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Abstract

Purpose of Review Marek’s disease virus (MDV) is a highly oncogenic alphaherpesvirus that causes various clinical symptoms
including fatal lymphomas in chickens. The virus encodes several MDV-specific genes that play a major role in viral pathogen-
esis. This review will focus on the recent advances in our understanding of how these viral factors contribute to pathogenesis and
tumor formation.

Recent Findings Several viral factors involved in MDV pathogenesis have been identified including the major oncoprotein Meq,
the viral chemokine vIL-8, MDV-encoded microRNAs, RLORF4, RLORF5a, ppl4, pp38, a virus-encoded telomerase RNA
(VTR), and viral telomeric repeats (TMRs). Our current knowledge of the role of these viral factors in MDV pathogenesis has
immensely increased over the last few years; however, more work needs to be done to completely understand the mechanisms for
most of them.

Summary MDYV pathogenesis and tumor formation is a complex process. Deciphering the mechanisms of viral factors involved
in MDV pathogenesis and lymphomagenesis will not only improve our understanding of this neoplastic disease but will also
provide new strategies for vaccine development against this deadly pathogen.

Keywords Marek’s disease virus (MDV) - pp14 - pp38 - vIL-8 - TMR - vTR - miRNA - Meq - Splice variants - RLORF4 -
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MDYV can also productively infect a plethora of cells including
macrophages, dendritic cells [6¢], natural killer (NK) cells
(Christine Jansen, unpublished data) and T cells [7¢e, 8, 9].
In addition to lytic replication, MDV establishes latency in T
cells. Intriguingly, the virus integrates its genome into the
telomeres of host cell chromosomes in latently infected cells
[10, 11]. This ensures replication of the virus genome with the
host chromosomes and maintenance in the host for life. This
integration event is also crucial for transformation of mostly
CD4+ T cells and a prerequisite for lymphoma formation [11].

MDYV pathogenesis is characterized by four overlapping
phases: (i) the early cytolytic phase with an initial amplifica-
tion of the virus in the infected animal, (ii) the latent phase
with latency establishment predominantly in CD4+ T cells,
(iii) the late cytolytic phase, and (iv) the transformation phase
with a rapid lymphoma development and dissemination of
these tumors preferentially into visceral organs and skeletal
muscles [3, 12].

MDYV encodes more than 100 proteins that play a role in
various processes of the virus lifecycle [13]. This brief over-
view highlights the current advances in our understanding of
the key viral factors that contribute to MDV pathogenesis and
lymphomagenesis.

The Major Oncogene meq

The major oncogene of MDV is meq (MDV Eco Q-encoded
protein, MDV005 and MDV076) that encodes a 339 amino
acid nuclear basic leucine zipper protein (bZIP). The Meq pro-
tein has a DNA-binding domain and can form homodimers as
well as heterodimers with cellular bZIP proteins such as c-Jun
and Fos [14, 15], allowing it to regulate cellular and viral gene
expression [16, 17]. Two copies are present in the MDV ge-
nome, one in the internal and one in the terminal repeat long
region (IRy and TRp) (Fig. 1) [15]. Meq is constitutively
expressed in both lytic and latent stages of MDYV infection as
well as in lymphoblastoid cell lines derived from MDYV tumors
[9]. In infected chickens, the percentage of Meq expressing
peripheral blood mononuclear cells (PBMCs) increases in the
early latent phase, but decreases thereafter [18]. A recent pub-
lication indicated that also some infected lymphocytes do not
express Meq [18]. megq itself is dispensable for MDV replication
in vitro [19]; however, deletion of both copies of the meq gene
or parts of it completely abrogates tumor formation [20-23].
Several mechanistic pathways have been discovered for
this viral oncogene. Meq represses pS3-mediated transcrip-
tional activity and apoptosis through its direct interaction with
p53 [24]. It thereby plays a pivotal role in maintaining MDV
latency in CD4+ T cells by blocking apoptosis [25]. Other
Meq interaction partners that contribute to MDV pathogenesis
include the heat shock protein 70 (hsp70) [26] and the retino-
blastoma tumor suppressor protein (pRB) [4, 27], as well as

Par-4 and SKP-2 [2]. Meq also was shown to trans-activate
latent gene expression [28] and to suppress the promoters of
the lytic MDV genes ICP4, pp38, and ppl14 [29].

