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Abstract A common hypothesis is that students will more deeply understand dynamic
systems and other complex phenomena if they construct computational models of
them. Attempts to demonstrate the advantages of model construction have been
stymied by the long time required for students to acquire skill in model construction.
In order to make model construction a feasible vehicle for science instruction, the
Dragoon system combined three simplifications: (1) a simple notation for models of
dynamic systems, (2) a step-based tutoring system, and (3) problems that described the
model to be constructed as well as the system represented by the model. In order to test
whether these simplifications reduced the time for learning how to construct models
while preserving the benefits of model construction over baseline instruction, three
classroom studies were conducted. All studies were experiments, in that they compared
classes using Dragoon to classes learning the same material without Dragoon.
However, as classroom studies, they could not tightly control all sources of variation.
The first study produced null results, but it compared learning across just one class
period. The second study in 4 high school science classes showed that instruction based
on Dragoon cost only one extra class period (about 50 min) out of 4 class periods and
was more effective than the same content taught without Dragoon. A third study in 3
more high school science classes, where 2 Dragoon classes and 1 non-Dragoon class
met for the same number of class periods, showed that Dragoon was more effective
than the same content taught without Dragoon. The effect sizes were moderately large
on both an open response test (d=1.00) and a concept mapping task (d=0.49). Thus, it
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appears that our efforts have simplified model construction to the point that it can be
used in science instruction with no additional class time needed, and yet it still seems to
be more effective than the same instruction done without model construction.

Keywords Intelligent tutoring system .Model construction . High school science
instruction

Introduction

The main focus of this research is finding out if teaching high school students to
construct models of dynamic systems can be done in a feasibly short period of
class time and if so, whether such instruction helps them learn more about the
dynamic systems than they would otherwise have learned during that time. The
research focuses on modeling because modeling has become a central, valued
practice in the emerging national standards of the USA. In both the Common
Core State Standards for Mathematics (CCSSO 2011) and the Next Generation
Science Standards (NGSS 2013; NRC 2012), modeling is one of 7 practices that
are considered essential for high school students to master. However, Bmodel^ and
Bmodeling^ can denote many things. The first subsection below discusses types of
models and why we chose to focus on just one type. The second subsection
discusses types of educational activities that involve modeling and why we chose
to focus on just one type. Subsequent subsections review the relevant literature and
finally pose the research question in full detail.

Types of Models

In education, a Bmodel^ can denote many things. Although Collins and Ferguson
(1993) present an impressively complete list of types of models, their list can be
simplified into three basic categories:

& Models that are expressed in an informal notation and their implications are derived
informally. Examples are compare-and-contrast and taxonomies.

& Models that are expressed in a formal notation, and their implications are derived
manually. Examples are a concept map or a set of mathematical equations written
on paper.

& Models that are expressed in a formal notation, and their implications are derived by
a computer. Examples are spreadsheets, NetLogo programs, and equations entered
into a graphing calculator.

This research is focused exclusively on the third type of model, which uses
computers to calculate the model’s predictions. Computer-based modeling is increasing
in the professions, so this particular form of modeling is arguably an increasingly
important practice to learn. Moreover, the standards place special emphasis on com-
putational modeling. The Next Generation Science Standards discussion of modeling
often mentions computational models and ends up emphasizing the need for compu-
tational modelling tools (pg. 59):
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Curricula will need to stress the role of models explicitly and provide students with
modeling tools (e.g., Model-It, agent-based modeling such as NetLogo, spread-
sheet models), so that students come to value this core practice and develop a level
of facility in constructing and applying appropriate models.

Both the Next Generation Science Standards and the Common Core State Standards
for Mathematics distinguish between learning (1) skills and practices, such as compu-
tational modeling, and (2) domain concepts, principles and facts. Although the
Dragoon project is addressing both instructional objectives, the work on teaching
students how to construct models is reported in another publication (VanLehn et al.
2016). This paper covers only the work on using Dragoon to teach science.

Compared to other types of models, there are both advantages and disadvantages to
using computational models for teaching science. On the one hand, an advantage of
expressing the model in a formal language like mathematics or directed graphs is that
the language is designed to make certain kinds of inferences easy and mechanical.
Thus, if we follow Chi et al. (1994) in assessing deep understanding by asking students
to make inferences that construct information that is not presented in the instruction,
then formal models should facilitate such inference-making by the student. For exam-
ple, telling a student that “the current through a two-terminal device is determined by
the device’s resistance and the voltage across it” does not allow the student to make as
many inferences as telling the student that BV=I*R, where V is voltage, I is current and
R is resistance, all relative to the two-terminal device.^ On the other hand, a disadvan-
tage of formal models, regardless of whether they are interpreted computationally or by
hand, is that they are expressed in a formal language that may be difficult for students to
understand. Although the operators in the language might pose difficulties (e.g., in a
concept map, what does the arrow between two concepts mean?), a more insidious
factor is the tendency to use short names for components and quantities in the system,
which makes it all too easy for students to lose track of what the names denote and
leads them to manipulate the model in nonsensical ways (VanLehn 2013, section 7.2).
For example, when interpreting V= I*R, students may lose track of which voltage V
refers to. Lastly, when comparing the two types of formal models (human vs. computer
calculation), a key advantage of the computational models is that much more complex
systems can be analyzed feasibly if the computer does the calculations rather than
having students do them. These observations suggest that computational models are
most advantageous for learning science when the systems to be understood are complex
and when the students already have fluency in the formal language of the model or can
attain fluency easily.

Perhaps the most common types of computational modeling systems used in
education are graphing calculators, spreadsheets, agent-based models and system
dynamics models. The latter two require some explanation. An agent-based model is
essentially a set of interacting computer programs, one for each type of agent. For
instance, if one is modeling wolf-sheep population dynamics, one might have one
program for the wolves and one for the sheep. NetLogo is currently the major language
for agent-based modeling (ccl.northwestern.edu/netlogo/).

System dynamics models appear in two forms. When used in university engineering
courses, a system dynamics model is expressed as coupled differential equations that
are solved using MATLAB, Mathematica or similar systems. When used in social
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science, ecology, business and other university courses, a system dynamics model is
expressed in a graphical notation called a stock-and-flow diagram. The notation, which
appeared first in 1983 in Stella (http://www.iseesystems.com/), represents quantities as
nodes in a directed graph. For instance, a wolf-sheep population model would have one
node representing the number of wolves, a second node representing the number of
sheep and other nodes representing other quantities.

For high school science instruction, graphical system dynamics languages seem to
offer the best tradeoff along a scale of computational abstraction. Agent-based models
are the most concrete in that they have visible objects that represent individuals in the
system, such as a wolf, a sheep or a patch of grass. Such a model has a subprogram that
represents the event of a wolf-sheep meeting that results in the wolf killing the sheep.
This concreteness makes it easy to see what a given model represents and to envision or
design a model for a given system. On the other hand, agent-based models require
learning how to program NetLogo or some other language so that all those concrete
details can be expressed. Thus, learning how to create an agent-based model is hard, but
seeing what it represents is easy. This is just as one would expect of a more concrete
model.

On the other end of the scale, the equations entered into graphing calculators are
abstract but also familiar, because algebraic notation is taught in high school algebra
classes. Once one has envisioned or designed an equation, entering it into a graphing
calculator is easy. However, it is often difficult for students to see what the terms in an
equation represent (Corbett et al. 2006). For instance, the frequency of fatal meetings
between wolves and sheep would be expressed by a product of the number of wolves,
the number of sheep and a parameter. It is not obvious why that product represents the
number of predation events. Thus, constructing equations is easy, but it is hard to see
what a given equation and its parts represent and to design equations to model a given
system.

Graphical system dynamics models are midway between concrete, agent-
based models and abstract, equation-based models. For instance, instead of an
anonymous subexpression to represent predation, like the product mentioned
above, a well-built graphical system dynamics model would have a node with a
long name, such as “number of fatal wolf-sheep meetings” or “number of
predation events.” These and other practices make it easier for students to see
what a given model represents and to design a model for a given system
(Löhner et al. 2003). However, the graphical notation is less familiar than the
algebraic one, so it may take longer for students to learn how to enter graphical
models than equation-based models.

