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Abstract

The main idea of the study on coefficient problems in various classes of analytic
functions (univalent or nonunivalent) is to express the coefficients of functions in a
given class by the coefficients of corresponding functions with positive real part.
Thus, coefficient functionals can be studied using inequalities known for the class
‘P. Lemmas obtained by Libera and Ztotkiewicz and by Prokhorov and Szynal play
a special role in this approach. Recently, a new way leading to results on coefficient
functionals has been pointed out. This approach is based on relating the coefficients
of functions in a given class and the coefficients of corresponding Schwarz func-
tions. In many cases, if we follow this approach, it is easy to predict the exact
estimate of the functional and make the appropriate computations. In the proofs of
these estimates are used not only classical results (the Schwarz—Pick Lemma or
Wiener’s inequality), but also inequalities obtained either recently (e.g. by Efrai-
midis) or long ago yet almost forgotten (Carlson’s inequality). In this paper, a
number of coefficient problems will be solved using the new approach described
above. The object of our study is the class of starlike functions with respect to
symmetric points associated with the exponential function.
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1 Introduction

Let D be the unit disk {z € C: |z]<1} and A be the family of all functions f
analytic in D, normalized by the condition f(0) = f'(0) — 1 = 0. It means that f has
the expansion

ﬂ@:z+§§%f‘ (1.1)
n=2

Let also B, be the class of Schwarz functions, i.e., analytic functions @ : D — D,
®(0) = 0. The function w € B, can be written as a power series

o(z) = icnz" . (1.2)
n=1

For given analytic functions fand g in D), we say that f is subordinate to g in D and
write f < g if there exists @ € By such that

f(z) = g(w(z)), zeD.

Moreover, if the function g is univalent in D, then f < g if and only if £(0) = g(0)
and (D) C g(D).

Let Sg denote the class of functions which are starlike with respect to the
symmetric points. A function fis in Sy if

27" (2)
—_— D
ToRET G
where
1

If the function @, (z) is replaced by any analytic univalent function ¢ with positive
real part in D and symmetric with respect to the real axis, then we obtain the class

S5(0(z)).
In this paper, we consider the class Ss(¢(z)) with ¢(z) = ¢°. Hence, we can write
27f'(2) .
Si(€ —{ €eS:—2 X 20 pweBy,zeDy.
(=SS °

This class was first discussed by Ganesh et al. in [3], where some coefficients
functionals were estimated. The majority of results were not sharp. The main tool
used to obtain those results was a lemma proved by Libera and Zlotkiewicz.

In this paper, we follow a new approach which is based on relating the
coefficients of functions in a given class and the coefficients of corresponding
Schwarz functions. In many cases, it is easy to predict the exact estimate of the
functional and make the appropriate computations. It is the case for the class Sg(e°).
By applying the lemmas proved by Libera and Ztotkiewicz and by Prokhorov and
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Szynal as well as some other tools, and by performing the calculus more precisely,
we are able to derive better estimates, almost all of them being sharp.

To prove our results, we need the following lemmas for Schwarz functions. The
first one is the above-mentioned result obtained by Prokhorov and Szynal.

Lemma 1 ([5]) Let w(z) = c1z+ 22> + - -+ be a Schwarz function. Then, for any
real numbers | and v such that

1 1 4
woefusy . —rsvsibulfsmsz, Lo+ -+ svst},
the following sharp estimate holds

o3 4 perer + vej| < 1.

From the Schwarz—Pick Lemma, it follows that for w € By of the form (1.2),
o] <1 —ler]” .
This inequality can be improved (see, for example, [2]) as follows. For any 4 € C,
|2 + 2ct| < max{1, 2]} . (1.3)

Carlson in [1] obtained another generalization of the Schwarz—Pick Lemma. Here,
we state only these inequalities which are useful for our purpose (for all details, see

[7D.

Lemma 2 ( [1]) Let w(z) = c12 + ¢22* + - - - be a Schwarz function. Then,

2
el <t—ferf 120 L el <t —lal el .
2
esl <1 = erf = Jea — 12

1+‘Cl| '

The above lemma immediately results in the following fact.
Lemma 3 Let w(z) = ¢z + 2z + - - - be a Schwarz function. Then

leres — 2| <1 — ).

We also need the results obtained by Efraimidis.
Lemma4 ([2]) Let w(z) = c1z + 2z + - - - be a Schwarz function and /i € C. Then

A} (1.4)

lea 4+ (14 A)cres + ¢35 + (14 22)cier + /lcﬂ < max{1,

and
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cs+2¢163 + Ac3 + (14 22)cter + Act| < max{1,|2[} . (1.5)

The method used by Efraimidis in the proof of his lemma has much greater
potential. Based on this method, we can obtain some inequalities involving the fifth
coefficient of w € By (see also [6]).

