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Abstract

In this paper, we study a generalization of Narayana’s numbers and Padovan’s
numbers. This generalization also includes a sequence whose elements are Fibo-
nacci numbers repeated three times. We give combinatorial interpretations and a
graph interpretation of these numbers. In addition, we examine matrix generators
and determine connections with Pascal’s triangle.
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1 Introduction

Integer sequences have always attracted the attention of many researchers, as
number sequences find application in many other fields of science as well as in
mathematics. Therefore, many generalizations and polynomials of these general-
izations have been given and their properties have been studied [4-6, 9—-12, 16].
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The best known integer sequence is undoubtedly the Fibonacci sequence.
Fibonacci numbers F,, are defined by the recurrence

F,=F, | +F,,, forn>2 (1)

with initial conditions, Fy =0 and F; = 1. Narayana’s numbers and Padovan’s
numbers, defined below, are not so popular.

N,=N, 1+ N, 3forn>3, with Ng=0,N; =N, =1
Pv(n) = Pv(n — 2) 4+ Pv(n — 3) for n >3, with Pv(0) = Pv(1) = Pv(2) =1

But sequences formed by these numbers have also interesting properties. In this
paper, we study a generalized sequence which generalize sequence of Narayana’s
numbers and sequence of Padovan’s numbers, simultaneously. Moreover, its special
cases are sequences formed by other known numbers; Fibonacci numbers and
powers of 2. The aim of this study is to present, for these sequences, combinatorial
interpretations, some explicit formulas, generating functions, matrix generators and
determine connections with the Pascal triangle.

First we recall two types of generalizations of Fibonacci numbers used in our
considerations.

First type. For an arbitrary k > 2 the nth generalized Fibonacci number is a sum
of k terms. Such generalizations was studied among others by Miles [8], Er [3] end
recently by Wtoch and Wtoch [16].

In [8], Miles defined k-Fibonacci numbers where

8n = 8(n-1) T 8n-—2) T+ 8nwn,forn>k>2

with go = g1 = -+ = g4—2) = 0 and gy = 1. In [3] is introduced a family of &
sequences generalized Fibonacci numbers in the following way. Let k>2, ¢, j €
{1,2,...,k} be integers. Then for an integer 1<i<k, generalized Fibonacci
numbers are defined as

k

fi= Z cjf,’;_j, forn >0 (2)

J=1

with initial conditions f! = { (1) lfo:hjr\}vi;en’ for 1 —k<n<O0.

In [16], it was studied Fibonacci type numbers defined recursively by the kth
order linear recurrence relation.

Let k>2, ¢;>0, i € {1,...,k} be integers such that there are at least two
positive integers c,, ¢, where p # g and 1 <p,q <k.

fo=cifum1 +ofna + -+ cufui, forn >0 (3)

with given nonnegative integers fj_¢,...,f_1,fo and there is 1 — k <j <0 such that
fi>0.

For special values of k, ¢; and fi_;, i € {1,2,...,k} the formula (3) gives the
well-known classical sequences.
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Let k > 2 be an integer. Generally sequences defined recursively by the kth order
linear recurrence relation of the form

a, =bia,_1 +bra, o+ -+ bya,_y, forn>k 4)

b; e NU{0},i=1,...,k with fixed integers ao, . . ., ax_1 are named as sequences of
the Fibonacci type.

The second type. For an arbitrary k > 2 the nth generalized Fibonacci number is a
sum of two terms, the (n — k)-th term and the second chosen in such way that
obtained recurrence generalizes (1). We recall some of such generalizations.

Kwasnik and Wtoch studied in [7] generalized Fibonacci numbers F(k, n) defined
recursively as follows:

F(k,n)=F(kyn— 1)+ F(k,n —k), forn>k + 1

with F(k,n) = n + 1, for n <k. These numbers have many interpretations in graph
theory [1].

