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Abstract Recent research has extended student modeling to infer not just whether a
student knows a skill or set of skills, but also whether the student has achieved robust
learning—Ilearning that enables the student to transfer their knowledge and prepares
them for future learning (PFL). However, a student may fail to have robust learning in
two fashions: they may have no learning, or they may have shallow learning (learning
that applies only to the current skill, and does not support transfer or PFL). Within
this paper, we present automated detectors which identify shallow learners, who are
likely to need different intervention than students who have not yet learned at all.
These detectors are developed using K* machine learned models, with data from
college students learning introductory genetics from an intelligent tutoring system.

Keywords Robust learning - Student modeling - Educational data mining - Intelligent
tutoring system

Introduction

In recent years, there has been increasing interest in developing learning systems which
promote not just learning of the domain skills being taught directly by the system, but also
“robust learning,” (Koedinger et al. 2012)—learning that enables students to transfer their
knowledge (Singley and Anderson 1989; Fong and Nisbett 1991), prepares them for future
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learning (Bransford and Schwartz 1999; Schwartz and Martin 2004), and leads to retention
of knowledge over the long-term (Schmidt and Bjork 1992; Bahrick et al. 1993). There is
considerable evidence that students with insufficiently deep conceptual understanding may
develop “shallow learning,” which may focus on the surface features of a learning situation
rather than on the deeper conceptual features of a domain that make learning robust (Chi
et al. 1981; Rittle-Johnson and Siegler 1998). Avoiding the outcome of shallow learning
has been an increasing focus of research in the AIED community in recent years.

Researchers in the AIED community have attempted to increase the robustness of
learning through a variety of approaches. One line of research attempts to develop feedback
that supports students in developing robust understanding, including early work to incor-
porate conceptual explanations into “bug messages” (Anderson et al. 1995), followed by
work to provide conceptually-meaningful graphical feedback (Corbett and Trask 2000;
Butcher 2010) and integration of natural language discussion of difficult conceptual
material (Graesser et al. 2004; Katz et al. 2007). A second line of work gives student
feedback on domain-independent strategies in order to improve the robustness of learning,
including strategies for problem-solving (Chi and VanLehn 2007), meta-cognition (Chin
et al. 2010; Tan and Biswas 2006), and help-seeking (Roll et al. 2011). A third line of
work has attempted to support robust learning through encouraging and scaffolding
students in conducting self-explanation (Aleven and Koedinger 2002; Corbett et al.
2011; Hausmann and VanLehn 2007; McLaren et al. 2008; Schwonke et al. 2009).

One approach that has been proposed in recent years is to conduct individualization based
on assessment of the robustness of student learning. For example, the FaCT system optimizes
the order of practice of Chinese-language items based on prediction of the eventual retention
of items that will occur depending on the schedule of practice chosen (Pavlik and Anderson
2008). This approach has considerable potential; past work to optimize practice based on
assessments of student knowledge within intelligent tutoring systems has been shown to lead
to better learning (Corbett 2001), as well as more efficient learning (Cen et al. 2007).

Along these lines, an increasing amount of recent work has attempted to assess the
robustness of student learning, in various fashions. Beyond the work to assess retention
in (Pavlik and Anderson 2008), there has also been work to assess retention in an
intelligent tutoring system (ITS) teaching flight skills (Jastrzembski et al. 2000).
Computational modeling work has been conducted to analyze the mechanisms leading
to accelerated future learning (Li et al. 2010). Research has been conducted on the inter-
connections between skills during learning, providing a way to infer how student
knowledge transfers within an intelligent tutoring system (cf. Martin and VanLehn
1995; Pavlik and Anderson 2008). Additionally, Baker et al. (2011a, b) have developed
models that can predict whether a student will eventually transfer their knowledge or be
prepared for future learning outside the learning software, based on a set of features of
student meta-cognitive behavior within a Cognitive Tutor for college Genetics.

Each of these projects is a step towards the long-term vision of modeling and supporting
the acquisition of robust learning. All of this work has a common characteristic: it is focused
on identifying students who will obtain robust learning, differentiating them from all other
learners. However, this previous work does not explicitly distinguish shallow learners,
students who may learn the exact skills presented in the tutor, but who do not learn in a
robust fashion. In specific, work that simply identifies if a student has robust learning may be
unable to distinguish between students who have not yet learned a skill, and students who
have learned a skill shallowly. In this paper, we propose instead to build models that
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specifically identify the students with shallow learning, in order to make it possible to provide
differentiated support tailored to this group’s needs. A student who is on track to achieve
robust knowledge but who has not yet fully acquired the skill may simply need more tutor
practice (cf. Corbett 2001); by contrast, a student who has shallow learning may need support
in building from their procedural skill to deeper conceptual understanding. There are now
interventions which have been shown to help students acquire robust learning, as discussed
above, but not all students may need such interventions. A detector which can identify a
student who has shallow learning, when combined with such interventions, may have the
potential to enable richer intervention and better learner support than is currently possible.

