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Abstract Students experience mathematics in their day-to-day lives as they pursue
their individual interests in areas like sports or video games. The present study explores
how connecting to students’ individual interests can be used to personalize learning
using an Intelligent Tutoring System (ITS) for algebra. We examine the idea that the
effects of personalization may be moderated by students’ depth of quantitative engage-
ment with their out-of-school interests. We also examine whether math problems
designed to draw upon students’ knowledge of their individual interests at a deep level
(i.e., actual quantitative experiences) or surface level (i.e., superficial changes to
problem topic) have differential effects. Results suggest that connecting math instruc-
tion to students’ out-of-school interests can be beneficial for learning in an ITS and
reduces gaming the system. However, benefits may only be realized when students’
degree of quantitative engagement with their out-of-school interests matches the depth
at which the personalized problems are written. Students whose quantitative engage-
ment with their interests is minimal may benefit most when problems draw upon
superficial aspects of their interest areas. Students who report significant quantitative
engagement with their interests may benefit most when individual interests are deeply
incorporated into the quantitative structure of math problems. We also find that
problems with deeper personalization may spur positive affective states and ward off
negative ones for all students. Findings suggest depth is a critical feature of personal-
ized learning with implications for theory and AI instructional design.
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Introduction

Students’ interest in learning mathematics can decline as they reach adolescence
(Fredricks and Eccles 2002; Frenzel et al. 2010), as the mathematics they are learning
in school becomes less concrete and immediately relatable to everyday activity. Middle
and high school mathematics can alienate students, which is particularly problematic
due to its central importance for college and career readiness. Specifically, Algebra I
has been identified as a Bgatekeeper^ to higher level mathematics courses, and to many
careers (Kaput 2000; Moses and Cobb 2001; National Mathematics Advisory Panel
2008). However, students’ confidence in using mathematics and their perception that
math is useful both decline during algebra courses (McCoy 2005).

Curriculum designers thus face a challenging question: How can mathematics
instruction engage secondary students? Technology-based learning environments that
adapt to student preferences may be an important vehicle to improve students under-
standing of and attitudes towards mathematics. However, designing these systems to
Bknow^ learners’ lives, experiences, and preferences, and to utilize this knowledge in a
helpful way, has been challenging. Accordingly, recent research in AI has focused on
how to model learner characteristics using data from a variety of sources to provide
engaging and adaptive learning experiences (Santos et al. 2016). Student preferences
are one such type of data. Accounting for the different experiences, goals, and
backgrounds of students through personalization and individualized pathways is cited
as an important focus for those interested in artificial intelligence in education (Roll and
Wylie 2016).

Here we test an intervention that utilizes context personalization (now
Bpersonalization^ for short) – an instructional approach where curricular elements are
matched to students’ interests in areas like sports, movies, or games (Cordova and Lepper
1996). Positive effects have been found for AI-based systems that personalize reading
passages (Heilman et al. 2010) as well as mathematics problems (Walkington 2013). We
examine factors that moderate the success of a context personalization intervention that
takes place within algebra instruction on linear relationships. Our research questions
examine: (1) how performance and engagement differ in personalized versus standard
curricular materials, (2) how a task-level factor – the depth of personalized connections
made to students’ interests – impacts performance and engagement, and (3) how a
student-level factor – the degree to which students tend to quantitatively engage with
their interest areas – moderates these effects. We find that both the degree to which
students tend to engage quantitatively with their interest areas and the degree to which
problem tasks are written to reflect how students actually engage with their interest areas
are important factors in an AI environment enacting personalization.

Theoretical Framework

Individual and Situational Interest

Individual interests are the enduring predispositions that people have towards particular
objects, events, and ideas (Hidi and Renninger 2006). Engaging with individual
interests is associated with self-regulated learning behavior and metacognitive control,
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including self-reflection and the asking of curiosity questions (Hidi and Ainley 2008;
Renninger and Su 2012; Sansone et al. 2011). A typical adolescent spends 7.5 h each
day engaging with media – television, music, social networks, and video games
(Rideout et al. 2010). Many adolescents also engage deeply with sports and the arts
(Eccles et al. 2015). Walkington et al. (2014) identified common areas of interest for
adolescents that have quantitative connections – including sports, video games, social
networking, cell phones, other media, part-time jobs, and after-school activities.

When students have high levels of individual interest in a particular area, they often
value that area and have positive feelings towards it (Renninger and Su 2012), and may
engage with the area frequently, voluntarily, and independently (Renninger and Pozos-
Brewer 2015). In this way, referencing or embedding tasks within the context of an
individual interest through personalization may trigger students’ situational interest –
interest activated by salient and immediate characteristics of the environment (Hidi and
Renninger 2006). Situational interest can spur affective reactions like increased enjoy-
ment and value, as well as persistence and focused attention. A variety of studies
(Høgheim and Reber 2015; Reber et al. 2009; Bernacki and Walkington 2018) have
suggested that personalization can trigger situational interest.

In addition to having affective and value-laden reactions to their individual interest
areas, importantly, students also tend to have significant background knowledge of an
area for which they have individual interest (Renninger and Su 2012). This background
knowledge can potentially be utilized to learn an academic subject by allowing for
connections between new knowledge and prior knowledge. This phenomenon has been
referred to as Bgrounding^ in the cognitive science literature (e.g., Goldstone and Son
2005), and as Bfunds of knowledge^ in the mathematics education literature (e.g., Civil
2007). Renninger and Hidi (2016) describe that, in order for learners’ interest in a
subject like mathematics to develop, they need to make a sustained connection to the
content and be supported to seriously engage. Leveraging of knowledge related to out-
of-school individual interests may be an important way to accomplish this.

In an AI environment, this triggered situational interest may be associated with
students’ engagement with the computer-based system – which can be measured by
variables like students’ tendency to Bgame the system^ (Baker et al. 2004). Students
have been observed to game problems in AI environments by quickly and systemat-
ically testing potential answers until the correct one is found, or by abusing the on-
demand hint system by quickly cycling through hints to obtain the answer and then
entering it. The persistence and focused attention that is spurred by situational interest
may decrease the chance that learners engage in gaming behaviors. Gaming behaviors
can be detected through data mining techniques (Romero et al. 2010), which are
common for data from intelligent tutoring systems. Detectors can measure students’
cognitive and affective engagement using log data. Baker and de Carvalho’s (2008)
gaming the system detector estimates each student’s gaming tendency by examining
errors made on the current problem as compared to previous problems, the speed of
actions that follow commission of errors, whether the problem format allows for rapid,
repeated answer selection, and whether knowing the skill is likely based on prior
performance (see Baker et al. 2004). Baker and de Carvalho (2008) conducted a series
of studies to examine how affect and motivation relate to gaming in ITS settings and
found positive correlations between gaming the system and both a dislike of the subject
matter (i.e., math) and a Black of self-drive^ (p. 219).
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Researchers also have developed tools to detect attentional states related to learning
in AI environments, including boredom and engaged concentration. Situational interest
is described as moments of focused attention to stimuli which may or may not be
sustained over time (Hidi and Renninger 2006), thus situational interest is related to and
has the potential to modify students’ attentional states. Baker et al.'s (2010) affective
states detectors predict attentional states of boredom and concentration using indicators
like previous help requests, duration of actions, how often a hint is followed by an error,
actions where the student is predicted to have learned after guessing, giving an incorrect
answer rather than asking for a hint, and so on. These detectors were developed using
classroom observations of students’ affective states (Ocumpaugh et al. 2012) and
subsequent data mining methods to identify common features that appear in students’
log files. Similar detectors developed by Baker and colleagues have successfully
predicted learning outcomes (Aleven et al. 2006), including preparation for future
learning (Baker et al. 2011), standardized test scores (Pardos et al. 2013) and college
attendance (San Pedro et al. 2013). Another element related to attention is efficiency –
Renninger and Hidi (2016) describe how processing interesting information is more
efficient due to automatic allocation of attention. Koedinger et al. (2012) argue that
because instructional time is so important in classrooms, the efficiency of learning is an
important measure. In the present investigations, cognitive and affective processes that
have hypothesized relations to situational interest and that are common to measure in an
AI environment – such as efficiency, gaming, and affective states – are included.

Context Personalization: Incorporating Individual Interests

Based on the observation that many students hold strong individual interests in popular
culture areas like sports, but less interest in mathematics, researchers have explored
how school mathematics can become connected to students’ individual interest areas
outside of math. The approach of making connections to individual interests in math
problems has been referred to as context personalization (Cordova and Lepper 1996).
The hope is that by activating the positive affect, knowledge, and value that are
associated with students’ individual interests in topics like movies or music in the
mathematics classroom, we can leverage these individual interests to support engage-
ment with and conceptual understanding of mathematics. However, the results from
research studies attempting to apply this principle have been disparate.

