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Abstract
The main idea of the study on coefficient problems in various classes of analytic

functions (univalent or nonunivalent) is to express the coefficients of functions in a

given class by the coefficients of corresponding functions with positive real part.

Thus, coefficient functionals can be studied using inequalities known for the class

P. Lemmas obtained by Libera and Złotkiewicz and by Prokhorov and Szynal play

a special role in this approach. Recently, a new way leading to results on coefficient

functionals has been pointed out. This approach is based on relating the coefficients

of functions in a given class and the coefficients of corresponding Schwarz func-

tions. In many cases, if we follow this approach, it is easy to predict the exact

estimate of the functional and make the appropriate computations. In the proofs of

these estimates are used not only classical results (the Schwarz–Pick Lemma or

Wiener’s inequality), but also inequalities obtained either recently (e.g. by Efrai-

midis) or long ago yet almost forgotten (Carlson’s inequality). In this paper, a

number of coefficient problems will be solved using the new approach described

above. The object of our study is the class of starlike functions with respect to

symmetric points associated with the exponential function.

Keywords Coefficient problems � Logarithmic coefficients � Zalcman

functionals � Hankel determinants � Starlike functions

Mathematics Subject Classification 30C50 � 30C45

& Paweł Zaprawa

p.zaprawa@pollub.pl

1 Department of Mathematics, Faculty of Mechanical Engineering, Lublin University of

Technology, Nadbystrzycka 36, 20-618 Lublin, Poland

Bol. Soc. Mat. Mex. (2022) 28:17
https://doi.org/10.1007/s40590-022-00409-8(0123456789().,-volV)(0123456789().,-volV)

http://orcid.org/0000-0002-7279-9582
http://crossmark.crossref.org/dialog/?doi=10.1007/s40590-022-00409-8&amp;domain=pdf
https://doi.org/10.1007/s40590-022-00409-8


1 Introduction

Let D be the unit disk fz 2 C : jzj\1g and A be the family of all functions f
analytic in D, normalized by the condition f ð0Þ ¼ f 0ð0Þ � 1 ¼ 0. It means that f has

the expansion

f ðzÞ ¼ zþ
X1

n¼2

anz
n : ð1:1Þ

Let also B0 be the class of Schwarz functions, i.e., analytic functions x : D ! D,

xð0Þ ¼ 0. The function x 2 B0 can be written as a power series

xðzÞ ¼
X1

n¼1

cnz
n : ð1:2Þ

For given analytic functions f and g in D, we say that f is subordinate to g in D and

write f � g if there exists x 2 B0 such that

f ðzÞ ¼ gðxðzÞÞ; z 2 D:

Moreover, if the function g is univalent in D, then f � g if and only if f ð0Þ ¼ gð0Þ
and f ðDÞ � gðDÞ.

Let S�
S denote the class of functions which are starlike with respect to the

symmetric points. A function f is in S�
S if

2zf 0ðzÞ
f ðzÞ � f ð�zÞ � u0ðzÞ; z 2 D;

where

u0ðzÞ ¼
1 þ z

1 � z
:

If the function u0ðzÞ is replaced by any analytic univalent function u with positive

real part in D and symmetric with respect to the real axis, then we obtain the class

S�
SðuðzÞÞ.
In this paper, we consider the class S�

SðuðzÞÞ with uðzÞ ¼ ez. Hence, we can write

S�
SðezÞ ¼ f 2 S :

2zf 0ðzÞ
f ðzÞ � f ð�zÞ ¼ exðzÞ; x 2 B0 ; z 2 D

� �
:

This class was first discussed by Ganesh et al. in [3], where some coefficients

functionals were estimated. The majority of results were not sharp. The main tool

used to obtain those results was a lemma proved by Libera and Złotkiewicz.

In this paper, we follow a new approach which is based on relating the

coefficients of functions in a given class and the coefficients of corresponding

Schwarz functions. In many cases, it is easy to predict the exact estimate of the

functional and make the appropriate computations. It is the case for the class S�
SðezÞ.

By applying the lemmas proved by Libera and Złotkiewicz and by Prokhorov and
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Szynal as well as some other tools, and by performing the calculus more precisely,

we are able to derive better estimates, almost all of them being sharp.

