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Abstract
Consider the following edge-coloring of a graph G. Let H be a graph possibly with
loops, an H -coloring of a graph G is defined as a function c : E(G) → V (H). We
will say that G is an H -colored graph whenever we are taking a fixed H -coloring
of G. A cycle (x0, x1, . . . , xn, x0), in an H -colored graph, is an H -cycle if and only
if (c(x0x1), c(x1x2), . . . , c(xnx0), c(x0x1)) is a walk in H . Notice that the graph H
determines what color transitions are allowed in a cycle in order to be an H -cycle,
in particular, when H is a complete graph without loops, every H -cycle is a properly
colored cycle. In this paper, we give conditions on an H -colored complete graph G,

with local restrictions, implying that every vertex of G is contained in an H -cycle of
length at least 5. As a consequence, we obtain a previous result about properly colored
cycles. Finally, we show an infinite family of H -colored complete graphs fulfilling the
conditions of the main theorem, where the graph H is not a complete k-partite graph
for any k in N.
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1 Introduction

For basic concepts, terminology and notation not defined here, we refer the reader to
[5]. Throughout this work, we will consider finite simple graphs, unless otherwise is
specified. Let G be a graph, V (G) and E(G)will denote the sets of vertices and edges
of G, respectively.

A k-edge-coloring of a graphG is defined as a function f : E(G) → {1, 2, . . . , k}.
We will say that G is a k-edge-colored graph whenever we are taking a fixed k-edge-
coloring of G.Different kinds of walks have been studied in edge-coloring graphs, for
example, monochromatic walks (that are walks with all the edges of the same color),
properly colored walks (that are walks with no consecutive edges having the same
color), rainbow walks (that are walks whose all edges have different color) and walks
with a given color pattern, see [4, 6, 16, 20].

In particular, properly colored walks are of interest for theoretical reasons, for
example, as a generalization of walk in undirected and directed graphs, see [3], as
well as, in Graph Theory Application, for example, in Genetic and Molecular Biology
[7, 8, 18, 21], Engineering andComputer Science [1, 19, 22], andManagement Science
[24, 25].

Several authors have studied the existence and the length of properly colored cycles
and paths, see [2, 9, 15]. In particular, Grossman and Häggkvist [14] were the first
to study the problem of the existence of properly colored cycles in k-edge-colored
graphs, and they proved Theorem 1, for k = 2. Later, Yeo [26] proved it for k ≥ 2.

Theorem 1 (Grossman and Häggkvist [14], and Yeo [26]) Let G be a k-edge-colored
graph, k ≥ 2, with no properly colored cycle. Then, G has a vertex z ∈ V (G) such
that no connected component of G− z is joined to z with edges of more than one color.

Let G be an edge-colored graph and v a vertex of G, the color degree of v, denoted
by δc(v), is the number of colors in the edges incident with v. Wang and Li [23]
studied the existence of properly colored Hamiltonian cycles and conjectured that in
any graph with at least three vertices such that δc(v) ≥ n

2 , for every vertex v, the
graph contains a properly colored Hamiltonian cycle. Fujita and Magnant [9] gave
a counterexample for that conjecture and proposed a new conjecture by changing
δc(v) ≥ n

2 for δ
c(v) ≥ n+1

2 .They observed that proving that conjecture seems difficult
even for complete graphs, so they studied that case and proved Theorem 2.

Theorem 2 (Fujita and Magnant [9]) Let G be an edge-colored complete graph with
at least 13 vertices. If δc(v) ≥ n+1

2 , for every vertex v in V (G), then every vertex in
G is contained in a properly colored cycle of length at least 5.

In this paper, we will work with a more general concept of edge-coloring defined
as follows: Let H be a graph possibly with loops, an H -coloring of a graph G is
defined as a function c : E(G) → V (H). We will say that G is an H -colored graph
whenever we take a fixed H -coloring of G. A walk W = (x0, x1, . . . , xn), in an H -
colored graph, is an H -walk if and only if for every i ∈ {0, . . . , n− 2}, c(xi xi+1) and
c(xi+1xi+2) are adjacent in H ; and whenever x0 = xn and c(xn−1xn) and c(xnx1) are
adjacent in H , we will say that W is a closed H -walk. A (closed) H -walk T is an
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H -path (H -cycle) if and only if T is a path (cycle). These definitions were introduced
in the context of Kernel Theory in digraphs by Linek and Sands in [17].

A theoretical reason to study H -walks is that they generalize monochromatic
walks and properly colored walks. To see that H -walks generalize properly col-
ored walks, consider the following H -coloring. Let G be a k-edge-colored graph
with color function f , and H a complete graph with vertex set {v1, . . . , vk}. Con-
sider G ′ the H -coloring of G such that c(e) = v f (e), it is easy to see that each
properly colored walk in G corresponds to an H -walk in G ′ and vice versa. If we
replace the complete graph H by the graph H ′ defined as V (H ′) = V (H) and
E(H ′) = {vivi : i ∈ {1, . . . , k}}, then each monochromatic walk in G corresponds to
an H ′-walk in G ′ and vice versa. Also, notice that if W = (x0, x1, . . . , xn) is an H -
walk such that (c(x0x1), c(x1x2), . . . , c(xn−1xn)) is a path in H , thenW is a rainbow
walk.

