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Abstract
Purpose of Review Tripartite motif (TRIM) proteins are a large group of E3 ubiquitin ligases involved in different cellular
functions. Of special interest are their roles in innate immunity, inflammation, and virus replication. We discuss novel roles of
TRIM proteins during virus infections that lead to increased pathogenicity.
Recent Findings TRIM proteins regulate different antiviral and inflammatory signaling pathways, mostly by promoting
ubiquitination of important factors including pattern recognition receptors, adaptor proteins, kinases, and transcription factors
that are involved in type I interferon and NF-κB pathways. Therefore, viruses have developed mechanisms to target TRIMs for
immune evasion. New evidence is emerging indicating that viruses have the ability to directly use TRIMs and the ubiquitination
process to enhance the viral replication cycle and cause increased pathogenesis. A new report on TRIM7 also highlights the
potential pro-viral role of TRIMs via ubiquitination of viral proteins and suggests a novel mechanism by which ubiquitination of
virus envelope protein may provide determinants of tissue and species tropism.
Summary TRIM proteins have important functions in promoting host defense against virus infection; however, viruses have
adapted to evade TRIM-mediated immune responses and can hijack TRIMs to ultimately increase virus pathogenesis. Only by
understanding specific TRIM-virus interactions and by using more in vivo approaches can we learn how to harness TRIM
function to develop therapeutic approaches to reduce virus pathogenesis.

Keywords Tripartite motif (TRIM) . E3 ubiquitin ligase . Immunity . Ubiquitin . Virus infection . Pathogenesis . Type I
interferons . TRIM6 . TRIM7

Introduction

The tripartite motif (TRIM) is a superfamily of proteins con-
served throughout the animal kingdom and has spread during

vertebrate evolution; there are more than 80 known TRIMs
encoded by the human and mouse genomes [1]. TRIM proteins
are involved in many different cellular functions by acting as E3
ubiquitin (E3-Ub) ligases [2–4]. The consensus N-terminal re-
gion of TRIM proteins contains a RING finger domain followed
by one or two B-box domains and a coiled-coil domain (CC)
[4]. The RING domain comprises conserved cysteine and histi-
dine residues that bind to two zinc atoms in a cross-brace ar-
rangement and is essential for recruiting the E2-conjugated en-
zyme loaded with ubiquitin (E2 ~Ub). The CC domain in com-
bination with the B-box domain has been proposed to mediate
protein-protein interactions, particularly homomeric and
heteromeric interactions and by promoting the formation of
interlocking helices between the TRIM family and other protein
[5, 6]. Each TRIM protein has a specific C-terminal domain,
which confers substrate specificity via protein-protein interac-
tions [3, 7]. Most commonly found are the PRY and SPRY
domains (B30.2), either in combination (PRY-SPRY) or individ-
ually. SPRY domains are found in some human protein families
as well and are evolutionarily conserved in mammals, plants,
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and fungi [3]. Many TRIM proteins are induced by type I and
type II interferons (IFN-I or IFN-II) or pathogen stimulations, in
different cell types including human and mouse primary im-
mune cells [8, 9]. Almost half of human TRIMs can positively
regulate induction of IFN-I and/or NF-kB-mediated signaling
[10, 11]. Since IFN signaling leads to induction of multiple
IFN-stimulated genes (ISGs) that are known to have direct an-
tiviral effector functions [12], together these studies suggest that
TRIMs may have evolved as defense mechanisms that aid in
resistance to pathogens [13–15]. In addition to their immune
functions, as expected for enzymes involved in the
ubiquitination process, TRIMs are also known to play important
roles in a wide range of biological processes, including cell
proliferation, differentiation, development, apoptosis, oncogen-
esis, innate immunity, and DNA repair [2, 3]. Intriguingly, some
viruses have the ability to use TRIMs to improve several steps of
the replication cycle and cause pathogenesis [4, 16••, 17••].

In this review, we discuss the novel mechanisms that are
used by TRIM proteins in the context of their different func-
tions related to host defense, which ultimatelymay affect virus
pathogenesis. We focused our discussion on recent develop-
ments and on TRIMs that have been thoroughly studied.
Some excellent recent reviews highlight the roles of other
TRIMs [3–5, 13–15, 18–29].