To prove our results, we need the following lemmas for Schwarz functions. The

first one is the above-mentioned result obtained by Prokhorov and Szynal.

Lemma 1 ([5]) Let xðzÞ ¼ c1zþ c2z
2 þ � � � be a Schwarz function. Then, for any

real numbers l and m such that

ðl; mÞ 2 jlj � 1

2
; �1� m� 1

� �
[ 1

2
� jlj � 2 ;

4

27
jlj þ 1ð Þ3� jlj þ 1ð Þ� m� 1

� �
;

the following sharp estimate holds

c3 þ lc1c2 þ mc3
1

�� ��� 1:

From the Schwarz–Pick Lemma, it follows that for x 2 B0 of the form (1.2),

jc2j � 1 � jc1j2 :

This inequality can be improved (see, for example, [2]) as follows. For any k 2 C,

c2 þ kc2
1

�� ��� maxf1; jkjg : ð1:3Þ

Carlson in [1] obtained another generalization of the Schwarz–Pick Lemma. Here,

we state only these inequalities which are useful for our purpose (for all details, see

[7]).

Lemma 2 ( [1]) Let xðzÞ ¼ c1zþ c2z
2 þ � � � be a Schwarz function. Then,

jc3j � 1 � jc1j2 � jc2j2

1 þ jc1j
; jc4j � 1 � jc1j2 � jc2j2 ;

jc5j � 1 � jc1j2 � jc2j2 � jc3j2

1 þ jc1j
:

The above lemma immediately results in the following fact.

Lemma 3 Let xðzÞ ¼ c1zþ c2z
2 þ � � � be a Schwarz function. Then

jc1c3 � c2
2j � 1 � jc1j2 :

We also need the results obtained by Efraimidis.

Lemma 4 ([2]) Let xðzÞ ¼ c1zþ c2z
2 þ � � � be a Schwarz function and k 2 C. Then

c4 þ ð1 þ kÞc1c3 þ c2
2 þ ð1 þ 2kÞc2

1c2 þ kc4
1

�� ��� max 1; jkjf g ð1:4Þ

and
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c4 þ 2c1c3 þ kc2
2 þ ð1 þ 2kÞc2

1c2 þ kc4
1

�� ��� max 1; jkjf g : ð1:5Þ

The method used by Efraimidis in the proof of his lemma has much greater

potential. Based on this method, we can obtain some inequalities involving the fifth

coefficient of x 2 B0 (see also [6]).

Lemma 5 If x 2 B0 is of the form (1.2) and l 2 C, jlj � 1, then

c5 þ ð1 þ lÞc1c4 þ ð1 þ lÞc2c3 þ 3lc1c
2
2 þ 1 þ lþ l2

� �
c2

1c3

��

þ2lð1 þ lÞc3
1c2 þ l2c5

1

��� 1 :
ð1:6Þ

2 Coefficient bounds

We start with the coefficients of f 2 S�
SðezÞ. Applying in

2zf 0ðzÞ
f ðzÞ � f ð�zÞ ¼ exðzÞ; ð2:1Þ

the expansions of f and x given by (1.1) and (1.2), we obtain

a2 ¼ 1

2
c1

a3 ¼ 1

2
c2 þ 1

4
c2

1

a4 ¼ 1

4
c3 þ 3

8
c1c2 þ 5

48
c3

1

a5 ¼ 1

4
c4 þ 1

4
c1c3 þ 1

4
c2

2 þ
1

4
c2

1c2 þ 1

24
c4

1

a6 ¼ 1

6
c5 þ 5

24
c1c4 þ 1

4
c2c3 þ 5

24
c1c

2
2 þ

1

6
c2

1c3 þ 1

8
c3

1c2 þ 11

720
c5

1 :

ð2:2Þ

From [3], it is known that if f 2 S�
SðezÞ is of the form (1.1), then ja2j � 1

2
and ja3j � 1

2
.

Theorem 1 If f 2 S�
SðezÞ is of the form (1.1), then

ja4j � 1

4
and ja5j � 1

4
:

The bounds are sharp.