In [20], it can be found several applications on edge-colored graphswith restrictions
in the color transitions. The following problem refers to the area of communication
in networks: A company has multiple servers to send and receive information, where
there is direct communication between some pairs of them. Sometimes, it is possible
that a message cannot be received because of a failure in the connection between
two consecutive servers in a route of communication. For different reasons (such as,
external attacks or internal failures), the connection between two servers may fail. In
order to have a robust network against communications faults, it is desired to have
communications routes passing through two consecutive connections with a lowmean
probability of failure. We can represent this situation with the help of an H -colored
graph defined as follows: we have one vertex in the graph G for every server in the
network, and two different vertices A and B are adjacent in G if and only if A and
B have a connection. Now, we construct the graph H that will determine what color
transitions are allowed: the vertices of the graph H are the probability of failure in the
different connections in the communication network (notice that the communication
network if finite, so it has a finite number of connections), and two vertices x and y
of H are adjacent if and only if x+y

2 < p, for a fixed p in [0, 1) (for example, we can
consider p = 0.5). Finally, we color the edges of the graph G with the probability of
its failure.

In [12], Galeana-Sánchez, Rojas-Monroy, Sánchez-López and Villarreal-Valdés
began the study of H -colorings by providing conditions implying the existence of
Euler H -trails in H -colored graphs. Later, they gave in [13] an extension of Theorem 1
fromwhich can be extracted an algorithm to determine in polynomial time whether an
H -colored multigraph contains an H -cycle. The following auxiliary graph has proved
to be an essential part in the writing and development of the previous results.

Definition 1 LetG be an H -colored graph and v a non-isolated vertex ofG.We define
the graph Gv as follows

1. V (Gv) = {vx ∈ E(G) : x ∈ NG(v)}.
2. ab ∈ E(Gv), with a �= b, if and only if c(a)c(b) ∈ E(H).

Note that Gv is a simple graph for every non-isolated vertex v of G.
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In [10], Galeana-Sánchez, Hernández-Lorenzana and Sánchez-López began the
study of the existence of H -paths and H -cycles of certain lengths in an H -colored
graph, and by considering the graph Gv, they proved the following result.

Theorem 3 (Galeana-Sánchez et al. [10]) Let G be an H-colored graph. If |V (G)| ≥ 4
and for every x in V (G), Gx is a complete kx -partite graph, for some kx in N, with
kx ≥ |V (G)|

2 , then G has an H-cycle of length at least � |V (G)|
2 � + 1.

The main result in this work shows conditions on an H -colored complete graph G,

with restrictions given by the auxiliary graph Gx , implying that every vertex of G is
contained in an H -cycle of length at least 5. As a consequence of the main result we
obtain Theorem 2. Moreover, for every odd natural number n, we show an example of
an H -colored complete graph of order n fulfilling the conditions of the main theorem,
but the graph H is not a complete k-partite graph. Our aim with this and other similar
results is to find conditions on an H -colored complete graph G, implying that every
vertex of G is contained in an H -cycle of length l for every l in {3, . . . , |V (G)|}, that
is, G is a vertex H -pancyclic graph.

2 Terminology and notation

Let G be a graph. In the rest of paper, we will denote by: NG(u) the neighborhood
of v, δG(v) the degree of v, for X ⊆ V (G), G[X ] the subgraph of G induced by X ,

G − X the subgraph of G induced by V (G) − X , and if X = {a}, we write G − a
instead of G − {a}. If the graph G is understood, we omit the subscript G.

A walk is a sequence W = (v0, v1, . . . , vk) such that vivi+1 ∈ E(G) for every
i in {0, 1, . . . , k − 1}. The number k is the length of W , denoted by �(W ). If v0 =
vk, then we say that W is a closed walk. We say that the walk W is a path if and
only if vi �= v j for every {i, j} subset of {0, 1, . . . , k}, with i �= j . A closed walk
(v0, v1, . . . , vk, v0) is a cycle if and only if k ≥ 2 and (v0, v1, . . . , vk) is a path. If
V = (u0, . . . , un) and W = (un, v1, v2, . . . , vk) are two walks, the concatenation
(u0, . . . , un, v1, v2 . . . , vk) of the walks V andW is denoted by V ∪W , and the walk
(un, . . . , u0) is denoted by V−1.

A subset I of V (G) is independent if and only if the subgraph G[I ] has no edges.
For a fixed positive integer k, we say that a graph G is a k-partite graph if and only
if there exists a partition {V1, . . . , Vk} of V (G) where each Vi is an independent set.
Moreover, a k-partite graph with a partition {V1, . . . , Vk} of V (G) into independent
sets, is said to be a complete k-partite graph if and only if for every x in Vi and for
every y in Vj , x and y are adjacent in G, for every {i, j} subset of {1, . . . , k}, with
i �= j .

LetG be an H -colored graph,W = (v0, . . . , vk) awalk inG and i in {1, . . . , k−1}.
We say that vi is an obstruction of W if and only if c(vi−1vi )c(vivi+1) /∈ E(H); and
whenever v0 = vk, we say that v0 is an obstruction if and only if c(vk−1vk)c(vkv1) /∈
E(H).

For a better understanding for the reader, we include notation and observations
which were introduced in [11].
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Observation 4 Let G be an H-colored graph, such that for every x in V (G), Gx is
a complete kx -partite graph for some kx in N. Suppose that {ux, vx} is a subset of
E(G). The following statements are equivalent:
1. ux and vx are in different partite sets of the kx -partition of V (Gx ).

