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Abstract
Purpose of Review Chronic diseases remain a daunting challenge for clinicians and researchers alike.While difficult to complete-
ly understand, most chronic diseases, including late-onset dementias, are thought to arise as an interplay between host genetic
factors and environmental insults. One of the most diverse and ubiquitous environmental insults centers on infectious agents.
Associations of infectious agents with late-onset dementia have taken on heightened importance, including our investigations of
infection by the intracellular respiratory bacterium, Chlamydia pneumoniae (Cpn), in late-onset dementia of the Alzheimer’s
type.
Recent Findings Over the last two decades, the relationship of this infection to pathogenesis in late-onset dementia has become
much clearer. This clarity has resulted from applying contemporary molecular genetic, biochemical, immunochemical, and cell
culture techniques to analysis of human brains, animal models, and relevant in vitro cell culture systems. Data from these studies,
taken in aggregate form, now can be applied to evaluation of proof of concept for causation of this infection with late-onset
disease. In this evaluation, modifications to the original Koch postulates can be useful for elucidating causation.
Summary All such relevant studies are outlined and summarized in this review, and they demonstrate the utility of applying
modified Koch postulates to the etiology of late-onset dementia of the Alzheimer’s type. Regardless, it is clear that even with
strong observational evidence, in combination with application of modifications of Koch’s postulates, we will not be able to
conclusively state that Cpn infection is causative for disease pathogenesis in late-onset dementia. Moreover, this conclusion
obtains as well for the putative causation of this condition by other pathogens, including herpes simplex virus type 1, Borrelia
burgdorferi, and Porphyromonas gingivalis.
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Introduction

Historically, chronic disease genesis has been difficult to un-
derstand, and many diverse mechanisms have been proposed

to explain its occurrence. Most chronic diseases currently are
thought to result from multifactorial interactions among host
genetic factors and a variety of environmental insults [1]. This
holds true for late-onset dementia of the Alzheimer’s type
(referred to as late-onset dementia below for simplicity), and
quite possibly for other more generally delineated late-onset
dementias. Unlike familial Alzheimer’s disease (FAD), late-
onset dementia is not a result of specific gene mutations; rath-
er, it is an interplay between genetic risk factors, such as poly-
morphisms of the ApoE locus on chromosome 19, and envi-
ronmental exposure to various influences, including infection
[2–6]. Over the past 30 years, numerous reports have linked
infectious agents with late-onset dementia [7••]. Various path-
ogens including viruses, bacteria, fungi, and parasites have
been postulated to be associated with different populations
of late-onset dementia sufferers. Importantly, critical ques-
tions have arisen regarding whether one or more of these
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agents is/are causative in disease genesis, or whether they are
merely associated with disease as a result of brain changes
obtaining during the process of disease genesis. These ques-
tions have led many researchers to evaluate the presence of
proposed pathogens in brain tissues and fluids from late-onset
dementia patients, most of which had been obtained at autopsy
via a variety of technical approaches. The technical ap-
proaches to assessing pathogen presence and causation of
damage have ranged from molecular genetic analyses to im-
munohistochemistry to biochemistry to culturing and various
forms of ultrastructural analysis. Further, animal modeling
studies have attempted to correlate infection with the pathol-
ogy arising in late-onset dementia. We discuss these and other
studies in detail in this review, and we emphasize those studies
that focus on the possible role of infection with the obligate
intracellular pathogen Chlamydia pneumoniae (Cpn) as an
agent of disease genesis.