Hence, in this paper, we attempt to go beyond existing approaches that either
identify learning (not considering whether it is robust) or identify robust learning (not
considering the differences between students with shallow learning and students with
no learning), to specifically identify shallow learners. By adding this type of detector
to previously developed type of detectors, we will be able to effectively distinguish
students with robust learning, students with shallow learning, and students with
neither type of learning, supporting more differentiated learning support.

We conduct this research in the context of a Cognitive Tutor for Genetics problem-
solving (Corbett et al. 2010). As in Baker et al. (2011a, b), we engineer a set of features
of student learning and meta-cognitive behavior. We then use these features to predict
whether students demonstrate shallow learning, which is operationalized as the students
who perform better on tests of the exact material covered in the tutor, than on a test of
robust learning. We create two variants of the shallowness detector, one for transfer and
another for PFL. We report these detectors’ effectiveness at identifying shallow learners
when cross-validated at the student level (repeatedly trained on one group of students
and tested on other students), and analyze the detectors’ internal features, comparing
their features to features previously used to predict transfer and PFL. We also study the
degree to which the two detectors of shallow learning agree with one another.

Data Set

Cognitive Tutors are a type of interactive learning environment which use cognitive
modeling and artificial intelligence to adapt to individual differences in student
knowledge and learning (Koedinger and Corbett 2006). Within a Cognitive Tutor,
Bayesian Knowledge Tracing (Corbett and Anderson 1995) is used to determine how
well the student is learning the skills taught in the tutor. Bayesian Knowledge Tracing
calculates the probability that the student knows each skill based on that student’s
history of responses within the tutor. Using these estimates of student knowledge, the
tutoring system gives each student problems that are relevant to the skills which he or
she needs to learn, attempting to bring the student to mastery (i.e., 95 % probability of
knowing each skill) on all skills covered in the current tutor lesson.

The data analyzed in this paper come from undergraduates using the Genetics
Cognitive Tutor (Corbett et al. 2010). The Genetics Cognitive Tutor consists of 19
modules that support problem solving across a wide range of topics in genetics.
Various subsets of the 19 modules have been piloted at 15 universities in North
America. This study focuses on the data from a tutor module that employs a gene
mapping technique called three-factor cross (3FC) in which students reason about
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recombination in meiosis to infer the order of three genes on a chromosome based on
offspring phenotype frequencies. The tutor interface for this reasoning task is
displayed in Fig. 1. The 3FC technique is used to determine both the order of three
genes, (F, G, and H in this example), which lie on one chromosome, and to find the
relative distances between the pairs of genes. In this technique two organisms are
crossed (two fruit flies in the example) and the resulting distribution of offspring
phenotypes is analyzed to infer the arrangement of the three genes on the chromo-
some. In Fig. 1 the student has almost finished the problem. The student has summed
the number of offspring in each of four phenotype groups that appear in the offspring
table, and has categorized each group (as “parental” (no crossovers occurred in meiosis),
“single crossover” during meiosis, or “double crossover” during meiosis). The student
has compared the phenotype patterns in the offspring groups, to identify the middle of
the three genes and entered a gene sequence below the table. Finally, in the lower right
the student has calculated the crossover frequency between two of the genes, G and H,
and the distance between the two genes. The student will perform the last two steps for
the other two gene pairs. Within this lesson, on-demand help was available, and bug
messages were given when students’ actions indicated a specific lack of understanding
of the learning task or the process or order of completing the problem.

The data used in this paper, first published in (Baker et al. 2011a, b), were produced
by 71 students who were enrolled in genetics or introductory biology classes at Carnegie
Mellon University. These students used Cognitive Tutor-supported activities in two 1-h
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Fig. 1 The three-factor cross lesson of the genetics cognitive tutor
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laboratory sessions, on successive days. In each session, students completed standard
three-factor cross problems. During the first lab session, some students piloted
cognitive-tutor activities designed to support deeper understanding; however, no differ-
ences were found between conditions for any robust learning measure, so in this analysis
we collapse across the conditions and focus solely on student behavior and learning
within the standard problem-solving activities.

The 71 students completed a total of 22,885 problem-solving actions across 10,966
problem steps in the tutor. Four paper-and-pencil post-tests followed the tutor activities
(cf. Baker et al. 2011a). Three tests were given immediately after tutor usage: a
straightforward problem-solving post-test, a transfer test, and a test of preparation for
future learning (PFL). A retention test was administered 7 week later; this retention test
correlated with substantially fewer behavioral indicators (as discussed below) than the
transfer and PFL detectors, making a shallowness detector less potentially powerful than
shallowness detectors based on transfer and PFL. As such, the retention test will not be
analyzed in detail within this paper.