2. ux and vx are adjacent in Gx .

3. c(ux)c(vx) ∈ E(H).

4. x is not an obstruction of the path (u, x, v).

5. (u, x, v) is an H-path in G.

As a direct consequence of Observation 4 and the definition of H -cycle, we have
the following observations:

Observation 5 Let G be an H-colored graph, such that for every x in V (G), Gx is a
complete kx -partite graph for some kx inN. Suppose that C = (u1, . . . , un−1, un, u1)
is a cycle in G. The following statements are equivalent:
1. C is an H-cycle in G.

2. (c(u1u2), . . . , c(un−1un), c(unu1), c(u1u2)) is a walk in H .

3. u1, . . . , un are not obstructions of the cycle C .

4. ui−1ui and ui+1ui are in different partite sets of the kui -partition of V (Gui ) for
every i in {1, . . . , n} (the subscripts are taken modulo n).

Observation 6 Let G be an H-colored graph, such that for every x in V (G), Gx is a
complete kx -partite graph for some kx in N. If (u, v, w) is an H-path, then for every
x in NG(v) we have that (x, v, u) or (x, v, w) is an H-path.

Observations 4, 5 and 6 will be frequently used in the proof of the main result.

Observation 7 Let G be an H-colored graph without isolated vertices, and D an
induced (by V (D)) subgraph of G. If for every x in V (G), Gx is a complete kx -
partite graph for some kx in N, then for every x in V (D), Dx is a complete lx -partite
graph for some lx in N. Moreover, if {Px

1 , Px
2 , . . . , Px

kx
} is the kx -partition of V (Gx )

into independent sets, then {Px
i ∩ V (Dx ) : Px

i ∩ V (Dx ) �= ∅, i ∈ {1, 2, . . . , kx }} is
the lx -partition of V (Dx ) into independent sets.

If D is an induced subgraph of G without isolated vertices, then for every x in
V (D), we write kDx instead of lx , where lx is the one referred in Observation 7.

Let G be an H -colored complete graph, A a subset of V (G) and v in V (G) − A.

We say that A has the H -dependency property with respect to the vertex v if and only
if for every subset {a, a′} of A, (v, a, a′) or (v, a′, a) is not an H -path in G.

Proposition 8 [11] Suppose that for every x in V (G), Gx is a complete kx -partite
graph for some kx in N. Let A be a subset of V (G) and v be a vertex in V (G) − A. If
A has the H-dependency property with respect to the vertex v, then there exists some
vertex a in A such that

1. kDa ≤ |A|+1
2 , where D = G[A], and

2. if |A| ≥ 2, then a is an obstruction of the walk (v, a, a′) for some a′ in ND(a).
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3 Main results

Theorem 9 Let H be a graph possibly with loops and G an H-colored complete graph
of order n, with n ≥ 13. Suppose that:
1. For every x in V (G), Gx is a complete kx -partite graph, with kx ≥ n + 1

2
.

2. There is no cycle of length 3 in G with exactly 2 obstructions.

Then, every vertex of G is contained in an H-cycle of length at least 5.

Proof Suppose, by contradiction, that there is a vertex v in G that is not contained in
any H -cycle of length at least 5.

Let C = (x1, x2, . . . , xl , x1) be an H -cycle of maximum length in G. It follows by

Theorem 3 that l ≥ �n
3
� + 1 ≥ �13

3
� + 1 = 6. So, v /∈ V (C).

Case 1. {vx1, vx2, . . . , vxl} is an independent set inGv, i.e., {vx1, vx2, . . . , vxl} ⊆
Pv
i , for some i ∈ {1, . . . , kv}.
Without loss of generality, suppose that {vx1, vx2, . . . , vxl} ⊆ Pv

1 . Let F = {x ∈
V (G)−(V (C)∪{v}) : xv /∈ Pv

1 }. Since kv ≥ n + 1

2
,we have that |F | ≥ n + 1

2
−1 =

n − 1

2
. ��

Claim 1 Every vertex u in F is an obstruction of the H-path Ti = (v, u, xi ), for every
i ∈ {1, . . . , l}.
Proof of Claim 1 Assume, by contradiction, that there is a vertex u in F such that
T = (v, u, xi ) is an H -path, for some i ∈ {1, . . . , l}.

Case 1.1 (u, xi , xi+1) is an H -path.
If (xi−2, xi−1, v) is an H -path, then C ′ = (v, u, xi ) ∪ (xi ,C, xi−1) ∪ (xi−1, v) is

an H -cycle. Otherwise, xi−1 is an obstruction of the cycle (v, xi−1, xi−2, v) and, by
assumption of the Case 1, v is also a obstruction of the same cycle. So, by the hypoth-
esis 2, xi−2 is an obstruction of the cycle (v, xi−1, xi−2, v). Hence, (xi−3, xi−2, v) is
an H -path and C ′′ = (v, u, xi ) ∪ (xi ,C, xi−2) ∪ (xi−2, v) is an H -cycle.

Case 1.2 (u, xi , xi+1) is not an H -path.
Then, (u, xi , xi−1) is an H -path.
If (xi−2, xi−3, v) is an H -path, then C ′ = (v, u, xi , xi−1, xi−2, xi−3, v) is an

H -path. Otherwise, xi−3 is an obstruction of the cycle (v, xi−2, xi−3, v) and, by
assumption of the Case 1, v is also a obstruction of the same cycle. So, by the hypoth-
esis 2, xi−2 is an obstruction of the cycle (v, xi−2, xi−3, v). Hence, (xi−1, xi−2, v) is
an H -path and C ′′ = (v, u, xi , xi−1, xi−2, v) is an H -cycle.