One common approach to personalization is to take a standard mathematics story
problem and simply swap out words to match with students’ background and interests.
For example, studies have explored inserting students’ names, favorite foods, pets,
popular music artists, and other interesting-catching textual features into mathematics
story problems. They compare students who receive such problems to students who
receive standard problems, both in immediate performance on the modified problems
and in post-test performance. Some very early studies suggested promise for this
approach to personalization (Cordova and Lepper 1996; Davis-Dorsey et al. 1991),
perhaps because of the novelty of inserting personalized identifiers into problems using
efficient computer systems. More recent research, however, has found little effect for
this BMad Libs^ style of personalization (Bates and Wiest 2004; Cakir and Simsek
2010; Høgheim and Reber 2015; Ku and Sullivan 2000; Simsek and Cakir 2009).
Similarly, recent research on the Intelligent Tutoring System (ITS) MATHia, which
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sometimes selects problems based on students’ ratings of interests in 4 broad areas
(sports & fitness, the environment, business & money, music & art) actually found a
slight negative correlation between interest-matched problems and measures of student
performance, progress, and learning within the tutor, when examining a large sample of
middle school students (Fancsali and Ritter 2014). And finally, Walkington et al. (2013)
and Walkington et al. (2015b) found that making very simple and superficial interest-
based modifications to 7th grade math problems, such as writing a problem about
calculating the length of the diagonal of pop star Selena Gomez’s closet, had little effect
on students’ performance, but did trigger interest.

It is not surprising that we do not see impressive results for this research. Inserting
the name of one music artist versus another into a mathematics problem will do little to
activate the rich, quantitative ways that students may engage with their interest areas. In
addition, when considered through the lens of interest theory, this result is also not
surprising – the connection to students’ individual interests can be fleeting and
relatively meaningless. Walkington and Bernacki (2014) proposed a framework for
analyzing and interpreting the results of disparate personalization studies that focuses
on how precisely the personalization is implemented. This framework captures the idea
that personalization can be implemented at differing depths with respect to students’
individual interests. Personalization can be designed to draw upon the ways in which
students actually use number and quantities while pursuing their interest areas, such
that an activation of students’ prior knowledge of their interest area can potentially
enhance their mathematical reasoning. This could be accomplished through carefully
developed tasks situated in experiences that adolescents interested in a particular topic
may have (Turner et al. 2012), like buying items at the store. Deep personalization is
intended to draw upon students’ prior knowledge in meaningful ways and incorporate
how they actually pursue and participate in their individual interests.

Conversely, the personalization could be implemented at a surface level, where the
quantitative reasoning involved has little to do with how students use numbers in their
lives, and involves mathematics that students would never actually do. For example,
Gutstein (2006) describes how the low-income Latino/a middle school students he
taught reacted to the mathematics story problems in their curriculum. The students
observed that, for instance, they don’t go on canoe trips or ride in hot air balloons, they
don’t measure everything they see, and they don’t spontaneously go downtown and
count cars.

Depth differs from another aspect of Walkington and Bernacki’s (2014) framework –
personalization’s grain size. Grain size captures the degree to which the particular
interests of an individual student are accounted for. Personalization can be enacted at a
fine grain size, where, for example, students interested in particular hockey teams get
problems about those hockey teams. Or it can be implemented at a broad grain size,
where these students are lumped into a Bsports^ category and get a variety of problems
about playing and watching various sports. Depth focuses on the degree to which
problems are connected to how math is Btypically^ used in the interest area by the target
population, while grain size captures whether specific, individual students engage with
the particular individual interest being described in the problem. The intervention here
has a broad grain size while varying depth. Conversely, the Bword-insert^ method of
personalization described earlier often has a fine grain size but very low depth. We next
discuss research on personalization that explores ways to create deeper personalization.
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Walkington (2013) created an intervention within the Cognitive Tutor Algebra
(CTA) ITS where for one unit, 145 Algebra I students either received the standard
algebra story problems already in the unit, or mathematically matched problems that
were selected to correspond to their interests. The interest-based problems had been
written based on surveys and interviews with students at the school site that attempted
to measure both how they typically engaged with interest areas like sports or video
games, and how they used numbers and quantities while engaging. All problems were
focused on linear functions, which naturally had many strong connections to the ways
students track changes in quantities over time while pursuing their interests (see
Walkington et al. 2014). Study results showed that students had higher overall perfor-
mance on the personalized problems, in terms of successfully writing an algebraic
equation to go with a story problem on their first attempt. Also, students receiving
personalization were able to write these algebraic expressions in less time and had
fewer instances of Bgaming the system^ than their counterparts in the control group.

In subsequent work (Bernacki and Walkington 2018), we employed latent and path
modeling techniques to examine how personalization impacts the relationship between
affective, motivational variables like situational and individual interest, and cognitive
variables, like efficiency, performance, and long-term learning in the same ITS for
Algebra I. Results from an analysis of 151 Algebra I students using the tutor over a
school year suggest that temporary states related to engagement (i.e., triggered situa-
tional interest) directly impact performance, and also feed into students’ development
of individual interest in mathematics as a subject area. Critically, this individual interest
supports students’ long-term learning and understanding of mathematical ideas. Here
we follow these studies’ approach to measuring performance and engagement –
examining triggered situational interest as a measure of engagement, as well as
problem-solving accuracy and time spent in a tutoring system (i.e., efficiency) as a
measure of performance.

The studies reported in Walkington (2013) and Bernacki and Walkington (2018)
used problems that had variable depth with respect to how students actually quantita-
tively engage with their interests. Some problems were relatively accurate depictions of
how students had described actually using quantities and change while pursuing their
interests, while others were superficially personalized by simply inserting a term related
to an interest area to give the impression of match to one’s interest, while others were in
between. Overall, the depth of connections made to interests were moderate, and the
results were in turn more promising than the studies reviewed earlier that made only
superficial or surface connections. However, in the analysis all the problems were
lumped together, as they were not designed and written to be easily separated into
discrete categories. These studies also did not take into account the idea that students’
degree of quantitative engagement with their interests may moderate the effectiveness
of a personalization intervention. In other words, students who spend a lot of time
thinking quantitatively and doing mental calculations while playing video games or
watching sports may benefit more from receiving personalized mathematics tasks that
evoke similar reasoning than those who engage with these same interests without
significant quantitative engagement. This may be a critical factor that has been unad-
dressed by previous research.

In another recent line of studies (Walkington and Bernacki 2015; Walkington and
Hayata 2017), middle school students engage in activities where they pose, share, and
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solve algebra problems relating to their interests. Qualitative analyses of students
engaging in problem-posing suggest three key factors are important when considering
the effectiveness of students’ use of their individual interests when problem-posing: (1)
students having an appropriate level of prior mathematical knowledge, (2) students
grasping the norms and practices surrounding how mathematics story problems Bwork^
in the classroom (e.g., must be solvable), and (3) the degree to which students engage
quantitatively with their interests and actually use numbers to think about their interest
areas. The third point is especially important. Some students who like sports, for
example, may not engage with this interest area quantitatively – they may not closely
track player or team statistics or the mathematical relationships that govern gameplay.
They may not possess the prior knowledge related to sports that would be helpful to
draw upon in the mathematics classroom when presented with sporting contexts. Thus,
the degree of quantitative engagement with individual interest areas may be an
important moderator of the effectiveness of personalization, but this factor has not
been systematically investigated.

Two Key Factors for Personalization

Based on the above review, there are two important factors to consider when integrating
students’ individual interests into technology systems that have not been addressed in
prior work. These considerations include characteristics of the learner and of the
personalized tasks, each of which may moderate outcomes. We describe each of these
in turn.

When students’ individual interests are integrated into a computer-based curriculum,
it may be important to acknowledge that students differ in the extent to which their
prior knowledge of their interest area contains quantitative schema. For example, two
students might each spend a lot of time playing video games, but they don’t necessarily
engage mathematically with the mechanics of the game in the same way. One student in
Walkington et al. (2012) described how when playing video games BThere’s stuff like,
this unit has 1000 health and does 100 damage per attack. And then the other units have
they might have 10,000 health and they might to 20 damage per attack. If I have them
attack each other, who will win?^ Clearly, this student had rich quantitative engage-
ment with the algebraic ideas that undergirded the game mechanics. Another student in
the same study had a different level of engagement with the video game he played:
BThere’s not really too many numbers, but sometimes there are numbers, but I haven’t
really… I can’t really think of any...^ Although the first-person shooter game being
discussed in the latter quote does contain mathematical reasoning, this student did not
report deep quantitative engagement while playing the game. These differences in
students’ knowledge about the mechanics of their individual interest area may have
important implications. Personalization may be more effective for students with deeper
quantitative prior knowledge – thus level of engagement might moderate the effect of
personalization on performance.