Within this paper we focus analysis on the immediate problem-solving post-test,
the transfer test of robust learning, and the PFL test. The problem-solving post-test
consisted of two problems, and had two test forms, counterbalanced with the pre-test.
Each of the two problems on each test form consisted of 11 steps involving seven of
the eight skills in the three-factor cross tutor lesson, with two skills applied twice in
each problem and one skill applied three times. The transfer test included two
problems intended to tap students’ understanding of the underlying processes of
three-factor cross. The first was a three-factor cross problem that could not be solved
with the standard solution method and required students to improvise an alternative
method. The second problem asked students to extend their reasoning to four genes. It
provided a sequence of four genes on a chromosome and asked students to reason
about the crossovers that must have occurred in different offspring groups. In the
preparation for future learning test, students were asked to solve parts of a four-factor
cross problem. The reasoning is related to solving a three-factor cross problem, but
sufficiently more complicated that a student could not be expected to invent a solution
method by direct transfer, and certainly not in a short period of time. Consequently, this
PFL test presented a 2.5-page description of the reasoning in a four-factor cross
experiment, then asked students to solve some elements of a four-factor cross problem:
identifying the middle genes, identifying all the offspring groups with a crossover
between two specific genes and to find the map distance between those two genes.
Each test was graded in terms of how many skills were demonstrated by the student,
with partial credit allowed in cases where a response was correct once a previous
response’s incorrectness was taken into account.

Students demonstrated successful learning in this tutor, with an average pre-test
performance of 0.31 (SD=0.19), an average post-test performance of 0.81 (SD=0.18).
Only one student performed more poorly on the post-test than the pre-test. No
students achieved a perfect score on the pre-test, while 18 students achieved a perfect
score on the post-test. Students were also successful on the transfer test, with an
average score of 0.85 (SD=0.18), and on the PFL test, with an average score of 0.89
(SD=0.15).

The average scores on the basic problem-solving post-test and transfer tests were
similar, with some students scoring higher on the transfer test than the post-test,
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because the two transfer test problems were somewhat easier than the basic problems,
if a student was able to transfer a deep understanding to the novel problems. More
specifically, the basic problem-solving test asked students to solve two conventional
abductive 3FC problems. The first transfer problem was an abductive three-factor
cross problem that could not be solved with the standard solution, but if students
understood the standard solution well enough to improvise an alternative method, the
resulting arithmetic steps were somewhat easier. The second transfer problem asked
students to extend their reasoning to four genes. Students were not asked to solve an
abductive problem, but instead were provided a genotype (the order of four genes on
a chromosome) and asked to reason about the genotypes that result from various
crossovers between genes. Again, if students can transfer their understanding of gene
crossovers to sets of four genes, this forward modeling problem is somewhat
easier to solve than the standard abductive problems. Similar considerations govern
the PFL test, which gave the student explicit support in learning to solve the new type
of problem.

The correlation between the problem-solving post-test and the transfer test was
0.59 suggesting that, although problem-solving skill and transfer skill were related,
transfer may be predicted by more than simply skill at problem-solving within this
domain. The problem-solving post-test and PFL test were also correlated, at a level of
0.41. Transfer and PFL were also correlated, with a positive correlation of 0.52.

Shallowness Detector
Label Generation

The first step towards developing a data-mined model to predict which students have
shallow learning is to create an operational definition of shallow learning that can be
used as a training label (i.e., a “ground truth” label of the construct being predicted)
for our shallowness detector. We employed data from the problem-solving post-test,
the transfer post-test, and the PFL post-test to do this. We consider shallow learning in
two fashions; learning that the student cannot transfer (“no-transfer-shallow learn-
ing”) and learning that does not prepare the student for future learning (“no-PFL-
shallow learning”). We operationalize no-transfer-shallow learning as the difference
between a student’s problem-solving test score and their transfer test score, and no-
PFL-shallow learning as the difference between a student’s problem-solving test
score and their PFL test score. Better performance on the problem-solving test than
on one of the measures of robust learning indicates the student has acquired basic
problem-solving knowledge, but in a shallow fashion, without the deep understand-
ing that enables the application of that knowledge in novel situations.