In [2], Bednarz et al. introduced a different kind of distance generalization of
Fibonacci numbers. This numbers are showed by Fd(k, n) and defined recursively as
follows:

Fd(k,n) = Fd(k,n —k + 1) + Fd(k,n — k), for n >k >?2

with initial conditions Fd(k,n) =1 for 0<n<k —1.
One of the other works in this field is [15] where they introduced a new kind of
distance Fibonacci numbers as follows:

Fy(k,n) = Fy(k,n —2) + Fo(k,n — k), for n>k

with initial conditions F»(k,i) =1fori=0,1,2,...,k— 1.

In this paper, we will study special cases of defined above Fibonacci type
numbers. Let kK > 1, n > 0 be integers. (3, k)-distance Fibonacci numbers are define
by the following recurrence relation;

Fs(k,n) = F3(k,n — 3) 4+ F3(k,n — k), for n> max{3,k} (5)

with initial conditions F5(k,n) =1, forn =0,1,2,3...,max{2,k — 1}.
Recurrence (5) of (3, k)-distance Fibonacci numbers generalizes recurrences of
Narayana’s numbers and Padovan’s numbers.
F3(1,n+ 1) = N, sequence A000930 in OEIS [13].
F3(2,n) = Pv(n) sequence A000931 in OEIS [13].
F53(3,n) = 213} contains powers of 2 repeated 3 times, sequence A173862 in
OEIS [13].
F3(4,n) sequence A079398 in OEIS [13].
F3(5,n) sequence A226503 in OEIS [13].
F3(6,n) =F B contains Fibonacci numbers repeated 3 times, sequence

A247049 in OEIS [13].
A few initial elements of these sequences for special values of k and n are
included in the Table 1.
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Table 1 (3, k)-distance Fibonacci numbers F3(k,n)

n 0 1 2 3 4 5 6 7
F3(1,n) 1 1 1 2 3 4 6 9 13
F3(2,n) 1 1 1 2 2 3 4 5 7
F3(3,n) 1 1 1 2 2 2 4 4 4
F3(4,n) 1 1 1 1 2 2 2 3 4
F3(5,n) 1 1 1 1 1 2 2 2 3
F3(6,n) 1 1 1 1 1 1 2 2 2
F3(7,n) 1 1 1 1 1 1 1 2 2

n 9 10 11 12 13 14 15 16 17 18
F3(1,n) 19 28 41 60 88 129 189 277 406 595
F3(2,n) 9 12 16 21 28 37 49 65 86 114
F3(3,n) 8 8 8 16 16 16 32 32 32 64
F3(4,n) 4 5 7 8 9 12 15 17 21 27
F3(5,n) 3 4 5 5 7 8 9 12 13 16
F3(6,n) 3 3 3 5 5 5 8 8 8 13
F3(7,n) 2 3 3 3 4 5 5 6 8 8

For a given sequence a(n), sequences a(|%|) and a(|4]), with repeated elements,
we will call a tripled a(n) sequence and a doubled a(n) sequence, respectively.

It is known that tiling defined by the Fibonacci numbers cover a plane. In [15] it
was shown a tiling covering of a plane by tiling defined by doubled Fibonacci
sequence. We present a tiling covering of a plane by tripled Fibonacci sequence, see
Fig. 1.

Similar to classical Fibonacci numbers, numbers F3(k,n) can be extended to
negative integers. Let k >4 be integer and F3(k,n) =1 forn=0,1,... .k — 1.

Fs(k,—n) = Fs3(k,—n+ k) — F3(k,—n + (k — 3)). (6)

Moreover for k = 1,2, 3,
F3(l,—n) :F3(1,—n+3)—F3(1,—n—|—2),
F3(2,—n) = F3(2,—n+3) — F3(2,—n+ 1) and

13

2‘2‘2

o
ot
ot

Fig. 1 A tiling interpretation of the tripled Fibonacci sequence F3(6,n)f
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Table 2 Numbers Fs(k,n) for negative n

n 18 17 16 15 14 13 12 11 10
Fs3(1,n) 4 -8 1 5 -3 -2 3 0 -2
F3(2,n) -5 4 -3 1 1 -2 2 -1 0
EICHONE % £ £ 16 6 6 d §
F3(4,n) -29 21 —15 11 -3 6 —4 3 -2
F3(5,n) -1 4 -2 -2 1 2 0 —1
F3(6,n) -3 2 2 -1 -1 -1 1 1
F3(7,n) 1 -1 —1 —1 0 1 1 1 0
F3(8,n) -1 0 0 1 1 1 0 0