In addition, when designers of online curricula attempt to bring students’ individual
interests into the classroom, they make decisions about what interests to draw upon and
at what depth. Take the following problem written by a middle school student in
Walkington and Bernacki (2015) about his favorite video game: BIn Grand Theft
Auto 5, you have 6 million dollars, and you want to buy the 2-type which cost 10
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million dollars. How many missions will you have to do in order to buy the 2-type?
Also you make 2.25 million each 1 missions.^ This problem is situated in a real
quantitative reasoning context that students experience as they play video games –
how long they will need to play to achieve certain rewards and advancements. It is
plausible that students may be able to usefully draw upon their knowledge related to
video gameplay to help them solve the problem. Contrast this with the following video
game problem used in an intelligent tutoring system intervention reported in
Walkington (2013): BYou work at a store that sells computers and electronics. Your
store just received 50 new Wii remotes, and you sell two each day. How many Wii
remotes remain unsold after 16 days?^ It is unlikely that students interested in video
games spend time pondering how many Wii remotes a store sells each day. Although
students may attend to the topic of this problem that involves video games, it is
doubtful that they would be able to usefully apply their gaming-specific knowledge
to the mechanics of this problem, which are focused on sales and not games.

Research Purpose and Questions

In the present study, we explore how the degree to which students have quantitative
knowledge of their individual interests moderates the effectiveness of a context per-
sonalization intervention situated within an intelligent tutoring system. We examine an
intervention that specifically varied the quantitative depth at which interests are incor-
porated into problem tasks – some problems were written to make surface level
connections to interest areas, whereas others made more substantial quantitative con-
nections. We hypothesize that problems that are written to meaningfully draw upon
students’ quantitative experiences in their everyday lives are more effective for student
learning than those that make only surface connections. However, this effect may be
moderated by whether the student has deep quantitative engagement with their interest
area – these deeply-written problems may only be effective for students who have a
high degree of quantitative engagement with their interests. Our research questions are
as follows:

1. A. How does performance and engagement differ when students solve problems
personalized to their interests compared to standard story Problems?

B. How is this effect moderated by the degree of students’ quantitative engagement
with their interest areas?

2. A. How does the depth of the personalized connections made to students’ interests
in problem tasks impact performance and engagement?

B. How is this effect moderated by the degree of students’ quantitative engagement
with their interest areas?

Note that research question 1a is a replication of prior research, while research
questions 1b, 2a, and 2b are novel. Replicating previous work, particularly in an area
where results have varied, is important. However, in our discussion and implications
section, we focus mainly on the results of Research Question 2, as the depth manip-
ulation is the novel contribution of this study.
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Methods

Environment and Intervention

The personalization intervention took place within the ITS CTA software, an adaptive
computer-based ITS for algebra (Carnegie Learning 2016). CTA uses AI to implement
model-tracing approaches to relate problem-solving actions to a cognitive model of
domain principles to give individualized feedback. CTA also uses knowledge-tracing
approaches to track students’ performance on problems in order to identify appropriate
tasks to advance the student’s knowledge (Koedinger and Aleven 2007). Much of CTA
focuses on story problems (i.e., problems involving Breal world^ situations). Here we
focus on Unit 9 which is titled BLinearModels and Ratios.^ This unit has story problems
that model linear functions of the form y =mx, where m is a simplified fraction with a
denominator that is not equal to 1. There were three experimental conditions: (1) a
control condition where students received the standard story problems from the standard
version of CTA, (2) a Bsurface^ personalization condition where students received 1 of 3
surface personalized versions of each problem selected by the software based on an
interest survey, and (3) a Bdeep^ personalization condition where students received 1 of
3 deeply personalized versions of each problem selected by the software based on an
interest survey. The difference between surface and deep problems, as well as the interest
survey instrument, are described fully in subsequent sections. Research question 1a was
addressed by comparing condition (1) to conditions (2) and (3). Research question 2a
was addressed by comparing condition (2) to condition (3). Research questions 1b and
2b were addressed by including degree of quantitative engagement with individual
interests as a moderator.

Students were randomly assigned to one of the three conditions by CTA at the
beginning of the school year; however, Conditions 2 and 3 only saw different experi-
ences in the tutor when they reached Unit 9. Unit 9 was the fourth unit in a larger
personalization intervention being implemented. In the previous 3 units impacted by
the overarching personalization intervention, there was no surface versus deep distinc-
tion (i.e., no difference between Conditions 2 and 3), and all students in either condition
had received personalized problems from the same problem bank. The problems in this
bank had been a mix of problems that were surface, deep, or in between. As shown in
Fig. 1, comparisons between Conditions 2 (surface personalization) and 3 (deep
personalization) are not impacted by this overarching intervention, as they had identical
prior experiences. However, comparisons between Condition 1 (control) and
Conditions 2 and 3 combined (any personalized) may be impacted by the overarching
intervention, in that any differences detected here may in part be due to the accrual of
an effect based on work in these prior units. However, our main purpose here is to look
at how the degree of students’ engagement with individual interests and depth of
personalization of the problems moderate outcomes, rather than formulate exact esti-
mates for how different dosages of personalization impact performance. In other words,
although the control versus personalized comparisons for research question 1a might be
amplified or reduced as a result of students’ prior history, a precise estimate of an effect
size for personalization when compared to a control group is not the primary purpose of
this study – instead, we focus on the moderation effect of degree of quantitative
engagement and the surface versus deep problem comparison.
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Participants

The participants included N = 106 Algebra I students (58 female, 44 male, 4 unknown)
using CTA at a suburban/rural high school in theMid-Atlantic United States. The school
served a student population that was 96% Caucasian with 21% of students eligible for
free/reduced price lunch. In mathematics, 75% of students at the school passed the
standardized state End-of-Course Exams. There were a total of 155 Algebra I students at
the school, however this study only examines the 106 students who made it to Unit 9 in
CTA before the school year ended. The percentage of students whomade it to Unit 9 was
nearly identical for the control group (70.6%) versus the personalized groups (70.7%),
suggesting that the prior exposure to the overarching personalization intervention shown
in Fig. 1 did not impact curriculum progress. Algebra I is a course typically taken in the
eighth or ninth year of schooling in the United States (ages 13–15); however, students in
the study were taking it in their ninth year (ninth grade) or later. Of the 106 students, 55
were taking Algebra 1 over one school year, 19 were taking Algebra I over 2 schools
years and were in their first year (referred to as Algebra 1a), and 32 were taking Algebra
I over two school years and were in their second year (referred to as Algebra 1b).
Students were in 7 different classrooms of two Algebra I teachers, one of whom taught 6
classes (2 Algebra 1a, 2 Algebra 1b, 2 Algebra I) and the other taught one class (Algebra
1). Students were randomly assigned to the three conditions, with 36 in the Control, 35
in Surface Personalization and 35 in Deep Personalization.

Measures

Writing Surface and Deep Personalized Problems

We conducted two rounds of surveys (N = 60 and 45) and interviews (N = 29 and 23)
with Algebra I students at the school site in years prior to the study concerning how they
use numbers while pursuing their interests, and problems were written based on this
data. The three interest categories used (sports, video games, and food) were selected
based on this data as the most generative for algebraic connections. We found in these
interviews, for example, that adolescents do keep track of sports statistics as well as their
progress and probabilities relating to video games. Some examples are shown in Table 1.

Fig. 1 Depiction of prior personalization intervention
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Problems were written such that all three conditions had problems with identical
algebraic and mathematical structures and numbers, and the problems were also
matched on the punctuation, sentence structure, use of pronouns, use of mathematical
vocabulary, etc. (see Walkington et al. 2015a, for a discussion of readability factors in
algebra story problems). However, they varied in the depth of the connections made to
students’ interests (Table 2). In the control condition, students received problems that
were written by the creators of CTA that were generally intended to be Bpersonally or
culturally relevant to students^ (Koedinger 2001, p. 11). In the surface personalization

Table 1 Transcripts of students discussing how they engage with interest areas

Sports Social networking

Interviewer: Okay…So when you are doing track and
cross country, um, do you use any numbers or see
any numbers when you are doing them?

Student: Um, they have like distance marks, for like
first mile, second mile, third, and then they’ll have
like arrows… and things like, there’s tracking, um,
how long it took you, what time it is, and
everything like that, your speed…

Interviewer: So do you know what your speed is?
Student: Um, I get…usually get 25 min for 3 miles…

Interviewer: Do you see or use any numbers when
you’re using on Twitter or Instagram?

Student: Not really…just like all my followers, like it
shows you how many tweets you have…like your
followers…stuff like that

Interviewer: So, how many tweets do you have…
around?

Student: A lot…like 4000
Interviewer: And do you keep track of how many you

get all the time…or?
Student: Yeah, it will…it like shows you when you go

on, and it’ll tell you and it’ll tell you if you have
new followers or you lost any followers…

Video games Cooking

Interviewer: What games do you play?
Student: I play Call of Duty, and Minecraft…
Interviewer: How are numbers used in Call of Duty?
Student: Like the kills, they’ll have uh…the ratios like

kills to death, stuff like that…
Interviewer: So how many people you’ve killed versus

how many times you’ve died?
Student: Yeah, so like they use ratios in that…

Student: I want to be a chef, so the measurement
things, like how to convert them...I’ll definitely
have to know those.