Implication of the Olfactory System in Brain Infection

Through detailed study of the brain from late-onset dementia
patients, we obtained evidence for the association of specific
infections with disease. Evaluation of particular regions of the
brain for infection, as well as knowledge of structure-function
relationships relevant to entry mechanisms to these regions, is
vital to understanding the specificity of brain infection as it
affects the onset of disease pathogenesis. The earliest damage
in late-onset dementia is seen in the lateral entorhinal cortex,
with synaptic changes followed by damage in the hippocam-
pal formation; both of these function to receive olfactory in-
formation [8, 9]. Intriguingly, the “olfactory vector hypothe-
sis” suggests that diseases such as Alzheimer’s disease (AD)
and Parkinson’s disease (PD) may be caused or triggered by
agents entering the brain through the nose. This hypothesis is
not a new concept and follows from observations that smell
loss and olfactory bulb pathology precede by a decade the
symptomatic phase of AD and PD, along with evidence that
numerous airborne xenobiotics can enter the brain through the
nasal olfactory mucosa [10–13]. A large body of literature
provides evidence that infectious agents, metals, herbicides,
and prions utilize the olfactory network for access into the
brain [14]. These findings do not unequivocally associate
any of these agents with specific disease causation, however,
and thus, there is a significant need to characterize more ex-
tensively infectious involvement of the olfactory network in
late-onset dementia. We are not suggesting here that any sin-
gle agent is responsible solely for non-genetic triggering or
causation in late-onset dementia; however, a focus on under-
lying infections in the olfactory system is of real importance.
The importance of infections and other environmental insults
with relevance to olfaction is well-reviewed in a recent article
on olfactory dysfunction in the pathophysiological continuum
of dementia [15]. In this regard, our discovery of Cpn in the

late-onset brain is relevant, since this is a ubiquitous intracel-
lular respiratory pathogen which has been shown to infect the
olfactory regions of the brain [2]. Cpn has been identified in
both human autopsy samples and mouse olfactory bulbs in
experimental animal models [2, 16, 17, 18••]. In animals, the
organism appears to spread in a centripetal fashion from the
olfactory bulbs into the brain [16, 17, 18••, 19]. We do not
understand completely the consequences of all of these data,
but over the past 20 years, we have uncovered significant
characteristics of this infection that may lead to a better global
understanding of infectious insult in late-onset dementias in
general [20••].

Alzheimer’s neuropathology has been identified in the ol-
factory mucosa [21], the olfactory bulbs [22, 23, 24••, 25], the
anterior olfactory nucleus [23, 26], and deeper structures of
the olfactory cortex [27–29]. Some debate exists as to whether
pathology first appears in the peripheral olfactory structures or
in deeper brain structures prior to olfactory involvement
[30–32]. This is in part due to interpretation of the amount
or density of pathology found in areas such as the amygdala
and hippocampus, as compared to peripheral purely olfactory
structures [9]. A xenobiotic using the olfactory pathway for
entry to the brain may or may not initiate overt damage to
olfactory peripheral cells prior to changes in the primary brain
regions receiving input. Interestingly, in patients with mild
cognitive impairment, β-amyloid aggregates have been
shown in the olfactory mucosa [21], and sensory deficits in-
cluding olfaction are detectable in the preclinical phase of late-
onset dementia [33]. These observations suggest that periph-
eral olfactory structures may exhibit early insult prior to
deeper brain changes. Taken together, these data may suggest
that a relationship exists between the neuropathology in late-
onset dementia and infection with Cpn in the olfactory net-
work. Further characterization is critical to advancing our
knowledge of how infection may trigger and/or exacerbate
neuropathogenesis. These and other observations outlined be-
low support the idea that infection by this pathogen is an early
event in the initiation of neuropathogenesis, and not a conse-
quence of prior damage providing access for infection of the
central nervous system.

Evaluation of C. pneumoniae in the Human Brain

Our initial report described finding DNA of Cpn in 90% (17/
19) of postmortem brain samples from patients with late-onset
dementia, using specific PCR assays [2], but in only 5% (1/19)
of postmortem, age-matched, non-demented, control brain
samples. In 17/19 brains from dementia patients, positive sam-
ples were obtained from at least one area with neuropathology
(e.g., temporal regions, entorhinal cortex, hippocampus, pari-
etal cortex, pre-frontal cortex), and in four cases, from the
cerebellum. In the latter brains, severe neuropathology existed
throughout. In the two brains from dementia patients that were
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PCR-negative, only mild pathology was observed, suggesting
that a relationship exists between infection and significant
pathological changes. Samples from PCR-positive brains also
were immuno-positive for Cpn antigens in perivascular mac-
rophages, microglia, and astroglia. Immuno-electron micros-
copy using anti-chlamydial antibodies revealed both the infec-
tious form of Cpn, termed elementary bodies (EB), and the
actively metabolizing form termed reticulate bodies (RB) in
the PCR and antigen-positive brains [2, 34].