Proof Lemma 1 with l ¼ 3
2

and m ¼ 5
12

applied to

ja4j ¼ 1

4
c3 þ 3

2
c1c2 þ 5

12
c3

1

���
���;

results in the first inequality.

To prove the second inequality, we can write
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4ja5j ¼ 1

2
c4 þ 2c1c3 þ c2

2 þ 3c2
1c2 þ c4

1

� �
þ 1

2
c4 þ c2

2 � c2
1c2 � 2

3
c4

1

� ����
��� : ð2:3Þ

From (1.4) with k ¼ 1, the first component is bounded by 1/2. By Lemma 2, the

second component, can be estimated as follows

1

2
c4 þ c2

2 � c2
1c2 � 2

3
c4

1

���
���� 1

2
1 � jc1j2 � jc2j2 þ jc2j2 þ jc1j2 1 � jc1j2

� �
þ 2

3
jc1j4

h i

¼ 1

2
� 1

6
jc1j4 � 1

2
:

Combining the estimates of both components of (2.3), we get ja5j � 1
4
.

If c3 ¼ 1 and ck ¼ 0 for k 6¼ 3, then a4 ¼ 1
4
. Similarly, if c4 ¼ 1 and ck ¼ 0 for

k 6¼ 4, then a5 ¼ 1
4
. This means that the equalities in the assertion of this theorem

hold for the functions given by (2.1) with xðzÞ ¼ z3 and xðzÞ ¼ z4, respectively. h

The logarithmic coefficients of a given univalent function f, denoted by

cn ¼ cnðf Þ, are defined as

1

2
log

f ðzÞ
z

	 

¼
X1

n¼1

cnz
n : ð2:4Þ

If f is given by (1.1), then its logarithmic coefficients are given as follows

c1 ¼ 1

2
a2

c2 ¼ 1

2
a3 � 1

2
a2

2

� �

c3 ¼ 1

2
a4 � a2a3 þ 1

3
a3

2

� �

c4 ¼ 1

2
a5 � a2a4 þ a2

2a3 � 1

2
a2

3 �
1

4
a4

2

� �

c5 ¼ 1

2
a6 � a2a5 � a3a4 þ a2a

2
3 þ a2

2a4 � a3
2a3 þ 1

5
a5

2

� �
:

ð2:5Þ

The sharp bounds of ck, k ¼ 1; 2; 3; 4; 5 are established in the next theorem.

Theorem 2 If f 2 S�
SðezÞ is of the form (1.1), then

jc1j �
1

4
; jc2j �

1

4
; jc3j �

1

8
; jc4j �

1

8
; jc5j �

1

12
:

The bounds are sharp.

Proof Applying (2.2) in (2.5), we have
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c1 ¼ 1

4
c1

c2 ¼ 1

4
c2 þ 1

4
c2

1

� �

c3 ¼ 1

8
c3 þ 1

2
c1c2 þ 1

12
c3

1

� �

c4 ¼ 1

8
c4 þ 1

2
c1c3 þ 1

2
c2

2 þ
1

4
c2

1c2 þ 1

48
c4

1

� �

c5 ¼ 1

12
c5 þ 1

2
c1c4 þ 3

4
c2c3 þ 1

16
c3

1c2 þ 1

4
c2

1c3 þ 1

8
c1c

2
2 þ

1

240
c5

1

� �
:

ð2:6Þ

The bounds of c1 and c2 are clear. The result for c3 immediately follows from

Lemma 1 with l ¼ 1
2

and m ¼ 1
12

.

Observe that

c4 þ 1

2
c1c3 þ 1

2
c2

2 þ
1

4
c2

1c2 þ 1

48
c4

1

���
���

¼ 1

2
c4 þ c1c3 þ c2

2 þ c2
1c2

� �
þ 1

2
c4 � 1

2
c2

1c2 þ 1

24
c4

1

� ����
���� 1 :

Indeed, from (1.4) with k ¼ 0,

1

2
c4 þ c1c3 þ c2

2 þ c2
1c2

�� ��� 1

2

and, by Lemma 2 and (1.3),

1

2
c4 � 1

4
c2

1c2 þ 1

48
c4

1

���
���� 1

2
1 � jc1j2 � jc2j2 þ 1

2
jc1j2ð1 � jc1j2Þ þ 1

24
jc1j4

h i
;

which is clearly less than or equal to 1/2.