Given the approximately equal average performance on the three tests, we can
directly compare the percent correct on each test to assess whether a student is a
shallow learner or not (if the tests had radically different average performance, it
might be better to use percentile rank on each test, or to look for natural breakpoints
in the difference in scores between the two tests). As such, the present analysis treats
students who achieve higher scores on the problem-solving post-test than on a
robustness measure as having shallow learning.
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According to this operational definition, 25 of the 71 students in this study are
labeled as no-transfer-shallow learners. Of the remaining 46 students, treated as not
having no-transfer-shallow learning, ten had perfect scores on both the transfer test
and post-test. No other students had the same score on the two tests. The other 36
students had higher scores on the transfer test than the post-test. Among the 25
students labeled as no-transfer-shallow learners, there was an average of a 0.11 point
difference between performance on the two tests (standard deviation=0.11), with an
average score of 0.85 on the problem-solving post-test, and an average score of 0.74
on the transfer test.

For no-PFL-shallowness, 20 of the 71 students are labeled as no-PFL-shallow
learners. Of the remaining 20 non no-PFL-shallow learners, eight had perfect scores
on both the PFL test and post-test. Among the 16 students labeled as no-PFL-shallow
learners, there was an average of a 0.17 point difference between performance on the
two tests (standard deviation=0.10), with an average score of 0.92 on the problem-
solving post-test, and an average score of 0.75 on the PFL test.

The full pattern of performance on the tests can be seen in Table 1.

Data Features

The next step in our process of developing a model that can automatically identify
shallow learning was to identify properties of students’ problem-solving actions in
the Cognitive Tutor that may be hallmarks of shallow learning. Towards this end, we
selected a set of action-level features based on a combination of theory and prior work
to model and detect related constructs. In particular, prior research on detectors of
transfer (Baker et al. 2011b) and PFL (Baker et al. 2011a) influenced our design of
features. As in that work, we can infer which students had shallow learning using the
method discussed in the previous section, but we do not know exactly what actions are
associated with the shallow learning in advance. Hence, we take features calculated at
the level of actions, and aggregate them across actions. We do so using two kinds of
computations: the proportion of time specific behaviors occurred, and average quanti-
tative values across actions. The 25 features used in this analysis included two categories
of basic features, and two categories of complex features.

The first category of basic features focused on overall response time and time
spent processing tutor-provided assistance, including:

(1) Average response time per student response in the tutor software for first attempts
at a problem step.

(2) The average unitized response time (in standard deviations above or below the
mean for students on the current skill) for first attempts at a problem step.

(3) The proportion of actions that involved a lengthy pause after the student
received a bug message, which may indicate self-explanation (cf. Chi et al.
1989) of the bug message.

(4) The proportion of fast responses after a bug message, which may indicate a
failure to self-explain.

(5) The proportion of long pauses after reading on-demand help messages (poten-
tially indicating self-explanation).

(6) The proportion of short pauses after reading on-demand help messages.
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(7) Long pauses after reading an on-demand help message and getting the current
action right (cf. Shih et al. 2008), thought to be a particularly clear indicator of
self-explanation.

(8) Short pauses after reading an on-demand help message and getting the current
action.

The second category of basic features focused on aggregate indicators of correct-
ness and help use:

(9) The proportion of student answers that were correct.
(10) The proportion of student attempts that were help requests.
(11) The proportion of incorrect answers that received bug message.

The first category of complex features involved Bayesian Knowledge Tracing
estimates of the student’s knowledge of relevant skills and estimates of the probability
of correct performance coming from this model (Corbett and Anderson 1995), as well as
additional features leveraging this information:

(12) The average probability the student knew the skill, according to Bayesian
Knowledge Tracing.

(13) The average probability of a correct answer, according to Bayesian Knowledge
Tracing.

(14) The proportion of fast actions on well-known skills, potentially indicating
fluency (cf. Mattler et al. 2011).

(15) The proportion of slow actions on well-known skills, potentially indicating that
the student is continuing to think through the material even after achieving
high accuracy.

The second category of complex features focused on features derived from previous
research on meta-cognition and disengagement:

(16) The proportion of problem steps where the student engaged in help avoidance
(Aleven et al. 2006), not requesting help on poorly known skills (on the
student’s first attempt at a specific problem step),

(17) The proportion of problem steps where the skill was known and help was not
sought (considered an appropriate behavior in Aleven et al. 2006’s model of
meta-cognition in Cognitive Tutors)

(18) The proportion of fast actions not involving gaming the system (which may
indicate a very well-known skill). This feature is computed using an automated
detector of gaming the system (Baker et al. 2008b).

(19) The proportion of slow actions not involving off-task behavior. This
feature is computed using an automated detector of off-task behavior
(Baker 2007).

(20) The student’s average probability of contextual slip/carelessness on errors,
making an error when the student is assessed to know the relevant skill
(which is known to predict post-test problem-solving performance—Baker
et al. 2010). This feature is computed using an automated detector (Baker
et al. 2010).

