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Introduction

The 2-primary Hopf invariant 1 elements in the stable homotopy groups of spheres
form the most accessible family of elements. In this paper, we explore some properties
of the E∞ ring spectra obtained from certain iterated mapping cones by applying the
free algebra functor. In fact, these are equivalent to Thom spectra over infinite loop
spaces related to the classifying spaces BSO, BSpin and BString.

We show that the homology of these Thom spectra are all extended comodule
algebras of the formA∗�A(r)∗ P∗ over the dual Steenrod algebraA∗ withA∗�A(r)∗F2
as a comodule algebra retract. This suggests that these spectra might be wedges of
module spectra over the ring spectra HZ, kO or tmf; however, apart from the first
case, we have no concrete results on this.

Our results and methods of proof owe much to the work of Liulevicius [24,25]
and Pengelley [30–32], and are also related to the work of Bahri and Mahowald [4]
(indeed, there are analogues of our results forE2 Thomspectra of the kind they discuss).
However, we use some additional ingredients: in particular, we make use of formulae
for the interaction between the A∗-coaction and the Dyer–Lashof operations in the
homology of an E∞ ring spectrum described in [9]. We also take a slightly different
approach to identifying when the homology of a ring spectrum is a cotensor product
of the dual Steenrod algebra A∗ over a finite quotient Hopf algebra A(n)∗, making
use of the fact that the dual Steenrod algebra is an extendedA(n)∗-comodule; in turn,
this is a consequence of the P-algebra property of the Steenrod algebra A∗.

We remark that the finite complexes of Sect. 1 also appear in the recent preprint
by Behrens et al. [13]: each is the first of a sequence of generalised integral Brown–
Gitler spectra associated with HZ, kO and tmf, see [13, section 2.1] and [5,15,18].
We understand that Bob Bruner and John Rognes have also considered such spectra.

ConventionsWewill work 2-locally throughout this paper; thus, all simply connected
spaces and spectra will be assumed to be localised at the prime 2, andMS will denote
the category of S-modules where S is the 2-local sphere spectrum as considered
in [17]. We will write S0 for a chosen cofibrant replacement for the S-module S and
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Sn = �n S0. When discussing CW skeleta of a space X, we will always assume that
we have chosen minimal CW models in the sense of [12], so that cells correspond to
a basis of H∗(X) = H∗(X; F2).

Notation When working with cell complexes (of spaces or spectra), we will often
indicate the mapping cone of a coextension g̃ of a map g : Sn → Sk by writing
X ∪ f ek ∪g en+1.

Of course, this notation is ambiguous, but nevertheless suggestive. When working
stably with spectra, we will often write h : Sn+r → Sk+r for the suspension �r h
of a map h : Sn → Sk . We will also often identify stable homotopy classes with
representing elements.

Sn

g̃
g

X X ∪ f ek Sk

Sn

g

g̃ g� f ∼0

ek

f

Sk

� f

�X

X

1 Iterated mapping cones built with elements of Hopf invariant 1

The results of this section can be proved by homotopy theory calculations using basic
facts about the elements of Hopf invariant 1 in the homotopy groups of the sphere
spectrum S0,

2 ∈ π0(S
0), η ∈ π1(S

0), ν ∈ π3(S
0), σ ∈ π7(S

0).

In particular, the following identities are well known; for example, see [33, fig-
ure A3.1a]:

2η = ην = νσ = 0. (1.1)

Although the next result is probablywell known, we outline some details of the con-
structions of such spectra, and in particular describe their homology asA∗-comodules.
Later, we will produce naturally occurring examples of such spectra, but we feel it
worthwhile discussing there construction from a homotopy theoretic point of view
first. We do not address the question of uniqueness, but it seems possible that they are
unique up to equivalence.

Proposition 1.1 The following CW spectra exist:

S0 ∪η e
2 ∪2 e

3, S0 ∪ν e
4 ∪η e

6 ∪2 e
7, S0 ∪σ e8 ∪ν e

12 ∪η e
14 ∪2 e

15.
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Sketch of proof In each of the iteratedmapping cones below,wewill denote the homol-
ogy generator corresponding to the unique cell in dimension n by xn .

The case of S0 ∪η ∪2e3 is obvious.
Consider the mapping cone of ν, Cν = S0 ∪ν e4. As νη = 0, there is a factorisation

of η on the 4-sphere through Cν .

S5

2

S5

η̃x4
η

νη=0

S3 ν S0 Cν S4 ν S1.

Also, 2η = 0 and π5(S0) = 0, and hence 2η̃x4 = 0. A cobar representative for η̃x4
in the classical Adams E2-term is

[ζ 2
1 ⊗ x4 + ζ 2

2 ⊗ x0] ∈ Ext1,6A∗(F2, H∗(Cν)).

We can form the mapping cone Cη̃x4 = Cν ∪η̃x4 e
6 and, since 2η̃x4 = 0, there is a

factorisation of 2 on the 6-sphere through Cη̃x4 .

S6
˜2x6

2
2η̃x4=0

S5
φ1

Cν Cη̃x4 S6
η̃x4

�Cν .

A cobar representative of ˜2x6 is

[ζ1 ⊗ x6 + ζ2 ⊗ x4 + ζ3 ⊗ x0] ∈ Ext1,7A∗(F2, H∗(Cη̃x4)).

Consider the mapping cone of σ , Cσ = S0 ∪σ e8. As σν = 0, there is a factorisation
of ν on the 8-cell through Cσ .

S12

η

S11

ν̃x8
ν

σν=0

S7 σ S0 Cσ S8 σ S1.

Also, νη = 0 and π12(S0) = 0 = π13(S0), and hence η(ν̃x8) = 0.
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As Ext1,12A∗ (F2, H∗(S0)) = 0, the element

[ζ 4
1 ⊗ x8 + ζ 4

2 ⊗ x0] ∈ Ext1,12A∗ (F2, H∗(Cσ ))

is a cobar representative for ν̃x8.
We can form the mapping cone Cν̃x8 = Cσ ∪ν̃x8 e

12 and, since ην̃x8 = 0, there is
a factorisation of η on the 12-sphere through Cν̃x8 .

S13

2

S13

η̃x12
η

η(ν̃x8)=0

S11
ν̃x8

Cσ Cν̃x8 S12
ν̃x8

�Cσ .

As part of the long exact sequence for the homotopy of the mapping cone, we have
the exact sequence

π13(S
7)

σ−→ π13(S
0) −→ π13(Cσ ) −→ π13(S

8),

and we have π13(S0) = 0 = π13(S8), so π13(Cσ ) = 0. Therefore, 2(η̃x12) = 0 and
we can factorise 2 on the 14-sphere through the mapping cone of η̃x12, Cη̃x12 .

S14

˜2x14
2

S13
η̃x12

Cν̃x8 Cη̃x12 S14
η̃x12

�Cν̃x8 .

A cobar representative of 2̃x14 is

[ζ1 ⊗ x14 + ζ2 ⊗ x12 + ζ3 ⊗ x8 + ζ4 ⊗ x0] ∈ Ext1,15A∗ (F2, H∗(Cη̃x12)).

The homology of the mapping cone C
˜2x14

has a basis x0, x8, x12, x14, x15, with coac-
tion given by

ψx8 = ζ 8
1 ⊗ 1 + 1 ⊗ x8, (1.2a)

ψx12 = ζ 4
2 ⊗ 1 + ζ 4

1 ⊗ x8 + 1 ⊗ x12, (1.2b)

ψx14 = ζ 2
3 ⊗ 1 + ζ 2

2 ⊗ x8 + ζ 2
1 ⊗ x12 + 1 ⊗ x14, (1.2c)

ψx15 = ζ4 ⊗ 1 + ζ3 ⊗ x8 + ζ2 ⊗ x12 + 1 ⊗ x15. (1.2d)

These calculations show that the CW spectra of the stated forms do indeed exist.
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Remark 1.2 The spectra of Proposition 1.1 are all minimal atomic in the sense of [12];
this follows from the fact that in each case the mod 2 cohomology is a cyclic A∗-
module.

2 Some E∞ Thom spectra

Consider the three infinite loop spaces BSO = BO〈2〉, BSpin = BO〈4〉 and
BString = BO〈8〉. The 3-skeleton of BSO is

BSO[3] = BO〈2〉[3] = S2 ∪2 e
3,

since Sq1 w2 = w3. Similarly, the 7-skeleton of BSpin is

BSpin[7] = BO〈4〉[7] = S4 ∪η e
6 ∪2 e

7,

since Sq2 w4 = w6 and Sq1 w6 = w7. Finally, the 15-skeleton of BString is

BString[15] = BO〈8〉[15] = S8 ∪ν e
12 ∪η e

14 ∪2 e
15,

since Sq4 w8 = w12, Sq2 w12 = w14 and Sq1 w14 = w15.
The skeletal inclusionmaps induce (virtual) bundles whose Thom spectra are them-

selves skeleta of the universal Thom spectra MSO, MSpin and MString. Routine
calculations with Steenrod operations and the Wu formulae show that

MSO[3] = MO〈2〉[3] = S0 ∪η e
2 ∪2 e

3,

MSpin[7] = MO〈4〉[7] = S0 ∪ν e
4 ∪η e

6 ∪2 e
7,

MString[15] = MO〈8〉[15] = S0 ∪σ e8 ∪ν e
12 ∪η e

14 ∪2 e
15.