Interviewer: So converting like what?
Student: Like cups to quarts, times and stuff…

Table 2 An example of problem cover stories from each condition

Condition Example problem 1 (video games) Example problem 2 (sports)

Control You are a product inspector for a company that
produces light bulbs. You find that two out of
every 300 bulbs are defective: they don’t
work properly.

Three out of every five people
in a recent survey supported
the President’s Health Plan.

Surface personalization You are a product inspector assigned to the
Gamestop chain of stores. You find that two
out of every 300 locations have a violation:
they are selling defective products.

Three out of five people have
attended a Pittsburgh Steelers
game in their lifetime.

Deep personalization You enjoy playing World of Warcraft on your
computer. You notice that two out of every
300 times you defeat a monster, the monster
has an epic item: a treasure that you want to
collect.

Three out of five free throws are
successful for NBA players.
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condition, students received problems about either sports, video games, or food that
were written to be about their interest area, but that were not intended to invoke the
ways adolescents might actually use numbers when engaging with that interest. For
example, in Table 2, it is unlikely any adolescents think about GameStop’s inspection
policies or the attendance rates for Steelers’ games as they pursue their interests. In the
deep personalization condition, students received problems about sports, video games,
or food that were written to correspond to ways they actually might use numbers and
algebra while pursuing their interests in these areas.

There were 11 problems in the original unit; however, due to the tutor’s model-
tracing approach, not all students received all problems, and students could receive
problems twice (usually with different numbers) if they were struggling. Alongside the
Bcover stories^ given in Table 2, the students were asked to name the quantities and
units in the problem, write an algebraic expression for the problem, and solve for
particular x and y cases (see Fig. 2). For the analyses here, we focus on students writing
the algebraic expression rather than other steps where students were solving for
particular x and y cases. We focus on expression-writing because it is the underlying
concept in the problem that is truly Balgebraic^ (rather than using arithmetic), and it is
where we would expect students to be directly engaging with the story context itself
(rather than simply plugging numbers into an expression they have already written).
Expression-writing, along with connecting algebraic expressions to verbal and tabular
representations, is a critical skill in the Common Core State Standards (CCSS 2010) for
Algebra and for Functions. Specifically, the CCSS include standards about seeing the
structure in expressions, writing equations and building functions to model relation-
ships between quantities, interpreting functions that model mathematics in context, and
analyzing functions using different representations (e.g., tabular, symbolic). CTA
collects detailed log-files of all student interactions with the system; these files were
uploaded into the DataShop platform (Koedinger et al. 2010).

Interest Surveys

To assess students’ interests in different topics, we administered interest surveys where
students numerically rated their interest in, time spent engaging, and how much they

Fig. 2 Screenshot of problem in Unit 9 of Cognitive Tutor Algebra software
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knew about different topics, as well as responded to an open-ended prompt. Before
entering Unit 1 in CTA, participants were given this interests survey where they rated
their interest in 10 topics – music, art, cell phones, food, computers, games, stores, TV,
movies, and sports. They responded to the prompt BRate your level of interest in
(topic)^ for each of the 10 areas on a 1–4 scale (It’s Boring, It’s Okay, I Like It, It’s my
Favorite Thing). The responses to these items were used to assign students to problem
versions in the personalization conditions. For students in the personalization condition,
the average rating on food was 3.34 (SD = 0.76), the average on sports was 2.97 (SD =
1.05), and the average on games was 2.88 (SD = 0.91). Within the personalization
conditions, if the student’s highest rating was equal in two interest areas, the problem
version was randomly selected from among these 2 versions.

After each prompt to rate their engagement with an interest topic, students would
also respond to the open-ended prompt, BDescribe how you use numbers when you are
doing things related to this interest^ for each of the 10 topics. This question was used to
measure degree of quantitative engagement with interest areas. Student responses to
this prompt were coded as follows. A 0 indicated that they did not answer, gave an
uninformative response, or gave an example of using numbers that involved simply
seeing numbers (e.g., on phone buttons) or engaging in counting or measuring (e.g.,
counting points scored in a game). A 1 indicated that they discussed adding quantities
or comparing quantities in the context of their interest. A 2 indicated that they discussed
multiplicative (i.e., algebraic) relationships in the context of their interests, including
ratios, proportions, scale factors, rates, percents, and so on. A random sample of N =
110 student responses was coded on the 0–2 scale by a second coder, who obtained a
weighted kappa reliability of 0.80. See Appendix A for more information on the
coding.

For each student, we used the maximum rating they received for any of the 10 interest
areas on the 0–2 scale as our measure of quantitative engagement with interests. This
was intended to be an overall measure of how deeply they tend to engaged quantitatively
with their interest areas. We use the term Bengagement^ rather than Bknowledge^
because we asked students to describe the things they did while pursuing their interests,
rather than formally assessing their quantitative knowledge. The maximum value was
used because of the relative rarity of a students’ response getting a 2 rating.

Students were also asked how much time they spent engaging with each interest
topic and how much they knew about each interest topic; these variables were not
related to the effect of Condition on our outcome variables, so are not considered here
further. As part of the larger study, we also collected pre-measures of students' situational
and individual interest in mathematics using the Linnenbrink-Garcia et al. (2010) scales.
These scales allowed us to assess how interested students were in the domain of
mathematics at the beginning of the school year, using items like BI enjoy doing math^
and BWhatwe are studying inmath class is useful for me to know.^ These variables were
also not related to the effect of Condition on our outcome variables, so are also not
considered here further.

Performance Measures

We used two measures of performance within Unit 9. First, the proportion of correct
first attempts on expression-writing was calculated for each student in Unit 9. The
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correctness on first attempts is typically used as a performance measure in CTA
because students eventually get every problem correct after making additional attempts
informed by correctness feedback and any hints they request. Second, the number of
algebraic expressions written correctly per minute was also calculated for each student
as a measure of learning efficiency. The metric corrects per minute does count instances
where the student achieved the correct answer while using the hint system in CTA as
correct. We wanted to include these instances because we generally consider appropri-
ate use of the help system to be a desirable behavior – students should seek feedback
when they need it, and effectively use that feedback to help them get and understand the
correct answer. However, the help system can certainly be abused (e.g., by clicking
through the hints and just copying the answer in the Bbottom out^ hint) – this is why we
also include a measure of gaming the system, described next.

Detectors

We used Baker and de Carvalho’s (2008) gaming detector (described earlier) to estimate
gaming tendencies (scaled from 0 to 1), which were averaged for each student across
expression-writing steps in the unit. We also used Baker et al.’s (2010) affective state
detector (described earlier). The predictions of bored, confused, frustrated, and concen-
trating behaviors were averaged for each student across expression-writing steps in the
unit, and were also on a 0–1 scale. We narrowed our consideration to only concentrating
and bored affective states, as frustrated and confused behavior estimates had near zero
variance in Unit 9.

The gaming detector was trained using data from students utilizing Cognitive Tutor
Algebra (Baker and de Carvalho 2008), using an approach shown to generalize across
students and Cognitive Tutor lessons (Baker et al. 2008b).1 Although gaming and affect
values ranged from 0 to 100, the values used in the analysis were not rescaled to be
interpretable as estimates of the percentage of transactions in the tutor where students
engaged in these behaviors. Thus, when interpreting the size of the effects, we rely on
Cohen’s d calculations, as the raw coefficients do not afford ready interpretation in
meaningful terms.

Situational Interest Pop-Ups

Finally, we measured students' triggered situational interest in the problems. For every
other problem, students in all conditions would receive a pop-up prompt which read
BThis problem was interesting^ and that requested a rating on a scale of 1 (Not Really)

1 Both of these studies took place with students in the same geographic area and of a similar age group as the
present study. The gaming detector had also been validated using 8th and 9th grade students from the same
geographic area using a Cognitive Tutor for 8th grade math designed by the same company that designed
Cognitive Tutor Algebra (Carnegie Learning Inc.; Baker et al. 2005; Baker et al. 2004). The affective states
detector had been validated using students in the same grade level, in the same area, using the same ITS
system (Cognitive Tutor Algebra), around the same time period, in Baker et al. (2012). The unit the detector
was validated for involved story problems with systems of linear equations instead of story problems with
single linear equations, but was similar. The affective states detector was also validated with high school
students using a unit on scatter plots in Cognitive Tutor Algebra (San Pedro et al. 2014), and in studies with
other tutors that cover algebra content and that involved 8th grade or high school students (Baker et al. 2010;
Pardos et al. 2013).
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to 4 (Very). Each student’s responses to these prompts were averaged over the unit; 9
students (4 control, 2 surface personalized, 3 deep personalized) were omitted from
these analyses because they chose to never respond to this prompt.