(21) The certainty of slip, the average contextual probability of slip among actions
with over 50 % probability of being a slip (Baker et al. 2010).
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(22) The student’s average probability of contextual guess on correct responses,
giving a correct response despite having a low probability of knowing the skill
(cf. Baker et al. 2008a)

(23) The certainty of guess, the average contextual probability of guess among
actions with over 50 % probability of being a guess.

(24) The student’s average learning per learning opportunity using the moment-by-
moment learning model, which estimates the probability that the student learned a
relevant skill at each step in problem solving (Baker et al. 2011a).

(25) The average probability that the student was gaming the system, computed
using an automated detector of gaming the system (Baker et al. 2008b).

Some of these features relied upon cut-offs; in these cases, an optimized cut-off
was chosen using a procedure discussed in the next section.

Detector Development

We fit detectors of shallowness using step regression and K*, two machine learning
algorithms that fit fairly distinct patterns. Step regression (not the same as stepwise
regression) involves fitting a linear regression model to predict the labels of shallow-
ness using the features of student behavior in the tutor, and then thresholding that
model’s predictions with a pre-chosen cut-off, in this case 0.5. Within this statistical
framework, all students for whom the linear regression predicted values of 0.5 or higher
are assessed to have non-shallow learning, whereas all students for whom the linear
regression predicted values below 0.5 are assessed to have shallow learning. Hence, this
framework takes numerical predictions of shallowness and transforms them into a binary
prediction of whether the student’s learning is shallow or not, which can be compared to
the labels initially derived from the two tests. Step regression achieves a general goal
similar to the better-known logistic regression; logistic regression is generally preferred
by statisticians due to the relatively high interpretability of model odds ratios and the ease
of computing statistical significance.

The other algorithm which was used is K* (Cleary and Trigg 1995), which is an
instance-based learning algorithm. Instance-based learners classify an instance based
on the assumption that similar instance will have similar classification. K* uses
entropy as a distance measure in identifying the similarity between the instances.
Using entropy as the distance measure, K* handles both categorical and real valued
attributes and is robust to missing values in the data set. Step regression and K* are
used because these algorithms often obtain good cross-validated performance on data
sets similar to the data studied here; furthermore, these two algorithms are very
different than each other; step regression finds linear patterns, while K* finds clumps
of similar students.

These detectors of shallowness are assessed using 10-fold student-level cross-
validation. In 10-fold cross-validation (Efron and Gong 1983), the data points are
divided into ten groups, each of which serves successively as a test set. That is, for
each of the ten groups, the other nine groups are used to produce a model, and then
the tenth group is used to test that model. In this case, we cross-validate at the level of
students (i.e., each student is either in the test fold or the training fold at a given time),
in order to validate model generalizability to new students. Hence, each model’s
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goodness is never tested on the same students it was trained on, but each model is
tested on every student. Because this process does not exclude any data points (students)
from the modeling process, cross-validation is typically preferred to holding out a test set
that is entirely excluded from model development. Cross-validated performance does
not assess whether predictive performance is probabilistically better than chance, but
whether the model can generalize, a subtle difference from traditional statistical signif-
icance tests.

Four metrics were used as the assessment of goodness for each model: (1) A’ (Hanley
and McNeil 1982), (2) Cohen’s (1960) Kappa, or K, (3) Precision (Davis and Goadrich
20006), and (4) Recall (Davis and Goadrich 2006). A’ is the probability that if the detector is
comparing two students, one labeled as having shallow learning and the other one not
labeled as having shallow learning, it will correctly identify which student is which. A’,
also called W (the Wilcoxon statistic), closely approximates the area under the ROC curve,
also called AUC ROC (Hanley and McNeil 1982). A model with an A’ of 0.5 performs at
chance, and a model with an A’ of 1.0 performs perfectly. In these analyses, A" was
computed using software at http://www.columbia.edu/~rsb2162/computeAPrime.zip
which computes A’ directly rather than integrating to estimate the area under the ROC
curve (many implementations in standard packages, which use integration, currently give
moderately incorrect estimations of AUC ROC for some special cases). Cohen’s Kappa
(1960) assesses whether the detector is better than chance at identifying the correct action
sequences as involving the category of interest. A Kappa of 0 indicates that the detector
performs at chance, and a Kappa of 1 indicates that the detector performs perfectly. A" and
Kappa both compensate for the possibility that successful classifications can occur by
chance (cf. Ben-David 2008). A’ can be more sensitive to uncertainty in classification than
Kappa, because Kappa looks only at the final label whereas A’ looks at the classifier’s
degree of confidence in classifying an instance. Models were also evaluated using
Precision and Recall, which indicate, respectively, how good the model is at avoiding
false positives (measured by the number of true positives detected divided by the sum of
true and false positives detected), and how good the model is at avoiding false negatives
(measured by the number of true positives detected divided by the sum of true positives
and false negatives).