n 9 8 7 6 5 4 3 2 1 0
Fs(1,n) 1 1 -1 0 1 0 0 1 1 1
F3(2,n) 1 -1 1 0 0 1 0 1 1 1
CUIE T T R
Fs(4,n) 2 -1 1 0 1 0 1 1 1 1
F3(5.n) 0 1 1 0 0 1 1 1 1 1
F3(6,n) 1 0 0 0 1 1 1 1 1 1
F3(7,n) 0 0 0 1 1 1 1 1 1 1
F3(8,n) 0 0 1 1 1 1 1 1 1 1

F3(3,—n) = 4F3(3,—n + 3).
The Table 2 includes the first few elements of F3(k,—n) for special k and
negative n.

2 Combinatorial interpretation

First we give a graph interpretation of F3(k,n) for integer k > 4. Let P,, n>2, be a
path without loops and multiple edges with the vertex set V(P,) = {vi,...,v,}.
Vertices of P, are numbered in the natural fashion. Let consider a colouring ¢ of
vertices of P, such that vertices v,, and v,,_; can be uncoloured if k > 3 or the vertex
v, can be uncoloured if k = 2 or all vertices are coloured if k = 1. Let {0, 1} be a set
of colours and c(vj) = i denote that the vertex v; has a colour i, 0 <i < 1.

The following recurrent procedure defines the colouring ¢ of P,,.

Denote by A a set of uncoloured vertices of a path P, and let m = min{3, k}.

Until |A| <m, repeat following operations:

Let v; € A be a vertex with the smallest index.

If |A| = m, then c(v;) = 0, otherwise c¢(v;) =1, 0<i<1.

If c(v;) =0, then ¢(vjy;) =0fori=1,...,m— L

If ¢(vj) = 1, then c¢(vjy;) = 1 fori = 1,...,max{3,k} — 1.
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We can interpret obtained monochromatic paths of the length k or 3 as
monochromatic scraps, so defined the above colouring ¢ of P, we will call a
{P3, Py }—scrap colouring of P,. Denote by P a scrap of three vertices coloured 0
and by P; a scrap of k vertices coloured 1. In other words the {Ps, P;}-scrap
colouring of P, is a covering of P, by scraps from the set {P3, Py}.

Note that for k =3 we have two monochromatic scraps of the length 3 with
different colours. To distinguish them we will write P53 and P%.

Consider for example the path P;s and k = 5. Then we have the following
possibilities of a {P3, Ps}—scrap colouring:

(a) PsPsPs and P3P3P3P3P3. So we have exactly two colouring.

(b) Colourings when the last vertex is uncoloured are PsP3P3P3, P3PsP3P3,
P3P3PsPs, P3P3P3Ps, what gives 4.

(c) Colourings when the last two vertices are uncoloured are PsPsP3, PsP3Ps,
P3PsPs, so there are 3 such colourings.

Summing up, we have that there exist 9 {Ps, P }—scrap colourings of P;s.

Denote by «(n) the total number of {P3, P;}-scrap colourings of P,,.

Theorem 1 Let k>1, n>0 be integers. The number of all {Ps,Py}—scrap
colourings of P, is equal to F3(k,n).

Proof Denote by ax(n) a {Ps, Py }—scrap colouring starting from P; and by o3(n) a
{P;3, Pi}—scrap colouring starting from P3. Consider three cases.

Case 1. k = 1, then all vertices are coloured.

For n = 0 we take F3(1,0) = 1, there is no path with 0 vertices.

For n =1 we have F3(1,1) = 1. There is exactly one vertex and exactly one
colouring with scrap P;.

Analogously for n = 2, F3(1,2) = 1. The unique colouring is P1P;.

For n = 3 we have F3(1,3) = 2. There are colourings P1PP; and Ps.

Assume that n > 3 and a(n) = F3(1,n). Then

on+ ) =o3(n+1)+an+1)=am+1-3)+amr+1-1)
=F(L,n+1-3)+F(l,n+1-1)=F;(1,n+1),

Case 2. k = 2, then the vertex v, can be uncoloured.