Thus, these Thom spectra are examples of ‘iterated Thom complexes’ similar in spirit
to those discussed in [10].

Each skeletal inclusion factors uniquely through an infinite loop map jr ,

BO〈2r 〉[2r+1−1] BO〈2r 〉

QBO〈2r 〉[2r+1−1]
j1

where Q = 
∞�∞ is the free infinite loop space functor. We can also form the asso-
ciated Thom spectrum Mjr which is an E∞ ring spectrum admitting an E∞ morphism
Mjr → MO〈2r 〉 factoring the corresponding skeletal inclusion.

Using the algebra of “Appendix 1”, it is easy to see that the skeletal inclusions induce
monomorphisms in homology whose images contain the lowest degree generators:

1, a(1)
1,0, a3,0 ∈ H∗(MSO),
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1, a(2)
1,0, a

(1)
3,0, a7,0 ∈ H∗(MSpin),

1, a(3)
1,0, a

(2)
3,0, a

(1)
7,0, a15,0 ∈ H∗(MString).

Each of the natural orientations MO〈n〉 → HF2 above induces an algebra homomor-
phism H∗(MO〈n〉) → A∗ for which

a(r)
1,0 → ζ 2r

1 , a(r)
3,0 → ζ 2r

2 , a(r)
7,0 → ζ 2r

3 , a(r)
15,0 → ζ 2r

4 .

We also note that the skeleta can be identified with skeleta of HZ, kO and tmf; namely,
there are orientations inducing weak equivalences

MO〈2〉[3] �−→ HZ
[3], MO〈4〉[7] �−→ kO[7], MO〈8〉[15] �−→ tmf [15]. (2.1)

The first two are induced from well-known orientations, while the third relies on
unpublished work of Ando et al. [3]. Actually, such morphisms can be produced
using the reduced free commutative S-algebra functor˜P of [7], which has a universal
property analogous to that of the usual free functor P of [17].

Proposition 2.1 For r = 1, 2, 3, the natural map MO〈2r 〉[2r+1−1] → Mjr has unique
extensions to a weak equivalence of E∞ ring spectra

˜PMO〈2r 〉[2r+1−1] ∼−→ Mjr .

The orientations of (2.1) induce morphisms of E∞ ring spectra

˜PMO〈2〉[3] → HZ, ˜PMO〈4〉[7] → kO, ˜PMO〈8〉[15] → tmf.

Proof The existence of such morphisms depends on the universal property of˜P. The
proof that those of the first kind are equivalences depends on a comparison of the
homology rings using Theorem 2.3 below. 	

Remark 2.2 In fact, the weak equivalences of (2.1) extend to weak equivalences

Mj1 ∼ HZ
[4], Mj2 ∼ kO[8], Mj3 ∼ tmf [16]. (2.2)

The homology of Mjr can be determined from that of the underlying infinite loop
space using the Thom isomorphism, while that for the others it depends on a general
description of the homology of H∗(˜PX) which can be found in [7].

Theorem 2.3 The homology rings of the Thom spectra M jr are given by

H∗(Mj1) = F2[QI x2,Q
J x3 : I, J admissible, exc(I ) > 2, exc(J ) > 3],

H∗(Mj2) = F2[QI x4,Q
J x6,Q

K x7 : I, J, K admissible, exc(I ) > 4, exc(J ) > 6, exc(K ) > 7],
H∗(Mj3) = F2[QI x8,Q

J x12,Q
K x14,Q

L x15 : I, J, K , L admissible,

exc(I ) > 8, exc(J ) > 12, exc(K ) > 14, exc(L) > 15].
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The E∞ orientations M jr → HF2 induce algebra homomorphisms H∗(Mjr ) → A∗
which have images

F2[ζ 2
1 , ζ2, ζ3, . . .] ∼= H∗(HZ),

F2[ζ 4
1 , ζ 2

2 , ζ3, ζ4, . . .] ∼= H∗(kO),

F2[ζ 8
1 , ζ 4

2 , ζ 2
3 , ζ4, ζ5, . . .] ∼= H∗(tmf).

Recalling Remark 1.2, we note the following where the minimal atomic E∞ ring
spectrum is used in the sense of Hu, Kriz and May, and was subsequently developed
further in [11].

Proposition 2.4 Each of the E∞ ring spectra M jr (r = 1, 2, 3) is minimal atomic.

Proof In [7], we showed that for X ∈ S0/MS in the slice category of S-modules
under a cofibrant replacement of S,


S(˜PX) ∼ ˜PX ∧ X/S0;

hence,

TAQ∗(˜PX, S; H) ∼= H∗(X/S0).

For Mjr ∼ ˜PMO〈2r 〉[2r+1−1], this gives

TAQ∗(Mjr , S; H) ∼= H∗(MO〈2r 〉[2r+1−1]/S0).

The (2r+1 − 1)-skeleton for a minimal cell structure on the spectrum Mjr agrees
with MO〈2r 〉[2r+1−1], and this is a minimal atomic S-module as noted in Remark 1.2.
It follows that the mod 2 Hurewicz homomorphism π∗(Mjr ) → H∗(Mjr ) is trivial in
the range 0 < ∗ < 2r+1. Hence, the TAQ Hurewicz homomorphism

π∗(Mjr ) → TAQ∗(Mjr , S; H)
∼=−→ H∗(Mjr/S

0)

is trivial. Now by [11, theorem 3.3], Mjr is minimal atomic as claimed. 	


3 Some coalgebra

In this section, we review some useful results on comodules over Hopf algebras.
Although most of this material is standard, we state some results in a precise form
suitable for our requirements. Since writing early versions of this paper, we became
aware of work by Hill [20] which uses similar results.

First, we recall a standard algebraic result, for example see [31, lemma 3.1]. We
work vector spaces over a field k and will set ⊗ = ⊗

k
. There are slight modifications

required for the graded case which we leave the reader to formulate; however as we
work exclusively in characteristic 2, these have no significant effect in this paper.
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We refer to the classic paper of Milnor and Moore [28] for background material on
coalgebra.

Let A be a commutative Hopf algebra over a field k, and let B be a quotient Hopf
algebra of A. We denote the product and antipode on A by φA and χ , and the coaction
on a left comodule D by ψD . We will identify the cotensor product A�Bk ⊆ A ⊗ k

with a subalgebra of A under the canonical isomorphism A ⊗ k
∼=−→ A.

Lemma 3.1 Let D be a commutative A-comodule algebra. Then there is an isomor-
phism of A-comodule algebras

(φA⊗IdD)◦(IdA ⊗ψD) : (A�Bk)⊗D
∼=−→ A�BD; a⊗x ←→

∑

i

aai⊗xi , (3.1)

where ψDx = ∑

i ai ⊗ xi denotes the coaction on x ∈ D.

Here, the codomain has the diagonal A-comodule structure, while the domain has
the left A-comodule structure.

Here is an easily proved generalisation of this result.

Lemma 3.2 Let C be a commutative B-comodule algebra and let D be a commutative
A-comodule algebra, then there is an isomorphism of A-comodule algebras

(A�BC) ⊗ D
∼=−→ A�B(C ⊗ D), (3.2)

where the domain has the diagonal left A-coaction and C ⊗ D has the diagonal left
B-coaction.

Explicitly, on an element

∑

r

ur ⊗ vr ⊗ x ∈ (A�BC) ⊗ D ⊆ A ⊗ C ⊗ D,

the isomorphism has the effect

∑

r

ur ⊗ vr ⊗ w −→
∑

r

∑

i

ur ai ⊗ vr ⊗ wi ,

where ψDw = ∑

i ai ⊗ wi as above. Similarly, the inverse is given by

∑

r

br ⊗ yr ⊗ wr −→
∑

r

∑

i

brχ(ar,i ) ⊗ vr ⊗ wr,i .

Now, suppose that H is a finite-dimensional Hopf algebra. If K is a sub-Hopf
algebra of H , it is well known that H is a free left or right K -module, i.e. H ∼= K ⊗U
or H ∼= U ⊗ K for a vector space U (see [29, theorems 31.1.5 and 3.3.1]). This
dualises as follows: If L is a quotient Hopf algebra of H , then H is an extended left
or right L-comodule, i.e. H ∼= L ⊗ V or H ∼= V ⊗ L for a vector space V ; in fact,
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V = H�Lk. More generally, according to Margolis [26, pp. 193 and 240], if H is
a P-algebra, then a result of the first kind holds for any finite-dimensional sub-Hopf
algebra K .

We need to make use of the finite dual of a Hopf algebra H , namely

Ho = { f ∈ Hom
k
(H, k) : ∃ I � H such that codim I < ∞ and I ⊆ ker f }.

Then, Ho becomes an Hopf algebra with product and coproduct obtained from the
adjoints of the coproduct and product of H . We will say that H is a P-coalgebra if
Ho is a P-algebra.

Lemma 3.3 Suppose that A is a commutative Hopf algebra which is a P-coalgebra.
If B is a finite dimensional quotient Hopf algebra of A, then A is an extended right
(or left) B-comodule, i.e. A ∼= W ⊗ B (or A ∼= B ⊗ W ) for some vector space W,
and in fact W ∼= A�Bk (or W ∼= k�B A).

Corollary 3.4 For any right B-comodule L or left B-comodule M, as vector spaces,

A�BM ∼= (A�Bk) ⊗ M, L�B A ∼= L ⊗ (k�B A).