Although we chose to focus on graphical system dynamics models because we
believe they offer a good tradeoff between two sources of difficulty, an ideal curriculum
would probably include several types of modeling languages because each has its own
advantages, and students preparing to enter our computationally rich world would
probably benefit from mastering all of them. However, teaching multiple modeling
languages addresses computational modeling as a practice, which is a different
instructional objective than the one addressed here. This paper is concerned only with
using computational modeling to teach scientific principles, systems and facts. For that
instructional objective, it may suffice to have students attain fluency in just one
modelling language.
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Types of Modeling Activities

Model construction and model exploration are the two most common educational
activities done with computational models (Alessi 2000b; Stratford 1997). Model
construction involves writing out a model in a formal notation, running the model on
the computer, checking whether the predictions make sense and match any data on
hand, and perhaps repeating this process in order to improve the model or its predic-
tions. Like programming a computer, model construction requires fluency in the formal
notation was well as good problem solving skills. Figure 1, from the Common Core
State Standards for Mathematics, is a diagram of the model construction process.

In contrast, model exploration refers to manipulating aspects of a given computa-
tional model and observing the changes in its predictions. For instance, computational
modeling systems typically let the user manipulate a slider in order to change the value
of a model’s parameter, and this causes an instantaneous change in the gauges or plots
that display the model’s predictions. For model exploration, it is not necessary for the
student to see the model or to understand the modeling language. When the model is
hidden from the user, and all the user sees are the controls (e.g., sliders) and prediction
displays (e.g., graphs), the model is typically referred to as a simulation. Model
exploration is the second major type of model-based learning activity.

According to the ICAP framework (Chi 2009; Chi and Wylie 2014), model con-
struction should be more effective than model exploration, as the former is constructive
(the BC^ of ICAP) and the model exploration is often merely active (the BA^ of ICAP).
Although we know of no studies testing this hypothesis with graphical system dynam-
ics models, Hashem and Midouser (2010, 2011) compared model construction and
model exploration with NetLogo. More specifically, they focused on two NetLogo
models exemplifying emergence, an important concept in complex systems. They
compared a 3 h lesson where students explored the two models to 48 h of instruction
in NetLogo programming culminating in students constructing the two models. The
model construction group learned more about emergence than the model exploration
group. The difference in mean post-test scores was reliable and moderately large. This
is consistent with the common-sense hypothesis that model construction takes longer
than model exploration, but fosters deeper learning.

We decided to focus on model construction in the belief that it generally affords
deeper understanding than model exploration. However, the key is reducing the time
required for students to achieve enough model construction skill so that science lessons
based on model construction become feasible. In the near future, we would like to run
an experiment similar to the Hashem and Midouser one but using Dragoon instead of
NetLogo. We hypothesize that constructing Dragoon models produces more learning
gains than model exploration and it costs only 1 or 2 h more instructional time instead

Fig. 1 Modeling is the process of formulating and debugging a model. From (CCSSO 2011)
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of 48 h more. However, in our current studies, we compare Dragoon-based model
construction only to baseline instruction that does not involve computational model
construction. If Dragoon cannot beat baseline instruction, then there is no sense
comparing it to model exploration.

However, Bconstructing a model of a given system^ can mean many things depend-
ing on how the system is Bgiven^ (VanLehn 2013). For easy reference, let us define
three points along a continuum of model construction tasks.

The most difficult model construction tasks merely identify the system but do not
provide any information about it. Such tasks require the students to seek information
empirically or in the literature, so they are a kind of inquiry activity. For example, such a
task is: BCreate a model of the elephant population of the Serengeti ecosystem covering
the next 20 years.^ This brief text is all that the students are given, so they must search
for the current size of the elephant population, its historical sizes, factors that influence
the population, etc. and eventually formulate all this information as a model.

At an intermediate level of difficulty are model construction tasks where the system is
described completely and concisely. For instance, an example of such a description is:

As of August, 2014, there were 7535 elephants in the Serengeti ecosystem and an
annual growth rate of 5 %. Construct a model of the population covering the next
20 years.

Although such problems often provide relatively complete information about the
system and students are not expected to go to the literature to find out more about the
system, even a complete system description may require making key assumptions, such
as knowing that “growth rate” includes all sources of change in the elephant population,
including births, deaths, emigration and immigration. A concise system description
may also include extra, distractor information. Such model construction problems are
like the word problems that are widely used in arithmetic and algebra classes.

Perhaps the simplest model construction tasks occur when students are first learning
how to use the tools; these tasks provide a complete and concise description of the
model as well as the system to be modeled. For instance, if the modeling language is
algebraic equations, then such a description would be:

Construct a model of the Serengeti elephant population covering 2014 to 2034. Let
E(t) be the herd population in year t. Assume E(2014)=7535 and E(t + 1)=E(t) +
0.05*E(t).

If the students’ task is to construct a model using a graphing calculator or a
spreadsheet, then they still have some work to do despite the concise description of
the model. Similarly, a graphical system dynamics model can be described in terms of
the nodes that need to be defined, and an agent-based model can be described in terms
of the procedures each agent should follow.

In summary, three types of model construction tasks have been defined: One
identifies the system but does not describe it; the second describes the system
completely and concisely; the third describes both the model and the system completely
and concisely. This research focuses on the latter two types of model construction tasks,
so let’s adopt some terminology:
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& An analyticmodel construction task provides a complete and concise description of
the system to be modeled. Solving such problems requires analytic skill, and a
student who can solve any such problem has acquired analytic mastery.

& A notational model construction task provides a complete and concise description
of both the model and the system. Solving such problems requires notational skill,
because students must translate the model description into the notation of the
model. A student who can solve any such problems has acquired notational
mastery.

Although analytic model construction tasks are often used in instruction (e.g.,
Mandinach and Cline 1994), notational model construction tasks appear to be less
common, and the distinction between them has not been noticed or defined before.

Prior work on Educational Use of Graphical System Dynamics Modeling

There has already been considerable work on using graphical system dynamics model-
ing languages in education. It began in 1983 when Stella was first released. Educators
were strongly impressed by the potential pedagogical benefits of Stella, and several
large projects were conducted wherein teachers worked with researchers to co-design
Stella-based instruction in a variety of disciplines (Doerr 1996). However, after a
decade of studies, participants reached a discouraging conclusion (Alessi 2000a;
Mandinach and Cline 1994, 1996; Zaraza and Fisher 1999). They first noted that there
were three major ways to use Stella:

1. Model exploration
2. Model construction Bword problems,^ which are called analytic tasks in the

terminology introduced above.
3. Model construction of a non-trivial natural or engineered system. These are the first

kind of model construction task mentioned early, which involve some type of
inquiry.

Activity 1 (model exploration) was by far the most common activity, even among
participants who had tried hard for many years to get their classes to do activity 3
(model-based inquiry). Activity 2 (analytic model construction tasks) was mostly done
in math classes, whereas our focus is on science instruction. After several years,
researchers and reviewers concluded that using model construction to learn science
was rare because it required analytic mastery, which was not taught in math classes so it
had to be taught in science classes. Although a few students attained sufficient mastery
quickly, many students struggled to construct models even after many hours of
instruction.

This suggested that the modeling language should be simplified in the hope that
analytic mastery would be more quickly attained. This approach was pursued by two
successful projects, Model-It (Crawford and Cullin 2004; Lee et al. 2011; Metcalf et al.
2000) and Betty’s Brain (Biswas et al. 2010; Chin et al. 2013; Leelawong and Biswas
2008; Schwartz et al. 2008, 2009; Segedy et al. 2012a, b). Both used a graphical
modeling language that was similar to a concept map, in that nodes represented
quantities and links represented how one quantity influenced another. Links were
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labelled with icons (in Model-It) or symbols (in Betty’s Brain) that indicated whether
the influence was positive, negative, strongly positive or strongly negative. A key
distinction in system dynamics modeling (between regular functions and integrals, i.e.,
stocks) was either absent (Betty’s Brain) or turned off for most students (Model-It).
Thus, students primarily worked with qualitative descriptions of direct relationships
between quantities. Lee et al. (2011) showed that inquiry instruction based on Model-It
was more effective than inquiry instruction based on answering questions. Chin et al.
(2010) showed that Betty’s Brain was more effective than instruction based on either
concepts maps or science kits.

While these studies of Model-It and Betty’s Brain showed benefits for model
construction compared to instruction without models, they did require many hours of
training from the students. When shorter studies compared model construction to
baseline instruction, they usually did not show uniformly reliable benefits for model
construction (VanLehn 2013). For instance, a particularly well-controlled study (van
Borkulo et al. 2012) compared students working on Co-Lab to students reading texts
and answering essay questions. There were differences in the expected direction in only
2 of 8 measures. However, the Co-Lab instruction was short: 150 min.