In both cases, we have that v is contained in an H -cycle of length at least 5, a
contradiction, and the claim holds. ��

Since A = {uy ∈ V (Gu) : y ∈ V (C)} is contained in the same partite set of the
ku-partition of V (Gu) as uv in the graph Gu, and uv /∈ A, we have that Fu = Gu − A

is a complete kG−V (C)
u -partite graph. Moreover, n′ = |V (G) − V (C)| ≤ n − l ≤ 2n

3
,

and for every vertex u ∈ F, kG−V (C)
u ≥ 3n′

4
.
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Claim 2 For every u ∈ F, kG[F∪{v}]
u ≥ 3.

Proof of Claim 2 Suppose, by contradiction, that kG[F∪{v}]
u < 3.

Let E = V (G)−(F∪V (C)∪{v}).Notice that |E | ≤ n− n − 1

2
−6−1 = n − 13

2
.

Since every vertex u ∈ F is an obstruction of the H -path Ti = (v, u, xi ), then

ku ≤ kG[F∪{v}]
u + |E | < 3 + n − 13

2
= n − 7

2
<

n + 1

2
, a contradiction, and the

claim holds. ��
Since kG[F∪{v}]

u ≥ 3, for every u ∈ F∪{v}, there is an H -path P = (v,w1, w2, w3)

such that wi ∈ F, for every i ∈ {1, 2, 3}. Let X = {x ∈ V (G) − (V (C) ∪ V (P)) :
vx and vw1 are adjacent in Fv}, i.e., a vertex x is in X if and only if x ∈ V (G) −
(V (C) ∪ V (P)) such that T = (w1, v, x) is an H -path in G − V (C). Let Y = {y ∈
V (G) − (V (C) ∪ V (P)) : w3y and w2w3 are adjacent in Fw3}, i.e., a vertex y is in
Y if and only if y ∈ V (G) − (V (C) ∪ V (P)) such that T = (w2, w3, y) is an H -path
in G − V (C).

Since kG−V (C)
v ≥ 3n′

4
and kG−V (C)

w3 ≥ 3n′

4
, we have that |X | ≥ 3n′

4
− 1 and

|Y | ≥ 3n′

4
− 1. Notice that X ∪ Y ⊆ V (G) − (V (C) ∪ V (P)), and hence |X ∪ Y | =

|X | + |Y | − |X ∩ Y | ≤ n′ − 4, so
n′

2
< |X ∩ Y |. Moreover, |X ∩ Y | ≤ n′ − 4.

Notice that for every w ∈ X ∩ Y , we have that vw and ww3 are not adjacent in
Fw, otherwise T = (w, v,w1, w2, w3, w) is an H -cycle, contradicting that v is not
contained in an H -cycle of length at least 5.

In addition, for every {y1, y2} ⊆ X ∩ Y , y1y2 and vy1 are not adjacent in Fy1
or y1y2 and vy2 are not adjacent in Fy2 , otherwise, T = (y2, y1, v, w1, w2, w3, y2)
is an H -cycle of length 6 containing v, a contradiction. Therefore, X ∩ Y has the
H -dependency property with respect to the vertex v.

By Proposition 8, there is a vertex y ∈ X ∩ Y with kG[X∩Y ]
y ≤ |X ∩ Y | + 1

2
, and

since |X ∩ Y | > n′
2 ≥ |F |

2 ≥ n−1
4 ≥ 2, there is a vertex a in X ∩ Y such that ya and

vy are in the same partite set of the ky-partition of V (Gy).

Recall that V (C), X ∩ Y and {v,w3} have no vertices in common and |V (G) −
V (C)| = n′.

Hence, ky ≤ kG[X∩Y ]
y + |V (G) − (V (C) ∪ (X ∩ Y ) ∪ {v,w3})| ≤ |X ∩ Y | + 1

2
+

(n′ − |X ∩Y | − 2) ≤ n′ − |X ∩ Y |
2

− 3

2
≤ n′ −

n′

2
2

− 3

2
≤ 3n′

4
≤ n

2
, a contradiction.

Case 2. {vx1, vx2, . . . , vxl} is not an independent set in Gv.

For the proof of this case, we will consider 2 cases depending on whether
(v, xi , xi+1) and (v, xi , xi−1) are H -paths or not.

Case 2.a There exists i ∈ {1, . . . , l} such that (v, xi , xi+1) is an H -path, and there
exists j ∈ {1, . . . , l} such that (v, x j , x j−1) is an H -path.

Suppose, without loss of generality, that vx1 and vx2 are in different partite sets of
V (Gv), i.e., vx1 and vx2 are adjacent in Gv.
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For the proof of Case 2.a, we will consider 4 cases depending on whether (v, x1, xl)
and (v, x2, x3) are H -paths or not.