These are isomorphisms of left or right A-comodules for suitable comodule structures
on the right hand sides.

To understand the relevant A-comodule structure on (A�Bk) ⊗ M , note that there
is an isomorphism of left A-comodules

(A�Bk) ⊗ M
Id⊗ψM

∼=

(A�Bk) ⊗ B ⊗ M ∼= A ⊗ M ,

where the right hand factor is the isomorphism of Lemma 3.3.
Crucially for our purposes, for a prime p, the Steenrod algebraA∗ is a P-algebra in

the sense of Margolis [26], i.e. it is a union of finite sub-Hopf algebras. When p = 2,

A∗ =
⋃

n�0

A(n)∗,

and it follows from the preceding results that if n � 0, A∗ is free as a right or left
A(n)∗-module; see [26, pp. 193 and 240]. Dually, (A∗)o = A∗ andA∗ is an extended
A(n)∗-comodule:

A∗ ∼= (A∗�A(n)∗F2) ⊗ A(n)∗, (3.3)

A∗ ∼= A(n)∗ ⊗ (F2�A(n)∗A∗). (3.4)

Given this, we see that for any left A(n)∗-comodule M∗, as vector spaces

A∗�A(n)∗M∗ ∼= (A∗�A(n)∗F2) ⊗ M∗. (3.5)
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In fact, this is also an isomorphism left A∗-comodules.
Here is an explicit description of isomorphisms of the type given by Lemma 3.3.

For n � 0, we will use the function

en : N → N; en(i) =
{

2n+2−i if 1 � i � n + 2,

1 if i � n + 3.

For any natural number r , write

r = r ′(n, i)en(i) + r ′′(n, i),

where 0 � r ′′(n, i) < en(i). We note that

A∗�A(n)∗F2 = F2[ζ en(1)
1 , ζ

en(2)
2 , ζ

en(3)
3 , . . .] ⊆ A∗,

and

A(n)∗ = A∗//(A∗�A(n)∗F2) = A∗/(ζ en(1)
1 , ζ

en(2)
2 , ζ

en(3)
3 , . . .).

We will indicate elements of A(n)∗ by writing ‖z‖ for the coset of z which is always
chosen to be a sum of monomials ζ

s1
1 ζ

s2
2 . . . ζ

s�
� with exponents satisfying 0 � si <

en(i).

Proposition 3.5 For n � 0, there is an isomorphism of right A(n)∗-comodules

A∗
∼=−→ (A∗�A(n)∗F2) ⊗ A(n)∗

given on basic tensors by

ζ
r1
1 ζ

r2
2 . . . ζ

r�
� ←→ ζ

r ′
1(n,1)en(1)

1 . . . ζ
r ′
�(n,�)en(�)

� ⊗
∥

∥

∥ζ
r ′′
1 (n,1)

1 . . . ζ
r ′′
� (n,�)

�

∥

∥

∥ .

Wewill also use the following result to construct algebraicmaps in lieu of geometric
ones. The proof is a straightforward generalisation of a standard one for the case where
B = k.

Lemma 3.6 Suppose that M is a left A-comodule and N is a left B-comodule. Then
there is a natural isomorphism

ComodB(M, N )
∼=−→ ComodA(M, A�BN ); f → ˜f ,
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where ˜f is the unique factorisation of (Id⊗ f )ψM through A�BN.

M

ψM

˜f

(Id⊗ f )ψM

A�BN

A ⊗ M
Id⊗ f

A ⊗ N .

Furthermore, if M is an A-comodule algebra and N is a B-comodule algebra, then
if f is an algebra homomorphism, so is ˜f .

As an example of the multiplicative version of this result, suppose that M is an A-
comodule algebra which is augmented. Then there is a composite homomorphism of
B-comodule algebras α : M → k → N giving rise to homomorphism of A-comodule
algebras

α̃ : M → A�BN ; α̃(x) = a ⊗ 1,

where ψM (x) = a ⊗ 1 + · · · + 1 ⊗ x .

4 The homology of M jr for r = 1, 2, 3

Now we analyse the specific cases for H∗(Mjr ) for r = 1, 2, 3. Since some of the
details differ in each case,we treat these separately. In each case, there is a commutative
diagram of commutative A∗-comodule algebras

H∗(Mjr )

ψ

(∼=)

(A∗�A(r−1)∗F2) ⊗ H∗(Mjr )
π

(A∗�A(r−1)∗F2) ⊗ H∗(Mjr )/Ir

A∗�A(r−1)∗ H∗(Mjr )

∼=
π A∗�A(r−1)∗ H∗(Mjr )/Ir

∼=

A∗ ⊗ H∗(Mjr )
π A∗ ⊗ H∗(Mjr )/Ir

(4.1)
in which Ir � H∗(Mjr ) is a certainA(r − 1)∗-comodule ideal. In each case, the proof
involves showing that the dashed arrow is an isomorphism.
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4.1 The homology of M j1

By Theorem 2.3,

H∗(Mj1) = F2[QI x2,Q
J x3 : I, J admissible, exc(I ) > 2, exc(J ) > 3], (4.2)

where the left A∗-coaction is determined by

ψx2 = 1 ⊗ x2 + ζ 2
1 ⊗ 1, ψx3 = 1 ⊗ x3 + ζ1 ⊗ x2 + ζ2 ⊗ 1.

To calculate the coaction on the other generators QI x2 and QJ x3, we follow [9] and
use the right coaction

˜ψ : H∗(Mj1) → H∗(Mj1) ⊗ A∗; ˜ψ(z) =
∑

i

zi ⊗ χ(αi ),

where ψ(z) = ∑

i αi ⊗ zi and χ is the antipode of A∗. So,

˜ψx2 = x2 ⊗ 1 + 1 ⊗ ζ 2
1 , ˜ψx3 = x3 ⊗ 1 + x2 ⊗ ζ1 + 1 ⊗ ξ2.

In general, if z has degree m, then

˜ψQr z =
∑

m�k�r

Qk(˜ψz)[ζ(t)k]tr =
∑

m�k�r

Qk(˜ψz)

[

(

ζ(t)

t

)k
]

tr−k

. (4.3)

By (4.3),

˜ψQ4x3 = Q3(x3 ⊗ 1 + x2 ⊗ ζ1 + 1 ⊗ ξ2)

[

(

ζ(t)

t

)3
]

t

+ Q4(x3 ⊗ 1 + x2 ⊗ ζ1 + 1 ⊗ ξ2)

= x23 ⊗ ζ1 + x22 ⊗ ζ 3
1 + 1 ⊗ ζ1ξ

2
2

+ Q4x3 ⊗ 1 + (Q3x2 ⊗ ζ 2
1 + x22 ⊗ Q2ζ1) + 1 ⊗ Q4ξ2

= x23 ⊗ ζ1 + x22 ⊗ ζ 3
1 + 1 ⊗ ζ1ξ

2
2 + Q4x3 ⊗ 1

+ Q3x2 ⊗ ζ 2
1 + x22 ⊗ ζ2 + 1 ⊗ (ξ3 + ζ1ξ

2
2 )

= (Q4x3 ⊗ 1 + x23 ⊗ ζ1 + x22 ⊗ ξ2 + 1 ⊗ ξ3) + Q3x2 ⊗ ζ 2
1 .

We also have

˜ψQ3x2 = Q3x2 ⊗ 1, ˜ψQ5x2 = Q5x2 ⊗ +Q3x2 ⊗ ζ 2
1 .

Combining these, we obtain

˜ψ(Q4x3 + Q5x2) = (Q4x3 + Q5x2) ⊗ 1 + x23 ⊗ ζ1 + x22 ⊗ ξ2 + 1 ⊗ ξ3, (4.4)
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or equivalently,

ψ(Q4x3 + Q5x2) = 1 ⊗ (Q4x3 + Q5x2) + ζ1 ⊗ x23 + ζ2 ⊗ x22 + ζ3 ⊗ 1. (4.5)

We will consider the sequence of elements X1,1 and X1,s ∈ H2s−1(Mj1) (s � 2)
defined by

X1,s =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x2 if s = 1,

x3 if s = 2,

Q4x3 + Q5x2 if s = 3,

Q(2s−1,...,24,23)(Q4x3 + Q5x2) = Q2s−1
X1,s−1 if s � 4,

where Q(i1,i2,...,i�) = Qi1Qi2 . . .Qi� . We claim that X1,s have the following right and
left coactions:

˜ψX1,s = X1,s ⊗ 1 + X2
1,s−1 ⊗ ζ1 + · · · + X2s−3

1,3 ⊗ ξs−3 (4.6)

+ X2s−2

1,2 ⊗ ξs−2 + X2s−2

1,1 ⊗ ξs−1 + 1 ⊗ ξs,

ψX1,s = 1 ⊗ X1,s + ζ1 ⊗ X2
1,s−1 + · · · + ζs−3 ⊗ X2s−3

1,3

+ ζs−2 ⊗ X2s−2

1,2 + ζs−1 ⊗ X2s−2

1,1 + ζs ⊗ 1. (4.7)

To prove these, we use induction on s, where the early cases s = 1, 2, 3 are known
already. For the inductive step, assume that (4.6) holds for some s � 3. Then,

˜ψX1,s+1 = ˜ψQ2s X1,s = (˜ψX1,s)
2ζ1 + Q2s (˜ψX1,s)