Antiviral Activity of TRIM Proteins

There are host factors that have the capability of blocking
virus replication at almost every step of viral life cycle.
TRIMs can act as intrinsic restriction factors with the ability

to interact directly with viral proteins, or they can act indirect-
ly by inducing antiviral cytokines thereby regulating the ac-
tivity of other antiviral effectors. TRIMs can use different
mechanisms to inhibit viral entry, uncoating, replication, or
viral release, ultimately resulting in reduction of viral patho-
genesis (Fig. 1). TRIMs that act as restriction factors are usu-
ally expressed at sufficient levels to inhibit virus replication,
although expression of many TRIMs can be further enhanced
by diverse stimuli, including IFNs. A few recent reviews have
highlighted the roles of TRIMs in restricting replication [3, 30,
31••].TRIM5α is one of the best characterized TRIMs acting
as a restriction factor against HIV-1 and other retroviruses
[32]. Multiple mechanisms have been proposed for TRIM5α
inhibition of retrovirus replication. TRIM5α interacts with the
viral capsid through multivalent interactions and inactivates
the virus by promoting premature uncoating [20, 31••, 33].
Potential mechanisms of viral inhibition that are still under
investigation include degradation of the viral capsid by the
proteasome, reduced reverse transcription due to premature
uncoating, and potentially via induction of innate immunity
[20, 31••, 34, 35]. Recent reviews explain the detailed molec-
ular mechanisms of TRIM5α antiviral activity [20, 36]. In
addition to HIV-1 restriction, recent reports indicate that
TRIM5α also has antiviral activity against specific
flaviviruses, including tick-borne encephalitis virus (TBEV),
Kyasanur Forest disease virus (KFDV), and Langat virus
(LGTV) but not West Nile virus (WNV), dengue virus
(DENV), Zika virus (ZIKV), or yellow fever virus (YFV)
[31••]. TRIM5α inhibits RNA replication by promoting
proteasomal degradation of the flaviviral NS2B/3 protease
and also contributes to the IFN-I mediated antiviral response

Fig. 1 The TRIM effect: the
forked road of host fitness or
susceptibility. The TRIM family
of proteins influence how hosts
respond to foreign organisms
leading to beneficial (host
survival) or detrimental (host
pathology) outcomes. This
duality is linked to whether a
particular TRIM retains desirable
functions (antiviral or pro-viral
participation) and if the negative
consequences accompanying
TRIM involvement outweigh
their positive contributions
(failure to tolerate subsequent
inflammatory responses)
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[31••]. TRIM11 is another TRIM that has also been reported
to restrict HIV-1 reverse transcription by interacting with the
capsid protein and promoting premature uncoating [37].
TRIM33 inhibits HIV-1 infection by decreasing HIV-1
integrase function, thus, preventing viral cDNA integration
into the host cell genome [38].

The targeting of important viral components for destruction
by the host has been a defining feature of TRIM-mediated
antiviral activity. Ubiquitination and subsequent proteasomal
degradation affords the host a means for interrupting the virus
life cycle by employing a cell’s own garbage disposal system
against the invading pathogen. This is the case for hepatitis C
virus (HCV), encephalomyocarditis virus (EMCV), hepatitis
B virus (HBV), and influenza virus A (IAV). TRIM22 re-
stricts HCV replication by interacting with the viral NS5A
protein and targeting it to the proteasome [39, 40]. Other viral
non-structural proteins like NS2A of JEV are critical for rep-
lication, making them desirable targets for TRIMs like
TRIM52 which redirects JEV NS2A to the proteasome [41].
TRIM22 can also inhibit EMCV by targeting viral 3C prote-
ase for ubiquitination and degradation [42] and inhibits HBV
by suppressing the core promoter responsible for viral pre-
genomic RNA synthesis [43]. TRIM14 and TRIM22 have
been reported to promote IAV nucleoprotein (NP)
ubiquitination, and degradation in a proteasome-dependent
manner [44, 45]. Viral NPs are attractive candidates as
TRIM targets as TRIM41 also recognizes vesicular stomatitis
virus (VSV) NP suggesting this system of TRIM redundancy
or “cross-talk” may be applicable to other viruses [46]. The
strategy of degrading viral RNA-binding proteins in order to
reveal its genome for host detection is a common theme
amongst several TRIMs. TRIM21 promotes the destruction
of viral capsids via the proteasome and exposes the viral
DNA or RNA to cytosolic nucleic acid sensors like cGAS
and RIG-I [47]. In addition to NP, the polymerase complexes
of viruses are subject to this means of disposal as TRIM32
targets the influenza polymerase subunit PB1 of several IAV
strains to the proteasome via ubiquitination, while TRIM21
interacts with the hepatitis B virus (HBD) DNA polymerase to
achieve the same effect for ubiquitination and proteasomal
degradation [48, 49].

Aside from utilizing the proteasome, TRIMs have been
found to obstruct viruses through various means. In addition
to its aforementioned involvement with the proteasome,
TRIM21 may act as an intracellular receptor through high-
affinity binding with the Fc portion of immunoglobulin (Ig)
molecules allowing for restriction of adenoviruses and rhino-
viruses [50]. TRIM56 was previously shown to inhibit the
replication of several viruses in the family Flaviviridae, in-
cluding DENV serotype 2, YFV, bovine viral diarrhea virus,
ZIKV, coronavirus OC43, IAV, and HIV-1 [51, 52, 53•, 54,
55]. In the case of IAV, TRIM56 blocks IAV replication pos-
sibly through interactions with viral RNA [55]. The proposed