Analysis

In the present study, we examined (1a) the effect of personalization to out-of-school
interests on student performance and engagement, (1b) how this effect was moderated
by degree of quantitative engagement with out-of-school interests, (2a) the effect of the
depth of personalization on these outcomes, and (2b) how this effect was moderated by
degree of quantitative engagement with out-of-school interests. We fit linear regression
models to the data using the lm () command in the R software program. The outcome
measures were: (1) proportion of correct first attempts, (2) correct equations written per
minute, (3) tendency to Bgame the system^ on a scale of 0–1, (4) ratings of problem
interestingness on a 1–4 scale, and (5) tendency to display bored or concentrating
behaviors on a scale from 0 to 1. Multi-level models that nested students in classrooms
and/or teachers were initially fit; however, the random effect variance for these nesting
variables was near 0, and results were the same either way. Thus wemoved forward with
the simpler models. Experimental condition was included as a predictor in each model.

Control variables were included for whether the student was in Algebra 1, 1a, or 1b,
as well as their course grade in mathematics the prior year. No prior course grade was
available for 11 students; thus it was imputed using the Amelia package in R. Amelia
uses multiple imputation with bootstrapping and the Expectation-Maximization algo-
rithm to impute missing values (Honaker, King, and Blackwell 2011). The imputed
math grades for the 11 students had a mean that was close to the mean for the remaining
95 students (t-test for differences non-significant at p = 0.87), and the standard devia-
tions were also similar, suggesting that these students did not differ from the rest of the
sample. Amelia assumes a multivariate normal distribution of the variable to be
imputed. Although course grades did not follow a normal distribution in their raw
form, when exponentiated to the 5th power they were not significantly different than
normal (via Shapiro-Wilks). Results of all analyses were nearly identical whether
course grade was in its original or exponentiated form prior to normalization, so we
keep the variable on its original scale for interpretability. Course grade was normalized
by subtracting the mean for the 95 (106–11) students from each value, and dividing by
the standard deviation from across the 95 students. Additional analyses were run with
prior standardized tests and/or a paper-based unit test as controls; however, results were
not sensitive to the decision of which prior achievement measure to use, and course
grades had the smallest number of missing values.

For our first research question (impact of personalized versus control problems) we
collapsed the two personalization conditions (surface and deep). For our second research
question, we only examined the subset of the data of students who received personalized
problems, and contrasted surface-level personalization with deep-level personalization.
Because students in both of these personalization conditions had received problems from
the same problem bank in the prior unit on writing expressions from story problems, we
were able to additionally include a control for performance in the prior unit.

Students’ degree of engagement with their interests was also a predictor in the
model, as coded on a 0–2 scale previously described. This variable was specified
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as an ordered factor variable in R using the ordered() command. All main effects
were included in each model. Then all possible 2-way interactions were system-
atically tested for inclusion using the anova() command on nested models; this
command uses a chi-square distribution to test for significant reductions in model
deviance.

In the present analysis, given our relatively small sample size and the exploratory
nature of the study, instead of relying solely on p-values to guide our discussion, we use
multiple measures of impact and significance. In particular, we combine the presenta-
tion of 95 % confidence intervals for all regression coefficients, with ΔR2 measures of
effect size from comparisons of regression models, with Cohen’s d effect sizes from the
raw data, with p-values, to obtain a holistic sense of the results.

Results

Descriptive Statistics

The first five rows in Table 3 show descriptive statistics on the control/background
variables. There were no significant differences between groups using chi-squared tests
(for math course) and t-tests (for math grade and degree of engagement). The remaining
rows are outcome variables. Overall, students achieved the correct answer on their first
attempt to write a linear eq. 70.09% of the time in Unit 9 (SD = 18.04%), and on
average produced 3.18 (SD = 2.01) correct answers per minute. The students’ average
rating of the interestingness of the problems on the 4-point scale was 2.17 (SD = 0.96).
On a 100-point scale, average gaming was 22.77 in the unit (SD = 14.21), and average
affective state measures were 85.77 (SD = 17.98) for boredom and 43.30 (SD = 8.21)
for concentration.

Table 3 Descriptive statistics for control, background, and outcome measures

Measure Control (N = 36) Surface (N = 35) Deep (N = 35)

No. students taking Algebra 1 (%) 18 (50.00%) 19 (54.29%) 18 (51.43%)

No. students taking Algebra 1a (%) 6 (16.67%) 6 (17.14%) 7 (20.00%)

No. students taking Algebra 1b (%) 12 (33.33%) 10 (28.57%) 10 (28.57%)

Normalized prior math grade (SD) 0.02 (1.00) 0.34 (0.94) 0.17 (1.07)

Avg. degree quantitative engagement (SD) 0.47 (0.51) 0.60 (0.50) 0.57 (0.50)

No. students in low engagement category (%) 19 (52.78%) 14 (40.00%) 15 (42.86%)

No. students in medium engagement category (%) 9 (25.00%) 13 (37.14%) 12 (34.29%)

No. students in high engagement category (%) 8 (22.22%) 8 (22.86%) 8 (22.86%)

% Correct first attempts unit 9 (SD) 65.33% (16.33) 74.80% (11.49) 70.29% (23.48)

Correct per min unit 9 (SD) 2.52 (1.10) 3.95 (2.09) 3.09 (2.41)

Avg. problem interestingness rating unit 9 (SD) 1.86 (0.92) 2.11 (0.96) 2.55 (0.92)

Avg. gaming tendency unit 9 (SD) 28.60 (13.58) 18.72 (13.47) 20.81 (13.98)

Avg. concentration unit 9 (SD) 45.33 (7.31) 40.47 (8.29) 44.05 (8.46)

Avg. bored unit 9 (SD) 82.53 (16.42) 92.93 (11.09) 81.94 (22.77)
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Research Question 1: Performance and Engagement on Personalized Vs. Normal
Problems

To examine the overall effect of personalization, we first conducted analyses that
collapsed the two personalization conditions (surface and deep) and compared this
collapsed condition to the control condition. The control and combined personali-
zation groups had similar average scores on our normalized prior grade measure
(Average for Control = 0.02, SD = 1.00; Average for Personalized = 0.026, SD =
1.00; t-test difference not significant at p = 0.25). Model selection warranted the
inclusion of a Condition by Degree of Interest Engagement interaction term in the
model predicting corrects per minute (χ2(1) = 6.16, p = 0.015). All other two-way
interactions were non-significant.

Correct First Attempts

As can be seen from Table 4, the personalization condition did not significantly
outperform the control condition on proportion of correct first attempts. However,
this result was close to significance (p = 0.076), and we would likely have replicated
the results in Walkington (2013) with a slightly larger sample. Students who
received personalization answered algebraic expression writing problems with
6.69% (95% CI [−0.70%, 14.07%]) greater accuracy. This corresponded to a raw
effect size of Cohen’s d = 0.41, which is consistent with prior results for the impact
of personalization on performance which suggests an effect size around d = 0.28
(see Walkington 2013).

Table 4 Linear regression analyses comparing personalized to control condition (N = 106)

Model 1:
prop. correct

Model 2:
correct/min

Model 3:
gaming

Model 4: problem
interestingness

Predictors B (SE) Sig B (SE) Sig B (SE) Sig B (SE) Sig

Intercept 0.679 (0.035) *** 3.016 (0.365)*** 0.277 (0.027)*** 1.921 (0.193)***

Algebra 1 (ref.) (ref.) (ref.) (ref.)

Algebra 1a −0.035 (0.048) −0.620 (0.486) 0.012 (0.037) 0.194 (0.260)

Algebra 1b −0.058 (0.041) −1.354 (0.415)** 0.031 (0.032) −0.158 (0.231)

Prior math grade 0.012 (0.018) 0.112 (0.186) −0.013 (0.014) −0.064 (0.100)

Control condition (ref.) (ref.) (ref.) (ref.)

Personalization condition 0.067 (0.037) 1.158 (0.503)** −0.085 (0.029)** 0.451 (0.204)*

Degree of interest engagement 0.004 (0.031) −0.263 (0.528) 0.017 (0.024) 0.315 (0.172)

Personalization x interest
Engagement

1.635 (0.659)*

ΔR2 for condition main effect 3.04% 4.01% 7.99% 4.85%

ΔR2 for condition interaction 4.72%

* = p < .05, ** = p < .01, *** = p < .001. (ref.) denotes the reference category for factor variables. The refer-
ence category for numerical variables is simply B0.^ However, the reference category for degree of interest
engagement is the middle category, or B1.^ Note that prior math grade is normalized. Coefficient values for
proportion correct need to be multiplied by 100 to become percentages
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Corrects per Minute

A main-effects-only model suggested that the personalized group had 0.86 more
corrects per minute than the control (95% CI [0.10, 1.62], p = .028). A model that
allowed for interactions (shown in Table 4) suggested that for students who were at
medium (level 1) for degree of engagement with their interests (the reference category
in the table), the personalization condition had 1.16 more corrects per minute than the
control condition (95% CI [0.38, 1.94], p = .004). The interaction term reveals that the
personalization group outperformed the control group even more when students had a
high degree of engagement with their interests (level 2), corresponding to an additional
1.64 correct expressions written per minute (95% CI [0.33, 2.94]). However, students
with a low degree of engagement with their interests (level 0) did not outperform the
control group, achieving directionally fewer (1.16–1.64 = −0.48) corrects per minute.
The overall difference between personalized and control in corrects per minute
corresponded to a raw Cohen’s d of 0.56. For students with engagement with their
interests at level 1 or 2 specifically, this effect size rose to 0.92. Students in the Algebra
1b track also had significantly fewer corrects per minute than students in the Algebra I
class (1.35 fewer; 95% CI [0.53, 2.18], d = 0.76, p = .002).