For c5, we have

12jc5j ¼
1

2
c5 þ c1c4 þ c2c3 þ c2

1c3

� ���

þ c5 þ 1

2
c2c3 � 1

2
c2

1c3 þ 1

8
c3

1c2 þ 1

4
c1c

2
2 þ

1

120
c5

1

� ����� 1

2
ð1 þWÞ :

The bound of the first component follows from (1.6) with l ¼ 0. The triangle

inequality and Lemma 2 result in

W � 1 � jc1j2 � jc2j2 � jc3j2

1 þ jc1j
þ 1

2
jc2j þ jc1j2
� �

jc3j

þ 1

8
jc1j3jc2j þ 1

4
jc1jjc2j2 þ 1

120
jc1j5 :

The above expression takes its greatest value with respect to jc3j when

jc3j ¼ 1
4
ðjc2j þ jc1j2Þð1 þ jc1jÞ, so

W � 1 � jc1j2 þ 1

16
jc1j4 þ 17

240
jc1j5 � 15

16
jc2j2 þ 5

16
jc1jjc2j2

þ 1

8
jc1j2jc2j þ 1

4
jc1j3jc2j :

Since jc1j3jc2j � jc1j2jc2j, we can write
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W � hðc; dÞ ;

where c ¼ jc1j, d ¼ jc2j and

hðc; dÞ ¼ 1 � c2 þ 1

16
c4 þ 17

240
c5 � 15

16
d2 þ 5

16
cd2 þ 3

8
c2d :

The shape of the region of variability of (c, d) is a simple consequence of the

Schwarz–Pick Lemma. It coincides with

X ¼ ðc; dÞ : 0� c� 1; 0� d� 1 � c2
� �

: ð2:7Þ

It is not difficult to show that (0, 0) is the only critical point of h in X. Consequently,

it is enough to derive the greatest value of h on the boundary of X. But,

hðc; 0Þ ¼ 1 � c2 þ 1

16
c4 þ 17

240
c5 � 1 ;

hð0; dÞ ¼ 1 � 15

16
d2 � 1 ;

hðc; 1 � c2Þ ¼ 1

16
þ 5

16
cþ 5

4
c2 � 5

8
c3 � 5

4
c4 þ 23

60
c5 :

Since 5
4
ðc2 � c4Þ� 5

16
and 5

16
ðc� 2c3 þ c5Þ�

ffiffi
5

p

25
we conclude that

h c; 1 � c2
� �

� 1

16
þ 5

16
þ

ffiffiffi
5

p

25
þ 23

60
� 5

16

� �
c5\1 :

Combining all these inequalities, we get

hðc; dÞ� hð0; 0Þ ¼ 1 ;

which results in the desired bound.

Observe that we obtain equalities in each bound of ck, k ¼ 1; 2; 3; 4; 5 when

xðzÞ ¼ zk. This means that the obtained estimates are sharp. h

3 Estimates of Zalcman functionals and Hankel determinants

It is known ([3]) that if f 2 S�
SðezÞ is of the form (1.1), then ja3 � a2

2j � 1
2
. This

functional, known as the Fekete–Szegö functional, is a particular case of the

Zalcman functional anþm�1 � anam. Let us consider other cases of the Zalcman

functional.

The estimate of a4 � a2a3 is a simple consequence of Lemma 1. Namely,

a4 � a2a3j j ¼ 1

4
c3 þ 1

2
c1c2 � 1

12
c3

1

���
��� ;

so taking l ¼ 1
2

and m ¼ � 1
12

in Lemma 1 yields

ja4 � a2a3j � 1

4
:

To estimate a5 � a2
3, we write this expression as follows
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a5 � a2
3

�� �� ¼ 1

4
c4 þ c1c3 � 1

12
c4

1

���
���

¼ 1

4

1

2
c4 þ 2c1c3 � 1

2
c2

2 �
1

2
c4

1

� �
þ 1

2
c4 þ 1

2
c2

2 þ
1

3
c4

1

� ����
��� :