For n = 0 we take F3(2,0) = 1.

F5(2,1) = 1, the vertex v; is uncoloured.

F3(2,2) = 1, there is exactly one colouring with scrap P;.

F3(2,3) = 2, there are colourings P, with the vertex v3 uncoloured and P;.

For n > 3 we prove analogously as for k = 1.

Case 3. k = 3, then vertices v, and v,_; can be uncoloured.

If n = 0, then we put F5(3,0) = 1. If n = 1, then the path consist of one vertex,
we leave it uncoloured. So F3(3,1) = 1. Analogously for n = 2, F53(3,2) = 1.

If n =3, then there are two colourings P3 and P%, F3(3,3) = 2. Assume that
n >3 and a(n) = F53(3,n). Then

W Birkhauser
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on+ 1) =o3(n+1)+o3(n+1)=am+1-3)+amr+1-3)
=F03,n+1-3)+F03,n+1-3)=F3,n+1),
Case 4. k > 3, then vertices v, and v,_; can be uncoloured.
If n = 0, then we put F5(k,0) = 1, If n = 1, then the path consist of one vertex,
we leave it uncoloured. So F3(k, 1) = 1. Analogously for n = 2, F5(k,2) = 1.
If 3<n<k—1, then there is exactly one {P3,Py}-scrap colouring only by
scraps P3. Thus a(n) = a3(n) = 1 = F3(k,n).
Assume that n >k and a(n) = F5(k,n). Then
an+ 1) =w(n+1)+unr+1)=an+1-3)+an+1—k)
=Fi(k,n+1-3)+F3(k,n+1—k)=Fs3(k,n+ 1),

which ends the proof. O
From the above graph interpretation it follow direct formulas for F3(k,n).

Theorem 2 Let k> 1, n >0 be integers. Then

|2 n— ik 2 fork=1,

% .

F3(k7n+t)=Z i+ 3 J where t = ¢ 1 for k=2,
=0 i 0 fork>3.

Proof 1f n<k — 1, then |}] = 0 and

0 . n—ik n
FS(kvn):Z l—|—L.3 | :<0+|_§J>

i=0 1 0

Il
=

Assume that n > k. By Theorem 1, the number F3(k,n) is equal to the number of
{P3, Py }-scrap colourings of P,. Each {Ps, P;}-scrap colouring consists of i
monochromatic paths P; and j monochromatic paths Pz, where 0<i< L%J,

0 <j < [#]. Moreover, for a fixed i we have j = |“5%| and the number of {P3, Py}-

Iy . n—ik
scrap  colourings is equal to ( iJ ) — (it 3 ] . Thus
i

. n—ik
F3<k,n)zzl@o<z+y3 J), O

1

Now we can give an interpretation of F3(k,n) numbers for k # 3.

Let k>4, n>3 be integers, X = {1,2,3,...,n}, and Y ={Y, : t € T} be the
family of disjoint subsets of the set X such that each subset Y; contains consecutive
integers and satisfies the following conditions.

1' |Yf| € {37k}’
2. |X\ UtET Ytl € {Oa 1;2}’
3. If pe X\U,er Vi, then p =n or

T Birkhauser
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4. ifp,ge X\U,r Y. thenp=nand g=n—1.

The family ) is called the (3, k)-decomposition with the rest or a (3, k)-
decomposition family.
If X\ U,z Y = 0, then we have a decomposition of the set X.

Theorem 3 Let k>1, k # 3, n>3 be integers. Then the number of all (3, k)-
decompositions with the rest at most two of the set X is equal to F5(k,n).

Proof We will prove for k >4, n>3. For k = 1,2 we prove analogously. Denote
by d(n) the number of all (3, k)-decompositions of the set X. If n = 3, then we have
the only one decomposition {{1,2,3}}. Thus d(3) = 1 = F3(k,3). Analogously for
3<n <k — 1 by inspections the result follows.

Let n > k and suppose that the equality d(n) = F3(k,n) holds for an arbitrary n.
We will show that d(n + 1) = F3(k,n + 1).