method of interaction between TRIM56 and IAV was ob-
served during ZIKV infection where the TRIM56 C-terminal
region and E3 ligase activity mediated an association with
ZIKV RNA in infected cells [53•]. Parallels between this
study and others can be seen as TRIM41 inhibition of HBV
transcription activity also depended on its E3 ligase activity
and C-terminal domain [56]. Furthermore, TRIM interference
in vRNA events has proven to be a reliable antiviral method as
TRIM22 inhibits HBV by suppressing the core promoter re-
sponsible for viral pre-genomic RNA synthesis [43].
Additional recent studies identifying inhibition of viral pro-
teins by TRIMs included TRIM28 and TRIM59. TRIM28, a
nuclear protein that is known to have transcriptional regulato-
ry activity [57] and is a known repressor of endogenous ret-
roviruses [58], has been recently reported to restrict viral inte-
gration of HIV-1 by binding and inhibiting the active, acety-
lated form of the viral integrase host [29, 59], while TRIM59
interacts with the porcine reproductive and respiratory syn-
drome virus (PRRSV) nsp11 to inhibit infection [60].
Finally,TRIM69 inhibits viral transcription and the formation
of VSV replication compartments, reducing the synthesis of
viral RNA and, therefore, the inhibition of viral replication
[61]. Further, a recent report showed that TRIM69 interacts
directly with DENV nonstructural protein 3 (NS3) and drives
its polyubiquitination and degradation [62].

An interesting recent example of a novel TRIM antiviral
function independent of its RING domain is TRIM2, which
is highly expressed in the brain. TRIM2 binds neurofilament
light chain (NEFL) subunit through its RBCC and FIL domain.
Using Trim2−/− mice, it was recently shown that TRIM2 sup-
presses NewWorld arenaviruses (NWA) such as the Junín virus
(JUNV) and Tacaribe virus but not Old World arenaviruses
such as Lassa or Lymphocytic choriomeningitis virus
(LCMV) [63••]. Consistent with this, fibroblasts from a patient
encoding a missense mutation on the CC region of TRIM2 are
also more susceptible to this virus infection [63••]. TRIM2
limits NWA endocytosis into cells and operates at a post-
receptor binding step in the viral life cycle. This antiviral activ-
ity is dependent on its FIL domain and not TRIM2 E3-Ub
ligase activity. A regulatory protein α (SIRPA) was identified
by interactome profiling as a TRIM2-interacting protein and
also inhibited virus replication. SIRPA’s role in preventing
phagocytosis is harnessed by TRIM2, resulting in the blockade
of JUNV internalization [63••].

Indirect Antiviral Activity of TRIM Proteins

TRIM proteins can also have antiviral activity via indirect
mechanisms including induction of antiviral cytokines or reg-
ulation of other antiviral effectors. An interesting recent ex-
ample is TRIM43, which was recently shown to inhibit her-
pesviruses by promoting ubiquitination and proteasomal

103Curr Clin Micro Rpt (2020) 7:101–114



degradation of the centrosomal protein pericentrin, in turn
resulting in nuclear lamina propria-dependent repression of
active viral chromatin states [64•]. However, the majority of
studies on TRIM antiviral functions continue to be focused on
their potential roles as regulators of innate immune signaling
and antiviral cytokine production.

TRIMs in Innate Immunity

The innate immune system is the first line of defense against
pathogens as it detects virus invasion and subsequently limits
virus replication. Innate immune cytokines released upon vi-
rus recognition are responsible for directing a proper adaptive
immune response that is involved in elimination of pathogens
in the later phase of infection and also shapes immunological
memory [65].

The first step in innate immune activation occurs when
pattern recognition receptors (PRRs), including endosomal
Toll-like receptors (TLRs) and cytoplasmic RIG-I-like recep-
tors (RLRs), recognize microbial components encoded in mi-
croorganism that are known as pathogen-associated molecular
patterns (PAMPs) [66]. PRRs then stimulate a series of down-
stream signaling cascades that result in the activation and nu-
clear translocation of transcription factors, such as IRF3,
IRF7, and NF-κB, which induce transcriptional upregulation
of IFN-I and pro-inflammatory cytokines [66]. A large num-
ber of TRIMs have been found to play important regulatory
roles at almost every step in PRR-activated signaling path-
ways [5, 13, 14]. In addition, a large number of TRIMs have
been found to enhance cytokine signaling pathways [5, 13].