= X2
1,s ⊗ ζ1 + X22

1,s−1 ⊗ ζ 3
1 + · · · + X2s−2

1,3 ⊗ ξ2s−3ζ1

+ X2s−1

1,2 ⊗ ξ2s−2ζ1 + X2s−1

1,1 ⊗ ξ2s−1ζ1 + 1 ⊗ ξ2s ζ1

+ Q2s (X1,s ⊗ 1 + X2
1,s−1 ⊗ ζ1 + · · · + X2s−3

1,3 ⊗ ξs−3

+ X2s−2

1,2 ⊗ ξs−2 + X2s−2

1,1 ⊗ ξs−1 + 1 ⊗ ξs)

= X2
1,s ⊗ ζ1 + X22

1,s−1 ⊗ ζ 3
1 + · · · + X2s−2

1,3 ⊗ ξ2s−3ζ1 + X2s−1

1,2 ⊗ ξ2s−2ζ1

+ X2s−1

1,1 ⊗ ξ2s−1ζ1 + 1 ⊗ ξ2s ζ1

+ Q2s X1,s ⊗ 1 + X22
1,s−1 ⊗ Q2ζ1 + · · · + X2s−2

1,3 ⊗ Q2s−3
ξs−3

+ X2s−1

1,2 ⊗ Q2s−2
ξs−2 + X2s−1

1,1 ⊗ Q2s−1
ξs−1 + 1 ⊗ Q2s ξs

= X2
1,s ⊗ ζ1 + X22

1,s−1 ⊗ ζ 3
1 + · · · + X2s−2

1,3 ⊗ ξ2s−3ζ1 + X2s−1

1,2 ⊗ ξ2s−2ζ1

+ X2s−1

1,1 ⊗ ξ2s−1ζ1 + 1 ⊗ ξ2s ζ1

+ X1,s+1 ⊗ 1 + X22
1,s−1 ⊗ (ξ2 + ζ 3

1 ) + · · · + X2s−2

1,3 ⊗ (ξs−2 + ξ2s−3ζ1)

+ X2s−1

1,2 ⊗ (ξs−1 +ξ2s−2ζ1)+X2s−1

1,1 ⊗ (ξs + ξ2s−1ζ1) + 1 ⊗ (ξs+1 + ξ2s ζ1)
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= X1,s+1 ⊗ 1 + X2
1,s ⊗ ζ1 + X22

1,s−1 ⊗ ξ2 + · · · + X2s−2

1,3 ⊗ ξs−2

+ X2s−1

1,2 ⊗ ξs−1 + X2s−1

1,1 ⊗ ξs + 1 ⊗ ξs+1,

giving the result for s + 1. Here for terms of form Q|u|+|v|+1(u ⊗ v), we have

Q|u|+|v|+1(u ⊗ v) = Q|u|+1u ⊗ Q|v|v + Q|u|+1u ⊗ Q|v|+1v

= Q|u|+1u ⊗ v2 + u2 ⊗ Q|v|+1v

by the Cartan formula and unstable conditions.
Under the homomorphism ρ : H∗(Mj1) → A∗ induced by the orientation Mj1 →

HF2, we have

ρ(x2) = ζ 2
1 , ρ(x3) = ζ2, ρ(X1,s) = ζs (s � 3).

Also,

ρ(Q3x2) = Q3(ρx2) = Q3(ζ 2
1 ) = 0,

and for each admissible monomial I , ρ(QI x2) ∈ A∗ is a square.
This shows that the restriction of ρ to the subalgebra generated by the X1,s is an

isomorphism of A∗-comodule algebras

F2[X1,s : s � 1] ∼=−→ A∗�A(0)∗F2 ⊆ A∗,

where

A(0)∗ = A∗//F2[ζ 2
1 , ζ2, ζ3, . . .], A∗�A(0)∗F2 = F2[ζ 2

1 , ζ2, ζ3, . . .] ⊆ A∗.

In the algebra H∗(Mj1), the regular sequence X1,s (s � 1) generates an ideal

I1 = (X1,s : s � 1) � H∗(Mj1).

This is not an A∗-subcomodule since, for example,

ψX1,3 = ψ(Q4x3 + Q5x2) = (1 ⊗ X1,3 + ζ1 ⊗ X2
1,2 + ζ2 ⊗ X2

1,1) + ζ3 ⊗ 1.

However, under the induced A(0)∗-coaction

ψ ′ : H∗(Mj1) → A(0)∗ ⊗ H∗(Mj1),

the last term becomes trivial; in fact,

ψ ′X1,3 = 1 ⊗ X1,3 + ζ1 ⊗ X2
1,2,
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where we identify elements of A(0)∗ with representatives in A∗. More generally,
by (4.7), for s � 2,

ψ ′X1,s = 1 ⊗ X1,s + ζ1 ⊗ X2
1,s−1.

It follows that I1 is an A(0)∗-invariant ideal.
Proposition 4.1 There is an isomorphism of commutative A∗-comodule algebras

H∗(Mj1)
∼=−→ A∗�A(0)∗ H∗(Mj1)/I1.

Proof Taking r = 1, from (4.1), we obtain a commutative diagram of commutative
A∗-comodule algebras

H∗(Mj1)

ψ

(A∗�A(0)∗F2) ⊗ H∗(Mj1)
π

(A∗�A(0)∗F2) ⊗ H∗(Mj1)/I1

A∗�A(0)∗ H∗(Mj1)

∼=
π A∗�A(0)∗ H∗(Mj1)/I1

∼=

A∗ ⊗ H∗(Mj1)
π A∗ ⊗ H∗(Mj1)/I1

and furthermore

ψX1,1 = ζ 2
1 ⊗ 1 + 1 ⊗ X1,1,

ψX1,2 = ζ2 ⊗ 1 + ζ1 ⊗ X1,1 + 1 ⊗ X1,1,

ψX1,s = ζs+1 ⊗ 1 + · · · + 1 ⊗ X1,s (s � 3),

giving

π ψX1,1 = ζ 2
1 ⊗ 1, π ψX1,2 = ζ2 ⊗ 1, π ψX1,s = ζs+1 ⊗ 1 + · · · .

The latter form part of a set of polynomial generators for the polynomial ring

A∗ ⊗ H∗(Mj1)/I1 ∼= (A∗�A(0)∗F2) ⊗ H∗(Mj1)/I1.

Now, a straightforward argument shows that the dashed arrow is surjective; but as the
Poincaré series of H∗(Mj1) and (A∗�A(0)∗F2)⊗ H∗(Mj1)/I1 are equal, it is actually
an isomorphism. Therefore,

H∗(Mj1) ∼= A∗�A(0)∗ H∗(Mj1)/I1.
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Remark 4.2 For the purposes of proving such a result, we might as well have set
X1,3 = Q4x3 and

X1,s = Q2s−1
X1,s−1 (s � 3),

since

ψ ′X1,3 = 1 ⊗ X1,3 + ζ1 ⊗ x23

and so on. However, the cases of Mj2 and Mj3 will require modifications similar to
the ones we have used above which give an indication of the methods required.

We have the following splitting result.

Proposition 4.3 There is a splitting of A∗-comodule algebras

A∗�A(0)∗F2
∼= A∗�A(0)∗F2

H∗(Mj1)

,

where H∗(Mj1) → H∗(HZ) = A∗�A(0)∗F2 is induced by theE∞ orientation M j1 →
HZ.

Proof This is proved using Lemma 3.6 together with the trivial A(0)∗-comodule
algebra homomorphism A∗�A(0)∗F2 → H∗(Mj1)/I1. 	


4.2 The homology of M j2

We have

H∗(Mj2) = F2[QI x4,Q
J x6,Q

K x7 : I, J, K admissible, exc(I ) > 4, exc(J ) > 6, exc(K ) > 7],

with right coaction satisfying

˜ψx4 = x4 ⊗ 1 + 1 ⊗ ζ 4
1 ,

˜ψx6 = x6 ⊗ 1 + x4 ⊗ ζ 2
1 + 1 ⊗ ξ22 ,

˜ψx7 = x7 ⊗ 1 + x6 ⊗ ζ1 + x4 ⊗ ξ2 + 1 ⊗ ξ3.

Furthermore,

˜ψQ8x7 = x27 ⊗ ζ1 + x26 ⊗ ζ 31 + x24 ⊗ ζ1ξ
2
2 + 1 ⊗ ξ23 ζ1

+ Q8(x7 ⊗ 1 + x6 ⊗ ζ1 + x4 ⊗ ξ2 + 1 ⊗ ξ3)

= x27 ⊗ ζ1 + x26 ⊗ ζ 31 + x24 ⊗ ζ1ξ
2
2 + 1 ⊗ ξ23 ζ1 + Q8x7 + Q7x6 ⊗ ζ 21
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+ Q5x4 ⊗ ξ22 + 1 ⊗ (ξ4 + ζ1ξ
2
3 ) + x26 ⊗ ζ2 + x24 ⊗ (ξ3 + ζ1ξ

2
2 )

= (Q8x7 + x27 ⊗ ζ1 + x26 ⊗ ξ2 + x24 ⊗ ξ3 + 1 ⊗ ξ4) + Q7x6 ⊗ ζ 21 + Q5x4 ⊗ ξ22 ,

so the left A(1)∗-coproduct

ψ ′ : H∗(Mj2) → A(1)∗ ⊗ H∗(Mj2)

has

ψ ′Q8x7 = (Q8x7 + ζ1 ⊗ x27 + ζ2 ⊗ x26 + ζ3 ⊗ x24 + ζ4 ⊗ 1) + ζ 2
1 ⊗ Q7x6 + ζ 2

2 ⊗ Q5x4

= (Q8x7 + ζ1 ⊗ x27 + ζ2 ⊗ x26 ) + ζ 2
1 ⊗ Q7x6.