Although these simplified modeling languages make it possible to use model con-
struction to teach science, their representational powers are quite limited compared to
Stella and other graphical system dynamics languages. Whereas Stella and similar
languages are roughly equivalent to differential equations, the augmented concept maps
of Model-It and Betty’s Brain are roughly equivalent to algebraic equations. They lack
integrals (stocks), so they can only model static systems and not dynamic ones. Perhaps
most importantly, they do not allow feedback loops, so they cannot modelmany important
system behaviors such as homeostasis, oscillation or exponential decay. The positive
empirical results with the simplified languages are encouraging in that they showedmodel
construction was more effective than instruction based on baseline instruction. However,
the problem remains: How can students use models to learn about dynamic systems?

Meanwhile, early efforts to make object-oriented programming easy enough for
children to do (i.e., Logo (Papert 1980), Smalltalk (Goldberg and Tenenbaum 1975))
eventuated in a new computational modeling paradigm, now called agent-based
modeling. After several early developments (Boohan 1995; Neumann et al. 1999;
Repenning et al. 2000), Uri Wilensky’s NetLogo (ccl.northwestern.edu/netlogo)
emerged as the most popular agent-based modeling tool, although competitors are
beginning to appear such as Molecular Workbench (mw.concord.org) and SimSketch
(Bollen and Van Joolingen 2013).

Case studies with NetLogo showed that there exist K12 students who can construct
models of non-trivial systems (Centrola et al. 2000; Levy and Wilensky 2005;
Wilensky 2003; Wilensky and Reisman 2006; Wilensky and Resnick 1999).
Unfortunately, it proved to be difficult to replicate the success of case study participants
in classrooms of students with variable background. For instance, Hashem and
Midiouser (2010, 2011) found that it took 48 h of instruction in NetLogo programming
to prepare students for a science lesson.

Because achieving analytic mastery takes too long for some students for both
graphical system dynamics models and agent-base models, model exploration has
become the dominant method for incorporating computational modeling into science
instruction. Model exploration is the centerpiece of many interventions such as:
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& Biology: (Buckley et al. 2004; Hickey et al. 2003; Horwitz et al. 2010; Wilensky
and Novak 2010)

& Chemistry (Chiu and Linn 2014; Levy and Wilensky 2009a, b)
& Earth science: (Gobert and Pallant 2004; Svihla and Linn 2012)
& Physics: (Sengupta and Wilensky 2009; Shen and Linn 2011)

In summary, the current state of art in educational modeling uses model exploration
almost exclusively. Although the standards are clearly calling for students to practice
model construction (see Fig. 1), it is absent from the curriculum because analytic
mastery takes too long to acquire for some students. Nonetheless, there are always a
few students who master model construction quickly and deftly apply it to construct a
deep understanding of systems, which keeps the hope alive that all students can
somehow be taught model construction quickly enough that it can be a useful tool
for understanding natural and engineered systems. This is the problem addressed by the
project reported here. For the reasons discussed above, we are focusing on graphical
system dynamics models.

Basic Technical Approach

One approach to making model construction feasible in schools is to reduce the time
required to achieve analytic mastery enough that science classes can afford to teach
analytic mastery instead of relying on math classes to do so. This project started by
pursuing that approach and achieved some success. By simplifying the notation and
having students practice solving modeling problems on a step-based tutoring system, it
appears that most students who have had high school algebra can achieve analytic
mastery with Dragoon in a maximum of 7 h of instruction, with a mean of about 5 h
(VanLehn et al. 2016).

However, for most science instruction applications, spending 5 to 7 h on a prereq-
uisite skill isn’t feasible. If teachers can only spend three or four class periods on
teaching a particular dynamic system, then they can’t afford to spend most of that time
getting students up to speed on analytic mastery. During the course of the studies
described here, we discovered a more efficient instructional method: After a brief
introduction to the modeling notation and the computer user interface, students are
given notational model construction tasks for the target dynamics systems. Thus, they
learn the target science concepts while they attain notational mastery. They do not attain
analytic mastery, nor do they need it in order to learn the science.

The rest of this document presents first the model construction system, Dragoon, and
then the studies where it was used for science instruction.

Dragoon

First, some terminology needs to be underscored. A system is just a part of the real
world, and a dynamic system is a part of the real world that changes over time. A record
of the system’s changes is called its behavior. A model is an expression in a modeling
language that can be interpreted by computer. Executing a model generates its predic-
tions. An accurate model will generate predictions that match the system’s behavior.
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Dragoon uses a graphical notation similar to the one pioneered by Stella (Doerr
1996). Figure 2 shows a simple model in Dragoon. Each node in the directed graph
represents both a quantity and how its value is calculated. For every input to a node’s
calculation, there is a link coming into the node from a node representing that input
quantity.

& A rectangle represents a quantity whose value is the integral of its inputs over time.
& A circle represents a quantity whose value is an ordinary function (i.e., no integrals

or differentials) of its inputs.
& A diamond represents a parameter, which is a quantity with a constant value.

Parameters have sliders so that the user can easily modify their value and observe
the effect on the model’s predictions.

It is important to understand the difference between function nodes and accumulator
nodes. Suppose a quantity X is determined by Y+Z; then X is represented by either a
function node or an accumulator node with both Y and Z as input links. However, it is
often unclear to students which type of node to use. They should use an accumulator if
Y+Z represents how much X changes with each unit of time. In mathematical
language, dX/dt =Y+Z or X= ∫ (Y+Z) dt. On the other hand, if X’s value at any time
tick is equal to the value of Y+ Z at that same time tick, then X should be represented
by a function node. That is, X=Y+Z at all times. Using the model of Fig. 2 as an
example, Bmoose population^ is an accumulator because it is the integral over time of
its inputs, Bmoose births^ and Bmoose deaths.^ On the other hand, Bmoose births^ is a
function because it is not an integral over time of its inputs, Bmoose population^ and
Bmoose birth rate^, but instead is a function (i.e., the product) of their current values.

Authors construct a model by clicking on the BCreate Node^ button, and then filling
in a form (Fig. 3) with a name for the node, its type (parameter, accumulator or
function), its inputs and how its value is calculated. When the student clicks on the
Graph or Table button, Dragoon pops up plots or tables of the quantities as a function of

Fig. 2 The Dragoon model construction system, showing a simple problem and a correct solution
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time (see Fig. 4). The sliders allow the user to temporarily change the value of the
parameters and observe the resulting change in the plots and tables.

What has been described so far is just the typical model construction system: an
editor for constructing a model and displaying its predictions. When Dragoon is in
author mode, this is all that the user has available. (Actually, there are a few more

Fig. 3 The Dragoon node editor is a form. Filling in a field correctly causes it to turn green

Fig. 4 Graphs and table of the model’s predictions
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features in author mode. See (Wetzel et al. 2016) for details.) On the other hand, when
Dragoon is in one of its student modes, it can give helpful feedback. This study used
only immediate feedback mode, wherein Dragoon provides feedback on each step in
the model-construction process. It colors an entry in the node editor green if its value
matches the corresponding value in the author’s model, and red otherwise (Fig. 3).
When too many mismatches have been made on an entry, Dragoon fills in the entry
with the author’s value and colors it yellow. When the student closes the node editor,
the colors of its entries are reflected in the color of its boundary (see Fig. 1).

Dragoon has other features than the ones discussed here (see (Wetzel et al. 2016) for
descriptions). However, they were not used in the studies discussed below. In the
studies below, students merely accessed Dragoon in order to solve an assigned model-
ing problem. They logged into Dragoon, creating an account if they had not done so
already, found the assigned modeling problem in the menus, solved it, and clicked on
Done.

Formative Evaluations

Our initial attempts to use Dragoon to teach science were conducted in late 2013. We
first developed a short sequence of model construction problems that were intended to
introduce students to Dragoon and modeling and give them sufficient skill in analytic
model construction. The sequence involved only familiar systems, such as gaining and
losing weight while dieting, so students did not need to learn any science in order to
work through the introductory sequence. Pilot tests with 4 high school students
indicated that everyone could work through the sequence in less than an hour.

In order to detect changes in students’ skill and understanding of system dynamics
modeling, a pre-test and post-test were developed. They consisted of a series of
questions about a familiar system: the accumulation and removal of litter on the school
grounds.

Next, four science teachers met with researchers for a 2 day workshop. The teachers
were all from the same high school. The four teachers taught biology, chemistry,
physics and earth science, respectively. They learned how to use Dragoon and then
worked with researchers to develop modules for their classes. All the modules began by
having students work through the introductory sequence. The modules then split,
focusing on topics chosen by the teachers.