RIG-I has been thoroughly investigated for its role in virus
RNA recognition and its essential role in the antiviral IFN-I
response. The structure of RIG-I includes a central helicase
domain and a C-terminal domain (CTD), required for RNA
binding, and also contains two N-terminal caspase activation
and recruitment domains (CARDs) that are essential for down-
stream signaling. Upon RNA binding, the CARDs undergo
conformational changes allowing K63-linked ubiquitination
by TRIM25 [67], which allows assembly of a signaling com-
plex with mitochondrial antiviral signaling protein (MAVS) at
the mitochondria [68, 69]. TRIM25 has also been reported to
have RIG-I-independent antiviral activity to Sindbis virus via
the zinc finger antiviral protein (ZAP) [70, 71]. The ubiquitin
ligase activity of TRIM25 may be regulated by direct interac-
tions with endogenous RNA [72•, 73••], which also promotes
binding to ZAP [72•]. In addition to TRIM25, other TRIMs and
additional E3-Ub ligases have also been reported to ubiquitinate
and regulate functions of RIG-I-like receptors. TRIM4 medi-
ates K63-linked polyubiquitination of RIG-I to positively reg-
ulate RIG-I-mediated IFN induction [74, 75]. TRIM8 has re-
cently been identified as a modulator of innate signaling in
plasmacytoid dendritic cells (pDCs), by protecting IRF7 from
proteasomal degradation in an E3-Ub ligase-independent

manner [76]. On the other hand, TRIM65 has a role in
MDA5 K63-linked polyubiquitination by promoting MDA5
activation and oligomerization. Consequently, Trim65−/− mice
are more susceptible to EMCV infection due to reduced IFN-I
induction [77, 78].

Downstream of RIG-I and MDA5, other TRIMs have also
been found to regulate this signaling pathway. TRIM31 cata-
lyzes K63-linked polyubiquitination of K10, K311, and K461
on MAVS and promotes its aggregation in the mitochondria
promoting downstream signaling [79]. MAVS signaling then
leads to activation of different downstream signaling effectors,
facilitating the induction of both NF-kB-mediated inflamma-
tory cytokines and IFN-Is. On the NF-kB branch of the path-
way, TRIM5α has been reported to activate TAK1 kinase via
synthesis of unanchored K63-linked polyubiquitin chains,
leading to NF-kB and AP-1 activation and inflammatory cy-
tokine induction [80, 81]. TRIM23 also mediates activation
of NF-kB during human cytomegalovirus (HCMV) infection
[82] and can positively regulate NEMO activity, which is a
crucial regulator of NF-κB activation, by mediating K27-
linked polyubiquitination [83].

Another important PRR subject of intense recent studies is
the cytoplasmic DNA sensor cyclic GMP-AMP synthase
(cGAS), which can recognize a variety of replicating DNA
viruses [84, 85], although studies have also shown that mito-
chondrial damage during RNA virus infection can result in
cytoplasmic DNA leakage [86••]. The cGAS enzyme cata-
lyzes a reaction to form the second messenger cyclic GMP-
AMP (cGAMP), which then binds the adaptor protein STING
on the endoplasmic reticulum (ER) and triggers downstream
activation of TBK1-IRF3 and NF-kB for subsequent IFN-I
and cytokine production [85]. TRIM proteins can also modu-
late cGAS-STING signaling. For example, TRIM14 func-
tions as an adaptor to recruit the deubiquitinating enzyme
USP14 and regulate cGAS, improving its stability and en-
hancing the antiviral response [87]. TRIM38 targets cGAS
for sumoylation during the early phase of viral infection,
preventing its K48-linked polyubiquitination and proteasomal
degradation. TRIM38 also sumoylates STING during the ear-
ly phase of viral infection, promoting both STING activation
and protein stability which prevents STING degradation by
the chaperone-mediated autophagy pathway [88]. TRIM41
has also been proposed to be involved in immune responses
induced by DNA viruses and cytosolic DNA, via
monoubiquitination of cGAS [89]. In addition, TRIM56 can
also induce monoubiquitination of cGAS, thereby increasing
its ability to interact and sense DNA [90••] and potentially
providing a redundant mechanims of cGAS activation.
Interestingly, TRIM56 can also ubiquitinate STING [91].
The fact that multiple TRIMs have been proposed to modulate
both cGAS and STING functions raises the question whether
a complex between cGAS-STING and multiple TRIMs
(TRIM38, TRIM41, TRIM56) may provide a feedback
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activation loop that can sustain downtream signaling and may
also be functonaly redundant. In addition, the Ub regulatory X
domain protein UBXN3B regulates TRIM56-mediated K63-
linked polyubiquitination of STING, which is necessary for
STING oligomerization and activation of downstream TBK1-
mediated antiviral signaling [92].

Another important immune regulator is TRIM28, which,
consistent with its known function as a negative regulator of
transcription, inhibits expression of pro-inflammatory cyto-
kines and IFN-I; however, infections with highly pathogenic
avian influenza viruses (HPAIV), such as H5N1 or H7N7,
trigger a PKR-dependent signaling cascade that culminates
with phosphorylation of TRIM28 and enhanced cytokine
levels during infection [93]. Interestingly, this anti-
inflammatory role of TRIM28 may be associated with its
function as a repressor of endogenous retroviruses. For in-
stance, another study identified a loss of sumoylated
TRIM28 during IAV infection, which resulted in increased
expression of endogenous retroviral elements that can be rec-
ognized as a source of “self” dsRNA by the RIG-I pathway
[94•]. These studies highlight the complexity of the pathways
that are regulated by TRIMs and the potential indirect effects
that TRIMs can have on immune and non-immune pathways.