We also have

ψ ′Q9x6 = 1 ⊗ Q9x6 + ζ 2
1 ⊗ Q7x6 + ζ 4

1 ⊗ Q7x4 + ζ 2
2 ⊗ Q5x4

= 1 ⊗ Q9x6 + ζ 2
1 ⊗ Q7x6,

so

ψ ′(Q8x7 + Q9x6) = Q8x7 + ζ1 ⊗ x27 + ζ2 ⊗ x26 ∈ A(1)∗ ⊗ H∗(Mj2).

Now, we define a sequence of elements X2,s (s � 1) by

X2,s =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x4 if s = 1,

x6 if s = 2,

x7 if s = 3,

Q8x7 + Q9x6 if s = 4,

Q(2s−1,...,25,24)(Q8x7 + Q9x6) = Q2s−1
X2,s−1 if s � 5.

An inductive calculation shows that for s � 4,

ψ ′X2,s = 1 ⊗ X2,s + ζ1 ⊗ X2
2,s−1 + ζ2 ⊗ X4

2,s−2 ∈ A(1)∗ ⊗ I2.

So this sequence is regular and generates an A(1)∗-invariant ideal

I2 = (X2,s : s � 1) � H∗(Mj2).

The next result follows using similar arguments to those in the proof of Proposition 4.1
using the diagram (4.1).

Proposition 4.4 There is an isomorphism of A∗-comodule algebras

H∗(Mj2)
∼=−→ A∗�A(1)∗ H∗(Mj2)/I2.
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The E∞ morphism Mj2 → kO induces an algebra homomorphism H∗(Mj2) →
H∗(kO) ⊆ A∗ under which

X2,1 → ζ 4
1 , X2,2 → ζ 2

2 , X2,s → ζs (s � 3).

We have the following splitting result analogous to Proposition 4.3.

Proposition 4.5 There is a splitting of A∗-comodule algebras

A∗�A(1)∗F2
∼= A∗�A(1)∗F2

H∗(Mj2)

,

where H∗(Mj2) → H∗(kO) = A∗�A(1)∗F2 is induced by the E∞ orientation M j2 →
kO.

4.3 The homology of M j3

In H∗(Mj3), consider the regular sequence

X3,s =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

x8 if s = 1,

x12 if s = 2,

x14 if s = 3,

x15 if s = 4,

Q16x15 + Q17x14 + Q19x12 if s = 5,

Q(2s−1,...,26,25)(Q16x15 + Q17x14 + Q19x12) = Q2s−1
X3,s−1 if s � 6.

We leave the reader to verify that the ideal

I3 = (X3,s : s � 1) � H∗(Mj3)

is A(2)∗-invariant. The proof of the following result is similar to those of Proposi-
tions 4.1 and 4.4 using the diagram (4.1).

Proposition 4.6 There is an isomorphism of A∗-comodule algebras

H∗(Mj3)
∼=−→ A∗�A(2)∗ H∗(Mj3)/I3.

The E∞ morphism Mj3 → tmf induces an algebra homomorphism H∗(Mj3) →
H∗(tmf) ⊆ A∗ under which

X3,1 → ζ 8
1 , X3,2 → ζ 4

2 , X3,3 → ζ 2
3 , X3,s → ζs (s � 3).

We have the following splitting result analogous to Propositions 4.3 and 4.5.
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Proposition 4.7 There is a splitting of A∗-comodule algebras

A∗�A(2)∗F2
∼= A∗�A(2)∗F2

H∗(Mj3)

,

where H∗(Mj3) → H∗(tmf) = A∗�A(2)∗F2 is induced by the E∞ orientation M j3 →
tmf .

Weend this discussion by recording the following resultwhichwas in partmotivated
by a result of Lawson and Naumann [23].

Theorem 4.8 There is a morphism of E∞ ring spectra M j3 → kO which induces an
epimorphism

H∗(Mj3) � F2[ζ 8
1 , ζ 4

2 , ζ 2
3 , ζ4, ζ5, . . .] ⊆ F2[ζ 4

1 , ζ 2
2 , ζ3, ζ4, ζ5, . . .] ∼= H∗(kO)

on H∗(−) and an epimorphism πk(Mj3) → πk(kO) for k �= 4.

Proof We will use the fact that Mj3 ∼ ˜Ptmf [15] and show the existence of a suitable
E∞ morphism˜Ptmf [15] → kO.

We first require a map tmf [15] → kO extending the unit map S0 → kO. The
existence of maps can be shown using classical obstruction theory, since the suc-
cessive obstructions lie in the groups H8(tmf [15];π7(kO)), H12(tmf [15];π11(kO)),
H14(tmf [15];π13(kO)) and H15(tmf [15];π14(kO)), all of which are trivial. For defi-
niteness, choose such a map as θ : tmf [15] → kO.

Let us examine the induced A∗-comodule homomorphism θ∗ : H∗(tmf [15]) →
H∗(kO) ⊆ A∗. By Lemma 3.6, we have

ComodA∗(H∗(tmf [15]), H∗(kO)) ∼= ComodA∗(H∗(tmf [15]),A∗�A(1)∗F2)

∼= ComodA(1)∗(H∗(tmf [15]), F2) ∼= F2,

so θ∗ is a uniquely determined. Recall the formulae for the coaction on H∗(tmf [15])
given in (1.2a); we find that

θ∗(x8) = ζ 8
1 , θ∗(x12) = ζ 4

2 , θ∗(x14) = ζ 2
3 , θ∗(x15) = ζ4.

There is a unique extension of θ to a morphism of E∞ ring spectra˜θ : ˜Ptmf [15] →
kO. The homology of˜Ptmf [15] is given in Theorem 2.3, and for s � 5

˜θ∗(X3,s) = Q(2s−1,...,26,25)(θ∗(x15)) = Q(2s−1,...,26,25)(ζ4) = ζs .

It follows that

im˜θ∗ = F2[ζ 8
1 , ζ 4

2 , ζ 2
3 , ζ4, ζ5, . . .] ∼= H∗(tmf).
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To prove the result about homotopy groups, we show first that θ∗ : πk(tmf [15]) →
πk(kO) is surjective when k = 8, 9, 10, 12. We will use some arguments about
some Toda brackets in π∗(tmf [15]) and π∗(kO); similar results were used in [12, sec-
tion 7]. Given an S-module X , we can define Toda brackets of the form 〈α, β, γ 〉 ⊆
πa+b+c+1(X), where α ∈ πa(S), β ∈ πb(S) and γ ∈ πc(X) satisfy αβ = 0 in
πa+b(S) and βγ = 0 in πb+c(X). The indeterminacy here is as usual

indet〈α, β, γ 〉 = απb+c+1(X) + πa+b+1(S)γ ⊆ πa+b+c+1(X).

The case k = 8 follows from the well-known facts that the Toda brackets
〈16, σ, 1〉 ⊆ π8(tmf) and 〈16, σ, 1〉 ⊆ π8(kO) contain generators c′

4 ∈ π8(tmf) ∼=
π8(tmf [15]) and w ∈ π8(kO), respectively. Naturality shows that θ∗ : π8(tmf [15]) →
π8(kO) is surjective.

For the cases k = 9, 10, we can use multiplication by η and η2 in π∗(tmf)[15] and
π∗(kO) to see that θ∗ : πk(tmf)[15] → πk(kO) is surjective in these cases.

For k = 12,we need to know the classical result νw = 0 as well as νc′
4 = 0; the lat-

ter can be read off of the Adams spectral sequence diagrams in [16, chapter 13]. Given
these facts, it follows that the Toda brackets 〈8, ν, c′

4〉 ⊆ π12(tmf) ∼= π12(tmf [15]) and
〈8, ν, w〉 ⊆ π12(kO) contain generators and naturality shows that θ∗ : π12(tmf [15]) →
π12(kO) is surjective.

To finish our argument, we know that when k = 8, 9, 10, 12, the composition

πk(tmf [15])

θ∗

πk(˜Ptmf [15])
˜θ∗

πk(kO)

is surjective. Using multiplication by the image of c′
4 in π∗(˜Ptmf [15]), it is straight-

forward to show that θ∗ : πk(tmf [15]) → πk(kO) is surjective for all k > 4. 	

In [23], Lawson and Naumann have shown the existence of an E∞ map tmf → kO

whose restriction to tmf [15] could be used in the proof above. However, our argument
does not assume the prior existence of such amap and seemsmore elementary. Indeed,
our result suggests the possibility of a more direct approach to building an E∞ mor-
phism tmf → kO in comparison with the approach of Lawson and Naumann: it would
suffice to show that the map I → kO from the homotopy fibre I of the E∞ morphism
˜Ptmf [15] → kO was null homotopic, so there is an E∞ morphism tmf → kO making
the following diagram homotopy commutative.

I

˜Ptmf [15]
˜θ

kO.

tmf
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To date, we have been unable to make this approach work.

5 Some other examples

Our approach to proving algebraic splittings of the homology of E∞ Thom spectra can
be used to rederive many known results for classical examples such as MO, MSO,
MSO, MSpin, MString = MO〈8〉 and MU. We can also obtain some other new
examples with these methods.