Frozen brain samples revealed intact bacterial mRNA spe-
cific to Cpn, and recovery of viable bacteria was successful
from homogenates of 2 brains positive by PCR and RT-PCR;
however, it was negative from 2 control brains [2]. These
findings suggest that Cpn as an intracellular bacterium infect-
ed the demented individual at some point during life and not
simply by infection at the time of death, since the organism
would not have had time to infect cells in the brain tissue.
Analysis of the entire olfactory network from control, mild
cognitive impairment, and dementia patients could address
the correlation of infection to the onset of pathology. This
approach would significantly assist in elucidating when infec-
tion occurs in relation to pathology and symptom diagnosis.
Additional analyses in our original studies revealed that 11
PCR-positive samples had at least one allele for the APOE
ε4 isoform (64%), consistent with that allele being a risk fac-
tor for late-onset dementia [6], as well as a modulator of the C-
complement response to pathogens. Interestingly, a separate
study in individuals with reactive arthritis showed Cpn DNA
in their synovial tissues; 68% had at least one copy of the
APOE ε4 allele [3]. These observations implicate a relation-
ship between the APOEε4 allelic genotype and infection by
Cpn and that together both factors may confer increased risk
for chronic disease genesis [2, 3].

Following our initial studies, other groups attempted iden-
tification of Cpn in brain tissue and other samples from pa-
tients with late-onset dementia. Those studies provided mixed
results, with some reports giving positive identification [35,
36], and others failing to find DNA or antigens, for the most
part, in their samples [37–40]; many different techniques were
used in these studies, with no other study using identical meth-
odology to our own. Specifically, positive and negative re-
ports utilized PCR and immunohistochemical techniques that
differed from one another with regard to protocols and sam-
ples examined. Some used formalin-fixed brain samples and
others used frozen brain samples for PCR. For immunohisto-
chemistry, different laboratories used different antibodies and
dilutions thereof, antigen retrieval or not, and different prepa-
rations of sections with regard to fixation and thickness. In
fact, one study used impression slides of frozen tissue in their
immunohistochemical approach [40]. Knowing full-well of
the capriciousness of the techniques used by different labora-
tories, these varied results are not surprising; our initial study
used a variety of molecular, immunohistochemical,

ultrastructural, and culturing techniques for these very rea-
sons. In a previous review of other literature in which Cpn
was implicated as a factor in disease genesis, discrepancies in
analytical methods among laboratories, and the variable data
resulting from them, were pointed out [41].

Acknowledging these discrepancies, we continue to use,
and have expanded upon, all techniques used in our initial
studies to evaluate human brain tissues for infection. Other
independent reports for Cpn in human cerebrospinal fluid
(CSF) [42] and human brain tissues are noted [43, 44].
Interestingly, in one of these studies of atherosclerosis and
Cpn involvement in which individuals died at a relatively
younger age, little brain pathology was noted [44]. These
findings suggest that Cpn may arise in the brain prior to ob-
servable pathological changes. In addition, our replicative
studies published in 2006, employing new tissues obtained
from brain banks not previously used by us, demonstrated
Cpn in relevant brain samples from dementia patients [45].
In our replicative study, PCR analysis targeting two Cpn
genes revealed PCR positivity in 20/25 late-onset brains, and
from 3/27 control brains [45]. The organism was cultured
from late-onset brains, and various chlamydial transcripts
from those brains demonstrated viability and metabolic activ-
ity. Immunohistochemical analyses revealed that astrocytes,
microglia, and ∼20% of neurons were infected with Cpn.
The finding of a large proportion of neurons positive for the
organism in this study was unique [45]. As in our initial study
though, infected cells were located in close proximity to both
neuritic senile plaques and neurofibrillary tangle-containing
neurons in the brain [2]. In a separate study from 2010 [46],
intracellular and extracellular labeling for Cpn was found in
the entorhinal cortex, the hippocampus, and the frontal cortex
of dementia brains [46]. Serial sections from these areas ex-
hibited both fibrillar amyloid (thioflavin S stained) pathology
and Chlamydia immunoreactivity in apposition to one anoth-
er. Two extracellular patterns of chlamydial immunoreactivity
were observed: a punctate pattern and an amorphous foci pat-
tern. These likely represent extrusion of whole organism
(punctate) or secreted chlamydial products, e.g., lipopolysac-
charide (LPS, amorphous foci) [47, 48]. These observations
suggest that Cpn has a tropism for olfactory-connected struc-
tures such as the entorhinal cortex, amygdala, and hippocam-
pus, brain regions demonstrating the earliest damage in late-
onset dementia of the Alzheimer’s type [8, 9]; infection at
these sites may incite inflammation acting as a trigger for
amyloid production and deposition. Other factors including
other infectious agents may also incite inflammation and pa-
thology in brains and regions in which Cpn is not involved as
we readily acknowledge that Cpn would not be expected to be
present in all cases of late-onset dementia.