Case 2.a.1 (v, x1, xl) and (v, x2, x3) are H -paths.
In this case, C ′ = (v, x2) ∪ (x2,C, x1) ∪ (x1, v) is an H -cycle of length at least 5

containing v, a contradiction.
Case 2.a.2 (v, x1, xl) is an H -path and (v, x2, x3) is not an H -path.
Since (v, x2, x3) is not an H -path, then (v, x2, x1) is an H -path.
Then, by hypothesis of the Case 2, there is i ∈ {3, . . . , l} such that (v, xi , xi+1) is

an H -path.
Notice that if i ∈ {3, . . . , l − 2}, then C ′ = (v, xi ) ∪ (xi ,C, x1) ∪ (x1, v) or

C ′′ = (v, xi ) ∪ (xi ,C, x2) ∪ (x2, v) is an H -cycle of length at least 5 containing v, a
contradiction. So, i ∈ {l − 1, l} and, for every j ∈ {3, . . . , l − 2}, (v, x j , x j−1) is an
H -path.

Claim 3 (v, xl−1, xl) is not an H-path.

Proof of Claim 3 Proceeding by contradiction, suppose that (v, xl−1, xl) is an H -path.
Consider the cycle T = (v, x2, x3, v). Since x2 is an obstruction of T and x3 is

not an obstruction of T , it follows by hypothesis that v is not an obstruction of T .

Hence, vx2 and vx3 are in different partite sets of V (Gv). Since Gv is a complete
kv-partite graph, we have that x2v and xl−1v are adjacent in Gv or x3v and xl−1v

are adjacent in Gv. Therefore, either C ′ = (v, x2) ∪ (x2,C−1, xl , xl−1) ∪ (xl−1, v)

or C ′′ = (v, x3) ∪ (x3,C−1, xl , xl−1) ∪ (xl−1, v) is an H -cycle of length at least 5
containing v, a contradiction. Therefore, (v, xl−1, xl) is not an H -path and the claim
holds. ��
Claim 4 (v, xl , x1) is not an H-path.

Proof of Claim 4 Proceeding by contradiction, suppose that (v, xl , x1) is an H -path.
Consider the cycle T = (v, x3, x4, v). Since x3 is an obstruction of T and x4 is

not an obstruction of T , it follows by hypothesis that v is not an obstruction of T .

Hence, vx3 and vx4 are in different partite sets of V (Gv). Since Gv is a complete
kv-partite graph, we have that x3v and xlv are adjacent in Gv or x3v and xlv are
adjacent in Gv. Therefore, either C ′ = (v, x3) ∪ (x3,C−1, x1, xl) ∪ (xl , v) or C ′′ =
(v, x4) ∪ (x4,C−1, x1, xl) ∪ (xl , v) is an H -cycle of length at least 5 containing v, a
contradiction. Therefore, (v, xl , x1) is not an H -path and the claim holds. ��
Claim 5 (v, x1, x2) is not an H-path.

Proof of Claim 5 Proceeding by contradiction, suppose that (v, x1, x2) is an H -path.
Consider the cycle T = (v, x1, xl , v). It follows by the assumption of the Case 2.a

and Claim 4 that x1 is not an obstruction of T and xl is an obstruction of T . So, by
hypothesis, v is not an obstruction of T . Hence, (v, x1) ∪ (x1,C, xl) ∪ (xl , v) is an
H -cycle of length at least 5 containing v, a contradiction. Therefore, (v, x1, x2) is not
an H -path and the claim holds. ��

Therefore, for every i ∈ {3, . . . , l}, (v, xi , xi+1) is not an H -path, a contradiction.
So this case is not possible.
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Case 2.a.3 (v, x1, xl) is not an H -path and (v, x2, x3) is an H -path.
By symmetry, we have that this case is similar to the Case 2.a.2. Therefore, the

Case 2.a.3 lead us to a contradiction.
Case 2.a.4 (v, x1, xl) is not H -path and (v, x2, x3) is not an H -path.
If there exists k ∈ {4, . . . , l − 1} such that (xk, v, x1) and (xk, v, x2) are H -paths,

then eitherC ′ = (v, xk)∪(xk,C−1, x1)∪(x1, v) orC ′′ = (v, xk)∪(xk,C, x2)∪(x2, v)

is an H -cycle of length at least 5 containing v, a contradiction. So, for every k ∈
{4, . . . , l − 1}, (xk, v, x1) is not an H -path or (xk, v, x2) is not an H -path.

Observation A. If (xk, v, x1) is an H -path, for some k ∈ {4, . . . , l − 1}, then
(v, xk, xk−1) is not an H -path. Otherwise, if (xk, v, x1) is an H -path, for some k ∈
{4, . . . , l−1}, and (v, xk, xk−1) is an H -path, thenC ′ = (v, x1)∪(x1,C, xk)∪(xk, v)

is an H -cycle of length at least 5 containing v, a contradiction.
Observation B. If (xk, v, x2) is an H -path, for some k ∈ {4, . . . , l − 1}, then

(v, xk, xk+1) is not an H -path. Otherwise, if (xk, v, x2) is an H -path, for some k ∈
{4, . . . , l−1}, and (v, xk, xk+1) is an H -path, thenC ′ = (v, xk)∪(xk,C, x2)∪(x2, v)

is an H -cycle of length at least 5 containing v, a contradiction.
The rest of the proof of this case is divided into 4 cases according to whether

{vx j , vx j+1, vx1} and {vx j , vx j+1, vx2} are independent sets in Gv or not.
Case 2.a.4.1 There exists j ∈ {4, . . . , l − 2} such that {vx j , vx j+1, vx1} is an

independent set in Gv.