When the modules were enacted, the instruction lasted from 1 to 3 h, spread over a
small number of days. The pre-test and post-test took about 35 to 45 min each. Teachers
did all the teaching; researchers only observed and conducted a few interviews after
selected classes.

The formative evaluations succeeded in uncovering a large number of flaws in the
Dragoon software, the instruction, the professional development, and many other
things. This led to a complete redesign of the notation in order to simplify it. The
Dragoon software was completely rewritten. Dragoon was rewritten in JavaScript to
run in a web browser and thus avoid Java installation problems. We learned to organize
the instructional development differently. Using a single workshop to train teachers in
using Dragoon and then expecting them to author problems and instruction was too
challenging for most of the teachers. In subsequent work, we first taught teachers how
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to use Dragoon, and then had them work closely with researchers who did the actual
authoring.

Most importantly, we found that students varied considerably in how fast they
learned to use Dragoon. Some students required only a few minutes to understand
the notation and learn how to use the interface. Others were still struggling after several
hours of usage. For instance, students in the AP Physics class learned how to construct
Dragoon models much faster than students in the biology class. This led us to develop
different instructional approaches for different classes. The subsequent studies, pre-
sented next, used the rewritten Dragoon software and began implementing new
practices.

Study 1: Physics

The purpose of study 1 was to evaluate Dragoon-based instruction in domain principles
and concepts. The context was an AP high school physics course. Students who had
already learned a little about the dynamics of falling bodies solved problems using
either Dragoon or paper. This study occurred before we understood the distinction
between notational mastery and analytic mastery. All the problems were presented
using complete, concise descriptions of systems and not models. For instance, the
descriptions did not use modeling terminology such as Baccumulator^ or Bparameter.^

Design

The study had two instructional treatments which were different enough that they had
to be run in different classes. Thus, all the students in one class used Dragoon-based
instruction while all the students in a second class used paper-based instruction. The
same instructor taught both classes. The students’ learning gains were measured using a
pre-test and post-test with some shared items.

Subjects

Most of the students (75 %) were in 12th grade, most (67 %) were taking calculus, and
most (76 %) had received an A grade on their most recent math class. In other words,
these students had very strong mathematical backgrounds compared to most high
school students.

There were 26 students in the Dragoon group and 29 students in the Control group.
Although there were no statistically reliable differences between the groups in their
math, computer science and physics background, the Control group had slightly more
students (31 %) who programmed outside of class compared to the Dragoon group
(19 %). The Control group also self-reported more familiarity with modeling than the
Dragoon group.

Materials

The instructor developed the instructional materials, which consisted of five kinematics
problems (see Fig. 5). The same kinematics principles and concepts were used in all the
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problems. The problems did not form a model progression. That is, each could be
solved without having solved the earlier ones. The presentations were system descrip-
tions rather than model descriptions. That is, the descriptions did not identify nodes nor
indicate their types and inputs. Although the first two problems only asked the student
to construct a model that would graph particular quantities, the remaining three
problems required first constructing a model then answering questions about its
behavior. Nonetheless, all the problems required the same model structure, which is
shown in Fig. 6. Only the values of the parameters differed across problems.

The assessments were composed of four subtests. The first subtest assessed the
student’s skill at understanding dynamic systems and constructing tabular models of
them. The second subtest consisted of solving traditional quantitative physics ques-
tions. The third subtest had students draw acceleration, velocity and displacement of
falling objects over time. The fourth subtest asked students to draw a concept map that
used a given set of node and link names. Although subtest 3 (drawing graphs) was
given only on the post-test, the other three subtests were given during both the pre-test
and post-test.

Procedure

The study spanned three consecutive days, with each class period lasting 50 min. Both
the Treatment and Control classes were in the late morning. On the first day, the pre-test
was given. On the second day, students solved the five instructional problems working
as they normally did, wherein some students worked independently and some worked
in pairs. The instructor gave the Dragoon class a brief demonstration of how to use
Dragoon, and then told the students to solve the 5 problems. The Control students
solved the same problems on paper while using their textbook as a resource. Although
the instructor did not apply a uniform procedure for giving Control students’ feedback

1. An object starts at rest and falls from a building that is 56 meters tall.  Graph its velocity
and position from  0 seconds to 4 seconds.  Use 9.81 m/s^2 for the acceleration due to
gravity.  Choose coordinates so that the ground is zero. 

2. An object starts at rest and falls from a building that is 56 meters tall.  Graph its speed and 
distance fallen between 0 seconds and 4 seconds. Use 9.81 m/s^2 for the acceleration due  
to gravity. 

3. An object starts at rest and falls from the top of a silo that is 120 meters tall.  For an object
falling freely from rest, show that the distance traveled during each successive second
increases in the ratio of successive odd integers (1, 3, 5, etc.).  Assume that acceleration
due to gravity is 9.81 m/s^2.  Choose coordinates so that the top of the building is at zero 
and acceleration is positive.

4. A weight is thrown vertically upwards with a velocity of 8.5 m/s from an initial height of 
1.2 m.  Graph its velocity and height from 0 seconds to 3 seconds.  How fast is it moving
when it reaches a height of 4.0 m?  How long is required to reach this height?  Explain 
why there are two answers.  Use -9.81 m/s^2 as the gravitational acceleration. 

5. A stone is thrown vertically upward with a velocity of 12.0 m/s from the edge of a cliff 162 
m high.  Graph its velocity and height from 0 seconds to 8 seconds.  How much later does
it reach the bottom of the cliff?  What is its velocity just before hitting?  What total 
distance did it travel?  Because the stone is moving against gravity we will set acceleration
due to gravity at -9.81 m/s^2.  Choose coordinates so that the bottom of the cliff is at zero. 

Fig. 5 The 5 problems used in Study 1
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on their work, he did roam the classroom answering questions and inspecting students’
progress. Moreover, these students tended to ask for feedback if they had any doubts
about correctness. On the third day, the post-test was given.

Scoring of the Pre-Tests and Post-Tests

The content of the pre-test and post-test will be described in the results section. Here the
methods for scoring are described for items that could not be scored by an exact match
to an answer on a coding sheet.

For open response items, researchers constructed rubrics and trained a coder to apply
them. Unfortunately, a second coder was not used so we do not have inter-coder
reliability measures.

For the concept maps, two experts generated Bcorrect^ concept maps. Student
concept maps were compared to the two expert maps, to produce four sets of scores
per expert:

& Exact scoring counts propositions in the student map that exactly match proposi-
tions in that expert’s map.

& Ignore direction scoring counts propositions in the student map that match propo-
sitions in the expert map when disregarding the arrow direction but taking into
account the link label.

Fig. 6 A solution to the first problem used in Study 1
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& Ignore label scoring counts propositions in the student map that match propositions
in the expert map when disregarding the relationship label but taking into account
the arrow direction.

& Loose scoring counts propositions in the student map that match propositions
in the expert map if both the arrow direction and the relationship label are
disregarded.

Thus, each student concept map received eight scores. The inter-rater reliability was
assessed using generalizability theory. The amount of variability attributed to rater was
high, and ranged from 26 % for the exact scoring to 49 % for the loose scoring. This
means that scores from one expert map should only be compared to scores from the
same expert map. Similarly, scores should not be compared across score types.

Results: Pre-Tests and Post-Tests

The first subtest assessed the students’ skill at modeling system dynamics. On the pre-
test, the two conditions hardly differed in their mean scores (Dragoon 17.42 (sd 2.98);
Control 17.86 (sd 2.52); p=0.56). On the post-test, the mean of the Dragoon students
(18.24, sd 2.47) and the mean of the Control students (17.79, sd 2.74) were not
significantly different (p=0.54). Thus, it appears that on this measure, none of the
students gained much, and the Dragoon students were no better at learning than the
Control students.

The performance of the students on the second subtest, which measured their ability
to answer traditional physics questions, turned out to be too difficult for these students.
Out of a possible 3 points, one Dragoon student scored 1 point on the pre-test; all other
scores, on both pre-test and post-test, were zero. The Control students were only
slightly better, with a mean score of 0.21 (sd 0.56) out of 3 on the pre-test and a mean
of 0.31 (sd 0.54) on the post-test. None of the differences between means were
significant. Thus, on this measure, there was a floor effect.

The third subtest, which measured students’ ability to draw the kinematic values of
acceleration, velocity and displacement of a falling object over time, was given only
during the post-test. Out of a maximum score of 6, the mean score of the Dragoon
students (2.60, sd 1.29) was slightly lower than the mean score of the Control students
(2.72, sd 1.16), but the means were not reliably different (p=0.71).