Cpn has been demonstrated in both human and animal
olfactory bulbs [2, 16, 17]; in mice, the organism appeared
to spread centripetally from the olfactory bulbs into the
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piriform cortex and to secondary olfactory centers such as the
thalamus [16, 17, 19]. Uptake of organisms by the olfactory
neuroepithelia also may lead to amyloid peptide generation at
this peripheral site and may affect the overall integrity of this
region. Others have shown experimentally using intranasal
delivery of either polyinosinic:polycytidylic acid (PolyI:C)
[49] or LPS [50•] that immune cell infiltration, inflammation,
and levels of degeneration are prominent at the entry levels of
the olfactory network. In the aged human brain, in which
regeneration capacity of the olfactory neuroepithelia has been
shown to be compromised [51], infectious and other insults
may lead to a more prominent damage response than that seen
in younger individuals. Importantly, both olfactory and lung
routes for infection of the central nervous system are support-
ed by DNA sequencing studies in which the organism isolated
from late-onset brain samples was shown to be more closely
related to respiratory than to atherosclerotic strains [52].
Molecular genetic and cell biological characteristics for two
isolates of Cpn from late-onset brains were found to be genet-
ically diverse (i.e., not clonal), as with most respiratory iso-
lates [53]. Analyses for single nucleotide polymorphisms
(SNPs) indicated several differences from standard respiratory
isolates, but no genetic attributes suggested a specific
neurotropism [52]. Intriguingly, infection of the olfactory net-
work effectively would allow infection to bypass the blood
brain barrier, suggesting that olfactory insult could be the pri-
mary pathway by which pathology is initiated in late-onset
dementia.

Animal Models of C. pneumoniae Infection in the
Brain

Previous models of late-onset dementia of the Alzheimer’s
type have utilized transgenic mice which overexpress mutants
of presenilins, β-amyloid protein precursor, and tau genes
[54]. Overexpression of amyloid results in development of
amyloid plaques in the brain, paralleling the pathology ob-
served in FAD. However, these systems do not address the
initiating events of late-onset disease, in which mutations in
these same genes are not present. As proof of principle for
involvement of infection in late-onset dementia, we developed
a non-transgenic animal model to address whether infection
with a relevant brain isolate of Cpn in naïve BALB/c mice
would promote damage in the animal brain similar to that
identified in human late-onset dementia [2]. Since non-
transgenic mice do not normally develop relevant neuropa-
thology, they are a suitable host for analyzing whether infec-
tion leads to pathological change(s) in their brains. We used
BALB/c mice, which are susceptible to, and can maintain, a
persistent respiratory infection with Cpn [55]. We found evi-
dence supporting our contention that infection with the organ-
ism can initiate processes resulting in the development of rel-
evant pathology in the brain [16]. In the current iterations of

our animal model, we are assessing behavioral changes in-
cluding learning and memory (Skinner operant chamber) of
mice infected with Cpn. Our intent is to determine whether
infection induces functional changes which parallel the path-
ological changes occurring during the progression to demen-
tia. These data will address the contention thatCpn can induce
both pathology and behavioral changes similar to those ob-
served in late-onset dementia of the Alzheimer’s type.

Precedents for infection in the exacerbation of dementia-
related neuropathology have been reported for other patho-
gens in other animal models [56, 57]. Once infection has been
controlled, levels of soluble amyloid apparently decrease,
resulting in fewer deposits at 3–4 months [58]; nevertheless,
targeting strategies at and around the time of infection have
not been tested and could finally resolve whether Cpn is the
triggering factor for the neuropathology. In mice infected with
a Cpn brain isolate in our studies, β-amyloid deposits were
identified as early as 2 months post-infection, with the greatest
number of deposits identified at 3 months [16] causing a pro-
gressive Alzheimer-like pathology. Further, models utilizing
direct injection of microbial products causing a sterile infec-
tion have shown induction of amyloid production and depo-
sition [59, 60]. However, not all studies have reached the same
conclusion, as a prior study by others failed to identify sub-
stantial pathology in the brain following infection with a dif-
ferent laboratory strain of Cpn [61]. The authors noted that
discrepancies could have resulted from use of the laboratory
isolate, which may have had different virulence properties
than the human brain isolate.