In this case, v is an obstruction of (x j , v, x j+1). Moreover, by Observation A,
we have that x j is an obstruction of (v, x j , x j+1) and x j+1 is not an obstruction of
(v, x j+1, x j ). Hence, the cycle (v, x j , x j+1, v) has two obstructions, a contradiction.

Case 2.a.4.2 There exists j ∈ {4, . . . , l − 2} such that {vx j , vx j+1, vx2} is an
independent set in Gv.

In this case, v is an obstruction of (x j , v, x j+1). Moreover, by Observation B,
we have that x j+1 is an obstruction of (v, x j+1, x j ) and x j is not an obstruction of
(v, x j , x j+1). Hence, the cycle (v, x j , x j+1, v) has two obstructions, a contradiction.

Case 2.a.4.3 l > 6 and there is no j ∈ {4, . . . , l − 2} such that {vx j , vx j+1, vx2}
and {vx j , vx j+1, vx1} are independent sets in Gv.

Notice that {vx4, vx6, vx1} and {vx5, vx2} are independent sets in Gv or
{vx4, vx6, vx2} and {vx5, vx1} are independent sets in Gv.

If {vx4, vx6, vx1} and {vx5, vx2} are independent sets in Gv, then by applying
Observations A and B, we can conclude that (v, x4, x3) and (v, x5, x6) are H -paths.
Therefore, C ′ = (v, x5) ∪ (x5,C, x4) ∪ (x4, v) is an H -cycle of length at least 5
containing v, a contradiction.

If {vx4, vx6, vx2} and {vx5, vx1} are independent sets in Gv, then by applying
Observations A and B, we can conclude that (v, x6, x7) and (v, x5, x4) are H -paths.
Therefore, C ′ = (v, x6) ∪ (x6,C, x5) ∪ (x5, v) is an H -cycle of length at least 5
passing through v, a contradiction.

Case 2.a.4.4 l = 6, {vx4, vx5, vx2} is not an independent set in Gv and
{vx4, vx5, vx1} is not an independent set in Gv.

Since for each i ∈ {4, 5}, (xi , v, x1) is not an H -path or (xi , v, x2) is not an H -path,
we have that {vx4, vx1} and {vx5, vx2} are independent sets in Gv or {vx4, vx2} and
{vx5, vx1} are independent sets in Gv.
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Whenever {vx4, vx1} and {vx5, vx2} are independent sets in Gv, then by applying
Observations A and B, we can conclude that (v, x4, x3) and (v, x5, x6) are H -paths.
Therefore, C ′ = (v, x5, x6, x1, x2, x3, x4, v) is an H -cycle of length at least 5 con-
taining v, a contradiction.

Whenever {vx4, vx2} and {vx5, vx1} are independent sets in Gv, then by applying
Observations A and B, we can conclude that (v, x4, x3) and (v, x5, x6) are H -paths.
Recall that (v, x1, x2) and (v, x2, x1) are H -paths.

If (x6, v, x1) is an H -path, then (x6, v, x5) is an H -path. Hence, C ′ =
(v, x1, x2, x3, x4, x5, x6, v) orC ′′ = (v, x6, x1, x2, x3, x4, x5, v) is an H -cycle, a con-
tradiction.

If (x6, v, x1) is not an H -path, then (x6, v, x5) is not an H -path. Then, either
(v, x5, x6, v) or (v, x6, x1, v) is a cycle of length 3with 2 obstructions, a contradiction.

Case 2.b For every i in {1, . . . , l}, (v, xi , xi+1) is not an H -path, or for every j in
{1, . . . , l}, (v, x j , x j−1) is not an H -path.

Without loss of generality, suppose that for every i in {1, . . . , l}, (v, xi , xi+1) is
not an H -path. Since for every i in {1, . . . , l}, (v, xi , xi+1) is not an H -path and
(xi−1, xi , xi+1) is an H -path, then we have that (v, xi , xi−1) is an H -path. Moreover,
for every i in {1, . . . , l}, (xi , v, xi+1) is an H -path, otherwise, the cycle (v, xi , xi+1, v)

would have 2 obstructions (namely v and xi+1), which is impossible.

Claim 6 V (C) has the H-dependency property with respect to the vertex v.

Proof of Claim 6 Proceeding by contradiction, suppose that V (C) has not the H -
dependency property with respect to the vertex v, that is, there exists a subset
{xi , x j } of V (C), with i < j, such that (v, xi , x j ) and (v, x j , xi ) are H -paths.
Given that (v, xi , x j ) is an H -path and (v, xi , xi+1) is not an H -path, thus we have
that (x j , xi , xi+1) is an H -path, and by a similar argument, (xi , x j , x j+1) is an H -
path. Hence C ′ = (v, x j , xi ) ∪ (xi ,C, x j−1) ∪ (x j−1, v) and C ′′ = (v, xi , x j ) ∪
(x j ,C, xi−1)∪(xi−1, v) are H -cycles inG, andmoreover, �(C ′)+�(C ′′) = �(C)+4 ≥
10. Therefore,C ′ orC ′′ is an H -cycle of length at least 5 containing v, a contradiction.

��
Let W = {x ∈ V (G) − V (C) : there exists j ∈ {1, . . . , l} such that (x, x j , x j+1)

is an H -path}. Notice that v /∈ W and possiblyW = ∅. Also, the index j in {1, . . . , l}
such that (x, x j , x j+1) is an H -path is not necessarily unique.