Denote by ds(n+ 1) the number of all (3, k)-decompositions of X =
{1,2,...,n+ 1} such that ¥ = {1,2,3}, and let di(n+ 1) be the number of all
(3, k)-decompositions of X = {1,2,...,n+ 1} such that Y = {1,2,...,k}. We have
that din+1)=ds(n+1)+de(n+1) and di(n+1)=dn+1-3),
die(n+1)=d(n+1— k). By the induction hypothesis and the recurrence (5) we
have

ds(n+1)=d(n+1-3)+
din+1—k)=Fsk,n+1-3)+F3(k,n+1—k) =Fs3(k,n+ 1),

which ends the proof. |

The above interpretation of F3(k,n) leads to another interpretation of it in terms
of ordered composition, with the rest at most two, of an integer. We have that
|X| = n and each subset Y,, containing consecutive integers, corresponds to the
addend n,. A sum Z,er n; + n, = n we call an ordered compositions, with the rest,
of an integer n if

1. n, € {3k},
2. n,€{0,1,2},
3. Z,eT n; +n, = n and n, is the last addend in the sum.

3 Generating function and some identities

Theorem 4 Letn>0, k > 1 be integers. The generating function of F3(k,n) has the
following form

Ofork=1
- Where 1 = x for k=2

g(x) :1_x3_x
x+x% fork>3

W Birkhauser
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Proof Let g(x) = Zio F3(k,n)x". Using the recurrence (5) we have g(x) —

0 for k=1
xg(x) — xfg(x) = 1 +t where t = x for k=2  Hence g(x) = -~ which
x + x? for k> 3.
ends the proof. U

From the Theorem 4, for special values of k, we obtain generating functions for
Narayana numbers and Padovan numbers.

Corollary 5 If k = 1, then g(x) = ﬁ is the generating functions of Narayana
numbers [14].

If k=2, then g(x) = I_lx%xs is the generating functions of Padovan numbers.

The next theorem proofs that all F53(3k,n) sequences are tripled.

Theorem 6 Let k> 1, n>0 be integers. Then

F3(3k,3n) = F3(3k,3n + 1) = F3(3k,3n + 2). (7)

Proof by induction on n From the definition of F3(k,n) we have that
F3(3k,0) =--- =F3(3k,3k—1)=1. By the formula (5), F;(3k,3k)=
F3(3k,3k + 1) = F3(3k,3k +2) =2 and next F3(3k,3k+3) = F3(3k,3k+4) =
F3(3k,3k+5) = 3.

Assume that F3(3k,3t) = F5(3k,3t 4+ 1) = F3(3k,3t + 2) for all t<n.

We will prove

F3(3k,3(n + 1)) = F3(3k,3(n + 1) + 1) = F3(3k,3(n + 1) +2).

For consecutive numbers we have

F3(3k,3(n+ 1)) = F3(3k,3n + 3)
= F3(3k,3n) + F3(3k,3n + 3 — 3k) = F5(3k,3n) + F5(3k,3(n + 1 — k)),

F3(3k,3(n+ 1)+ 1) = F5(3k,3n+4) = F3(3k,3n+ 1) + F3(3k,3n + 4 — 3k)
=F;(3k,3n+ 1) + F3(3k,3(n + 1 — k) + 1),

F3(3k,3(n+ 1) +2) = F5(3k,3n+ 5) = F5(3k,3n + 2) + F3(3k,3n + 5 — 3k)

= F3(3k,3n+2) + F3(3k,3(n + 1 — k) + 2).

Using our assumption we ascertain that the above numbers are equal. [J

Theorem 7 Let k>3, n>0 be integers. Then

> Fs(k3i+1) =F3(k,3n+k+1)— 1, for 0<r<2 (8)
i=0

Proof by induction on n  'We will prove for an arbitrary k >3 and ¢ = 0. For k > 3,
t =1 and t = 2 we prove analogously.

If n =0, then F3(k,0) =1=F3(k,3-04+k) —1=2—-1=1.