We fit two detectors for each algorithm. The first detector uses only the individual
features discussed above in “Data Features”. Some of the features, involving propor-
tions of specific types of actions, depend on a threshold parameter (such as how many
seconds differentiates a “long pause” from a “short pause”). These parameters were
optimized by computing the single-feature step regression model for a range of
potential thresholds (see Baker et al. (2011b) for more details) and selecting the
threshold with the best A’ value. The second detector also includes multiplica-
tive interactions between the individual features. In order to reduce the potential
for over-fitting (a common outcome for overly-complex models, where a set of
features does not generalize well to data from new students—cf. Caruana and
Niculescu-Mizil 2006), we reduce the parameter space of both models prior to
fitting full models. The individual feature model is limited to considering
features for which a single-feature model has cross-validated kappa above 0,
reducing the data space considerably. The multiplicative interaction model only con-
siders the interactions of that subset of features, and furthermore discards features that
fail the same test of having cross-validated kappa above 0. However, original features
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that pass the test are investigated in the multiplicative-interactions model, as well as
multiplicative features.

We used Forward Selection to find the best model for each one of the two feature
sets. In Forward Selection, the best single-parameter model is chosen, and then the
parameter that most improves the model is repeatedly added until no more parameters
can be added which improve the model. In this case, the goodness criterion for model
selection was Kappa. This simple method is chosen to avoid over-fitting.

Results and Discussion
No-Transfer-Shallowness

The best-fitting K* and step regression models for each feature set are as follows:

As can be seen in Table 2, the K* no-interactions model achieves a better cross-
validated Kappa and better precision than all other models, and the K* multiplicative
interactions model achieves better A" and better recall than all other models. The K*
model with multiplicative interactions achieved an acceptable cross-validated kappa
of 0.550 (55 % better than chance). It is worth noting that kappa values typically
achieved in data mining tend to be lower than kappa values achieved in inter-rater
reliability checks among human coders; the standards are different because the goals
are different. The agreement between a data-mined model and a construct which is
itself noisy will inherently be lower than human agreement on a tightly-defined
construct. The A’ value for the K* multiplicative-interactions model is 0.766, which
indicates that the model can differentiate a student who performs better on the
problem-solving test than the transfer test from a student who does not perform better
on the problem-solving test than the transfer test, 76.6 % of the time. This level of
performance on the A’ metric is typically considered to be sufficient to enable fail-soft
intervention, where the interventions given are not particularly problematic if admin-
istered when not needed. Precision and recall were both generally acceptable, with
precision at 0.873 and recall at 0.815 for the K* multiplicative-interaction model (for
shallowness).

The overall success of the K* models suggests that the relationships between these
variables and whether a student has shallow learning will be non-linear. This can be
seen in Figs. 2, 3, 4, 5, and 6, which show the data for pairs of features. Figures 5 and
6 show the features used by the K* multiplicative-interactions model; Fig. 2, 3, and 4
show pairs of the features used by K* no-interactions, but the actual decisions by the
algorithm are made on the basis of a four-dimensional feature space, which is difficult
to visualize in two dimensions. As each of these figures shows, there are clear regions
where one class or the other is more common, but it is difficult to characterize these
relationships as linear, or even as being characterized by straight lines in this space
dividing the regions.

One key feature in the K* models is whether the student paused only very briefly
after requesting a hint (1 s), a behavior that overlaps closely with gaming the system
(Baker et al. 2008b). As Fig. 5 shows, students who frequently engage in this behavior in
a fashion detected as gaming (or frequently engage in this behavior and other forms of
gaming such as systematic guessing—cf. Baker et al. 2008b), or students who frequently
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Table 2 Models to detect no-transfer-shallowness with student-level cross-validated A" and Kappa (sorted

on Kappa)
Model type Model/model features A’ Kappa Precision Recall
K* no-interactions ~ Hint then pause with time<1 (F6) 0.766 0.550 0.873 0.815
No off-task and time>13 (F19)
Gaming the system (F25)
Help avoidance when knowledge<0.55 (F16)
K* multiplicative ~ Hint then pause with time<1 (F6) * No off-task  0.791 0.527 0.850 0.860
interactions and time>13 (F19)
Hint then pause with time<1 (F6) * Average
gaming (F25)
Step regression — 1.0870 * Average certainty of slip (F21) 0.728 0.419 0.756 0.689
multiplicative- —335.5212 * Avg unitized first action time(F2)
interactions —2,731.11 * Average certainty of slip (F21) *
Avg unitized first action time (F2)
—419.38 * Hint then correct then pause with
time>14 (F7)
squared
+1.0499
Step regression no- — 1.25 * Average certainty of slip (F21) 0.725 0.294 0.730 0.635
interactions —1,079.84 * Avg unitized first action time (F2)
+ 1.07