Claim 7 For every w in W and for every index j in {1, . . . , l} such that (w, x j , x j+1)

is an H-path, w is an obstruction of the path (v,w, x j ).

Proof of Claim 7 Let w ∈ W and j ∈ {1, . . . , l} be an index such that (w, x j , x j+1) is
an H -path. Proceeding by contradiction, suppose that w is not an obstruction of the
path (v,w, x j ). Since (x j−2, v, x j−1) is an H -path, thus (x j−2, v, w) or (x j−1, v, w)

is an H -path; and recall that (v, x j−2, x j−3) and (v, x j−1, x j−2) are H -paths. Hence,
C ′ = (x j−2, v, w, x j ) ∪ (x j ,C, x j−2) or C ′′ = (x j−1, v, w, x j ) ∪ (x j ,C, x j−1) is an
H -cycle containing v, where �(C ′) = �(C) + 1 > 5 and �(C ′′) = �(C) + 2 > 5,
which is impossible. ��
Claim 8 W has the H-dependency property with respect to the vertex v.
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Proof of Claim 8 Proceeding by contradiction, suppose that W has not the H -
dependency property with respect to the vertex v, that is, there exists a subset {w,w′}
of W such that (v,w,w′) and (v,w′, w) are H -paths. Since w is in W , it follows
that there exists j ∈ {1, . . . , l} such that (w, x j , x j+1) is an H -path, and by Claim 7,
we have that w is an obstruction of the path (v,w, x j ), thus vw and wx j are in the
same partite set of V (Gw). In addition, as (v,w,w′) is an H -path, it follows that
vw and ww′ are in different partite sets of V (Gw). Hence w′w and wx j are in dif-
ferent partite sets of V (Gw), that is, (w′, w, x j ) is an H -path. Since (x j−2, v, x j−1)

is an H -path, we have that (x j−2, v, w′) or (x j−1, v, w′) is an H -path, hence C ′ =
(x j−2, v, w′, w, x j ) ∪ (x j ,C, x j−2) or C ′′ = (x j−1, v, w′, w, x j ) ∪ (x j ,C, x j−1) is
an H -cycle containing v, where �(C ′) = �(C) + 2 > 5 and �(C ′′) = �(C) + 3 > 5,
a contradiction. ��
Claim 9 V (C) ∪ W has the H-dependency property with respect to the vertex v.

Proof of Claim 9 Let {w, x} be a subset of V (C) ∪ W . Since V (C) and W have the
H -dependency property with respect to the vertex v, we can suppose that w ∈ W and
x ∈ V (C), that is, x = x j for some j in {1, . . . , l}. We will prove that (v, x j , w) is
not an H -path or (v,w, x j ) is not an H -path.

Supposing that (v, x j , w) is an H -path, and it suffices to prove that (v,w, x j ) is
not an H -path, that is, w is an obstruction of (v,w, x j ). Given that (v, x j , w) is an
H -path, it follows that vx j and wx j are in different partite sets of V (Gx j ). Also,
recall that (v, x j , x j+1) is not an H -path, which implies that vx j and x j+1x j are in
the same partite set of V (Gx j ). Hence, wx j and x j+1x j are in different partite sets of
V (Gx j ), thus (w, x j , x j+1) is an H -path. Therefore, by Claim 7, we have that w is
an obstruction of (v,w, x j ). Claim 9 holds. ��

Given that V (C) ∪ W has the H -dependency property with respect to the vertex
v, we have by Proposition 8 that there exists a vertex u in V (C) ∪ W such that
kDu ≤ |V (D)|

2 ≤ |V (C)|+|W |+1
2 , where D = G[V (C) ∪ W ], and since |V (C) ∪ W | ≥

|V (C)| > 2, it follows that u′ is an obstruction of (v, u, u′) for some u′ ∈ ND(u).

Recall thatGu is a complete ku-partite graph for some ku inN and Du is a complete
kDu -partite graph for some kDu in N, with kDu ≤ ku . Moreover, if P = {Pu

1 , . . . , Pu
ku

}
is the ku-partition of V (Gu) into independent sets, then we can suppose without loss
of generality that Q = {Pu

i ∩ V (Du) : Pu
i ∩ V (Du) �= ∅, i ∈ {1, 2, . . . , ku}} =

{Pu
1 ∩ V (Du), . . . , Pu

kDu
∩ V (Du)} is the partition of V (Du) into independent sets.

Since u is an obstruction of (v, u, u′) for some u′ ∈ ND(u), it follows that vu and
uu′ are in the same partite set of the ku-partition of V (Gu). Since u′ ∈ ND(u), we
have that uu′ ∈ Pu

i ∩ V (Du) for some i in {1, . . . , kDu }, without loss of generality
suppose that uu′ ∈ Pu

1 ∩ V (Du), where Pu
1 ∩ V (Du) ⊆ Pu

1 . Thus, it follows that
vu ∈ Pu

1 .

Claim 10 kDu = ku .