Applying (1.5) with k ¼ �1
2
, the first component is bounded by 1/2. To estimate the

other, we use the triangle inequality and Lemma 2. Hence

1

2
c4 þ 1

2
c2

2 þ
1

3
c4

1

���
���� 1

2
1 � jc1j2 � jc2j2 þ 1

2
jc2j2 þ 1

3
jc1j4

� �

� 1

2
1 � 1

3
jc1j2 3 � jc1j2

� �
� 1

2
jc2j2

h i
� 1

2
;

so

ja5 � a2
3j �

1

4
:

Considering xðzÞ ¼ z3 and xðzÞ ¼ z4, we can observe that the estimates of the two

cases of the Zalcman functional are sharp. We have proved what follows.

Theorem 3 If f 2 S�
SðezÞ is of the form (1.1), then the following sharp bounds hold

ja4 � a2a3j � 1

4
and ja5 � a2

3j �
1

4
:

Let us turn to Hankel determinants for the class S�
SðezÞ. The first result is easy to

obtain.

Theorem 4 If f 2 S�
SðezÞ is of the form (1.1), then

jH2;2j � 1

4
:

Proof If f 2 S�
SðezÞ, then

jH2;2j ¼ a2a4 � a2
3

�� �� ¼ 1

4

1

2
c2

2 � c1c3

� �
þ 1

2
c2

2 þ
1

2
c2

1c2 þ 1

12
c4

1

� ����
��� :

Since

c2
2 þ

1

2
c2

1c2 þ 1

12
c4

1

���
���� 1 � jc1j2
� �2

þ1

2
c2

1 1 � jc1j2
� �

þ 1

12
c4

1 ¼ 1 � 3

2
jc1j2 þ 7

12
jc1j4

and

½0; 1� 3 t ! 1 � 3

2
t þ 7

12
t2

is a decreasing function, we conclude that
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c2
2 þ

1

2
c2

1c2 þ 1

12
c4

1

���
���� 1 :

This and Lemma 3 result in the declared bound of H2;2.

Furthermore, jH2;2j ¼ 1
4

if c2 ¼ 1 and ck ¼ 0 for k 6¼ 2, i.e. if xðzÞ ¼ z2. h

Theorem 5 If f 2 S�
SðezÞ is of the form (1.1), the following sharp bound holds

jH2;3j � 1

8
:

Proof Assume that f 2 S�
SðezÞ is of the form (1.1). Then

jH2;3j ¼ a3a5 � a2
4

�� ��

¼ 1

8
c2 þ 1

2
c2

1

� �
c4 � 1

2
c2

3 �
1

2
c2 � 1

6
c2

1

� �
c1c3 þ c3

2 þ
3

8
c2

1c
2
2 þ

1

24
c4

1c2 � 1

288
c6

1

���
��� :

By the triangle inequality and Lemma 2,

jH2;3j � 1

8
jc2j þ 1

2
jc1j2

� �
1 � jc1j2 � jc2j2
� �

þ 1

2
1 � jc1j2 �

jc2j2

1 þ jc1j

 !2
2

4

þ1

2
jc2j þ 1

6
jc1j2

� �
jc1j 1 � jc1j2 �

jc2j2

1 þ jc1j

 !

þjc2j3 þ 3

8
jc1j2jc2j2 þ 1

24
jc1j4jc2j þ 1

288
jc1j6

i
:

Let hðjc1j; jc2jÞ denote the right hand side of the above inequality and let c ¼ jc1j,
d ¼ jc2j. Since

oh

od
¼ 1

24ð1 þ cÞ2
48d3 � 36cð1 þ cÞd2 � 2ð1 þ cÞ 24 � 21c2 þ 5c3

� �
d

�

þ 24 þ 12c� 24c2 � 12c3 þ c4
� �

ð1 þ cÞ2
i
;

replacing d2 by d and omitting c4 in the last component, we get

oh

od
	 gðc; dÞ

24ð1 þ cÞ2

with

gðc; dÞ ¼ 48d3 � 2ð1 þ cÞ 24 þ 18c� 21c2 þ 5c3
� �

d þ 12ð2 þ cÞð1 � cÞð1 þ cÞ3 :