5.1 An example related to kU

Our first example is based on similar ideas to those used to construct the spectra
Mjr , but using Spinc. The low-dimensional homology of BSpinc can be read off
from Theorem 7.2 and Remark 7.3. Passing to the Thom spectrum over the 7-skeleton
(BSpinc)[7], we have for its homology

H∗((MSpinc)[7]) = F2{1, a(1)
1,0, a

(1)
1,1, (a

(1)
1,0)

2, a(1)
3,0, a7,0}.

For our purposes, the fact that there are two 4-cells is problematic, sowe instead restrict
to a smaller complex. The map BSpin[7] → BSpinc induces an epimorphism in coho-
mology, and the resulting map S2 ∨ BSpin[7] → BSpinc induces a monomorphism
in homology with image

F2{1, a(1)
1,0, a

(1)
1,1, a

(1)
3,0, a7,0}.

The Thom spectrum over this space has a cell structure of the form

(S0 ∪η e
2) ∪ν e

4 ∪η e
6 ∪2 e

7.

x7
2

x6

η

x4

ν x2

η

1
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The skeletal inclusion factors through an infinite loop map

S2 ∨ BSpin[7] BSpinc

Q(S2 ∨ BSpin[7])
jc

and we obtain an E∞ Thom spectrum Mjc over Q(S2 ∨ BSpin[7]) whose homology
is

H∗(Mjc) = F2[QI2x2,Q
I4x4,Q

I6x6,Q
I7x7 : Ir admissible, exc(Ir ) > r ].

It is easy to see that there is a morphism of E∞ ring spectra

˜P(S0 ∪ν e
4 ∪η e

6 ∪2 e
7) → kU

inducing an epimorphism on H∗(−) under which

x2 → ζ 2
1 , x4 → ζ 4

1 , x6 → ζ 2
2 , x7 → ζ3.

The 7-skeleton of Mjc has the form

x7

2

Q5x2

η

x2Q3x2

η

x2x4

η

ν

x6

η

x32

η

Q4x2
2

,

Q3x2

x4

ν

x22

ν
x2

η

1
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since π3(Cη) ∼= π3(S0)/ηπ1(S0) = π3(S0)/4π3(S0) and the generators are detected
by Sq4. It follows that there is an element π4(Mjc) with Hurewicz image x4 + x22 ,
and if w : S4 → Mjc is a representative, we can form the E∞ cone Mjc//w as the
pushout in the diagram

PS4
w

w̃
�.

PD5

Mjc Mjc//w

taken in the category CS of commutative S-algebras. There is a Künneth spectral
sequence of the form

E2
s,t = TorH∗(PS4)

s,t (F2, H∗(Mjc)) �⇒ Hs+t (Mjc//w)

where the H∗(Mjc) is the H∗(PS4)-module algebra

H∗(PS4) = F2[QI z4 : I admissible, exc(I ) > 4] → H∗(Mjc);

where

QI z4 → QI (x22 ) + QI x4.

Notice that the term QI (x22 ) is either trivial (if at least one term in I is odd) or a square
(if all terms in I are even), hence can be used as a polynomial generator of H∗(Mjc)
in place of QI x4. It follows that H∗(Mjc) is a free H∗(PS4)-module, so the spectral
sequence is trivial with

E2∗,∗ = TorH∗(PS4)
0,∗ (F2, H∗(Mjc))

= H∗(Mjc)/(QI (x22 ) + QI x4 : I admissible, exc(I ) > 4),

therefore we have

H∗(Mjc//w) = F2[QI2x2,Q
I6x6,Q

I7x7 : Ir admissible, exc(Ir ) > r ]. (5.1)

Here is the 7-skeleton of Mjc//w.
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x7

2

Q5x2

η

x2Q3x2

η

x32

η

ν

x6

η

Q4x2
2

Q3x2

x22

ν x2

η

1

We define a sequence of elements Xs in H∗(Mjc//w) by

Xs =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

x2 if s = 1,

x6 if s = 2,

x7 if s = 3,

Q(2s−1,...,24,23)x7 = Q2s−1
Xs−1 if s � 4.

This is a regular sequence and the induced coaction over the quotient Hopf algebra

E(1)∗ = A∗/(ζ 2
1 , ζ 2

2 , ζ3, . . .) = A∗//F2[ζ 2
1 , ζ 2

2 , ζ3, . . .] = �(ζ1, ζ2)

satisfies

ψ ′Xs =

⎧

⎪

⎨

⎪

⎩

1 ⊗ X1 if s = 1, 2,

1 ⊗ X3 + ζ1 ⊗ X2 + ζ2 ⊗ X2
1 if s = 3,

1 ⊗ Xs + ζ1 ⊗ Xs−1 + ζ2 ⊗ Xs−2 if s � 4.

therefore the ideal I c = (Xs : s � 1) � H∗(Mjc//w) is an E(1)∗-invariant regular
ideal.

Recall that

A∗�E(1)∗F2 = F2[ζ 2
1 , ζ 2

2 , ζ3, . . .] ∼= H∗(kU).

We have proved the following analogues of earlier results.

Proposition 5.1 There is an isomorphism of A∗-comodule algebras

H∗(Mjc//w)
∼=−→ A∗�E(1)∗H∗(Mjc//w)/I c.
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Proposition 5.2 There is a splitting of A∗-comodule algebras

A∗�E(1)∗F2
∼= A∗�E(1)∗F2,

H∗(Mjc//w)

where H∗(Mjc//w) → H∗(kU) = A∗�E(1)∗F2 is induced by a factorisation M jc →
Mjc//w → kU of the E∞ orientation.

Of course, in principle use of the well-known lightning flash technology of [1,2]
should lead to a description of H∗(Mjc//w)/I c as an E(1)∗-comodule. For example,
there are many infinite lightning flashes such as the following

Q4x2
q0∗

Q6x2
q1∗

Q8x2

Q3x2 Q5x2 Q7x2
,

as well as parallelograms such as

Q8Q4x2

Q6Q3x2

q0∗
Q7Q4x2,

q1∗

Q5Q3x2

which can be determined by using [9, proposition 7.3].

5.2 An example related to the Brown–Peterson spectrum

From [8, section 4] we recall the 2-local E∞ ring spectrum R∞ for which there is
a map of commutative ring spectra R∞ → BP inducing a rational equivalence, an
epimorphism π∗(R∞) → π∗(BP), and H∗(R∞) contains a regular sequence zs ∈
H22+1−2(R∞) mapping to the generators ts ∈ H22+1−2(BP) which in turn map to
ζ 2
s ∈ H22+1−2(H) = A22+1−2 under the induced ring homomorphisms

H∗(R∞) → H∗(BP) → H∗(H) = A∗.



E∞ ring spectra and elements of Hopf invariant 1 221

We note that both of these homomorphisms are compatible with the Dyer–Lashof
operations, even though BP is not known to be an E∞ ring spectrum. These elements
zs have the following coactions:

ψ(zr ) = 1 ⊗ zr + ζ 2
1 ⊗ z2r−1 + ζ 2

2 ⊗ z4r−2 + · · · + ζ 2
r−1 ⊗ z2

r−1

1 + ζ 2
r ⊗ 1,

and generate an ideal I∞ � H∗(R∞).
Let

E∗ = A∗/(ζ 2
i : i � 1),

the exterior quotient Hopf algebra. Although it E∗ is not finite dimensional, it is still
true that A∗ is an extended right E∗-comodule,

A∗ ∼= (A∗�E∗F2) ⊗ E∗.

Under the induced E∗-coaction on H∗(R∞), I∞ is an E∗-comodule ideal, therefore
H∗(R∞)/I∞ is an E∗-comodule algebra.

Proposition 5.3 There is an isomorphism of commutative A∗-comodule algebras

H∗(R∞)
∼=−→ A∗�E∗ H∗(R∞)/I∞,

and a splitting A∗-comodule algebras

A∗�E∗F2
∼= A∗�E∗F2,

H∗(R∞)

where A∗�E∗F2 ∼= H∗(BP) and the right hand homomorphism is induced from the
morphism of commutative ring spectra R∞ → BP.

This result supports the view that R∞ admits a map BP → R∞ extending the unit
S0 → R∞ and then the composition

BP → R∞ → BP

would necessarily be a weak equivalence since BP is minimal atomic in the sense
of [12].

6 Speculation and conjectures

Our algebraic splittings of H∗(Mjr ) are consistent with spectrum-level splittings.
Indeed, in the case of r = 1, a result of Mark Steinberger [14] already shows that
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Mj1 splits as a wedge of suspensions of HZ and HZ/2s for s � 1, all of which are
HZ-module spectra. In fact a direct argument is also possible.

Using Lemma 3.2, it is easy to see that if a spectrum X is a module spectrum
over one of HZ, kO or tmf then its homology is a retract of the extended comodule
A∗�A(r)∗ H∗(X) for the relevant value of r ; a similar observation holds for a module
spectrum over kU and A∗�E(1)∗H∗(X). Thus our algebraic results provide evidence
for the following conjectural splittings.

Conjecture 6.1 As a spectrum, M j2 is a wedge of kO-module spectra, M j3 is a wedge
of tmf-module spectra and M jc is a wedge of kU-module spectra.