Proof of Claim 10 Proceeding by contradiction, suppose that kDu < ku, thus there exists
uv′ ∈ Pu

ku
,which implies that uv′ ∈ V (Gu)−V (Du), and v′ ∈ V (G)−V (D),where

V (D) = V (C) ∪ W . Notice that v �= v′, because uv ∈ Pu
1 and uv′ ∈ Pu

ku
.
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Given that v′ /∈ W , it follows by the definition of the set W that for every i in
{1, . . . , l}, (v′, xi , xi+1) is not an H -path, thus xiv′ and xi xi+1 are in the same partite
set of the kxi -partition of V (Gxi ). We claim that u ∈ W (recall that u ∈ V (C) ∪ W ).
Otherwise, if u ∈ V (C), then u = xi for some i in {1, . . . , l}, and uv′ and uxi+1 are
in the same partite set of the ku-partition of V (Gu), which is a contradiction since
uxi+1 ∈ Pu

j for some j in {1, . . . , kDu } and uv′ ∈ Pu
ku

, with j ≤ kDu < ku .
Since u ∈ W ,we have by the definition of the setW that there exists iu in {1, . . . , l}

such that (u, xiu , xiu+1) is an H -path. Now, since (v′, xiu−1 , xiu ) is not an H -path and
(xiu−2 , xiu−1 , xiu ) is an H -path, we have that (v′, xiu−1 , xiu−2) is an H -path. Notice
that (xiu−1 , v

′, xiu−2) is an H -path, otherwise the cycle (v′, xiu−1 , xiu−2 , v
′) would

have 2 obstructions (namely v′ and xiu−2 ), which is impossible. As (xiu−1 , v
′, xiu−2)

is an H -path, it follows that (xiu−2 , v
′, u) or (xiu−1, v

′, u) is an H -path. Hence
C ′ = (xiu−2 , v

′, u, xiu ) ∪ (xiu ,C, xiu−2) or C
′′ = (xiu−1, v

′, u, xiu ) ∪ (xiu ,C, xiu−1) is
an H -cycle, where �(C ′) = �(C) + 1 > �(C) and �(C ′′) = �(C) + 2 > �(C), which
is impossible because C is an H -cycle of maximum length in G. ��

Finally, ku = kDu ≤ |V (C)|+|W |+1
2 ≤ n

2 < n+1
2 , a contradiction. ��

Recall that in an edge-colored graph G and for every vertex x in V (G), we define
the color degree of the vertex x, denoted by δc(x), as |{c(xv) : v ∈ NG(x)}|.
Proposition 10 If H is a complete graph without loops and G is an H-colored graph,
then

1. For every vertex x in V (G), Gx is a complete kx -partite graph for some kx in N,

and moreover, kx = δc(x),
2. If W is a walk, then W is an H-walk if and only if W is a properly colored walk.

In particular, W is an H-path (H-cycle) if and only if W is a properly colored
path (cycle).

3. G has no cycles of length 3 with exactly 2 obstructions.

Proof Let H be a complete graph without loops and G an H -colored graph.
1. Let x be a vertex of G, and suppose that {c(xv) : v ∈ NG(x)} = {1, . . . , δc(x)}.

For every i in {1, . . . , δc(x)}, we define Vi = {xv ∈ E(G) : c(xv) = i}. Since H
is a complete graph without loops, we have that ab ∈ E(Gx ) if and only if a ∈ Vi
and b ∈ Vj , for some {i, j} subset of {1, . . . , δc(x)}, with i �= j . Therefore, Gx is a
complete kx -partite graph, with kx = δc(x).

2. It follows directly from the definitions.
3. Proceeding by contradiction, suppose that G has a cycle of length 3 with exactly

2 obstructions, say C = (u, v, w, u) with u and v obstructions of C . Since u is an
obstruction of C, it follows that c(uv)c(uw) /∈ E(H), and as H is a complete graph
without loops, c(uv) = c(uw). Using a similar argument, c(vu) = c(vw), which
implies that c(wu) = c(wv). Thus, c(wu)c(wv) /∈ E(H), that is, w is an obstruction
of C, which is impossible. ��

In the particular case when H is a complete graph without loops, we obtain Theo-
rem 2 as a direct consequence of Theorem 9 and Proposition 10.

The following construction shows how to construct an H -coloring of a complete
graph Kn, with n an odd number, where H is not a complete k-partite graph and Kn

fulfills the hypotheses of Theorem 9.
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Fig. 1 Example of an H -coloring of a complete graph of order 13 that fulfills the hypothesis of Theorem 9

Construction 1. Let n = 2k + 1, Kn be the complete graph of order n with set
vertex {v1, . . . , vn} and Hn a graph defined as follows: V (Hn) = {x1, x2, . . . , xn},
and x j is adjacent to xi , i < j, if and only if i = 1 or j − i ≤ k. Color the edges of
Kn with the following H -coloring:

c(viv j ) =
{
x1 if viv j = v1vn
x� i+ j

2 � otherwise.

An example of this construction is illustrated in Fig. 1.
We think that Theorem 9 is still true if we remove the second hypothesis.

Conjecture 11 Let G be an H-colored complete graph of order n, with n ≥ 13, such
that for every x in V (G), Gx is a complete kx -partite graph for some kx ≥ 2. If for

every x in V (G), kx ≥ n + 1

2
, then every vertex of G is contained in an H-cycle of

length at least 5.

If Conjecture 11 is true, then the following results follows immediately: Let G be
an H -colored complete graph of order n, with n ≥ 13. If for every x in V (G), Gx has

a complete kx -partite spanning subgraph, for some kx ≥ n + 1

2
, then every vertex of

G is contained in an H -cycle of length at least 5.
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