A straightforward algebraic computation shows that the critical points of g satisfy
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21 � 3c� 24c2 þ 10c3ð Þd � 3 5 � 6c� 5c2ð Þð1 þ cÞ2 ¼ 0

72d2 � ð1 þ cÞ 24 þ 18c� 21c2 þ 5c3ð Þ ¼ 0;

(

so in X given by (2.7), there is only one critical point ðc0; d0Þ where c0 ¼ 0:345. . .
and d0 ¼ 0:722. . .. For this point,

gðc0; d0Þ ¼ 8:695. . . :

On the boundary of X, we have

gðc; 0Þ ¼ 12ð2 þ cÞð1 � cÞð1 þ cÞ3 	 gð1; 0Þ ¼ 0 ;

gð0; dÞ ¼ 24 1 � 2d þ 2d3
� �

	 g 0;
ffiffiffi
3

p

3

	 

¼ 8

3
9 � 4

ffiffiffi
3

p� �
;

g c; 1 � c2
� �

¼ 2ð1 � cÞð1 þ cÞ2
12 � 24cþ 3c2 þ 19c3
� �

:

It is a simple task to show that 12 � 24cþ 3c2 þ 19c3 [ 0 in [0, 1], so

gðc; dÞ	 0 for ðc; dÞ 2 X :

This means that

oh

od
	 0 for ðc; dÞ 2 X :

Consequently,

hðc; dÞ� h c; 1 � c2
� �

¼ 1 � 5

8
c2 � 9

8
c4 þ 217

288
c6 :

The function hðc; 1 � c2Þ is decreasing for c 2 ½0; 1�, so

hðc; dÞ� h c; 1 � c2
� �

� 1 :

Similarly as in Theorem 4, the equality jH2;3j ¼ 1
8

holds if c2 ¼ 1 and ck ¼ 0 for

k 6¼ 2, i.e. if xðzÞ ¼ z2. h

Theorem 6 If f 2 S�
SðezÞ is of the form (1.1), then

jH3;1j � 13

128
:

Proof If f 2 S�
SðezÞ, then

jH3;1j ¼ 1

16
2c2c4 � c2

3 þ c2 þ 1

6
c2

1

� �
c1c3 � 1

4
c2

1c
2
2 �

1

12
c4

1c2 � 1

144
c6

1

���
��� : ð3:1Þ

At the beginning, it should be noted that
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c3 c3 � c1c2 � 1

6
c3

1

� ����
���� jc3j

by Lemma 1 with l ¼ �1 and m ¼ �1
6
. Under Lemma 2,

jc3j � 1 � jc1j2 � jc2j2

1 þ jc1j
� 1 � jc1j2 � jc2j2

2
:

Applying it and jc4j � 1 � jc1j2 � jc2j2, we get

jH3;1j � 1

16
h jc1j; jc2jð Þ ;

where

hðc; dÞ ¼ 1 � c2 � d2

2
þ 2d 1 � c2 � d2

� �
þ 1

4
c2d2 þ 1

12
c4d þ 1

144
c6 ; c ¼ jc1j; d ¼ jc2j :

But h is a decreasing function of the variable c; consequently,

hðc; dÞ� hð0; dÞ ¼ 1 þ 2d � 1

2
d2 � 2d3:

The function h(0, d) achieves its greatest value in [0, 1] if d ¼ 1=2, so hð0; dÞ� 13
8
,

which completes the proof. h

This result is not sharp. Based on Formula (3.1), it is expected that the sharp

bound of jH3;1j is equal to 1
16

.

The method used in the proof of Theorem 2 for the bound jc5j � 1
12

may be

adopted to prove that if f 2 S�
SðezÞ is of the form (1.1), then ja6 � a2a5j � 1

6
. This

result is also sharp. Unfortunately, the sharp bound of a6 has not been obtained.

From (2.2), we can only obtain that

ja6j � 1

6
þ e; e ¼ 0:016. . .

with an obvious conjecture that the exact value of the bound is equal to 1/6.
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