Lemma 5 If w € By is of the form (1.2) and u € C, |u| <1, then

|c5 + (14 p)eres + (1 + weaes + 3,uc1c§ + (1 +u+u )c c3

(1.6)
+2u(1 + pycies + p cl} <1.
2 Coefficient bounds
We start with the coefficients of f € Sg(e?). Applying in
2 /
7 (Z) _ 6(0(1)7 (21)
f@) —f(=2)
the expansions of f and @ given by (1.1) and (1.2), we obtain
a — 1
2 = icl
_1 12
a3 = §C2 + ch
1 3 53
as = 303 +g0102 + 50 (2.2)
1 1 1 1 1
as = ZC4 + chq + —C% + Zc%cz + — 4
ae flCS + Sclc4+ 6263 + C]C2+ c 163 + C cz+71210 ? .

From [3], it is known that if f € Sg(e®) is of the form (1.1), then |a>| <} and |as| <1.
Theorem 1 Iff € Sg(€°) is of the form (1.1), then

1 1
|a4|§1 and |a5|§1 .
The bounds are sharp.

Proof Lemma 1 with u =3 and v = 3 applied to
1 3 5
las| = 2les —|—Ec1cz —|—Ec?

results in the first inequality.
To prove the second inequality, we can write
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d)as| = ‘%(q +2ci03 + c% + 30%02 + c‘l‘) + %(q + c% — c%cz — %c?) ‘ . (2.3)
From (1.4) with A = 1, the first component is bounded by 1/2. By Lemma 2, the
second component, can be estimated as follows

1 2 4

1 2
5‘64 + c% - c%cz -3 Si[l - |cl|2 — |cz\2 + |cz\2 + |c1\2<1 — |c1|2) —|—§\cl|4]

1

1
) 6|cl|§

2
Combining the estimates of both components of (2.3), we get |as| <1

If c3 =1 and ¢, = 0 for k # 3, then a, = }. Similarly, if ¢4, = 1 and ¢, = 0 for
k # 4, then as = 1. This means that the equalities in the assertion of this theorem
hold for the functions given by (2.1) with w(z) = z* and w(z) = z*, respectively. [J

The logarithmic coefficients of a given univalent function f, denoted by
Yu = 7,(f), are defined as

%]og <@) - 2 2" . (2.4)

If fis given by (1.1), then its logarithmic coefficients are given as follows

1
N1 =5%
1 1
1 =5as — 543
2 2 2 2
1 13
V3 = 5(614 —masz + 5612) (2.5)
1 2 12 1 4
Va4 = 3 as — apaq + aaz — 5a3 — Za2

1 2 2 3 l s
Y5 = E(aé — aras — azas + apaz + ayas — a,az + gaz .

The sharp bounds of y,, k = 1,2,3,4,5 are established in the next theorem.

Theorem 2 If f € Sg(¢°) is of the form (1.1), then

1 1 1 1 1
i<y 5 Iel<y 0 i<y Il<g 0 Iisl<4-
The bounds are sharp.

Proof Applying (2.2) in (2.5), we have
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_ L
1 =30
1 1-
V2 1(024—101)
71( +lee +] 3) 26
73 =gl €3 T 306 T 50 (2.6)
1 1 19 12 1 4
V4 §<C4 + 56163 + Ecz + chcz + Rcl)

1 1 3 1 3 1> 1 2 1 s
Vs = E(cs + §C1C4 +ZC2C3 +EC1C2 +ZC1C3 +§c1c2 + %cl) .

The bounds of y, and p, are clear. The result for y; immediately follows from
Lemma 1 with y=1and v = L.
Observe that
1 19 12 1 4
c4 + €163 + 32 + €162 + 1561

1 1 1 1
= ’E(m +cic3 + c% + c%cz) + 5(6‘4 — zc%cz +ﬂc?>‘ <1.

Indeed, from (1.4) with A =0,
%‘q +cic3 + c% + c%cz| §%
and, by Lemma 2 and (1.3),

1 1 1 1 2 2 1 2 2 1
‘504—Zcf62+ﬁc‘1‘ §§[1—|cl| — e —|—§|c1| (I=|eal?) +=lal]

which is clearly less than or equal to 1/2.
For 75, we have

1
12[ys] = §| (Cs +cieq + ez + ch)
1 12 13 | ) 1 5 1
+ (Cs + 56263 — 56163 + 50102 + 1163 +E0C1)‘ gz(l +W).

