0.001) and Python (rs = 0.487;
p < 0.001) datasets. As shown in the sixth column of Table 3, this correlation was
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also positive for each algorithm individually on both datasets (with the exception of
the ITAP algorithm, which always produced 1 hint). This result is not obvious, since
generating multiple hints with appropriate confidence weights could result in more
consistent (but equally good) performance than attempting to select a single, best
hint.

Algorithms generated more hints for larger hint request ASTs in both the iSnap
(rs = 0.307; p = 0.016) and Python (rs = 0.487; p < 0.001) datasets. However,
there was no significant Spearman’s correlation between the size of a hint request’s
AST and the number of hints the human tutors authored for the iSnap (rs = −0.222;
p = 0.083) or Python (rs = 0.189; p = 0.184) datasets. There was also no sig-
nificant correlation between size and number of hints for SourceCheck on the iSnap
dataset and ITAP on the Python dataset (since it always generates 1 hint). This sug-
gests that, for our human tutors and our top-performing algorithms, the number of
hints generated was not strongly impacted by the amount of code in the hint request.

Incorrect and Unhelpful Deletions We noticed that many of the hints that we man-
ually rated as invalid in Experiment 1 were deletions, with 40% of those marked as
Unhelpful and 47% as Incorrect. We hypothesized that it may be difficult for algo-
rithms to distinguish between deleting code that is incorrect, and code that is simply
unnecessary but also not harmful. For the iSnap and Python datasets respectively,
17.7% and 18.0% of hints generated by all algorithms were deletions (removed code
without adding any). However, only 17 deletion hints (2.8% of deletions) matched
the gold standard across all algorithms and datasets, and of these, all but 5 were
duplicate hints produced by different algorithms. Notably, the two best performing
algorithms, SourceCheck and ITAP, did not produce deletion hints. A primary rea-
son that deletions were poorly rated is that only 3.2% and 5.1% of gold standard
hints were deletions for the iSnap and Python datasets, respectively. However, while
approximately half of gold standard hints were matched to some algorithmic hint,
only 25% of gold standard deletion hints were matched. As shown in the final col-
umn of Table 3, deletion hints were more likely to be rated invalid than non-deletion
hints for each algorithm and dataset, with one exception (NSNLS on Python). This
suggests that useful deletion hints were rare and the algorithms consistently failed to
produce them.

Of the 5 unique deletion hints that matched the gold standard, one removed a
break statement that erroneously ended a loop, two removed a variable declara-
tion that masked a function parameter, and two removed an unneeded function call.
In each case, the deleted code was problematic on its own, and did not need to be
replaced with other code. Of the over 600 deletions that did not match the gold
standard, many deleted code that was unnecessary but not harmful, or suggested
removing erroneous code (sometimes large sections of it) without a meaningful
replacement.

Understanding Student Intent In Experiment 1, when our human tutors rated hints,
they often discussed the hint-requesting student’s intent, referring to their identifier
names and code history to determine intent. We hypothesized that algorithms would
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struggle with this aspect of hint generation, since they do not reason about natu-
ral language and only the CHF reasoned about a student’s code history. While this
hypothesis is difficult to test quantitatively, we did find some evidence in the data.
For example, on the Squiral assignment, students had to use one variable (length),
and one function parameter (rotations). However, when students instead named their
function parameter “length” (or “move,” “size,” etc.), the human tutors would com-
pensate by adjusting their hints to use this parameter instead of a length variable. The
algorithms were rarely able to do so. Our tutors were also able to distinguish between
meaningful and arbitrary literal values. For example on Squiral, the number of sides
per rotation must be 4, but the size of the shape can vary. This led to a number of
false positives and false negatives for the hint generation algorithms that changed or
failed to change literal values. This was more common on the iSnap dataset, where
more implementation choices in assignments were left up to the students.

Probably the most important way that tutors recognized student intent was by
focusing their hints on the most relevant problems facing the student. Their hints
focused on code recently edited by the student, code with errors that would block
forward progress, and code that reflected important misunderstandings. By contrast,
many algorithms suggested hints anywhere progress could be made. Sometimes these
hints were reasonable, but came too soon, suggesting fixes before a student was ready
to process that information. Of the hints marked invalid in Experiment 1, 13% were
labeled “Too Soon.” For example, a student who has initialized a variable incorrectly,
reflecting a clear misunderstanding of its purpose, may be confused by a hint that
suggests where to use that variable until the error is corrected. This is related to the
challenge of producing too many hints, but it can still occur with just one hint.