In our animal model, Cpn was identified in the olfactory
epithelia and the olfactory bulbs by both light and electron
microscopy following intranasal infection [16]. Analysis of
pathology in the brain revealed Aβ1–42 deposits that resem-
bled Alzheimer amyloid plaques. Intranasal infection results
in cumulative pathology in the brains of BALB/c mice, and
subsequent inoculations result in an additive effect in the de-
gree of pathology. Activation of astrocytes and co-localization
of reactive astrocytes with amyloid deposits suggested that a
cellular inflammatory response was being initiated. This re-
sponse may be focused on Cpn alone, or it may be directed
against amyloid deposits or to soluble amyloid. These obser-
vations suggest that Aβ generation is a response to the infec-
tious insult and lend support to the hypothesis that Aβ can act
as a “bioflocculant” [62]. Other studies have suggested that
Aβ-amyloid may have antibacterial properties, providing sup-
port for its occurrence as a result of infection in the brain [63,
64]. Induction of amyloid deposits in the brains of non-
transgenic BALB/c mice further supports our contention that
infection with Cpn in the brain is causative for the initial
Alzheimer-like neuropathology that evolves. This is further
corroborated by our earlier study using Moxifloxacin in
Cpn-infected mice, where minimal amyloid deposition was
observed in infected animals that received antibiotics within
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7–21 days post-infection. In comparison, animals not receiv-
ing antibiotics, or those with delayed treatment at 56–70 days
post-infection, amyloid plaque numbers were 8–9-fold higher
[65].

Our observations indicate that isolates of Cpn differ in the
ability to establish persistent infection and to promote progres-
sive neuropathology. Thus, we have focused on using both a
brain isolate (i.e., obtained from late-onset dementia brains)
and a laboratory isolate (AR-39) originally obtained from a
respiratory infection. Further, a critical issue in development
of late-onset dementia is the age of the individual, with greater
age demonstrating greater risk for disease. In this regard, the
age at which Cpn infection occurs may also influence likeli-
hood of brain infection. With this in mind, an earlier study
from our group indicated that Cpn infection of older as com-
pared to younger animals resulted in more prominent estab-
lishment of a brain infection that was statistically significant
following intranasal inoculation [17]. Also, we inoculated a
small group of BALB/c mice with the AR-39 isolate either
twice or three times at 30-day intervals, then sacrificed at day
90. Animals inoculated twice displayed an average of 68 am-
yloid deposits, and those inoculated 3 times averaged 177
deposits (unpublished observations). Mice receiving only a
single intranasal inoculation showed an average of 17–18 de-
posits at 3 months post-infection, suggesting that multiple
inoculations exacerbate damage in the brain. Although we
do not know how dosing or multiple exposures to infectious
agents through olfaction may affect the human population, our
findings may have implications for how the risk of
neuropathogenesis may arise following multiple exposures
to infecting agents.

In the late-onset brain, inflammation is thought to result
from Aβ deposition, which has been advanced as the primary
mechanism in late-onset dementia pathogenesis [66]. Clinical
trials investigating the effects of non-steroidal anti-inflamma-
tory drugs (NSAIDs) also implicate inflammation as a factor,
since some have shown that these drugs can delay onset of
disease [67]; however, they appear to be ineffective as a ther-
apeutic once the disease becomes manifest. Interestingly,
some untreated immunosuppressed individuals appear to have
an increased risk of AD, but with treatment with anti-TNFα
agents, the risk for AD is lowered [68]. At this time, the factors
leading to increased risk in the immunosuppressed population
are unknown. The resident cells in the brain responsible for
inflammation are typically microglia and astroglia. Both are
activated in the late-onset brain and often are identified in and
around amyloid plaques [69]. Microglia and astroglia respond
to insult by producing proinflammatory cytokines and reactive
oxygen species (ROS). Our identification ofCpn in the central
nervous system (CNS) in microglia, astroglia, perivascular
macrophages, and neurons suggested that infection-initiated
inflammation could be involved in the early neuropathology
of late-onset disease [2, 45]. Contributions also could come

from Cpn-infected monocytes and endothelial cells that we
observed in late-onset brains [2, 70]. As proof of concept for
our observations, others have shown that proinflammatory
molecules are significantly higher in culture supernatant fluids
of Cpn-infected murine microglial cells compared with con-
trols [71]. Further, infected murine astrocytes showed higher
levels of MCP-1 and IL-6 compared to controls. Neurons
exposed to conditioned supernatant from infected murine
microglial cells showed increased cell death compared with
mock-infected supernatants. These data may reflect what is
occurring following infection in situ.