The bound of the first component follows from (1.6) with u = 0. The triangle
inequality and Lemma 2 result in

e a2 el }( 2)
WSI ‘C]| ‘C2| 1+‘Cl‘+2 |C2|+|C]‘ |C3‘
1 3 1 2 1 5
+§|Cl\ |C2|+Z|Cl||02| +m|c1| .

The above expression takes its greatest value with respect to |c3] when
les] = 4leal + [erP) (1 + ea]), s

17
240

L2 13
+glelleal +Zlerleal -

I 15 5
W1 — e + el + 55lerl = leal +lelleal?

Since |c1[*|ea| < |e1[*|ca], we can write
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W <h(c,d)
where ¢ = |¢1|, d = |c,| and
_q_2, b4 175 155 5 5 32
h(e,d)=1-c¢ 166 T oa0¢ ~1ed Tiecd ted

The shape of the region of variability of (c, d) is a simple consequence of the
Schwarz—Pick Lemma. It coincides with

Q:{(c,d):Ogcgl,Ogdgl—cz}. (2.7)

It is not difficult to show that (0, 0) is the only critical point of 4 in Q. Consequently,
it is enough to derive the greatest value of & on the boundary of 2. But,

_q_ 2,14 175
h(c,0) =1 e iy ) O
h(O,d):l—%dzgl,
S A S VI D v O P I e i
h(c,1 c)—16+16c+4c i P

Since 3(c* — ¢*) <2 and 3(c — 2¢® + ¢®) <& we conclude that

2 1,5  vV5,(23 5\5
h(c,l—c)SE—&-E-i-g—i—(@—E)c <1.

Combining all these inequalities, we get
h(c,d) <h(0,0) =1,

which results in the desired bound.
Observe that we obtain equalities in each bound of y,, k =1,2,3,4,5 when
o(z) = z*. This means that the obtained estimates are sharp. []

3 Estimates of Zalcman functionals and Hankel determinants

It is known ([3]) that if f € Si(¢°) is of the form (1.1), then |a3 — a3| <1 This
functional, known as the Fekete—Szegd functional, is a particular case of the
Zalcman functional a,4,,—1 — a,a,,. Let us consider other cases of the Zalcman
functional.

The estimate of a4 — azas is a simple consequence of Lemma 1. Namely,

1 1 1 3
las — azas| —ZC3+501C2 |
so taking u =1 and v = — in Lemma 1 yields

1
‘04 —612(13| SZ .

To estimate as — a%, we write this expression as follows
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2 1 14
jas — a3] = Z‘C“ T = e ‘
1|1 12 14) 1( 10 14)‘
=—l=lc 2c1c3 — =¢5 — =C —(c —C - .
4‘2(4+ 163 = 563 = 5€) +2 4+22+31

Applying (1.5) with 4 = —1, the first component is bounded by 1/2. To estimate the
other, we use the triangle inequality and Lemma 2. Hence

1 1 1

sles 3 43| <3 (1= leal = el +gleal + 3lenl)
1
<3

1 1
<[1=3lerP (3= lerP) = Jleal’] <
SO
2 1
las — a3| <

Considering w(z) = z°> and w(z) = z*, we can observe that the estimates of the two
cases of the Zalcman functional are sharp. We have proved what follows.

Theorem 3 Iff € S5(¢°) is of the form (1.1), then the following sharp bounds hold

|as — azas| gi and |as —a§| gi .

Let us turn to Hankel determinants for the class S(e®). The first result is easy to
obtain.

Theorem 4 If f € Si(€) is of the form (1.1), then

1
|Ha | < 1

Proof If f € Sg(e°), then
2 /2 1/ 2,12 1 4
|Hys| = }a2a4 - a3’ =3 5(02 — clcg) —|—§ c; +-cica+—ci )] -
Since
2
A +%c%cz +%c‘l“ < (1 - |c1|2) —%c%(l — |c1|2) —l—l—lzc‘l1 =12t + Ler
and
347
[0,1]5¢r—1 S+t

is a decreasing function, we conclude that
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2, 12 I 4
¢ +5¢162 + 53¢ <1.

This and Lemma 3 result in the declared bound of H; ;.
Furthermore, |Has| =1if c; = 1 and ¢; = 0 for k # 2, ie. if o(z) =72 O

Theorem 5 If f € Si(e°) is of the form (1.1), the following sharp bound holds

1
|Ha 3 Sg .