IFN-I produced during virus infection is then released to
the extracellular space and triggers its own signaling cascade
in an autocrine or paracrine manner via the IFN receptor
(IFNAR). TRIMs have also been implicated in regulation of
IFNAR signal transduction. The IKKε kinase has been shown
to play a non-redundant role in optimal IFNAR signaling and
ISG induction by phosphorylating STAT1 on S708 [95]. The
JAK-STATsignaling pathway is important for defense against
viral infection [96]. Receptor ligation activates the kinases
JAK1 and TYK2 and induces phosphorylation of signal trans-
ducer and activator of transcription (STAT)1 and STAT2
which together with IRF9 form the interferon-stimulated gene
factor 3 (ISGF3) complex, which translocates into the nucleus
and induces transcription of an extensive set of antiviral ISGs.
TRIM6 promotes the synthesis of unanchored K48-linked
polyubiquitin chains that positively regulate IKKε activity
resulting in enhanced IFN-I induction and signaling for opti-
mal ISG induction [97].

TRIM Proteins in Pathogenesis

Although the vast majority of studies have associated TRIM
activity with antiviral or innate immune inflammatory func-
tions in response to viral infections, new evidence indicates
that TRIMs can also be involved in directly promoting virus
replication. This novel function could be a consequence of
viruses taking advantage or hijacking TRIMs as a “side-ef-
fect” of TRIM-viral protein interaction during the antiviral
process, or a direct utilization of the host ubiquitin machinery

by the virus to enhance its replication. In either case, these
effects exemplify complex mechanism of virus adaption to
the host as well as constant interaction between TRIMs and
viral proteins during evolution. Recent evidence indicates that
some viruses have the ability to hijack TRIMs to improve
several steps of the replication cycle, and increased replication
would lead to increased pathogenesis. On other hand, in-
creased virus pathogenesis could also be a result of virus an-
tagonizing TRIM-mediated antiviral activity or indirectly af-
fected when dysregulation of specific TRIMs involved in cy-
tokines production results in uncontrolled inflammation and
tissue damage (Fig. 1).

Increased Viral Pathogenesis via Antagonism of TRIM
Antiviral Activity

TRIM21 Antagonism during JEV and SFTSV Infection TRIM21
can be activated by diverse pathogens like viruses and intra-
cellular bacteria [19, 98]. After virus detection, TRIM21 syn-
thesizes K63-linked polyubiquitin chains and activates the
innate immune pathways NF-κB, AP-1, IRF-3, IRF-7, and
IRF-8 [19, 98, 99], leading to IFN-I production. JEV infection
induces the expression of TRIM21 in human microglial cells,
which results in attenuation of JEV-mediated effects in terms
of activation of IRF-3 and production of IFNβ [99]. On the
other hand, the non-structural (NSs) protein of severe fever
with thrombocytopenia syndrome virus (SFTSV) interacts
with TRIM21 and inhibits the activation of nuclear factor
erythroid 2-related factor 2 (Nrf2) which is responsible for
the expression of a series of antioxidant proteins and detoxi-
fying enzymes [19, 100, 101]. Nrf2 is regulated by interac-
tions with Kelch-like ECH-associated protein 1 (Keap1) and
the proteasome system [102]. In normal conditions, Keap1
targets Nrf2 for degradation which suppresses intracellular
antioxidant responses. In context of SFTSV infection, the viral
proteins bind to the C-terminal SPRY subdomain of TRIM21,
enhancing p62 stability and oligomerization. This allows p62-
mediated Keap1 sequestration and activates the Nrf2-
mediated antioxidant response, promoting viral replication
and pathogenesis [103].

Antagonism of TRIM25-Mediated IFN Induction by DENV,
MERS-CoV, EBV, and IAV TRIM25 A published study identified
mutations on the DENV strain PR-2B that emerged during an
epidemic in Puerto Rico in the 1990s. These mutations appear
to increase production of sub-genomic flavivirus non-coding
RNAs (sfRNAs). The PR-2B sfRNAs can bind to TRIM25
and prevent its deubiquitination, which is crucial for TRIM25-
mediated activation of RIG-I. These findings suggested that
adaptive mutations on DENV sfRNAs have the ability to dif-
ferentially bind to host antiviral proteins to promote viral eva-
sion of innate immunity and increase viral fitness [104]. In
addition, Middle East respiratory syndrome coronavirus
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(MERS-CoV) infection suppresses RIG-I ubiquitination and
downstream IFN-I and IFN-III induction, via interactions be-
tween MERS-CoV N protein and TRIM25 [105•].

Epstein-Barr virus (EBV) encodes a large tegument protein
BPLF1, a viral deubiquitinase (DUB) that facilitates
TRIM25’s interaction with the 14-3-3 scaffold to promote
TRIM25 autoubiquitination and sequestration to inhibit IFN-
I responses [106].