If n =1, then for k =3 we have F3(k,0) + F3(k,3) =142 = F3(k,3+3) —

T Birkhauser
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1=4—-1=3and
for k > 3, F3(k,0)+ F3(k,3) =1+ 1=F3k,3+k)—1=3-1=2.
Assume that

> Fs(k,3i) = Fa(k,3n + k) — 1.
i=0

Then

n+1

> Fs(k,3i) =Y F3(k,3i) + F3(k,3(n + 1))
i=0 i=0
= F3(k,3n+ k) — 1 + F3(k,3n +3) = F3(k,3(n + 1) + k) — 1.

Thus the theorem is proved. U

4 Matrix generators

Let Or = [gj],.; be a square matrix. For a fixed 1 <i <k an element ¢, is equal to
the coefficient at Fi(k, i) of the right hand side of the formula (5). For j > 1 and an
arbitrary i we have g; = 1 if j =i+ 1 and g;; = 0, otherwise.

The above definition gives matrices

01 0 0
0100 0 0 1 0
01 0

oi—lo o 1] 0 001 0 0 — 0 0 0

T Ty 0 0 1|0
2 0 0
1 0 00 000 --- 1
(1 0 0 - 0]

Moreover, we define a square matrix P; of order k as the matrix of initial conditions

[Fay(k,2k —2) F3(k,2k—3) -+ Fy(k,k)  F3(kk—1)]
F3(k,2k —3) F3(k,2k—4) - Fi(k,k—1) Fs(k,k—2)
Pk: . . . . .
F3(k,k)  Fkk—1) - F3(k2) Fs(k, 1)
| Fs(k,k—1)  F3(kk—2) -  Fi(k1) F3(k,0) |

Using Laplace’a Theorem and basic properties of determinants, we get the fol-
lowing results.

Theorem 8 Let k>3 be an integer. Then

W Birkhauser
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detQ; =2 and detQ; = (—1)k+],

k(k+1)
det P = (1) 73,

Theorem 9 Let k>3, n>1 be integers. Then

Fs3(k,n+2k—2) Fi(kn+2k—3) -+ Fs(k,n+k) Fslk,n+k—1)
Fs(k,n+2k—3) Fi(kn+2k—4) -+ F3lk,n+k—1) Fs(k,n+k—2)
PO = f f : : -9
F3(k,l’l+k) F3(k,n+k—1) F3(k,}’l+2) Fs3(k,n+1)
Fs(k,n+k—1) Fikn+k—=2) -+ Fs(k,n+1) F5(k,n)

Proof If n = 1, then by (5) and simple calculations the result immediately follows.
Assume the formula (9) holds for n, we will prove it for n+ 1. Since

PkQ}:Jrl = (PxQ}) Ok, by our assumption and by the recurrence (5) we obtain
_F3(k,}’l+2k—2) F3(k,l’l+2k—3) F3(k,n—|—k) F3(k7n+k—l)_
Fs3(k,n+2k—3) Fs(k,n+2k—4) - F3(k,n+k—1) F3(k,n+k—2)

AQy = : : . : :
Fs(k,n+k)  Fs(k,n+k—1) - Fi(kn+2)  Fs(k,n+1)
| F3(k,n+k—1) F3(k,n+k—2) - F3(k,n+1) F3(k,n)
[010 - 0]
001 -0
100 -0
000 -1
(1000

-F3(k,n+2k—1) F3(k,n—|—2k—2) F3(k,n—|—k+1) F3(k,l’l+k)
F3(k,n+2k—2) F3(k,n+2k—3) - F3(k,n+k) Fs(k,n+k—1)

Fs3(k,n+k+1) F3(k,n+k) o F3(k,n+3) F3(k,n+2)
F3(k,n+k)  Fs(k,n+k—1) - Fs(k,n+2)  Fi(k,n+1) |

which ends the proof. [J
By Theorem 8 we get the following result.

Corollary 10 Let k>3, n>?2 be integers. Then

T Birkhauser
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Table 3 Distance Fibonacci numbers F(5,n) and F;(5,n)

n 0 1 2 3 4 5 6 7 8

[u—

- = o o O O
- o = O© O O
- o © = O O
o o © = O
N = O = O O
N O = O = O
N O O = O

W = O = = O

— O o o O

WO = O = =
(=TS e
—_ = N O
wn O = = =N
q 0O W = =
—_ N = W) =
_— = W = W
W = kA W =
W N~ W

det P, Q) = (— 1)l2k+”k%”f3]+n<k+1>.