Culture Studies of C. pneumoniae Infection

Monocytes are known to be involved with the expression of
cytokines, apoptosis, and β-amyloid clearance in AD [72–75,
76•], and our observations indicate that transcription of mono-
cyte genes encoding inflammatory products changes signifi-
cantly at 48 h post-Cpn infection. Infected cells maintain pro-
inflammatory cytokine secretion over 5 days, including IL-
1β, IL-6, and IL-8 [76•]. High levels of IL-1β are correlated
with neuroinflammation in the late-onset brain [77–80]. This
cytokine activates nitric oxide synthase, which has been im-
plicated in hippocampal neuronal cell death [81, 82]. Other
studies have implicated IL-1β in promotion of the neuronal
synthesis of the β-amyloid precursor protein [80]. Such ob-
servations provide a rationale for triggering events in which
the production of Aβ would be a consequence in late-onset
disease.

Interestingly, four genes were upregulated after 48 h infec-
tion in our in vitro studies, each of which encodes a product
involved with host defense against bacterial infection [76•].
One, DEFB4, encodes a defensin protein with anti-microbial
activity linking innate and adaptive immune responses [83].
Another encodes inflammasomes, IPAF and AIM2, which are
associated with toll-like receptors and which mediate the re-
sponse to both extracellular and intracellular pathogens [84].
NLRC4 can be activated by type III secretion systems charac-
teristic of Cpn and other gram negative bacteria [85]; this
system acts to transfer effector proteins from the bacteria into
the cytosol of the host cell, resulting in generation of reactive
oxygen species (ROS). ROS are thought to result from the
assemblage of another inflammasome complex, NLRP3 [86,
87], which also is activated by chlamydial infections [88, 89].
Upregulation of the AIM2 inflammasome transcript may have
been the result of detecting double-stranded DNA from the
organism in the cytosol [90, 91]. The fourth transcript encodes
MCP1/CCL2, a key chemokine for recruiting monocytes and
macrophages; this was increased 1000-fold following infec-
tion of monocytes with Cpn [76•, 92]. This gene product is an
important contributor to the neuroinflammatory process ob-
served in late-onset dementia and is increased in both CSF
and plasma from individuals with MCI and dementia [93,
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94]. CCL2 may allow increased monocyte migration into
brain tissues; it also may affect production and clearance of
Aβ from the brain [93–95].

Cell biological studies have demonstrated standard inclusion
and chlamydial morphology for both isolates in human epithelial
cells (HEp-2), astrocytes (U-87 MG), and microglial cells
(CHME-5), as in our previous studies [96]; this is also the case
for standard Cpn inclusion morphology in the human microglial
cell line HMC3 in our current studies. Chlamydia-induced dis-
ease is largely a result of immunopathogenesis. Chlamydial in-
fection promotes secretion of proinflammatory cytokines [97];
strong inflammatory responses are initiated by chlamydial LPS,
heat shock proteins, and outer membrane proteins. LPS alone
may account for many aspects of late-onset dementia pathology,
as studies have shown that Escherichia coli LPS, when injected
at low dose into the brains of rats, results in inflammation char-
acterized by increased cytokine production and microglial acti-
vation [98]; induction of the β-amyloid precursor protein also
was observed in the rat temporal lobe, suggesting that products of
infection alone could stimulate cellular changes resulting in
neurodegeneration.