The IAV-NS1 protein also has the ability to antagonize the
immune response by blocking TRIM25-mediated RIG-I
ubiquitination [107]. IAV isolates from different species may
have varying abilities to inhibit IFN-I induction partly due to
differential NS1-TRIM25 and NS1-Riplet interactions that
may contribute to differences in pathogenicity between avian,
swine, and human IAV isolates [108].

Viruses Targeting TRIM23 An intriguing example of a TRIM
being targeted specifically by a virus is TRIM23, which has
been shown to ubiquitinate the NS5 protein of YFV [109].
This ubiquitination provides YFV-NS5 the ability to interact
with STAT2, which ultimately results in inhibition of IFN-I
signaling and increased virus replication. Interestingly, other
studies have shown that TRIM23 has antiviral activity and this
is dependent on NEMO leading to IRF3 and NF-kB activation
and IFN-I induction [83]. Since YFV NS5 binds STAT2 only
after IFN-I treatment [109], it suggests that TRIM23-mediated
ubiquitination of YFV NS5 versus NEMO are regulated by
different mechanisms. Reports indicate that YFV and DENV
NS5 protein have 10 residues in their N-terminal regions,
which are essential for the IFN antagonism function [109,
110]. TRIM23 has also been reported to have a function in
autophagy-mediated antiviral defense mediated by TANK-
binding kinase 1 (TBK1) [111]. Autophagy is an evolution-
arily conserved process that restricts certain intracellular path-
ogens [112]. However, herpes virus simplex-1 (HSV-1) in-
hibits autophagy to enhance its replication in the mucosal
epithelium and establish latency in neurons of the peripheral
nervous system [113]. This inhibition is caused by the HSV-1
US11 protein which interacts with TRIM23 and blocks the
formation of the functional TBK1. The TRIM23 complex is
required for autophagy induction [114]. These data provide a
new insight into viral escape from autophagy-mediated host
restriction mechanisms.

TRIM6 Function in IFN-I Induction and Signaling during Nipah
Virus and West Nile Virus Infections TRIM6 has been shown
to play multiple roles during infections with different viruses,
leading to protection or pathogenicity depending on the con-
ditions. TRIM6 can play a role in optimal IFN-I-mediated
antiviral function against different RNA viruses, including
IAV, EMCV and Sendai virus (SeV) [97]. In addition, the
Nipah virus (NiV) matrix (M) protein has been described to
interact with and degrade TRIM6 [115]. In NiV-infected cells,

the endogenous level of TRIM6 is decreased significantly
compared with mock cells or cells infectedwith a recombinant
NiV lacking M [115]. IFN promoter luciferase reporter assays
demonstrated that NiV-M can inhibit TRIM6’s function in
IFN-I induction and signaling, but the functional importance
of this antagonism was not tested in the context of NiV infec-
tion [115] (Fig. 2b). Several other NiV proteins act as potent
antagonists of the IFN-I induction and signaling pathways
[116–118], including NiVaccessory protein V which interacts
with human TRIM25 to prevent activation of RIG-I and
downstream IFN-I induction [119]. NiV-M’s interaction with
and degradation of TRIM6may play a redundant role in IFN-I
antagonism, but it cannot be excluded that the NiV-M-TRIM6
interaction plays an uncharacterized pro-viral function or an-
tagonizes a distinct TRIM6-regulated pathway. In the context
of West Nile virus (WNV), TRIM6 is required for efficient
IFN-I induction and signaling to dampen replication (Fig. 2b)
[97, 120]. TRIM6 was found to be required for the phosphor-
ylation of STAT1 at S708 and the induction of several ISGs
known to be involved in WNV antagonism [120].
Additionally, TRIM6 regulates the expression of VAMP8, a
vesicle-associated membrane protein we found to be required
for optimal JAK1 phosphorylation downstream of IFN-I stim-
ulation [120]. Therefore, TRIM6 is emerging as an important
antiviral factor via the IFN-I system.

Increased Viral Pathogenesis by TRIMs Direct Pro-viral
Activity

TRIM6 Pro-viral Function TRIM6 has been identified as an
important host factor targeted to enhance Ebola virus
(EBOV) replication. EBOV is a highly pathogenic virus that
causes severe hemorrhagic fever in humans [121]. VP35 is the
viral polymerase co-factor [122, 123] and an IFN-I inhibitory
protein [122, 124–126] critical for EBOV replication and
pathogenesis. We found that TRIM6 ubiquitinates EBOV
VP35 to promote optimal viral replication [16••] (Fig. 2a).
Using co-immunoprecipitation assays and IFN-I reporter as-
says, we found that VP35 antagonizes TRIM6-mediated en-
hancement of IFN-I induction and TRIM6 facilitates
ubiquitination of VP35 at K309. Using an EBOVminigenome
system [122], it was shown that TRIM6 enhances the
minigenome activity when expressed with wild-type (WT)
VP35 but not a K309Amutant [16••]. Further, a TRIM6 ubiq-
uitin ligase mutant (C15A) is unable to enhance VP35 poly-
merase co-factor activity [16••]. Despite EBOV VP35’s capa-
bility to antagonize TRIM6-mediated IFN-I activation, EBOV
replication was attenuated significantly in TRIM6-KO cells
compared with WT cells [16••]. Although the VP35 may in-
teract with TRIM6 to antagonize IFN-I induction, VP35 ex-
ploits TRIM6 as pro-viral factor to enhance viral replication.
However, TRIM6 knockout cells infected with EBOVexpress
higher levels of the pro-inflammatory cytokine IL-6 as
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compared with WT cells [16••], indicating that TRIM6 may
also play a role in regulating inflammation and could lead to
the immune dysregulation observed during EBOV infection.
The mechanism underlying TRIM6’s pro-viral activity versus
its immune regulatory role is under on-going investigation. In
addition to VP35 residues, other VP35 lysine residues are also
ubiquitinated [16••], but their identity, function, and depen-
dence on TRIM6 are yet to be determined.