The fourth subtest had students draw a concept map using a given list of physics
terms. As mentioned earlier, there were eight scores per concept map (2 expert maps ×
4 methods of matching). On all eight score types, the Control students scored higher
than the Dragoon students on both the pre-test and the post-test. The gain scores (post –
pre) averaged −0.66 for the Dragoon students and −2.46 for the Control students. This
could be regression to the mean, perhaps caused by students putting less effort into the
post-test concept maps.

Overall, the results suggest that neither group learned much physics nor much
system dynamics modeling during the study. This may have been due to the short
duration of the treatment. Moreover, these students had already been studying kine-
matics for 2 weeks. Clearly, they had much left to learn, as their scores were not high.
Nonetheless, adding one more day of instruction onto the preceding 2 weeks appears
not to have made much difference in their scores.
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Results: Log Data

Because the Control students did not use a computer system for their problem solving,
log data were available only for the Dragoon students. Thus, the analyses in this section
comprise a brief description of the Dragoon students’ work processes.

Although the observers reported that most student were on-task for most of the time,
as one would expect from such academically successful students, the mean time spent
solving problems on Dragoon was low. Of the 55 min period, students had a Dragoon
problem open for only 21 min on average. Although the initial 15 min (approximately)
of the period were spend on classroom logistics and a demonstration of Dragoon, the
students were not given any readings or workbooks, so one would expect that they
would spend almost all the remaining 40 min working on Dragoon. One possible
interpretation is that although every student had a laptop running Dragoon, some
worked in pairs. Thus, they may have collaborated on solving a problem using one
student’s computer, then opened Dragoon on the second computer only to copy the
model from the first computer. Because the observer did not record the arrangement of
students into pairs, this conjecture cannot be confirmed with the log data.

Even though students were given minimal instruction in how to use Dragoon, most
figured it out. Figure 7 is a histogram of the number of problems solved. Only five
students solved no problems at all. Although the mean number of problems solved was
also low, 1.6 problems, many of the students (55 %) at least opened all the problems,
even though they didn’t always complete them. Overall, these findings suggest that
their difficulty was in solving the problems rather than in using Dragoon.

Interpretation of Study 1

The bad news from this study is that our materials seemed to be somewhat advanced for
these students, as neither group appear to have learned much new physics during the
single day of instruction that they received. The good news is that some students
seemed to have attained at least some proficiency in analytic model construction in that
most (24 of 29) were able to solve at least one Dragoon problem without much
instruction on how to use Dragoon. However, we do not know how much help students

Fig. 7 Study 1, Dragoon students only, histogram of number of problems solved
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were giving each other, so there is considerable uncertainty about this interpretation. On
the other hand, observers of both Study 1 and the formative evaluation that occurred the
preceding year in the same classrooms reported informally that the students seemed to
have no trouble using Dragoon. This would be plausible given the strong backgrounds
of these AP physics students. However, if the formative evaluation of the other classes
is any guide, then rapid skill acquisition is not likely to occur in more typical high
school science classes. Thus, the next study used a more typical class, notational tasks
instead of analytic ones, and a longer, more structured instructional sequence than the
one used in Study one.

Study 2: Physiology

The purpose of study 2 was to compare Dragoon to baseline instruction over a
longer period of instruction using a highly structured workbook of notational
tasks. The context was four high school physiology classes in a school in
California. This study pioneered the use of concise model descriptions for the
target systems.

Design

Two of the four classes used Dragoon instruction and the other two used
baseline instruction. Two teachers were involved. One taught a baseline class;
the other taught both Dragoon classes and a baseline class. Both classes used
paper workbooks. The workbooks contained the same expository material (text
and images) and they had the same multiple-choice and open response ques-
tions. The main difference was that the Dragoon classes constructed models in
Dragoon whereas the baseline class constructed models by filling out tables and
drawing graphs.

The classes proceeded in parallel. That is, all took the pre-test on the same day, had
instruction on the same days, and took the post-test on the same day.

Participants

The two teacher participants were veteran physiology teachers, but had seldom used
technology in their classrooms. They were interested in seeing if Dragoon could help
them meet the Next Generation Science Standards for modeling, but were in general
neutral about the benefits of technology for students.

There were 95 total participating students: 50 were in control classes and 45
were in Dragoon classes. Most of the students (72 %) were in 10th grade. The
remainder were evenly split between 11th and 12th grade. The majority of the
students (60 %) were currently taking geometry and had taken algebra I during
the preceding year. Only one student was in Calculus. The average grade point
for Dragoon students on their math class in the preceding year was 3.0 vs. 2.9
for the control students. Few of the students (5 %) had taken programming
classes. In short, these students were more representative of the whole high
school population than the AP Physics students of Study 1.
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Materials

The materials consisted of two instructional workbooks, a pre-test and a post-test. The
main workbook taught students about digestive energy balance, whereas the other
workbook addressed blood glucose regulation. The second workbook was to be used
only by students who had finished the first workbook. The post-tests did not address
knowledge of blood glucose regulation.

The Dragoon workbook for digestive energy balance was authored by re-
searchers with input from the teachers. Of its 27 pages, the first 14 pages were
heavily illustrated, detailed, step-by-step instructions for logging into Dragoon
and constructing a model. The remaining 13 pages were a progression of 8
levels. At each level, the students constructed a model in Dragoon or extended
a model that they built in an earlier level, and then answered questions about
its behavior. Models or model extensions were described in terms of nodes,
because students were expected to have only notational mastery and not
analytic mastery. The Appendix shows the Dragoon problems for the first 4
levels. Level 8 was a 30-node model that included the impact of exercise,
height, gender, age, digestive activity expenditures and proportion of fat to lean
body mass on energy expenditure and storage. Energy was expressed in calo-
ries. All parameter values and model relationships were accurate with respect to
the physiology literature. The model exhibited and explained the surprising (to
the students) fact that once you gained fatty tissue, reducing your caloric intake
to its former values is not sufficient to burn off the excess fat.

The non-Dragoon instructional workbook for digestive energy balance was adapted
from the Dragoon one. It had students fill in tables and draw graphs instead of
constructing models.

The blood glucose workbooks were similar to the energy balance ones. It eventuated
in the widely cited Bminimal model^ of glucose-insulin homeostasis (Bergman et al.
1979).

In short, although these workbooks were simple enough that high school sopho-
mores could use them, they enabled students to construct models similar to those used
by professionals. For instance, wrestlers and jockeys who monitor weight closely use
versions of the energy balance model built by the students.

The pre-test consisted of five questions about energy balance and homeostasis (and a
questionnaire about the students’ background). The five questions required either short
essays or mathematical derivations. Two questions involved interpretation of graphs.

The post-test consisted of 11 questions about digestive energy balance (and 7
questions seeking their opinions about Dragoon and their instructional experience).
Of the 11 physiology questions, 6 asked the student about information that was
explicitly presented in both worksheets:

& One question asked students to draw a concept map using a set of given terms.
& Another asked students to define or write a description of system; it listed a few

concepts to include and asked students to be as specific as possible and to use
examples of systems.

& Four multiple-choice questions were of the form Bwhat factors directly affect…^
and listed some factors.
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These questions asked students to recall the model (i.e., energy balance and the
variables and relationships affecting it) rather than draw inferences from it.

The remaining questions on the post-test had students apply the energy balance
model in different ways:

& One multi-part question provided part of the model as a set of equations and asked
for numerical answers given numerical values.

& Another multi-part question provided data for some model values and asked
students to apply the model to predict weight gain/loss.

& Two questions asked students to draw qualitative graphs (i.e., the axes did not have
numbers on them) showing the energy balance over time under two different
conditions.

& Another question presented graphs of two individual’s weights over time, and asked
the student to compare and contrast them, using the model.

These questions, which asked students to apply the model, could be consid-
ered moderately deep in that the answers were not be in the instructional
material, so students would need to make inferences in order to answer the
questions. Moreover, some of the required inferences had been done routinely
by the students in the baseline condition as they constructed tables, whereas
making such inferences was probably infrequent in the Dragoon condition,
because Dragoon did the arithmetic and drew the graphs. Although the post-
test could be considered somewhat biased toward the baseline condition, even
the questions that asked for application of the model did not strike us or the
instructors as particularly deep, using the Chi et al. (1994) definition of Bdeep.^
They were typical of questions normally used for assessment in this class.

Procedure

The implementation window lasted 6 days with the first and last day devoted to pre-test
and post-test respectively. The classes met for 54 min each. The Control classes met at
roughly the same time of day as the Treatment classes.