Here the phrase ‘module spectrum’ can be interpreted either purely homotopically,
or strictly in the sense of [17]. In each case, it is enough to produce any map E → Mj
extending the unit (up to homotopy), for then the E∞ structure on Mj gives rise to a
homotopy commutative diagram of the following form.

S0 ∧ Mj

∼

Mj ∧ Mj ˜PMj ∧ Mj M j ∧ Mj M j.

E ∧ Mj ˜PE ∧ Mj

Related to this conjecture, and indeed implied by it, is the followingwhere we know
that analogues hold for the cases Mj1, Mj2, Mjc, i.e. the natural homomorphisms

π∗(Mj1) → π∗(HZ), π∗(Mj2) → π∗(kO), π∗(Mjc) → π∗(kU)

are epimorphisms. One approach to verifying these is by using the Adams spectral
sequence: in each of the first two cases, the lowest degree element in the E2-term not
associated with the A∗�A(r−1)∗F2 summand is one of the elements Q3x2 or Q5x4,
and this is too far along to give elements supporting anomalous differentials on this
summand, and the multiplicative structure completes the argument. Here is a small
portion of the Adams spectral sequence for Mj2 to illustrate this, with Q5x4 at position
(9, 0) and most of the diagram being part of the E2-term for kO. Since

ψQ6x4 = ζ1 ⊗ Q5x4 + 1 ⊗ Q6x4,

this element Q5x4 does not produce an h0 tower; in fact, the A(1)∗-subcomodule

F2{Q5x4,Q
6x4} ⊆ H∗(Mj2)/I2

gives rise to a copy of the Adams E2-term for kO ∧ (S0 ∪2 e1) carried on Q5x4.
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0 2 4 6 8 10 12
0

2

4

6

8

10

Q5x4

In the third case, the first element not in the kU summand is Q3x2 and a similar
argument applies.

Conjecture 6.2 The E∞ orientation M j3 → tmf induces a ring epimorphism
π∗(Mj3) → π∗(tmf).

This is easily seen to be true up to degree 16 and also holds rationally. To go further
seems to require a detailed examination of the Adams spectral sequences for π∗(Mj3)
and π∗(tmf), and to date we have checked it up to degree 26. Of course, this conjecture
is implied by the above splitting conjecture.

To understand how the splitting question might be resolved, let us examine the
settled case of Mj1. This provides a universal example for the general splitting result
of Steinberger [14, theorem III.4.2], and the general case is implied by that of Mj1.
Since

H∗(Mj1) ∼= A∗�A(0)∗ H∗(Mj1)/I1,

we have

Ext∗,∗
A∗(F2, H∗(Mj1)) ∼= Ext∗,∗

A(0)∗(F2, H∗(Mj1)/I1).

Following the strategy of Steinberger’s proof for the general case, we consider the
A(0)∗-comodule structure of H∗(Mj1)/I1, or equivalently itsA(0)∗-module structure.
Of course, here there is only one copy of HZ, and the remaining summands are
suspensions of HZ/2r for various r .

The Bockstein spectral sequence for H∗(Mj1; Z(2)) can be determined from this
using formulae for higher Bocksteins of [27, proposition 6.8], which we learnt about
from Rolf Hoyer and Peter May.
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Let E be a connective finite type 2-local E∞ ring spectrum and let x ∈ H2m(E)

where m ∈ Z. Writing βk for the kth higher Bockstein operation, and assuming that
βk−1x is defined, we have

βk(x
2) =

{

xβ1x + Q2m(β1x) if k = 2,

xβk−1x if k > 2.
(6.1)

These formulae determine higher differentials in the Bockstein spectral sequence for
H∗(E; Z(2)). The first differential β1 = Sq1∗ is given on polynomial generators by

β1Q
I x2 =

{

Q(i1−1,i2,...,ik )x2 if k > 0 and I = (i1, i2, . . . , ik) with i1 even,

0 otherwise,
(6.2)

β1Q
I x3 =

⎧

⎪

⎨

⎪

⎩

x2 if I = () is the empty sequence,

Q(i1−1,i2,...,ik )x3 if k > 0 and I = (i1, i2, . . . , ik) with i1 even,

0 otherwise.
(6.3)

In each of the cases with i1 even, Q(i1−1,i2,...,ik )xs is a polynomial generator except
when i1 = i2 + · · · + ik + s + 1 and then

β1Q
I xs = (Q(i2,...,ik )xs)

2.

As a dga with respect to β1, H∗(Mj1) is a tensor product of acyclic subcomplexes of
the form F2[β1QI xs,QI xs] where s = 2, 3 and I = (i1, . . . , ik) �= () with i1 even,
together with F2[x2, x3] and the polynomial ring generated by the squares not already
accounted for. In particular, the E2-term of the Bockstein spectral sequence agrees
with the β1-homology of H∗(Mj1)/I1. The higher Bocksteins now follow from the
above formulae (6.2) and (6.3).

This approach might be generalised to the cases of Mj2, Mj3 and Mjc by studying
suitable Bockstein spectral sequences for kO∗(Mj2), tmf∗(Mj3) and kU∗(Mjc). We
remark that the E∞ ring spectra HZ∧Mj1, kO∧Mj2 and tmf∧Mj3 can be identified
in different guises using the Thom diagonals associated with the E∞ orientations
Mj1 → HZ, MJ2 → kO and Mj3 → tmf, giving weak equivalences of E∞ ring
spectra

HZ ∧ Mj1
∼−→ HZ ∧ �∞+ Q(BSO[3]),

kO ∧ Mj2
∼−→ kO ∧ �∞+ Q(BSpin[7]),

tmf ∧ Mj3
∼−→ tmf ∧ �∞+ Q(BString[15]),

and there are isomorphisms of A∗-comodule algebras

H∗(HZ ∧ Mj1)
∼=−→ A∗�A(0)∗ H∗(Q(BSO[3])),
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H∗(kO ∧ Mj2)
∼=−→ A∗�A(1)∗ H∗(Q(BSpin[7])),

H∗(tmf ∧ Mj3)
∼=−→ A∗�A(2)∗ H∗(Q(BString[15])).

The referee has raised the question of whether the approach of Subsection 5.1 can
be used to produce an E∞ Thom spectrum related to tmf1(3) as Mjc is related to kU.
We recall from [23] that there is a commutative diagram of 2-local E∞ ring spectra

tmf kO

tmf1(3) kU.

On applying H∗(−), this induces the following diagram of A∗-comodule subalge-
bras of A∗.

A∗�A(2)∗F2 F2[ζ 81 , ζ 42 , ζ 23 , ζ4, . . .] F2[ζ 41 , ζ 22 , ζ3, . . .] A∗�A(1)∗F2

A∗�E(2)∗F2 F2[ζ 21 , ζ 22 , ζ 23 , ζ4, . . .] F2[ζ 21 , ζ 22 , ζ3, . . .] A∗�E(1)∗F2.

We propose using the space

S2 ∨ BSpin[6] ∨ BO〈8〉[15],

which admits a map to BSpinc that restricts to a map inducing an epimorphism in
cohomology on each wedge summand. Extending this to an infinite loop map

j : Q(S2 ∨ BSpin[6] ∨ BO〈8〉[15]) → BSpinc → BSO,

we obtain an E∞ Thom spectrum Mj .

Conjecture 6.3 There is an E∞ morphism M j → tmf1(3) which factors through an
E∞ 3-cell complex M j//w4, w8, w12 with E∞ cells of dimensions 5, 9 and 13 attached
by maps w4, w8, w12. Moreover, the morphism M j//w4, w8, w12 → tmf1(3) induces
an epimorphism on H∗(−) which is an isomorphism up to degree 15.

We have not yet checked all the details, but it seems plausible that the approach
used for Mjc offers a route to doing this. Of course, we might then expect a
splitting of Mj//w4, w8, w12 into tmf1(3)-module spectra, or at least that the map
Mj//w4, w8, w12 → tmf1(3) induces an epimorphism on π∗(−).

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.
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Appendix 1: On the homology of connective covers of BO

We review the structure of the homology Hopf algebras H∗(BO〈n〉; F2) for n =
1, 2, 4, 8. The dual cohomology rings were originally determined by Stong, but later a
body of literature by Bahri, Kochman, Pengelley as well as the present author evolved
describing these homology rings. We will use the Husemoller–Witt decompositions
of [6] to give explicit algebra generators; the actions of Steenrod and Dyer–Lashof
operations on these can be determined using the work of Kochman and Lance [21,22].

We recall that there are polynomial generators ak,s ∈ H2sk(BO) (k odd, s � 0)
such that

B[k]∗ = F2[ak,s : s � 0] ⊆ H∗(BO)

is a polynomial sub-Hopf algebra and there is a decomposition of Hopf algebras

H∗(BO) =
⊗

k odd

B[k]∗.

For each odd k, there is an isomorphism of Hopf algebras

B[k]∗/(ak,0) ∼= Hom(B(1)[k]∗, F2).

Here, the dual Hopf algebra B[k]∗ = Hom(B[k]∗, F2) is isomorphic to B[k]∗, i.e.
these are self-dual Hopf algebras. There is also a decomposition of Hopf algebras

H∗(BO) =
⊗

k odd

B[k]∗.

For each h � 1, there is a monomorphism of Hopf algebras which multiplies degrees
by 2h ,

B[k]∗ → B[k]∗; x → x (h) = x2
h
,

whose image is denoted by B(h)[k]∗. Notice that the primitives in B(h)[k]∗ are the
powers

(a(h)
k,0)

2s = (ak,0)
2s+h

(s � 0).