Engagement Measures: Gaming, Affect, and Interest

The gaming detector analysis estimated the personalization group was less likely to
engage in gaming behaviors than the control group (p = .002), which corresponds to a
raw Cohen’s d of 0.65. This replicates the result in Walkington (2013) which found a
significant gaming reduction for the personalization condition with a d effect size of
0.35. Finally, students in the personalization condition rated problems as significantly
more interesting – approximately 0.45 points higher (95% CI [0.05,0.86]) on a 4-point
scale (p = 0.029). This corresponds to a raw Cohen’s d of 0.50. There was also a
marginally significant positive effect (p = 0.071) of degree of interest engagement on
problem interestingness rating, such that each level of engagement corresponded to a
0.32 increase (95% CI [−0.03, 0.66]) in interest rating. This corresponded to a raw
effect size of d = 0.54 for the difference between a level 0 and level 2 students’ rating.

Additional analyses were conducted using the affective states detector; however,
there were no significant differences between the personalization and control condition
(ps > 0.1). Overall, there is evidence that the personalization condition outperformed
the control condition on some measures of performance and engagement, particularly
when degree of quantitative engagement with interests was high.

Research Question 2: Performance and Engagement of Surface Versus Deep
Personalization

For our next analysis, we restricted the sample to only those students who had received
personalization (N = 70 students), and compared the 35 students who had received
surface personalization to the 35 students who had received deep personalization. On
our normalized prior grade measure, the average for the deep personalization condition
was 0.35 (SD = 1.07) and the average for the surface personalization condition was 0.17
(SD = 0.94; t-test difference nonsignificant at p = 0.46). Model selection warranted the
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inclusion of a Personalization Condition by Degree of Interest Engagement interaction
in the model for proportion of correct first attempts (χ2(1) = 4.00, p = .0499) and a
Degree of Interest Engagement by Course interaction for Problem Interestingness
Ratings (χ2(2) = 3.65, p = .032). No other 2-way interactions were significant.

Correct First Attempts

In a main-effects-only model, no significant differences were found between the surface
and deep personalized groups for correct first attempts (p = 0.50). In a model that
allowed for interactions (see Table 5), there was no effect of deep versus surface
personalization on correct first attempts when students’ degree of quantitative engage-
ment with their interests is medium (at level 1, which is the reference category in the
table; p = 0.96). However, for students who engage with their interests to a greater
degree (level 2), the deep personalization condition significantly outperforms the
surface personalization condition by 16.5% on correct first attempts (95% CI [0.00%,
33.04%], p = .0499), corresponding to a raw effect size of d = 0.39. Alternately, for
students who did not engage with their interests in a quantitative manner (level 0), the
performance of the surface personalization group is actually significantly higher than
the deep personalization group by a similar amount (0.003–0.165 = 0.162, or 16.2%),
corresponding to a raw effect size of d = -0.43. Further, the table shows that proportion
of correct firsts in the prior unit predicts proportion of correct firsts in Unit 9 – which
amounted to a 34.73% (95% CI [4.04%,65.42%], p = 0.027) predicted difference for a
student who had gotten no first attempts correct in the previous unit, compared to a
student who had gotten all first attempts correct.

Table 5 Linear regression analyses comparing deep personalized condition to surface personalized condition
(N = 70 students)

Model 1: prop. correct Model 2: correct/min

Predictors B (SE) Sig B (SE) Sig

Intercept 0.580 (0.092)*** 3.14 (0.779)***

Algebra 1 (ref.) (ref.)

Algebra 1a −0.015 (0.059) −0.075 (0.647)*

Algebra 1b −0.095 (0.052) −1.693 (0.572)**

Prior math grade 0.003 (0.023) 0.155 (0.245)

Prior unit performance on outcome measure 0.347 (0.154)* 0.872 (0.379)*

Degree of interest engagement −0.082 (0.059) 1.007 (0.455)*

Surface personalization condition (ref.) (ref.)

Deep personalization condition −0.003 (0.046) −0.909 (0.468)

Deep personalization x interest engagement 0.165 (0.082)*

ΔR2 for condition main effect 0.65% 3.98%

ΔR2 for condition interaction 5.49%

* = p < .05, ** = p < .01, *** = p < .001. (ref.) denotes the reference category for factor variables. The refer-
ence category for numerical variables is simply B0.^ However, the reference category for degree of interest
engagement is the middle category, or B1.^ Note that prior math grade is normalized. Coefficient values for
proportion correct need to be multiplied by 100 to become percentages
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Corrects per Minute

There was a marginally significant p-value of p = 0.057 for a negative effect of deep
personalization on correct answers per minute, compared to surface personalization
(0.91 fewer corrects per minute, 95% CI [−0.03,1.85]), corresponding to a d of -0.38).
This suggests that deep personalization may involve less learning efficiency. For each
additional level of quantitative engagement, correct answers per minute increased for
either type of personalized problem (1.01 more correct answers per minute per level,
95% CI [0.10,1.92], p = .030). The raw effect size for the difference between high and
low interest engagement on corrects per minute was d = 0.75. However, as we saw in
the analysis for research question 1, degree of engagement with interests did not affect
corrects per minute for the Control condition. Thus students who have high quantitative
engagement with their interests may benefit from receiving any kind of personalized
problem. Having achieved more correct answers per minute in the prior unit is
associated with more correct answers per minute in Unit 9 (p = 0.025). Finally, students
in Algebra 1b had 1.69 (95% CI [0.55, 2.84], d = 0.93, p = 0.004) fewer correct answers
per minute than students in Algebra 1.

Engagement Measures: Gaming, Affect, and Interest

There were no variables that significantly predicted gaming. However, as can be seen
from Table 6, students who received deep personalization were less likely to be bored
(p = .021) than students who received surface personalization, with a raw d effect size
of 0.61. Students receiving deep personalization were directionally more likely to be

Table 6 Linear regression analyses comparing deep personalized condition to surface personalized condition
(N = 70 students)

Model 3:
gaming

Model 4:
concentrating

Model 5:
boredom

Model 6: problem
interestingness

Predictors B (SE) Sig B (SE) Sig B (SE) Sig B (SE) Sig

Intercept 0.096 (0.068) 0.210 (0.110) 0.824 (0.078)*** 0.453 (0.214)

Algebra 1 (ref.) (ref.) (ref.) (ref.)

Algebra 1a −0.026 (0.047) 0.013 (0.026) −0.024 (0.060) 0.452 (0.225)*

Algebra 1b 0.042 (0.040) 0.058 (0.024)* −0.066 (0.052) −0.312 (0.181)

Prior math grade −0.019 (0.018) −0.012 (0.010) 0.018 (0.022) 0.033 (0.075)

Prior unit performance on measure 0.283 (0.197) 0.361 (0.224) 0.258 (0.136) 0.853 (0.089)***

Degree of interest engagement 0.029 (0.030) −0.00 (0.18) −0.049 (0.041) 0.0181 (0.182)

Surface personalization condition (ref.) (ref.) (ref.) (ref.)

Deep personalization condition 0.027 (0.033) 0.038 (0.019) −0.101 (0.043)* −0.156 (0.158)

Algebra 1a x interest engagement 0.445 (0.416)

Algebra 1b x interest engagement −0.620 (0.294)*

ΔR2 for condition main effect 1.00% 5.05% 7.29% 0.55%

* = p < .05, ** = p < .01, *** = p < .001. (ref.) denotes the reference category for factor variables. The refer-
ence category for numerical variables is simply B0.^ However, the reference category for degree of interest
engagement is the middle category, or B1.^ Note that prior math grade is normalized
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concentrating than those receiving surface personalization. This difference did not pass
the threshold for significance (p = 0.053), but corresponded to a raw d effect size of
0.43. In addition, Algebra 1b students were slightly more likely to be concentrating
than Algebra 1 students (d = 0.66, p = 0.015). Although a slightly larger sample would
yield more definitive results, there is evidence that deep personalization has a positive
impact on students’ affective states compared to surface personalization. Further,
neither degree of engagement with interests nor the interaction of degree of engagement
and condition was significant for the affective states models (ps > 0.2), indicating a
consistent effect of depth of personalization.