For the Dragoon classes, the teacher introduced students to the idea of systems
modeling and a researcher introduced students to Dragoon on Day 2. On Day 3, the
researcher continued the introduction on Dragoon by working through an example
Dragoon problem with students as a whole class. This took about 10 min. Students then
started working through the workbooks. The first half of the Dragoon workbook was
devoted to teaching students how to understand the notation and to use Dragoon.
Although lengthy due to the many screenshots, students seem to proceed relatively
quickly through this introductory material, and all finished it by the end of Day 3. On
Days 4 and 5, students continued to work through the workbooks and solve energy
balance problems with Dragoon.

For the Control groups, the teachers introduced students to the idea of systems
modeling on Day 2. Students worked through the workbook problems in groups on
Days 3 and 5. Because the Dragoon classes had most of a day devoted to learning
Dragoon (Day 3), the Control classes had an open day (Day 4) devoted to topics that
were irrelevant to energy balance. Thus, the Control and the Dragoon classes had
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approximately the same amount of class time, 2 days, for solving problems, and they
took the pre-tests and post-tests on the same days.

In both the Dragoon and Control classes, students worked in small, self-selected
groups at their own pace. Students were encouraged to collaborate and ask each other
for help. The teacher circulated among the students, keeping them on task and
providing help on the physiology when asked. Although workbooks were collected
at the end of each day and handed back at the beginning of the next day, they were not
scored or marked between days. The teachers told students that they would be
examining the student’s work and test results, but they were vague about when and
whether the tests would contribute to the students’ grades.

Although the Dragoon students received feedback immediately from Dragoon as
they solved problems, feedback was delayed for the Control students. Teachers checked
the Control students’ work as the roamed the classroom, and insured that by the time a
workbook was handed in, all the work on it was correct. After the experiment was
concluded, researchers confirmed that all Control workbooks were filled out correctly
with at most minor unintentional errors such as arithmetic mistakes.

In short, the procedure tried to control for some important variables, including time
available for problem solving, amount of feedback, time of day, and amount of
collaboration. However, this was a small scale, real-world study, so control was weak.

Results: Pre-Test and Post-Tests

Scoring of the pre-tests and post-test was done in the same way as scoring was done in
study 1 (see section 4.5). Once again, we collected inter-coder reliability measures for
the concept maps but not for the other test items.

On the pre-tests, the mean score of the Dragoon students was 1.69 (SD=1.58) out of
a maximum score of 6. The mean score of the Control students was 1.16 (SD=1.04),
which was reliably lower (p< .01; two-tailed).

On the post-tests, excluding the concept-mapping question, the mean score of the
Dragoon students was 4.53 (SD=1.71) out of a maximum of 10 points possible. The
mean score of the Control students was 3.59 (SD=1.52), which was reliably lower
(p= .006) with a moderately large effect size (d=0.62; where d=difference in post-test
scores / standard deviation of control post-test score). However, because the pre-test
scores between the two groups were reliably different, an ANCOVAwas run with pre-
test score as the covariate. This showed that the Dragoon group performed reliably
better than the Control group (p= .029) with a medium effect size (d=0.47, where
d=difference in adjusted post-test scores / standard deviation of pooled adjusted post-
test scores).

On the post-test question that asked students to draw a concept map using a set of
given physiological terms, the results were marred by missing data. Concept maps were
not drawn by 9 of the Dragoon students and 7 of the Control students. As in study 1, the
maps were scored by comparing them to an expert’s map using four different rubrics.
Dragoon students scored higher than the Control students on all four rubrics, but none
of the differences were statistically reliable.

One question appeared on both the pre-test and post-test. It displayed two graphs,
one showing a linear increase in weight over time and the other showing a linear
decrease in weight over time. The question asked, BCompare and contrast the two
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graphs and explain what you think might be going on with each person’s weight based
on your understanding of energy balance including energy storage, energy ingestion,
energy expenditure, and the respective individuals’ starting weights.^ This open-
response question was intended to provide an assessment of students’ overall under-
standing of the system. The mean scores on the post-test were higher than the mean
scores on the pre-test for both groups (Dragoon: 49 → 80 %; Control 42 → 50 %),
which suggests that both groups learned from their instruction. The Dragoon group’s
gain was reliably larger than the Control group’s gain (p< .01 using an ANCOVAwith
pre-test score as the covariate).

There was a small positive relationship between student math grade/final math grade
composite and both their pretest score (r =0.12) and their posttest score (r = 0.20). This
suggests that students who excelled previously in math may have performed slightly
better on the pre- and posttest.

Results: Log Data Analyses

Log data were available only for students in the Dragoon group, as the Control students
worked only on paper. Because there were 45 Dragoon students and problem solving
occurred on days 3, 4 and 5, there would ideally be 3*45=135 log files, but 11 were
missing. It can assumed that these represent students who were absent from class that
day (8 %).

Although the class periods were nominally 54 min each, the Dragoon students had
to walk to the computer lab, start the computers and then later shut down the computers
and walk back to their classroom, which reduced the amount of time they had available
for solving problems. On the other hand, part of day 3 was devoted to solving
problems. Observers estimated that the total available problem solving time was about
approximately 105 min for the Dragoon students. The log files showed that students
spent an average of 91 min with a Dragoon problem open, which seems consistent with
the estimated 105 min that they had available since they also had to read and write in
the workbook between Dragoon problems. In contrast, the Control students solved
problems on days 3 and 5 (and not day 4), and they spend almost the whole 54 min
class period doing so on both days because they did not go to the computer lab.
Observers estimated that they had about 96 min of available problem solving time. The
observers reported that almost all the students in all classes were on-task almost all the
time. These figures suggest, albeit approximately, that the time-on-task was about the
same for the two groups. However, the Dragoon group had to spend about 45 min
learning about Dragoon. This extra Bcost^ was incurred during Day 3.

There were correlations between the students’ score on the post-test and the mea-
sures of the work on Dragoon. However, this might be partially due to the students’
prior knowledge and diligence. In order at least partially factor out incoming compe-
tence, adjusted post-test scores were used. A students’ adjusted post-test score is their
post-test score minus the score they would get based on the pre-test score alone.
Figure 8 shows a scatterplot of the Dragoon students’ adjusted post-test score versus
the amount of time they spent problem solving over the 3 days. Even with pre-test
factored out, there is still a moderate correlation (R=0.47; p< .05). Similarly, students
who completed more problems also scored higher on the post-test. Figure 9 shows a
moderate correlation (R=0.39; p< .05). Although these are correlations and not a
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demonstration of a causal relationship, they suggests that the more work one does on
Dragoon, the more one learns about physiology.

The energy balance instruction in both groups was comprised of 8 problems. The log
files show that the Dragoon students completed a mean of 4.7 problems. Moreover,
only 8 % of the Dragoon students completed all the problems. In contrast, 100 % of the
Control students completed all their problems. Clearly, the Dragoon students were

Fig. 8 Study 2, Dragoon students, adjusted post-test versus time

Fig. 9 Study 2, Dragoon students, adjusted post-test versus problems completed
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moving more slowly through the curriculum. Without further study, we cannot deter-
mine why.

Interpretation of Study 2 Results

As usual when doing small-scale classroom studies, many important variables
were not adequately controlled. In study 2, these included the initial compe-
tence of the two groups (measured with pre-test scores), the teacher, the amount
of feedback given to students and the amount of time available for solving
problems. Nonetheless, the experiment was strong enough to eliminate a few
possibilities.

The experiment suggests that students do not need to have analytic mastery
before they can learn science by constructing models. As our companion paper
shows (VanLehn et al. 2016), even with the tutoring and scaffolding of
Dragoon, it still takes students many hours to achieve analytic mastery. The
Dragoon students in study 2 were given only notational problems (i.e., the text
described both the system and the model). We do not know how many attained
analytic mastery, but it would be a welcome surprise if any did. And yet the
Dragoon students still managed to learn about the science of physiological
energy balance.

The experiment also suggests that the extra cost of using model construction can be
measured in minutes instead of hours. Unlike the Hashem and Mioduser (2010, 2011)
study, where model construction students received an extra 48 h of instruction, the
Dragoon students in this study received only about 45 min of extra instruction on how
to construct Dragoon models. This was comprised of a demonstration by a researcher,
and working through the first part of a workbook with lots of screen shots and low-level
instruction on usage and notation.