Discussion – RQ4

Our results identify key areas where data-driven hint generation algorithms generally
fail to produce high-quality hints. We can use this information in two key ways. First,
we can ensure that future work addresses the current weaknesses in data-driven hints
generation algorithms. One area where hint algorithms can clearly improve is filter-
ing and selecting hints. This has been identified in previous work (Price et al. 2017d)
as a primary reason data-driven hints fail to match the quality of human-authored
ones. It is notable that the highest-performing algorithm, ITAP, generates only one
hint per request. ITAP uses a customized desirability metric to first select the most
useful macro-level edit, and then it creates a token-level hint by selecting the edit
closest to the root node of the AST (Rivers and Koedinger 2017). Other algorithms
might benefit by adopting a similar approach. Another clear area for improvement
is deletion hints, which were rarely valid. The simplest solution is to avoid deletions
unless they suggest replacement code, as ITAP and SourceCheck do. When used in
the iSnap system, SourceCheck does generate deletion hints, but it does so with a
passive warning highlight, rather than as a next-step hint. Lastly, many algorithms do
not use the history of a student’s code, prior to the hint request, to inform hint genera-
tion and target relevant and recently-edited code. While ITAP, CHF and CTD use the
history of traces in the training dataset, only the CHF algorithm utilizes the history
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of the hint-requester. By addressing these challenges, we should be able to produce
higher-quality data-driven hints.

However, some barriers we identified, such as understanding student intent, may
not be easy to overcome. A second way we can use the findings presented here is to
identify hint requests where automated hints are likely to fail, so that algorithms can
avoid giving low-quality hints that may erode trust in the system (Price et al. 2017c).
Instead, a hint system could recommend that the student seek out additional help from
an instructor or peer. For example, it is straightforward to recognize divergent code
in hint requests by comparing it to other solutions in the training dataset. For these
hint requests, we found that algorithms produced lower-quality hints, so they may do
more good by not giving hints. However, it is also important to remember that data-
driven hint generation for programming is still a relatively new research area; these
shortcomings emphasize just how challenging the task is.

Conclusion

In this work, we have presented the following primary contributions: 1) the validated
QUALITYSCORE procedure for evaluating and comparing the quality of next-step
programming hints, 2) the first comparison of hint generation algorithms across mul-
tiple datasets, 3) insights into the current strengths and limitations of data-driven
hints for programming, and 4) publicly available datasets that we encourage other
researchers to use to evaluate, compare and refine hint generation algorithms. Specif-
ically, we found that the QUALITYSCORE procedure produces hint ratings that are
consistent and replicable, which agree with manual tutor ratings. We used the proce-
dure to evaluate six algorithms on two novice programming datasets, with different
programming languages, finding large differences in hint quality that were fairly
consistent across datasets. The SourceCheck and ITAP algorithms performed signif-
icantly better than the other algorithms, and on the simpler problems of the Python
dataset, ITAP generates near-human-quality hints. Despite these successes, we also
identified situations where data-driven hints perform poorly overall, such as when
students have code that diverges from common solutions. Currently, algorithms strug-
gle to distinguish between important and unimportant deletions and fail to prioritize
the most relevant hints. In addition to these insights gained from comparing six spe-
cific data-driven hint generation algorithms, we have also provided a method and
datasets that will allow others to perform QUALITYSCORE evaluations on additional
algorithms, enabling a more rigorous approach to evaluating data-driven hints.

This work has important limitations. The QUALITYSCORE procedure itself
attempts to operationalize the notion of hint quality, but like any operationalization,
it does not capture all of the relevant aspects. The procedure rates hints on a binary
scale as valid or invalid, and it has no easy way to address marginal-quality hints, or
the differences between “good” and “great” hints. Our procedure also does not con-
sider how many of the gold standard hints an algorithm generates, so a set of 3 valid
hints and 1 invalid hint would currently earn a lower QUALITYSCORE (0.75) that a
set with 1 valid hint (1.0). This intentional choice was because most hint interfaces
display just one hint at a time, so generating multiple useful hints per hint request
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may not be as important as avoiding invalid hints. Our gold standard hints came from
only 3 experts tutors per dataset, and a different set of expert raters might produce
different gold standards. Further, the QUALITYSCORE is based on expert opinions,
which may not necessarily correspond to more important measures of quality, such
as programming outcomes and learning, or students’ trust in and perceived value of
hints. However, there are few objective measures of the quality of intelligent sup-
port for programmers, and the QUALITYSCORE provides a way to benchmark their
performance.

In future work, we hope to explore more nuanced ways to rate generated hints
(e.g., in Paaßen et al. 2018), beyond the current binary valid/invalid rating used by
QUALITYSCORE, especially for partially valid hints. Future work should also eval-
uate the quality of other forms of data-driven feedback for programming, such as
example-based help (Gross et al. 2014b), error flagging hints (Lazar et al. 2017)
and style-focused hints (Choudhury et al. 2016; Moghadam et al. 2015), as well
as in other domains such as logic proofs (Barnes and Stamper 2008). Most impor-
tantly, the results from this evaluation suggest a strong need to evaluate data-driven
programming hints in learning settings with students.
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