Dually, there is an epimorphism of Hopf algebras

B[k]∗ → B[k]∗; ak,s →
{

ak,s−h if s � h,

0 if s < h,

and this induces an isomorphism of Hopf algebras

B[k]∗/(ak,0, ak,1, . . . , ak,h−1) ∼= B[k]∗
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which divides degrees by 2h . The dual Hopf algebra of B(h)[k]∗ is

B(h)[k]∗ ∼= B[k]∗/(ak,0, ak,1, . . . , ak,h−1).

Let α = α2 denote the dyadic number function which counts the number of non-zero
coefficients in the binary expansion of a natural number.

Theorem 7.1 The natural infinite loop maps BO〈n〉 → BO〈1〉 = BO (n = 2, 4, 8)
induce monomorphisms of Hopf algebras H∗(BO〈n〉) → H∗(BO) whose images are
the following sub-Hopf algebras of H∗(BO):

B(1)[1]∗ ⊗
⊗

odd k>1

B[k]∗ if n = 2,

B(2)[1]∗ ⊗
⊗

k odd
α(k)=2

B(1)[k]∗ ⊗
⊗

k odd
α(k)>2

B[k]∗ if n = 4,

B(3)[1]∗ ⊗
⊗

k odd
α(k)=2

B(2)[k]∗ ⊗
⊗

k odd
α(k)=3

B(1)[k]∗ ⊗
⊗

k odd
α(k)>3

B[k]∗ if n = 8.

By dualising and using the above observations, we obtain Hopf algebra decompo-
sitions of the cohomology of these spaces. For example,

H∗(BSO) = H∗(BO〈2〉) = B(1)[1]∗ ⊗
⊗

odd k>1

B[k]∗

= B[1]∗/(a1,0) ⊗
⊗

odd k>1

B[k]∗.

Wemay identify H∗(MO〈n〉)with H∗(BO〈n〉) using the Thom isomorphismwhich
is an isomorphism of algebras over the Dyer–Lashof algebra, but not over the Steenrod
algebra. To avoid excessive notation, we will often treat the Thom isomorphism as an
equality and write a(r)

k,s for each of the corresponding elements.
The generators a2s−1,0 are particularly interesting. In H∗(BO), a2s−1,0 is primitive,

and in H∗(MO) there is a simple formula for the A∗-coaction:

ψ(a2s−1,0) = 1⊗a2s−1,0+ζ1⊗a22s−1−1,0+ζ2⊗a42s−2−1,0+· · ·+ζs−1⊗a2
s−1

1,0 +ζs⊗1.
(7.1)

The natural orientation MO → HF2 induces an algebra homomorphism over both of
the Dyer–Lashof and Steenrod algebras under which

a2s−1,0 → ζs . (7.2)

For completeness, we also describe the homology of BSpinc in similar algebraic
form to that of Theorem7.1, sincewe are not aware of this being documented anywhere
else; note that [35, p. 293] contains an apparently incorrect statement on the mod 2
cohomology, while [19] describes the cohomology of BSpinc(n).
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Theorem 7.2 The natural infinite loopmap BSpinc → BO induces amonomorphism
of Hopf algebras H∗(BSpinc) → H∗(BO) with image

⊗

k odd
α(k)�2

B(1)[k]∗ ⊗
⊗

k odd
α(k)>2

B[k]∗.

Sketch of proof The cohomology ring H∗(BSpinc) can be calculated using the Serre
spectral sequence

Er,s
2 = Hr (BSO; Hs(K (Z, 2))) �⇒ Hr+s(BSpinc)

for the fibration sequence

K (Z, 2) → BSpinc → BSO.

Then,

E∗,∗
2 = F2[wk : k � 2] ⊗ F2[x],

where wk ∈ Hk(BSO) is the image of the k-th Stiefel-Whitney class, while x ∈
H2(K (Z, 2)) and x2

t ∈ H2t+1
(K (Z, 2)) transgresses to

d2t+1+1(x
2t ) = w2t+1+1 (mod decomposables).

As d2t+1+1(x
2t ) has to be a primitive, it must agree with the element a2t+1+1,0. It fol-

lows that the natural map BSpinc → BO induces an epimorphism H∗(BO) →
H∗(BSpinc), while dually H∗(BSpinc) → H∗(BO) is a monomorphism. Also,
H∗(BSpinc) is polynomial with one generator in each degree k where either α(k) > 2
or k is even with α(k) � 2. Indeed, there is an isomorphism of Hopf algebras

H∗(BSpinc) ∼=
⊗

k odd
α(k)�2

B[k]∗/(ak,0) ⊗
⊗

k odd
α(k)>2

B[k]∗.

The claimed description of the homology H∗(BSpinc) follows. 	

Remark 7.3 The natural map BSpin → BSpinc induces a homomorphism in homol-
ogy whose image contains (a(1)

1,0)
2, a(1)

3,0 and a7,0.

Appendix 2: Dyer–Lashof operations and Steenrod coactions

For the convenience of the reader, we summarise some results from [9] which are
based on the work of Kochman and Steinberger [14,21].

The mod 2 Steenrod algebraA∗ is the homology of the mod 2 Eilenberg–Mac Lane
spectrum H = HF2 which is an E∞ ring spectrum and so A∗ supports an action of
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the Dyer–Lashof operations. However, when dealing with the leftA∗-coaction on the
homology of an E∞ ring spectrum, it is often convenient to consider a twisted version
formed using the antipode χ and given by

˜Qs = χQsχ.

Based on Steinberger’s determination of the usual action [14], by [9, lemma 4.4] we
have the following equivalent formulae for all s � 1:

Q2s ξs = ξs+1 + ξ1ξ
2
s , (8.1a)

˜Q2s ζs = ζs+1 + ζ1ζ
2
s . (8.1b)

The spectra HZ, kO and tmf are all E∞ ring spectra and there are E∞ morphisms
HZ → HF2, kO → HF2 and tmf → HF2 inducing monomorphisms on H∗(−)

identifying their homology with the subalgebras

F2[ζ 8
1 , ζ 4

2 , ζ 2
3 , ζ4, ζ5, . . .] ⊆ F2[ζ 4

1 , ζ 2
2 , ζ3, ζ4, . . .] ⊆ F2[ζ 2

1 , ζ2, ζ3, . . .] ⊆ A∗.

It follows that each of these subalgebras is closed under the Dyer–Lashof operations.
More generally, from the work of Stong [34], each of the E∞ morphisms MO〈2d〉 →
HF2 induces a ring homomorphism whose image is F2[ζ 2d

1 , ζ 2d−1

2 , . . . , ζ 2
d , ζd+1,

ζd+2, . . .] and this must be closed under the Dyer–Lashof operations.
We will give a purely algebraic generalisation of these observations.
For n � 0, let

I(n) = (ζ 2n+1

1 , ζ 2n
2 , ζ 2n−1

3 , . . . , ζ 4
n , ζ 2

n+1, ζn+2, ζn+3, . . .) � A∗.

This is a Hopf ideal and A(n)∗ = A∗/I(n) is a well-known finite quotient Hopf
algebra. We also set

I(n)[d] = {α2d : α ∈ I(n)} � A∗,

and observe that
I(n)[d+1] ⊆ I(n + 1)[d] ⊆ I(n + d). (8.2)

Lemma 8.1 Let s � 1. If k ∈ N, then Qkζs ∈ I(s − 1); more generally, for r � 0,
Qk(ζ 2r

s ) ∈ I(s + r − 1).

Proof We make use of the results of [9, section 5].
The proof is by induction on s.When s = 1, for k � 1, write k = 2m or k = 2m+1.

Then,

Q2mζ1 = N2m+1(ξ) = ξ1Nm(ξ)2 + ξ2Nm−1(ξ)2 + ξ3Nm−3(ξ)2 + · · · ∈ I(0),
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and

Q2m+1ζ1 = N2m+2(ξ) = Nm+1(ξ)2

= ξ21Nm(ξ)4 + ξ22Nm−2(ξ)4 + ξ23Nm−6(ξ)2 + · · · ∈ I(0).

Now, suppose that the result holds for all s < n. Recall that for k � 2n − 1,
Qkζn = 0 unless k ≡ 0mod2n or k ≡ 2n − 1mod2n when

Q2nmζn = N2nm+2n−1(ξ)

= ξ1N2n−1m+2n−1−1(ξ)2 + ξ2N2n−2m+2n−2−1(ξ)4

+ ξ3N2n−3m+2n−3−1(ξ)8 + · · ·
= ξ1(Q

2n−1mξn−1)
2 + ξ2(Q

2n−2mξn−2)
4 + ξ3(Q

2n−3mξn−3)
8 + · · ·

∈ I(n − 2)[1] + I(n − 3)[2] + · · · ⊆ I(n − 1),

and similarly Q2nm+2n−1ζn ∈ I(n − 1).
For r � 0, Qk(ζ 2r

s ) = 0 unless 2r |k, and then by (8.2),

Q2r �(ζ 2r
s ) = (Q�ζs)

2r ∈ I(n − 1)[r ] ⊆ I(n + r − 1).

	

Corollary 8.2 For n � 0, the cotensor product A∗�A(n)∗F2 ⊆ A∗ is closed under
the Dyer–Lashof operations, and the Dyer–Lashof operations commute with the Hopf
algebra quotient homomorphism A∗ → A(n)∗.
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