The biggest mystery in the study 2 data is why did the Dragoon students complete so
few problem and yet learn more physiology then the Control students? While the
Control students completed all 8 problems, the Dragoon students completed on average
only 4.7 problems. They attempted 6.8 problems. They may have read ahead in the
workbook without doing the problems. Further study is needed in order to explain how
they learned as much physiology as they did.

The main result of Study 2 is that instruction that includes solving Dragoon
problems appears to be more effective for learning about a complicated physiological
system than the same instruction with problems done on paper instead of Dragoon.
However, given the lack of control over variables, this result must be considered
encouraging but not at all definitive. Thus, we conducted another study that also
compared Dragoon to baseline instruction.

Study 3: Population Dynamics

The purpose of study 3 was to see if the positive results of study 2 could be found in a
new task domain, population ecology, with new teachers and students. The new
instruction also featured a new instructional activity adapted from university studies
of Dragoon (Iwaniec et al. 2014).
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Design

Two classes used Dragoon instruction and one class used baseline instruction.
Both treatments involved students working through paper workbooks in their
normal classrooms. However, the Dragoon students also worked on laptops and
constructed Dragoon models, while the baseline/control students filled out
tables and drew graphs instead of constructing Dragoon models. Both groups
took a pre-test, mid-test and post-test.

The study occupied three consecutive class meetings, and all classes started the
study within 1 day of each other.

Participants

Two veteran biology teachers participated. They had not participated in Study 2, but
enthusiastically volunteered when told about Study 2. Neither teacher routinely used
technology in their classrooms.

The students were AP Biology students. A total of 59 students participated: 41 in the
two Dragoon classes and 18 in the control class. Most of the students (58 %) were in
10th grade. The remainder were in 11th grade (35 %) and 12th grade (7 %). Some of
the students (34 %) had taken programming classes.

The majority of the students (73 %) were currently taking trig/pre-calculus and 27 %
were in Calculus. The grade point average for Dragoon students on their math class in
the preceding year was 3.17 vs. 3.00 for the control students.

Materials

The materials consisted of two instructional workbooks, a pre-test, a mid-test, a post-
test and a background questionnaire. The workbooks will be described first.

The first workbook explained the difference between linear, exponential and logistic
growth of populations. It then had students do exercises, one set for each type of
growth. Each set of exercises started by presenting information about the population
and asking students fill-in-the-blank questions about it. Then students built the model
either in Dragoon or by filling in tables and drawing graphs. The exercise set ended
with more questions about the population.

The second workbook reviewed exponential growth, then covered predator–prey
models. It started with the Lotka-Volterra model, which assumes both predators and
prey would have exponential growth if they were not interacting. This model is
unstable and always causes the predators to die off and sometimes the prey as well.
The second model assumes that the prey would have logistic growth if it were not for
the predators. This model always exhibits damped oscillation that converges on steady
levels of both populations.

Besides the difference in the way models were constructed, the main difference
between the Dragoon workbook and the control workbook was that the Dragoon
workbook had 2 pages at the beginning of the first workbook devoted to explain the
notation of Dragoon. Although the Dragoon workbook from the preceding study had a
14-page tutorial showing students how to manipulate the Dragoon interface, the tutorial
material was reduced in this study because the observers felt that students learned the
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user interface better from the demonstration and from trial-and-error. The two-page
explanation of Dragoon consisted of a 1-page explanation of the notation and two
simple model-construction exercises done on paper that focused on discriminating
between functions and accumulators.

All the model construction activities were presented exactly the same way to
both groups. They described the system with one bullet per node, as in Fig. 10.
Because the bullets did not explicitly tell the Dragoon students which type of
node to define, this presentation could be considered slightly more difficult than
the notational tasks used in Study 2. However, this bulleted presentation still
relieves students of considerable amount of analytic work. It identifies the
quantities and the formulas for calculating each quantity. Dragoon students
must still supply a node type, but otherwise this bulleted presentation is close
to the notational presentations of Study 2.

Because all three classes used a jigsaw activity (described next), there were two
versions of the first workbook. One used lions as the population, and the other used
zebras as the population. Otherwise, they were identical.

The pre-test and post-test were very similar to each other. They differed only in the
Bcover stories^ of the problems (e.g., a horse population on the pretest was replaced by
a fox population on the post-test). The test consisted of 5 open-response items, with a
maximum score of 45 points. The first asked the students to provide a definition of a
system, to invent and describe two population growth systems and to compare them.
The second item asked students to sketch graphs for exponential growth and logistic
growth, then compare their underlying populations. The third item asked students to
complete the construction of a mathematical model of the logistic growth of horse
population using a fill-in-the-blank format. The fourth item presented two graphs with
labelled points, and asked students to explain what might be going on with each
population, especially at the labelled points; both graphs were for the prey population
of a predator–prey system but one was for the original Lotka-Volterra model and the
other is for the modified Lotka-Volterra model. The fifth item presents two graphs with
dampened oscillations; one labeled Brabbit population^ and the other labelled Bwolf
populations^. Students are asked to explain what’s going on with this system.

A
-
-
-

-

ssumptions
The lion population is 4 in the first year (1950).  
Births are the only change in the population. Deaths, immigration, and emigration do not occur
The number of lion births each year is the lion population times the probability of a lion 
giving birth (birth rate) during the year. 
The probability of a lion giving birth each year is 50%. 

: 

. 

Fig. 10 Presentation of a model construction problem in Study 3
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The mid-test asked students to draw a concept map using a set of concepts (noun
phrases such as Bpredator deaths^ and Bprey birth probability^) and a set of links such
as Baffects^ or Bpart of.^ The same concept mapping task was also included in the pre-
test and post-test. The background questionnaire asked students about their grade level,
programming classes, math classes, grades in the most recent math class, and whether
they felt it was important to do well on the pre-test.

Procedure

The implementation window lasted 3 class sessions of 100 min each. Each class
worked at its own pace through the instructional activities except that 40 min of the
first and last day were devoted to pre-testing and post-testing respectively. The back-
ground questionnaire was given as part of the pre-test.

Three activities occurred between the pre-test and post-test. First, the students were
first asked to work independently through the initial workbook, but before that, the
experimenter demonstrated Dragoon to the Dragoon students. Second, the students
completed the concept-mapping mid-test. Third, the teachers placed students in pairs
and had them work on the second workbook.

All the classes used a simple jigsaw activity. When working individually, half of
each class worked through the lion workbook, and the other half worked through the
zebra workbook. When the students were placed in pairs, one student had studied lions
and the other had studied zebras. When the pairs started the second workbook, the first
task was to help each other construct a model of the species that they had not studied.
The models were structurally isomorphic, but the values of the parameters were
different. The second task in the workbook was to construct the Lotka-Volterra model
together, collaboratively. The third task was to collaboratively construct the modified
Lotka-volterra model.

As in Study 2, the teachers roamed both the control and Dragoon classrooms
checking student’s work, answering questions and giving feedback. The Dragoon
students also got immediate feedback on their work from Dragoon itself. We did not
attempt to equate the amount of feedback given to the two groups, because we view
Dragoon’s feedback as an integral part of the treatment and a possible source of its
benefits.

Results

In the control condition, three pairs of students finished early. In the Dragoon condition,
two pairs finished early. Unfortunately, the log data were lost, so we cannot provide a
more detailed analysis of timing data than that.

Non-Concept Map Results

This subsection reports results of the pre-test and post-test, excluding the concept maps.
All test items were scored using rubrics developed in consultation with the instructors.
All items on all tests were scored by two raters. Inter-rater reliabilities were measured
with Cronbach’s alpha. The minimum reliability was 0.660 and the average was 0.822,
where 0.7 is considered acceptable for low stakes testing.
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Both the pre-test and post-test had 5 questions, but some students did not answer
them all. Rather than estimate the missing data, we excluded tests that did not have all 5
questions answered. Thus, different tests have different N.

The pre-test scores of the two groups were not significantly different (two-tailed t-
test, equal variances assumed, p=0.376). The score for the Dragoon group (mean 26.6,
standard deviation 5.8, N=39) was slightly higher than the score for the control group
(mean 24.9, standard deviation 7.7, N=18).

Using an ANCOVAwith pre-test score as the covariate, the adjusted post-test scores
of the Dragoon group (mean 31.00, standard deviation 6.00, N=36) were higher than
those of the control group (mean 24.00, standard deviation 6.96, N=18). The difference
was reliable (p< .000) and large (d=1.00).

Concept Map Results

This section reports results from the concept mapping tasks, which were given
during the pre-, mid- and post-test. As in Study 2, concept maps were scored
with 4 criteria. Since the scoring procedures were the same as Study 2, we
assumed that the generalizability analysis would again advise against aggregat-
ing scores, so we used only one rater and compared only scores from the same
criterion. We present here the scores from the Loose criterion. The pattern of
results is the same with the other scores.