For problem interestingness ratings, students who rated problems as more interesting
in the prior unit were more likely to rate them as more interesting in this unit (0.85
points higher for every average point higher in previous unit, 95% CI [0.67, 1.03]).
Finally, the interaction term for problem interestingness ratings suggests that for
students in Algebra 1b, having a higher level of quantitative engagement with their
interests is associated with lower problem ratings, compared to students in Algebra I
(0.62 points lower per level, 95% CI [0.03, 1.21]) or Algebra 1a (1.07 points lower per
level, 95% CI [0.18, 1.95]).

Overall results suggest that deep personalization is more effective for students who
have considerable quantitative engagement with their interests, while surface personal-
ization is more effective for students who report engaging with the quantitative aspects
of their interests at a superficial level. Further, deep personalization seems to have some
positive benefits for all students in terms of suppressing negative affective states.

Sensitivity Analysis

As issues with statistical power are present throughout our results, we present a
sensitivity analysis to find the minimum detectable effect size for our given sample.
The size of the sample was pre-determined in our context in that every Algebra I
student at the school participated in the study. Using a β of .80 to allow us to have 80%
chance of detecting the effect, and an α of .05 to allow a 5% chance of obtaining a false
positive, we calculated the size of the d-type effect detectable with our current sample
restrictions. The G*Power 3.0.10 software was used (Faul et al. 2009). For the
comparison of control versus personalized, an effect size of d = 0.58 would be needed
to detect effects in our sample. For the comparison of surface versus deep personali-
zation, an effect size of d = 0.68 would be needed to detect differences in our sample.
However, as can be seen throughout our results section and as summarized in Table 7,
our effect sizes were smaller than these minimums (typically around d = 0.40–0.50).
This is consistent with prior research on personalization – effects are generally in the
small to medium range (e.g., Walkington 2013; Bernacki and Walkington 2018). Thus,
personalization research in general could benefit from larger sample sizes, which may
not always be possible in studies that involve single schools.

Summary of Results

Results are summarized in Table 7. Note that given our holistic approach, we include
findings with marginally significant p-values; however, we italicized the findings that
did not reach traditional measures of statistical significance.
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Discussion

In the present study, we examined two important moderating factors for the effectiveness of
personalization interventions – degree of students’ knowledge about their interest area, and
depth of the interest-based connectionmade in thewritten problem.Ourmajor findingswere
that (1) personalized problems showed an overall advantage over standard problems, (2) the
effects of surface versus deep personalization on performance were moderated by students’
degree of engagement with their interests, (3) deeper personalization tended to elicit lower
efficiency but more positive affective states, while situational interest and gaming were not
impacted, and (4) students who engaged more deeply with their interests were stronger on
efficiency measures. We discuss each of our results in turn.

Personalized Versus Standard Story Problems

Our first line of inquiry examined differences between students receiving personalized
problems versus standard story problems across measures of performance and engage-
ment. In prior work (Walkington 2013), we found that students who receive personal-
ization have higher performance and efficiency on personalized problems. Here, we
replicated this result and observed that it appeared to be somewhat moderated by
students’ degree of quantitative engagement with their interests. The present study also

Table 7 Summary of Findings Relating to Condition

Outcome variable Finding d effect size

Correct first attempts • Students who receive personalization have more correct first
attempts than the control group.

0.41

• Students who receive surface personalization have more correct
first attempts than deep personalization when their degree of
engagement with their interests is low (level 0).

-0.43

• Students who receive deep personalization have more
correct first attempts than surface personalization when their
degree of engagement with the interests is high (level 2).

0.39

Corrects per minute • Students who receive personalization have more correct
answers per minute than the control group if they have
higher engagement (level 1 or level 2) with their interests)

0.92

• Students who receive deep personalization have fewer
corrects per minute than those who receive surface
personalization.

-0.38

Gaming the system • Students who receive personalization are less likely
to game the system than the control group.

0.65

Problem interestingness rating • Students who receive personalization rate problems
as more interesting than the control group.

0.50

Concentrating behavior • Students who receive deep personalization are more
likely to be concentrating than those who receive
surface personalization.

0.43

Bored behavior • Students who receive deep personalization are less
likely to be bored than those who receive surface
personalization.

0.61

Findings that did not reach a 0.05 p-value for significance are indicated in italics
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replicated previous results that students receiving personalization are less likely to
game the system (Walkington 2013) and report higher triggered interest (Bernacki
and Walkington 2018) than their counterparts in the control group. However, as these
results are somewhat limited by the effect of the prior intervention on detected
differences, we turn to discussing our primary contrast of interest – surface versus
deep personalization.

Surface Versus Deep Personalization – Performance and Efficiency Measures

Our second inquiry explored the differences between performance and engagement on
surface versus deep personalized problems. In terms of correct first attempts, we
found that for students who report greater quantitative engagement with their interests,
deep personalization seemed more effective, while for students who report less
quantitative engagement with their interests, surface personalization seemed more
effective. It is important to note that findings from our first research
question suggest that both types of personalization are, however, as good as or better
than standard story problems. The result that students who have more quantitative
engagement with their interests may benefit more from problems designed to tap into
deep quantitative interest features was expected. These problems were created to draw
upon a particular knowledge base that only these students have, thus it is not
surprising these students would do better on them. However, the finding that the
surface personalized problems were significantly better for students who reported
engaging with their interests at a superficial level was more surprising. It might be
hypothesized that for these students, whether the problem is surface or deep does not
matter, and that any interest-based connection in their mathematics problems will
trigger the affective components related to their interest area (but not the knowledge
components). This result suggests that if the problem is written to have deeply
personalized features, it might actually be disruptive to these students when compared
to a problem that is still personalized, but does not have any of the deep quantitative
features. This is supported by the more general finding that students in the deep
personalization condition had fewer corrects per minute.

Durik and Harackiewicz (2007), found that adding colorful pages with visually
stimulating fonts and pictures increased motivation for students who had low
individual interest in math (IIM), but hampered motivation for those with high
IIM. Conversely, a deeper intervention that accentuated communicating the value of
learning math to everyday activities had the opposite effect for both groups – it
supported motivation for those with high IIM, but dampened it for low IIM.
Although here the effect of personalization is moderated by quantitative engage-
ment with interests rather than IIM, the finding is similar – for students with less
quantitative engagement, a shallower intervention improved in-tutor performance
and a deeper intervention was detrimental, while for those with more quantitative
engagement, the opposite was true.

An example to illustrate this is the deeply personalized problem BA website shows
that in the game Minecraft just one out of every five grass blocks that a player hits will
give grass seeds.^ Students who reported a low level of quantitative engagement with
their interests sometimes mixed up the independent and dependent variables in the
equation, whereas those who reported a higher level of quantitative engagement with
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their interests did not. To someone not familiar with Minecraft, it would make sense
that grass seeds cause grass blocks. However, someone who plays Minecraft would
know that grass blocks actually cause grass seeds – you harvest the seeds. Thus, the
deeply personalized features of this problem might require particular domain-specific
knowledge of video games to understand.

Surface Versus Deep Personalization – Engagement Measures

The pattern was slightly different for eliciting affective states. In particular, we found
that deep personalization led to more positive affective states for all students, regardless
of their prior knowledge of their interest area. This suggests that the richness and
realism of these problems is more attractive to students and elicits more positive affect,
even though the prior knowledge or cognitive requirements for solving these problems
may be greater. Students may be unaware that they lack the subtle kinds of background
knowledge that may be needed for deeply personalized problems, and may enjoy
solving the more relevant problems even in the face of limited success in doing so.
This raises an important question: does decreasing boredom help students to come to
understand mathematics better? This is an important area to investigate - for example,
in one recent study, Walkington et al. (2016) found that adding illustrations to problems
actually depressed post-test performance compared to a condition that received text
only, even though students rated that they liked the problems with illustrations more.
This relates to research on seductive details (Harp and Mayer 1998; Schraw and
Lehman 2001) – extraneous information added to learning materials to enhance
interestingness, that has been shown disrupt students’ learning by increasing the
cognitive demand. Accordingly, the coherence principle (Mayer 2009) suggests that
removing interesting but irrelevant information should foster learning. Whether the
interest area-specific information contained in deep personalization is always a seduc-
tive detail is unclear, however, given that this information can be quantitative in nature
and has the potential to support students with deep knowledge of their interest area in
understanding mathematical relationships.

We also found that although there was some evidence deep personalization elicited
more positive affective states, there were not differences in situational interest between
deep and surface personalized groups, nor did we find differences in gaming the
system. We return to this finding in the implications section.