Proof Assume that f € Sg(e?) is of the form (1.1). Then

|H273| = |a3a5 — 61421|

1 12 _12_1( _12> 3,322 ]4_16‘
—8’(C2-|—2C1)C4 53 — 3\ — ¢ clcg—|—cz+8c1c2—|—z4clcz 555¢1

By the triangle inequality and Lemma 2,

5\ 2
1 1 2 2 2 1 2 |C2|

Hasl <4 | (leal +5lerP) (1= lerf = leaP) 43 1= lerf =

| 2’3|*8 |cz\+2|cl\ |C1| |Cz| +2 |C1| 1+|Cl|

2
1 I, 2 2 |ca
+§(\Cz| +g|cl| )|C1| (1 —lei|” = g |Cl|>

3,3 2 2 1 4 1 6
ol + JlerPleal” + gglerl*leal + ggglenl’] -

Let h(|ci], |c2|) denote the right hand side of the above inequality and let ¢ = |¢y],
d = |cy|. Since

oh 1
— = [484%® — 36¢(1 + ¢)d* — 2(1 + ¢)(24 — 21 + 53)d

+ (244120 =24 - 126 + ) (1 +¢)]
replacing d” by d and omitting ¢* in the last component, we get

oh . gle,d)
— Z —
0d ~ 24(1 +c)

with

g(e,d) = 48d> —2(1 +¢) (24 + 18¢c — 21¢* + 5¢3)d + 122 +¢)(1 — ¢)(1 +¢) .

A straightforward algebraic computation shows that the critical points of g satisfy
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(21 — 3¢ — 24¢% +10c)d — 3(5 — 6¢c — 5¢2)(1 +¢)* =0
72d> — (1 +¢)(24 4+ 18c — 21c? + 5¢) = 0,

so in @ given by (2.7), there is only one critical point (cq,dp) where ¢y = 0.345. ..
and dyp = 0.722. . .. For this point,

g(co,dy) = 8.695. .. .
On the boundary of @, we have
g(c,0) = 122 +¢)(1 —¢)(1 +¢)* 2 (1,00 =0,
2(0,d) = 24(1 — 2d + 24°) >g(0,‘f> =3(9-4v3),
gle,1 =) =2(1—c)(1+¢)*(12 — 24c + 3¢ + 19¢%) .
It is a simple task to show that 12 — 24¢ + 3¢? 4 19¢* > 0 in [0, 1], so
glc,d)>0 for (c,d) Q.
This means that

Oh

% >0 for (c,d)e€Q.
Consequently,
h(c,d) <h(c,1— Cz) =1— gcz _ §c4 +%c6

The function A(c, 1 — ¢?) is decreasing for ¢ € [0, 1], so
h(c,d)<h(c,1 —c*)<1.

Similarly as in Theorem 4, the equality |H,3| =1 holds if ¢; =1 and ¢, = 0 for
k#2, ie. if o(z) =72 O

Theorem 6 If f € Sg(e) is of the form (1.1), then

13
<.
3] < 155
Proof If f € Sg(e°), then
|Hs 1| = L 2c5c4 — 2 + (Cz + 102)0103 — lczc2 - Lc402 - Lc6 . (3.1)
: 16 3 6! 412 127l 14471

At the beginning, it should be noted that
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1
‘C3 (C3 —cicy — Ec?)‘ <es|

by Lemma 1 with 4 = —1 and v = —.. Under Lemma 2,

2 lea? 2 el
<1 — — <1 - _
el <1~ el 2 <1 o -l

Applying it and |c4| <1 — |e1|* — |ea, we get
1
[Hz.1| < 5ch(lerlseal)

where

2

d 1 1 1
h(c,d) =1 7c277+2d(1 - —d?) +Zczd2+ac4d+mc6 . c=leil,d = el .

But £ is a decreasing function of the variable c¢; consequently,
hc,d) <h(0,d) = 1+2d — 3d* - 2d°.

The function 4(0, d) achieves its greatest value in [0, 1]if d = 1/2, so h(0,d) <1,
which completes the proof. [

This result is not sharp. Based on Formula (3.1), it is expected that the sharp
bound of |Hj,| is equal to L.

The method used in the proof of Theorem 2 for the bound |ys| < may be
adopted to prove that if f € Sg(e°) is of the form (1.1), then |ag — aras| <}. This
result is also sharp. Unfortunately, the sharp bound of ag has not been obtained.
From (2.2), we can only obtain that

|ae| §é+ g, ¢=0.016...
with an obvious conjecture that the exact value of the bound is equal to 1/6.
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