For concept maps drawn during the pre-test, the control group scored slightly higher
(mean 26.3, standard deviation 12.4, N=21) than the Dragoon group (mean 24.7,
standard deviation 12.8, N=44). The difference was not reliable (p=0.64).

For concept maps drawn at the mid-test, the control group again scored slightly
higher (mean 29.9, standard deviation 14.4, N=18) than the Dragoon group (mean
27.5, standard deviation 13.1, N=41). When the mid-test scores were compared in an
ANCOVA with pre-test scores as a covariate (control adjusted mean 27.7, Dragoon
adjusted mean 28.5), they were not reliably different (p=0.62).

For concept maps drawn during the post-test, the Dragoon group now scored
higher (mean 32.5, standard deviation 12.5, N= 38) than the control group
(mean 28.9, standard deviation 16.0, N= 18). In an ANCOVA with pre-test as
a covariate, the Dragoon adjusted score was higher (mean 33.0, standard
deviation 10.7) than the control adjusted score (mean 27.3, standard deviation
11.7), and the difference was marginally reliable (p= 0.08) and moderately large
(d = 0.49).

Aptitude-Treatment Interaction

Although the small number of control subjects makes it impossible to check whether
there is an aptitude treatment interaction, Fig. 11 presents scatter plots that can give one
a qualitative sense of which students benefited the most.

The scores on the non-concept map tests are shown in the scatterplot on the
left. There might be a trend for students with higher pre-test scores to benefit
more from Dragoon. However, in the concept map scores shown in the
scatterplot on the right, it appears that the students with lower pre-test scores
may have benefited more from Dragoon. Thus, it appears that future study will

1060 Int J Artif Intell Educ (2016) 26:1033–1068



be needed before we can tell which students benefit the most from model
construction activities using Dragoon.

Interpretation of Study 3

Study 3’s results suggest that the Dragoon students learned more than the
control students. That is certainly good news, but what was the time cost?
Although we only have rough observations of time-on-task, it appears that both
groups of students spent about the same amount of time—they had the same
number of class periods, and roughly the same number of students apparently
finished all the materials. This is good news, because the Dragoon group in
Study 2 needed more time (one extra class period) and solved fewer problems.
The greater speed of the Dragoon group in study 3 may be due to the reduction
of the tutorial content from 14 pages in Study 2 to 2 pages in Study 3.

Another interesting difference between study 2 and study 3 was the use of a
jigsaw activity in study 3. That is, in both the control and Dragoon groups,
students worked individually during the first half of the instruction on modeling
the population dynamics of either zebras or lions. During the second half, a
zebra student and a lion student worked together to model predator–prey
interactions. The major benefit of Dragoon over the non-Dragoon materials
may have occurred during the second half, because both the pre-test and mid-
test scores were not significantly different.

Conclusions

Computational model construction activities can be used for many pedagogical pur-
poses, such as acquiring skill in model construction, conducting an advanced type of
inquiry, understanding the epistemology of science or developing ownership of knowl-
edge (VanLehn 2013). The research presented here focuses exclusively on two instruc-
tional objectives: understanding and applying domain principles (Study 1) and under-
standing the function of a specific system (Studies 2 and 3). In general terms, the

Fig. 11 Scatter plots of pre- vs. post-test scores; concept maps on right
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research asks: how can model construction be used to teach science concepts, princi-
ples and facts?

Although the goal is to teach science using computational model construction, the
major impediment has always been this: it takes too long for students to acquire enough
competence in computational model construction such that constructing models helps
deepen their understanding of the systems and principles that they are modeling. So
ironically, skill acquisition stands in the way of concept/principle acquisition.

This situation, which was reviewed earlier, suggests using step-based tutoring to
teach the cognitive skill of model construction because such systems are often effective
at teaching cognitive skills (Kulik and Fletcher 2015; Ma et al. 2014; Steenbergen-Hu
and Cooper 2013, 2014; VanLehn 2006, 2011). Thus, we built Dragoon as a step-based
tutoring system with the goal of reducing the time to master model construction to a
few hours so that students could then use their skill to learn science. We also used a
graphical language for expressing models that was simpler than the traditional stock-
and-flow language and yet had more expressive power than earlier work on simplifying
the language (Chin et al. 2010; Lee et al. 2011). We then used pilot studies with college
students in lab settings to iteratively refine Dragoon and a sequence of training
problems.

When the formative classroom evaluation reported here began, we believed the
Dragoon training sequence would take high school students about an hour to complete
and it would adequately prepare them to learn science via model construction.
However, the formative evaluation showed that there was a huge variation in students
ability to acquire skill in model construction and hence in their success at using model
construction to learn science. Although students in the AP physics classes acquired
model construction skill quickly, students in the other three classes did not.

This informal observation was confirmed in Study 1. Students in AP physics classes
didn’t even need the training sequence. Their teacher demonstrated how to use
Dragoon, and then the student learned how to use it by themselves while the teacher
circulated among them.

This huge variation in speed in acquiring model construction skill is consistent with
the literature. Case studies indicate that selected students can quickly learn how to
construct models and then use their skill to gain impressive scientific insights (Blikstein
and Wilensky 2010; Centrola et al. 2000; Sengupta and Wilensky 2009; Wilensky
2003; Wilensky and Reisman 2006; Wilkerson-Jerde et al. 2014). On the other hand,
there are studies with a representative sample of students that showed little benefit from
model construction and/or little acquisition of model construction skill (Levy and
Wilensky 2009b; van Borkulo et al. 2012). Finally, there are studies with longer
training times that did show benefits for representative samples of students (Hashem
and Mioduser 2011; Lee et al. 2011).

This led us to develop a third simplification. (The modeling language and
the tutoring system count as the first two.) In earlier work, including Study 1,
model construction problems were presented as typical word problems—a
concise description of the system was given. Starting with Study 2, Dragoon
students received a concise description of the model as well as a concise
description of the system. This was done intentionally, so that the students
could concentrate on understanding the system and not on the challenge of
translating words into model relationships. They still had to understand the
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formal notation, so they presumably acquired notational mastery as they trans-
lated text descriptions of the model into the formal, graphical language of the
model. It seems that notational mastery suffices for learning science via model
construction, at least in Studies 2 and 3.

It seems that problems that provide students with a concise description of the
model lie midway in difficulty between model exploration and traditional
analytic model construction problems. Model exploration is still easier for
instructors to use, because students do not need to understand the notation of
the models nor the user interface for constructing them. On the other hand,
students who must construct a model of the system are required to pay some
attention to the quantities and relationships in the model. Some of these
quantities and relationships may not be visible in a model exploration exercises.
Thus, one would expect model construction students to learn more about the
internal works of the model and hence the system.

There were hints in the data that Dragoon may be more effective when used
by pairs of students than when used by individuals. In the formative evalua-
tions, students worked mostly individually, whereas in Study 2, they worked in
pairs. In Study 3, they worked initially alone and then in pairs, and may have
learned more when working in pairs. This hypothesis would need to be tested;
these observations are too informal to be trusted. However, if there is high
variation in speed of acquisition of model acquisition, as argued earlier, then
working in pairs would mean that at least one of the students may have above-
average skill in model construction, and that may suffice for both students to
learn the science content.

Our main goal was to demonstrate that model construction could become a
feasible method for teaching science, and the experiments showed without a
doubt that this goal was met. In all three studies, the amount of time required
for Dragoon instruction was similar to the amount of time required for the
control instruction. Moreover, Studies 2 and 3 suggest that Dragoon may have
provided better knowledge of the target system, as one would expect of model
construction when compared to instruction without model construction.
Although Studies 2 and 3 were conducted without the controls that rigorous
laboratory experiments have, and thus would need replication for the results on
learning gains in order to be trusted, the prime goal of establishing feasibility
requires that such studies be conducted in the messiness of real world class-
rooms. In that context, the combination of notational mastery, a step-based
tutoring system, a simplified notation for graphical system dynamics models
and perhaps working in pairs seems to have enabled teachers to feasibly use
model construction, a method that had been abandoned as infeasible by many
earlier advocates.

A good next step in this line of research would be to compare model
construction to model exploration. In addition, it would be interesting and even
necessary to try this form of instruction in more science classes in order to find
out where it works best.
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Appendix: The first four Dragoon problems of Study 2

These figures show both the problem (text) and the correct solution (model). Of course
students only saw the problem.
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