5 Connections with the Pascal’s triangle

To study connections of (3, k)-distance Fibonacci numbers with Pascal’s triangle we
need to consider a family of sequences given by the same recurrence as F3(k,n)
with different initial conditions.

Let k> 1, n> 0 be integers and

Fi(k,n) = Fi(k,n —3) + Fi(k,n — k) (10)

lifn=k—1i
0 in othervise

A few initial elements of these sequences for k =5 and special values n are
included in the Table 3.
Based on results from [16] we have

with Fi(k,n) = { forn=0,1,... max{2, k}.

Theorem 11 Let k>4,n>0,0<i<k — 1 be integers. Then

max{2,k—1}

Fi(k,n) = Z Fi(k,n).

i=0

W Birkhauser
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Fig. 2 Digraph D ; —

v Uy V3 Uy Uk

Uk—1

Er shoved [3] that nth power of the companion matrix Q; contains entries of
sequences Fj(k,n),

Fi(kn+k—1) Fij(k,n+k—2) ... Fj(k,n)

Fi(k,n+k—1) Filkn+k—2) ... F3(k,n)
O =

Fi(k,n+k—1) Fikyn+k—2) ... Fi(k,n)

The matrix Q; we can interpret as the adjacency matrix of a special digraph D, see
the Fig. 2.

It is well known that Q} contains the number off all different paths of length n
between corresponding vertices in the digraph D. Namely, the entry g; is equal to
the number of all paths of the length n from vertex v; to vertex v; in the digraph D.

Using such interpretation we can prove

Theorem 12 Let k>4, n>0,0<i<k — 1 be integers. Then

Flkn = % (“”a"),

o3, 0k %3 (11)
303 +koyy =n
: o3 + o
Fi(k,n) =
-5 (0
03, Oy
303 +koyy =n—(3—j+1) (12)
o3 + ol
4 for j =2,3,
> (M)
03, oy
3o +koyy =n—(k—j+1)
. o3 + o
Fl(k,n) = 3 <3 k)f0r3<j§k.
% (13)
o3, O

30(3+k0€k=n—(k—j+l)

Proof For a fixed 1 <j<k the element g;; of Q} is equal to the total number of
different directed paths of length n from the vertex v; to the vertex v; in digraph D,
see the Fig. 2. Each such path contains at the beginning a short path P =

T Birkhauser
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v; —--- —v; and next a sequence C of cycles of length 3 or k.
Let consider a number of such paths of length n with dependence of short path P.
Case . P=vi—vy,—v3—viorP=vi—vy—v3—v4—---— v —v;. In this

case a path P form a cycle C3 or Cy, respectively. The whole path is a sequence of
cycles C3 or Cy, in random order; its length n = 303 + koy for all o3, o satisfying the
equality. Thus we have

Z <a3+“k>:F3l(k,n)

o3, Ok oc3
303 + ko = n
such paths.
Case 2. P=vj —vjyg — - — v — v, 1 <j<k.

The path P has a length k — j 4+ 1 and remaining part of lengthn — (k —j + 1) =
303 + kay consists of cycles C3 or Cy. Analogously as in the Case 1 we have

Z (OC3—|-OCk)

o3
a3, Ok
303 +kog =n—(k—j+1)

such paths.

Case 3. PZVj"' — V3 — Vi, 1<JS3

The path P has length 3 —j+ 1, the remaining part has the length
n—(3—j41) =303 + koy, and there is exactly

Z (053+ock)

03, A »
3ot3+kock:n—(3—j+1)

such paths.
Note that for j = 2,3 we have

o3 + ok
> (W)X
3, Ok o3, Ol

303 +koyy =n—(3—j+1) 303+

koy =n— (k—j+ 1)(a3;ak) = F|(k,n).For 3<j <k we have

3 <°‘3+°‘k) — Fi(k,n).