Overall Effect of Students’ Degree of Interest Engagement

Finally, we found that students who report engaging more deeply with their interests
tend to have better learning efficiency when solving any type of personalized
problem, compared to students who engage with their interests at a surface level.
It is not surprising that students who tend to think quantitatively in their everyday
lives tend to be stronger problem-solvers. An interesting direction for future
research might be to explore how we can get students to think more deeply about
the quantitative rules that govern their everyday activities and experiences when
they are outside of school. This links to the important Common Core Mathematical
Practice of modelling problems arising in everyday life, society, and the workplace
using mathematics (CCSS 2010).
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Limitations

There are several limitations to the current study that must be acknowledged. First, the
sample size was limited, resulting in insufficient power to meet thresholds for statistical
significance with effects of a size similar to those obtained in past studies – this limits
the strength of all the conclusions we can draw. The limited sample size became
reduced further as students were separated into different groups based on learner
characteristics. Second, our prior mathematics achievement measure (prior course
grades) was quite distal to the outcomes examined here (performance in an individual
tutoring unit), and thus did not have much predictive power. For our second research
question, we were able to use the far more proximal measure of performance in a prior
tutoring unit. And finally, the operationalization of students’ degree of quantitative
engagement with their individual interests, and surface versus deep personalized
problems, were limited by the instructional context the study took place in – an
intelligent tutoring system. For example, coding of open-ended interview data may
have allowed us to better operationalize each students’ degree of interest engagement.
Similarly, giving students complex, open-ended problem-based scenarios might be a
better operationalization of Bdeep^ personalization. Although the ITS context is limited
in some respects, it is an efficient, scalable, and tightly-controlled way to conduct
investigations into student engagement and learning. It also offers fine-grained log data
of student interactions with the system, which were leveraged here.

In addition, we find it important to acknowledge the interactive nature of research
questions, methods, and results in the present study. In particular, because of the larger
study this intervention was a part of, we had a variety of student background variables
available, each of which we discussed in our Methods section. We had measures of
prior achievement (grades, standardized test, paper test) and prior interest in mathe-
matics (situational, individual). Research would suggest that math interest and math
achievement may moderate the effect of interventions like personalization (Walkington
2013; Durik and Harackiewicz 2007). We also described quantitative measures we had
regarding how much students Bliked^ different interest topics, how much time they
spent on them, and how much they reported knowing about them, in addition to our
degree of quantitative engagement measure. Prior research suggests that the extent of
students’ engagement with their out-of-school interests might be a moderator of
personalization as well (Walkington and Bernacki 2015).

When conducting our initial analyses, once we had established that Condition (person-
alization vs. control) seemed to matter in its main effect, we sought to explore whether the
effectiveness of personalization differed based on our background characteristics. We tested
all of our background variables both for main effects and for interactions with Condition at
some point during our preliminary analyses, and were fascinated to find that the only one
that mattered consistently was degree of quantitative engagement with interests. This, in
turn, drove the framing of the current study, and the narrowed research focus and method.
Thus, this approach is exploratory, and has some obvious limitations, including a consid-
erable inflation of the risk of a Type I error. However, the idea that quantitative engagement
with interests is a powerful construct in predicting math learning is an important one,
particularly since its contribution appears to be distinct from math achievement, math
interest, and general engagement with interests. The notion that this idea is valuable is what
drove the present study and analysis; however, ultimately replication must be sought.
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Implications

We present implications in two areas – for the theory of personalization and for the
design of AI curricular environments. First, a theoretical contribution of this study is the
direct contrast of surface versus deep approaches to personalization. Although previous
studies have used one approach or the other (e.g., Cordova and Lepper 1996;
Walkington and Bernacki 2014), we were able to systematically compare the ap-
proaches against each other to understand their influence on motivation, cognition,
and learning. Results suggest that the story is not as simple as the tempting adage that
Bdeeper personalization is better^ – instead, it may depend on the characteristics of the
learner. Indeed, Renninger and Hidi (2016) describe that although interest relates to
both the characteristics of an individual and the characteristics of an environment,
Bmuch of the research focuses on one or the other of these two aspects… although they
perhaps should be considered together^ (p. 8). This study shows the potentially
powerful types of findings that can come from this simultaneous consideration.
However, further studies that directly contrast the two approaches and take into account
learner characteristics are needed to corroborate findings.

A related theoretical point is the finding that the degree of quantitative engagement
with out-of-school interests mattered for student performance, both in its main effect
and as a moderator of personalization. This variable mattered when more traditional
measures identified in the literature – like individual interest in mathematics and prior
mathematics grades (Durik and Harackiewicz 2007; Walkington 2013) – did not. This
suggests that students’ quantitative engagement with their Bfunds of knowledge^ (Moll,
Amanti, Neff, and Gonzalez 1992) – the home and community-based knowledge
resources they gain outside of school that are numerical or measured – may be an
important factor in student success in mathematics. This also suggests that the
Bknowledge^ component of individual interest (Renninger and Su 2012), which is
not always accounted for in typical interest measures (e.g., Linnenbrink-Garcia et al.
2010), may be critical to understanding the implications of engagement with out-of-
school individual interests.

A final and related theoretical point is that personalization tends to spur situational
interest compared to typical instruction (e.g., replication of Høgheim and Reber 2015),
but no further distinctions in situational interest were observed between deep and
surface personalized conditions. Situational interest is a multidimensional construct
that includes the triggering and maintenance of interest by activating affective as well
as cognitive processes (Renninger and Hidi 2016). In other research focused on
processes within interest development, we distinguish between the ways that experi-
ences of enjoyment and perceptions of value contribute to the effects of personalization
(Bernacki and Walkington 2018). In this study, detector analyses allow us to further
examine processes. Results indicate that, within a group of students who already
experienced greater situational interest due to personalization of problems, students
further demonstrated greater concentration and less boredom when problems made
deeper versus more superficial connections to their prior knowledge about their interest.
The presence of differences in situational interest between control and personalized
groups and the lack of difference within deep and surface conditions suggests that
additional distinctions in the sources of situational interest may need to be drawn.
Detector analyses represent a first step in disentangling such cognitive-affective
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processes and highlight that, even amongst those with elevated interest in a task,
additional dimensions of personalization can further induce desirable differences in
engagement in problem-solving (i.e., heightened concentration and decreased bore-
dom) but that the deeper inclusion of prior knowledge might come at a cost (i.e., to
learning efficiency, where accessing prior knowledge necessary to solve deep problems
may increase cognitive demand). It is also interesting that these affective differences did
not translate into gaming differences between the surface and deep conditions – instead,
the gaming findings tracked closely with the situational interest findings. Processes that
spur gaming the system may be closely linked but oppositional to those that trigger
situational interest, congruent with research suggesting gaming’s association with
disliking math (Baker et al. 2008a, b).

Conclusion

Personalizing learning to students’ interests using adaptive technology systems has the
potential to improve student performance and efficiency, elicit interest, and induce
more positive affective states. In mathematics specifically, presenting students with
problems in the context of interests like sports and video games is shown to be
beneficial. As Renninger and Hidi (2016) argue, supporting learners to make connec-
tions between the learner and the content (here, mathematics) is critical to interest
development, which can lead to improved learning. However, the impact of such
personalization interventions is not uniform, and based on the data reported here seems
to be moderated by two important factors. First, students’ engagement with their
interest area – how much they tend to engage quantitatively with sports or video games
in their everyday lives – seems to be a key factor. In addition, the degree to which the
problem is written to realistically invoke relevant quantitative schemes relating to an
individual interest also moderates outcomes. The identification of these two key
moderators for personalization interventions has important implications for curriculum
designers seeking to implement personalization effectively in their computer-based
systems.
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Appendix A

Coding of Degree of Quantitative Engagement with Interests

Figure 3 shows the percentage of student responses coded as Level 0, Level 1, and
Level 2. The majority of student responses were coded at Level 0, indicating that
students did not make quantitative connections to their interests, made surface-level
connections to seeing numbers, or made connections simply to counting or measuring.
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Some examples included responses like BI do not use numbers while using the
computer,^ Bdialing phone numbers,^ and BI use numbers to count how many songs
I am downloading on my phone.^ Typically, between 2% and 10% of responses were at
Level 1, where the student described comparing or adding quantities. Some examples
included Bto add up all the costs of the things you buy to know how much money
you’re going to spend,^ Byou use numbers when you want to know how many calories
and figuring how much you want to eat,^ and Bto keep track of who is winning the
game.^ Finally, between 0% and 7% of responses were at Level 2, where the student is
making some sort of algebraic multiplicative comparison or conversion. Some exam-
ples included Byou have to calculate everything, the cost of a large scale army to the
probability of hitting the opponent and whether or not you can take the risk,^ Bdrawing
to scale,^ and Bif you are baking or cooking and you to find measurements and convert
them.^ As can be seen from Fig. 3, the most generative topics for Level 1 and 2
connections were Sports, Food, Games, Shopping, and Movies. Further, we found that
48 students in the sample reported engaging with all categories at Level 0 (45%), 34
students (32%) reported engaging with at least one topic at Level 1 but no topics at
Level 2, and 24 students reported in engaging with at least one topic at Level 2 (22%).
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