TRIM7 in Pathogenesis TRIM7 is another E3-Ub ligase that
can promote virus pathogenesis or protect against infection
depending on the context of virus infection. We recently re-
ported that the envelope (E) protein of ZIKV is K63-linked
polyubiquitinated by TRIM7, promoting enhanced replication
in brain and reproductive tissues and leading to enhanced path-
ogenesis in vivo [17••]. Since a proportion of ubiquitinated E
is present in infectious viruses and ubiquitinated E-containing
viruses infect cells more efficiently, this appears to create a

more permissive environment for its replicationwithin specific
target tissues (Fig. 3a–b). Indeed, a recombinant infectious
ZIKV mutant that lacks ubiquitination on the K38 residue
(ZIKV-E K38R) has reduced ability to attach to host cells
(Fig. 3b and c#1), leading to reduced virus-endosome mem-
brane fusion (Fig. 3c#2), and lower replication as compared
with WT ZIKV, causing less pathology. TRIM7 may play a
role in determining ZIKV tissue tropism in vivo, because
ZIKV replicated to lower titers in brain and reproductive tis-
sues (uterus and testis) as compared with other tissues of
Trim7−/− mice and as compared with WT littermate controls
[17••]. Cell fractionation experiments suggested that TRIM7
and its E2-Ub conjugase UbcH5a [127, 128] co-localize in the
endoplasmic reticulum (ER) compartment in ZIKV infected
cells, although TRIM7 can also re-localize to the Golgi
[17••, 129], suggesting that TRIM7 may be hijacked by
ZIKV-E during maturation in the Golgi or during replication
in the ER (Fig. 3c#3).

Fig. 2 Pro-viral and antiviral roles of TRIM6. a TRIM6 facilities the
ubiquitination (white circles with Ub) of Ebola virus (EBOV) VP35 at
lysine residue 309 (K309). This ubiquitination at K309 augments the
EBOV VP35’s polymerase co-factor activity in the presence of TRIM6.
bUpon virus infection, viral RNA in the cytoplasm triggers the activation
of RIG-I-like receptors, including RIG-I and MDA-5, to trigger
downstream type-I interferon (IFN-I) induction. TRIMs 6 and 25 both
participate in the IFN-I pathway. TRIM6 promotes the synthesis of
unanchored K48-linked polyubiquitin chains which act as a scaffold for
IKKɛ oligomerization promoting its kinase activity and downstream
functions in IFN-I induction and signaling, and TRIM6 regulates that

expression of a vesicle-associated protein, VAMP8, which has been
shown to promote JAK1 phosphorylation downstream of IFN-I
signaling. TRIM25 facilities the covalent conjugation of K63-linked
polyubiquitin to RIG-I to promote RIG-I’s activity. The viral
antagonism (red arrows) of these TRIMs’ function has been described
for EBOV VP35 and Nipah virus (NiV) accessory protein V (V) and
matrix protein (M). In addition to the antagonism of TRIMs, these viral
proteins also target additional steps of the IFN-I pathways, includingNiV-
Vantagonism ofMDA5 and STAT1 and EBOVantagonism of IKKɛ- and
TBK1-mediated phosphorylation of IRF3
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Once ZIKV virions are ubiquitinated by TRIM7, they are
released from infected cells (Fig. 3c#4) and such ubiquitination
provides an advantage for viral replication by promoting more
efficient attachment to cellular receptors (Fig. 3c#1). Additional
evidence that ZIKV infectious particles contain ubiquitinated E
comes from experiments showing that an anti-K63-Ub anti-
body can neutralize ZIKV replication in cells and in vivo
[17••] (Fig. 3c#4). Although multiple receptors are proposed
to be involved in ZIKV attachment and cell entry, including
DC-SIGN, AXL, Tyro3, and TIM-1 [130], we demonstrated
that at least in the case of TIM-1, efficient ZIKV attachment
depends on the presence of K63-linked polyubiquitinated E in
the infectious ZIKV particles. This is also supported by data
showing that infection ofHavcr-1−/−mice (Havcr-1 is the gene
that encodes TIM-1 protein), with ZIKV-E WT, exhibited a
reduction in viral titer in the brain as compared with WT litter-
mate controls, whereas no difference was observed with the
ZIKV-E K38R mutant virus. This suggests that although Tim-
1 is not the only receptor that mediates ZIKVentry, it may play

a role in specific cell types/tissue when ZIKV contains
ubiquitinated E (Fig. 3b and c#1) [17••].