*3
03, Lk
3o +koyy =n—(k—j+1)
O

W Birkhauser
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Based on the Theorem 11 and the Theorem 12 we have

Theorem 13 Let k>4, n>0 be integers. Then

F3(k,n)zz Z (0(3+O(k>

2
i=0 o3, Ol »
3OC3+kOCk=n—(3—i+1)

k—1 o3 + ol
20 2 03, Ok ( o3 >
3o +koyy =n—(k—i+1)

From the Theorem 13 we can obtain binomials whose sums are equal to numbers
F3(k,n). Using these binomials we can derive new formulas for F3(k,n) numbers.
For a convenience we use a graphical presentation.

For example, the number F(4,25) is a sum of

G) GGG )G O)E)G) = (5)
()0 m rwms s s wm o (8)(1)
() G)G)- G- (6)-(3) (1) e (5)-(G)-(3)-(2)-(6)

These binomials form a geometrical pattern, we will call it a staircase, useful for
calculating F5(4,n) numbers from the Pascal Triangle.

0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0
33 1.0 0 0 0 0 0 0
4 4 1 0 0 0 0 0 0
5 10 10 5 1 0 0 0 0 0
615 20 15 6 1 0 0 0 0
T 2135 35 of %,

8 28 56 70 56 28 8 10 0
9 36 84 1261268 36 9 1 0
10 45 120 210 252 210 120 45 10 1

| S8}

—
)
jan)
—
o
—
o

el e e
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1 0o 0 O o O 0 o0 0 0 O
i1 1.0 o0 o O O O 0 0 O
12 1 0 o 0 O O 0 0 O
13 3 1 0 0 0 0 0 0 O
1 4 6 4 1 0 0 0 0 0 O
15 10 10 5 1 0 0 0 0 O
1 6 15 20 15 6 1 0 0O 0 O
1 7 .21 3 3 21 7 1 0 0 O
1 8 28 56 70 56 _28 8 1 0 O
19 36 84 126 126 84 36 9 1 0
| 1 10 45 120 210 252 210 120 45 10 1 |

We extending the staircase presented above up to infinity in both directions. By
moving such infinite staircase one column to the left, we obtain next number
F 3 (k , I’l) .

In almost each step of the staircase we have two binomials adjacent. Using the
basic property of binomials

(0 () =G5 w

we immediately obtain a new simplest staircase.

$1 0o 0 O o O 0 o 0 0 O
i1 1.0 o0 o O O O 0 0 O
12 1 0 o0 0 O O 0 0 O
13 3 1 0 0 0 0 0 0 O
1 4 6 4 1 0 0 0 0 0 O
1 5 10 10 5 1 0 0 0 0 O
1 6 15 20 15 6 1 0 0O 0 O
1 7 21 3 3 21 7 1 0 0 O
1 8 28 56 70 56 28 8 1 0 O
1 9 36 8 126 126 84 36 9 1 0
|1 10 45 120 210 252 210 120 45 10 1 |

Such transformations of the formula from the Theorem 13 leads to

Corollary 14 Let k>4, n>0 be integers.

1) n+i+1
F3(4,n+3):ngn(n+i—2mod4) L 4 ! . (15)
i=0 i

We obtain a new formula from (15) using (14). Corresponding staircase is
presented on the next Pascal’s triangle.

W Birkhauser
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1 0 0 0 0 0 0 0 0 0 0 ]
1 1.0 0 0 0 0 0 0 0 0
1 2 1 00 0 0 0 0 0
1 3 3 1 0 0 0 0 0 0 0
1 4 6 1 0 0 0 0 0 0
1 5 10 105 1 0 0 0 0 0
1 6 15 20 156 1 0 0 0 0
1 7 21 8 185 20 7 1 0 0
1 8 28 56 70 56 28 8 1 0 0
1 9 36 8 1261268 36 9 1 0

|1 10 45 120 210 252 210 120 45 10 1 |

So we can write
Corollary 15 Let k>4, n>0 be integers.

1 LnJriJrlJ
F3(4,n+4):ngn(n+i—2m0d 2) 4
i=0 i
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