Persistence of C. pneumoniae Infection and Host
Responses

Many studies have shown that under certain conditions and/or
within specific host cell types, Cpn alters its biologic state to
generate persistent, long-term infections [99–101]. Chlamydiae
undergoing such infections are morphologically aberrant and dis-
play an unusual transcriptional profile [99–101]. Importantly, the
mechanisms of pathogenesis differ between active and persistent
chlamydial infection, and it is in the persistent state that these
organisms are thought to elicit chronic disease [102, 103]. Cpn
has been associated with several chronic pulmonary diseases
[104] and an array of non-respiratory diseases, including athero-
sclerosis, inflammatory arthritis, multiple sclerosis, and others
[105–108]. Studies relevant to late-onset dementia have included
analyses of Cpn infection in vitro in both neuronal [109] and
astrocyte cell lines [110••]. In SK-N-MC neuronal cultures at 3
to 10 days post-infection, cells were resistant to apoptosis when
induced by staurosporine, suggesting thatCpnmay induce chron-
ic infection by interfering with apoptosis, a feature found in the
late-onset dementia brain, in which apoptosis can be initiated but
does not necessarily go to completion [111]. With regard to as-
trocytes,Cpn infection in culture promoted transcriptional upreg-
ulation of genes involved in neuroinflammation, lipid homeosta-
sis, microtubule function, and amyloid precursor protein process-
ing. Protein levels for the secretases BACE1 and PSEN1 were
twofold higher than in controls. BACE1 enzymatic activity was
also shown to be increased, suggesting that infected cells promot-
ed a pro-amyloidogenic pathway [110••]. Together with evidence
in the late-onset dementia brain of infection in astroglia, microg-
lia, and neurons, a rationale for involvement of Cpn infection in

neuroinflammation and amyloid protein processing and genera-
tion of β-amyloid is compelling.

Proof of Principle of C. pneumoniae as a Causative
Agent of Late-Onset Dementia

Traditionally, proofs of infection causing disease have in-
voked Koch’s Postulates, which were a set of rules for which
infectious agents were associated with disease causation.
Interestingly, Koch himself realized that not all organisms
which caused a particular disease fell within the confines of
his particular postulates [for review see 112]. In this regard,
viruses and obligate intracellular bacteria, which are not free-
living (a condition of one of the four postulates), cannot be
cultured without parasitizing another host cell or organism.
Thus, proof of concept studies for these types of infectious
agents cannot fit easily into Koch’s postulates, but rather re-
quire a modification or redefinition by which proof of causa-
tion should now be accepted. We contend that the postulates
derived by Koch should now be addressed in the following
manner, given our and others’ data.

1. The microorganism must be found in abundance in all
organisms suffering from the disease, but should not be
found in healthy organisms.

a. We first found Cpn in 17/19 late-onset dementia
brains and only 1/19 control brains [2]. In a replicative
study, we found Cpn in 20/25 dementia brains and
only 3/27 control brains [45].

2. The microorganism must be isolated from a diseased or-
ganism and grown in pure culture.

a. Cpn is an obligate intracellular pathogen that requires
a host cell for culturing, which cannot be grown in
pure culture, however

b. Cpn was isolated from a human brain, cultured in
human THP1monocytes, and subsequently identified
by immunohistochemistry, PCR, and electron mi-
croscopy [2].

3. The cultured microorganism should cause disease when
introduced into a healthy organism.

a. The human brain isolate of Cpn that was cultured in
THP1 monocytes was purified and inoculated into
normal BALB/c mice and resulted in Aβ-amyloid
accumulation in the mouse brain [16].

4. The microorganism must be re-isolated from the inoculat-
ed, diseased experimental host, and identified as being
identical to the original.

a. The human brain isolate that created “AD-like” pa-
thology was purified from the infected mouse brain. It
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was clearly identified by immunohistochemistry and
PCR from the mouse brain isolate, and

b. Human brain isolates of Cpn were sequenced and
resemble human respiratory strains of Cpn [52, 53].

Conclusion

The observations summarized here demonstrating an association
ofCpn infection and late-onset dementia of the Alzheimer’s type
suggest that this infection could be causative for disease patho-
genesis if we accept the outlined modifications of Koch’s postu-
lates addressed herein. Without demonstration that treatment of
late-onset dementia patients for infection can correct the problem,
we cannot unequivocally claim that disease is caused by Cpn
infection or any other infectious agent. Only through initiating
clinical trial approaches in which anti-infectives and possibly
anti-inflammatory regimens are tested in the late-onset popula-
tion will we havemore definitive answers as to whether infection
is a significant cause underlying and eliciting late-onset dementia
of the Alzheimer’s type.
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