Interestingly, although mosquitoes also express compo-
nents of the ubiquitin system, including a small number of
TRIM orthologues, ZIKV grown in mosquito cells appears
to contain reduced and shorter forms of polyubiquitinated E
and this does not affect virus replication in live mosquitoes
[17••] (Fig. 3a–b). However, previous reports indicate that the
mosquito ubiquitin Ub3881 protein may be involved in
DENV E protein degradation [131] although other studies
have also proposed that virus replication in mosquitoes may
be dependent on a functioning ubiquitin proteasome system
[132]. Nonetheless, the role of the ubiquitin system and the
function of individual E3-ubiquitin ligases during infection
and in mosquito transmission are still unclear.

TRIM7 in known to be involved in some important biolog-
ical processes including tumor cell proliferation and glycogen
metabolism [129, 133]. TRIM7 has also been shown to act as
an E3 ligase mediating K63-linked polyubiquitination of the

Fig. 3 a A portion of released Zika virions possess ubiquitinated
envelope proteins. Zika virus grown in both human and mosquito cells
are ubiquitinated to varying degrees with human grown viruses having
longer poly-Ub chains while mosquito-grown viruses retain shorter poly-
Ub chains. b Envelope ubiquitination by TRIM7 enhances Zika virus
entry in mammalian, but not mosquito, hosts. Ubiquitination of the
Zika envelope protein at site K38 is made possible by the E3 ubiquitin
ligase TRIM7 allowing for enhanced Zika tissue tropism where levels of
TRIM7 are high (brain, uterus, and testis). c Ubiquitination of Zika
envelope promotes binding to host receptors and enhances viral entry.
The K63-poly-Ub chains of Zika envelope afford for stronger

interactions with host receptors (#1), virus-endosome membrane fusion
(#2), and higher replication titers (#3). Upon Zika infection, TRIM7 re-
localizes to the Golgi and co-localizes with Zika envelope in distinct
puncta where ubiquitination presumably occurs. Infectious Zika virions
with ubiquitinated envelope can be neutralized with K63-regulate innate
immune responses in both a positive and negative manner. TRIM7
promotes herpes virus infection by targeting STING for K48-poly-Ub
and proteasome-mediated degradation (#5) while hindering norovirus
replication (#6). Additionally, TRIM7 can also enhance TLR4 signaling
in macrophages during LPS challenge (#7)
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AP-1 coactivator RACO-1, leading to RACO-1 protein stabi-
lization [127]. Other studies have also proposed that TRIM7
may play antiviral roles against norovirus [134•] (Fig. 3c#6)
and in IFN induction [135••], which is also in line with our
own findings that TRIM7 KO cells have reduced IFNβ induc-
tion upon ZIKV infection or PRR stimulation, the data from
in vivo infections in Trim7−/− mice suggest that the pro-viral
roles of TRIM7 are dominant over its potential IFN-mediated
antiviral roles in specific cell types and in vivo [17••]. In addi-
tion, TRIM7was also recently described to negatively regulate
responses to DNAviruses by targeting STING for degradation
[136•] (Fig. 3c#5), so TRIM7 could also play a role in alterna-
tive innate immune signaling pathways during ZIKV infection,
especially if DNA damage occurs during virus infection that
could lead to activation of the cGAS-STING pathway.

Since ubiquitination was observed on residue K38, which is
conserved in members of the Flaviviridae family, and we also
found that DENV particles also contained ubiquitinated E [17••],
it will be interesting to see if other enveloped viruses may use
similar mechanisms of virus entry via interactions between po-
tentially ubiquitinated envelope resident protein and host
receptors.

Conclusions

This review describes the roles of TRIMs in virus-host inter-
actions and TRIM involvement in immune signaling and direct
virus restriction. In addition, viral antagonism of TRIMs ex-
emplifies the importance of this protein family in antiviral re-
sponses. Despite these advancements, many TRIMs have yet
to be characterized. Additionally, viruses hijack similar innate
immune host factors to enhance their replication. More needs
to be learned regarding the role of TRIMs in adaptive immu-
nity. A new area of investigation is whether additional antiviral
TRIMs may be redirected by others pathogens to improve
replication through protein ubiquitination. This information
could help design novel broad-spectrum antiviral strategies,
including targeting TRIM function that may cause hyper-in-
flammation. To this end, more studies using in vivo animal
models will be required to differentiate between antiviral and
pro-viral roles of TRIMs and ultimately elucidate whether
virus-induced pathology could be treated using pharmacolog-
ical approaches to inhibit specific TRIM activity.
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