For step regression higher values of model coefficients correspond to non-shallow learners

For K*, there are no model coefficients; the best feature set is given

engage in this behavior and long pauses that are not off-task, are more likely to be
shallow learners; but this behavior is not indicative of shallow learning on its own (see
Fig. 4). At the same time, Fig. 6 shows that students who frequently engage in this
behavior and long pauses that are not off-task are more likely to be shallow learners if
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Fig. 2 The relationship between two variables used in the K* no-interactions model of transfer-shallowness
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they either game frequently or not at all (the middle group may be students who game on
easier material—cf. Baker et al. 2008b—among other possibilities).

Aside from these behaviors, a fourth category of behavior that shows up in the K*
models is help avoidance. As shown in Fig. 4, help avoidance is only a meaningful
predictor of shallowness among students who do not read help overly quickly; if the
student reads help too quickly, the help is unlikely to do him or her much good (cf.
Aleven et al. 2000).

A different set of features is prominent in the step regression models. In both such
models, the first feature is the average certainty of slip. The average certainty of slip
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of the graph)
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has been previously shown to predict final tutor knowledge, even after controlling for
predictions from Bayesian Knowledge Tracing (Baker et al. 2010); as such, it makes
sense that this feature may be related to the depth of learning. While the conventional
interpretation of a slip is carelessness, an alternative interpretation is that a slip
indicates imperfect acquisition of skill, where a student’s skill knowledge works on
some problems but not on others (cf. Baker et al. 2008a). Such lack of transfer even
within basic problem solving is, of course, consistent with shallow learning. Shallow
students have an average certainty of slip of 29.53 %, compared to non-shallow
students, who have an average certainty of slip of 25.3 %.

The second feature in both step-regression models is the average unitized first action
response time (i.¢., the speed with which the student makes his or her first attempt on a
problem step, in standard deviations below or above the mean across students). This
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transfer-shallowness, as in Fig. 5 (focusing on the bottom-left section of the graph)
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feature has a negative coefficient in both models, indicating that in general slow response
times are associated with shallow learning. Shallow learners are not characterized by fast
guesses (which may lead to no learning at all), but just the opposite—they seem rather to
be struggling compared to students achieving robust learning. One additional feature that
is found in the step regression multiplicative-interactions model is the square of the
proportion of time that the student requests a hint, enters a correct answer, and then
pauses before entering the next answer. The behavior is rare in general: shallow students
engage in this behavior 0.57 % of the time, whereas non-shallow students engage in the
behavior 0.43 % of the time. However, this may not be surprising, as one or two instances
of this type of self-explanation across the course of an entire educational activity may
have a disproportionate impact. This feature switches directions (e.g. shallow students
engage in this behavior less), when considered in the context of a model incorporating the
other features.

No-PFL-Shallowness

We followed the same procedure to detect no-PFL shallowness, as we had used to
detect no-transfer shallowness, fitting both step regression and K* models to detect
No-PFL-shallowness.

In the case of the step regression model, no individual feature had cross-validated
Kappa over 0 for no-PFL-shallowness. As a result, no step regression model was built
for no-PFL-shallowness. Several features had cross-validated Kappa over 0 for K*,
so models could still be built in this case.

In the case of K*, successful models were possible. The multiplicative-interactions
model achieved a better A’ and Kappa than the no-interactions model, achieving an A
"0f 0.790, and a Kappa of 0.55. Excellent precision and recall (for shallowness) were
also achieved. Model goodness is shown in Table 3.

As can be seen in Fig. 7, there is a general trend towards students with longer
average response time also having more lengthy pauses that are not off-task. Students
with average response time well above this trend line are more likely to be shallow
learners. Students on the trend line with very high or very low values for both variables
are more likely to be deep, but there is a cluster about 1/3 to half of the way along the
trend line where the shallow learners are disproportionately represented. It can also be
seen that students who are substantially off the trend-line with higher average response
time are more likely to be shallow. Looking at the scatterplot, it is clear that deep and
shallow learners generally dominate different regions of the graph, but the relationship is
not linear in nature.

Table 3 K* models to detect no-PFL-shallowness with student-level cross-validated A" and Kappa

Model type Model features A’ Kappa Precision Recall

K* multiplicative interactions No off-task and time>17 (F19) 0.790 0.55 0.891 0.887
No off-task and time>17 (F19) squared
Avg response time (F1) squared

K* no interactions No off-task and time>17 (F19) 0.758 0.36  0.857 0.907
Avg response time (F1)
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o

Commonality Between Constructs

Transfer and PFL are moderately correlated to each other, with a positive correlation
of 0.52. We know that automated detectors of transfer and PFL can successfully
predict the other construct, with minimal degradation (Baker et al. in press). As such,
it is worth investigating whether detectors of transfer-shallow can predict PFL-
shallow, and whether detectors of PFL-shallow can predict transfer-shallow.

The features used to predict transfer-shallow and PFL-shallow have some overlap,
with lengthy non-off-task pauses showing up in both models. When the models built
to predict transfer-shallow are applied to predict PFL-shallow, they have very min-
imal degradation in terms of A’, achieving an A’ of 0.75, almost as good as a model
trained to predict PFL-shallow. More degradation is seen for Kappa, with Kappa
dropping to 0.27, still substantially better than chance, but about halfway between the
PFL-shallow detector’s performance and chance performance.

When the models built to predict PFL-shallow are applied to predict transfer-
shallow, they again have very minimal degradation in terms of A’, achieving an A’ of
0.73, almost as good as a model trained to predict transfer-shallow. Relatively less
degradation is seen for Kappa than was seen for the transfer-shallow detector, with
Kappa only declining to 0.41.

Overall, these results show that the detectors have fairly good portability between
transfer-shallow and PFL-shallow, suggesting that the two constructs are related in a
substantial fashion.

Conclusions

Within this paper, we have presented models that can distinguish with reasonable
effectiveness whether a student has acquired shallow learning, operationally defined
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as performing better on a test of the material learned in the tutor than on a test of the
ability to transfer that skill for related problems or on a preparation for future learning
(PFL) test. We present two sets of models—one for students who are shallow in terms
of transfer, and another for students who are shallow in terms of PFL. We also use two
distinct algorithms to build these models—step regression, which looks for cut-
offs in linear patterns, and K*, which looks for local regions of density of one category
or the other.

These models are fairly successful at distinguishing shallow learners, in terms of
each operationalization of shallow. The best model of transfer-shallow learning can
distinguish a shallow learner from a non-shallow learner 79 % of the time, perfor-
mance that is 53 % better than chance. The best model of PFL-shallow learning can
distinguish a shallow learner from a non-shallow learner 79 % of the time, perfor-
mance that is 55 % better than chance. In both cases, K* algorithms performed better
than step regression. Detectors trained using one operationalization of shallowness
could predict the other operationalization with relatively minimal degradation, show-
ing that there are commonalities between these constructs. As such, these models
serve as evidence that it is possible to identify shallow learners during online learning, a
type of model that could potentially be applied to a range of learning environments.
Investigating the general applicability of this approach will be an important area for
future research.

A range of features were used in these models, but centered around three types of
behavior: slow actions, both non-off-task and off-task, very rapid actions, including
gaming the system and very fast help requests, and help avoidance. These same types
of features have been found to be correlated to robust learning (Baker et al. 2011a, b),
providing further evidence that the types of meta-cognition involved in appropriate
help-seeking are essential for robust learning, and that disengaged behaviors play an
important role in avoiding shallow learning.

One of the principal uses of detectors such as the one presented here is to support
more intelligent remediation. Students who have learned the exact skills taught in the
tutor but who have not achieved robust learning are a group especially in need of
remediation. Traditional student modeling methods are likely to fail to provide them
any remediation, as they have learned the skills being taught by the tutor and can
demonstrate that skill. A detector of shallow learning can identify these students and
offer them remediation specific to their needs, helping them to build on their
procedural knowledge to achieve the conceptual understanding necessary for future
use of their knowledge. One can imagine a detector of shallow learning being used in
two fashions. First, by identifying these students, the students can be tracked towards
activities that improve their conceptual grounding, perhaps then returning to proce-
dural practice to solidify the conceptual gains made. Second, specific behaviors can
be identified and responded to by the learning software in real time. For example, if a
student fails to pause and self-explain after seeking a hint, the software can provide
meta-cognitive feedback on that decision (Roll et al. 2011). To give another example,
a student who games the system can be given exercises that help the student learn the
material bypassed by gaming (cf. Baker et al. 2006). can be asked to reflect on why
the answer is correct after eventually providing the correct answer, or can be provided
with an explanation as to why the answer is correct. Building this type of remediation
into the Genetics Tutor will be a potentially important step for future work.
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Thus, we view this detector as a second step—building on the first step of transfer and
PFL detectors—towards educational software that can predict and respond automatical-
ly to differences in the robustness of student learning, an important complement to
ongoing research on designing educational software that promotes robust learning (cf.
Butcher 2010; Chin et al. 2010; Roll et al. 2007, 2011; Salden et al. 2008; Tan and
Biswas 2006).
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