Repeat Long Open Reading Frame 4 and 5a

Repeat long open reading frame 4 (RLORF4) is located within
the TRy /IRy regions of the MDV genome in the same orienta-
tion as meq (Fig. 1) [2, 30]. Comparative sequence analysis
revealed that four out of six attenuated MDV-strains lack
RLORF4, suggesting that RLORF4 plays a role in MDV path-
ogenesis [31]. To investigate the role of RLORF4 in MDV
pathogenesis, Jarosinski and colleagues generated recombinant
viruses that lack RLORF4 based on the very virulent MDV RB-
1B strain [30]. Deletion of RLORF4 resulted in an increased
virus replication and spread in vitro [30]; however, virus load
was severely reduced in vivo. Furthermore, tumor development
was severely impaired in the absence of RLORF4 compared to
wild-type virus [30]. The exact mechanism that allows RLORF4
to contribute to MDV pathogenesis remains unknown. In addi-
tion, MDV encodes repeat long open reading frame Sa
(RLORF5a) that is located upstream of RLORF4 (Fig. 1).
Schat and colleagues initially demonstrated that deletion of
RLORF5a in CVI988 did not alter virus replication [32]. This
was confirmed by Jarosinski and colleagues for the very virulent
RB-1B. In contrast to RLORF4, they observed that RLORF5a is
dispensable for RB-1B pathogenesis and tumorigenesis [30].

Viral Interleukin-8

Viral interleukin-8 (vIL-8) (MDV003 and MDV078) is a se-
creted CXC chemokine that facilitates recruitment of target
cells and plays a crucial role in MDYV pathogenesis [33, 34].
It is the first CXC chemokine identified in an alphaherpesvirus
and was initially named after interleukin-8 (cIL-8; cCXCLS),
the first CXC chemokine identified in chickens [35, 36].
However, recent data demonstrated that vIL-8 is a functional
orthologue to the chicken CXC ligand 13 (CXCL13) and
binds to the cellular CXC receptor 5 (CXCRS) [37¢]. It is
expressed during lytic replication and has true late expression
kinetics [36]. As mentioned above, vIL-8 plays an important
role in pathogenesis as it allows recruitment of B cells, which
serve as primary targets for lytic replication. In addition, it
recruits CD4+ CD25+ T cells that could serve as a target for
the establishment of latency and tumor formation [34].
Deletion of the vIL-8 gene or abrogation of vIL-8 expression
decreases disease and tumor incidence in experimentally in-
fected animals. In the case of a natural route of transmission,
disease and tumor formation is completely abrogated [33, 34],
underlining that the recruitment of target cells is crucial for
MDYV pathogenesis.
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Splice Variants of meg, RLORF4/5a, and vIL-8

Multiple spliced transcripts have been identified in the region
containing meq, RLORF4/5a, and vIL-8 [2, 38—40]. These
splice variants include fusion proteins of Meq, RLORF4,
and RLORF5a with exons II and III of vIL-8 [38]. The role
of these splice variants in MDV pathogenesis remains poorly
understood. Intriguingly, splice variants of meq and exons II
and/or III of vIL-8 show differences regarding their localiza-
tion and cellular dynamics compared to the full-length meq
[41]. These splice forms are also expressed in MDV-induced
tumor cells, suggesting that they might contribute to tumor
formation. However, more work needs to be done to under-
stand the contribution of these splice variants in MDV patho-
genesis and tumorigenesis.

Neurovirulence Factor pp14

In addition to tumor formation, MDV can also cause various
neurological symptoms. A viral protein associated with an in-
creased neurovirulence in MDV-infected chickens is ppl14
(MDV006 and MDV075), a 14 kilodalton (kDa) polypeptide
(Fig. 1) [42-44]. ppl4 is expressed with immediate early (IE)
kinetics and is dispensable for virus replication and tumorigen-
esis [44]. Two splice variants of pp14 are expressed that differ
in their N-terminal amino acid compositions and are expressed
at different levels [45]. The ppl4 transcript with a 5’ leader
intronic internal ribosome entry site (IRES) is more abundant
in MDV infected and transformed cells than its counterpart
lacking this element. This is due to the ability of the 5’ IRES
to mediate cap-independent translation initiation and may en-
able this mRNA to overcome translation inhibition [45-47].
In vivo, a pp14 deletion virus showed significantly less clinical
MD signs compared to the wild-type virus. In addition, nerve
lesions including cellular infiltration, proliferation of lympho-
blastic cells, and edema in the nerve tissue were reduced in the
absence of ppl4 (wild type: 62.8%, ppl4 deletion mutant
16.6%) [44]. However, the exact molecular mechanisms of
MDV-mediated neurovirulence and how ppl4 contributes to
these symptoms remain elusive.

Phosphoprotein pp38

pp38 (MDV073) is a 38 kDa immediate early protein that is
encoded in the junction of the Uy and the IRy (Fig. 1).
Deletion of the pp38 gene severely impaired tumor formation
[48, 49], underlining its role in MDV pathogenesis. Besides
the full-length protein, two splice variants of pp38 (Spl A and
Spl B) were identified in vitro and in vivo [50]. The full-length
pp38 is primarily expressed in early lytic replication, while the
splice variants are present during the establishment of latency
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from 7 to 14 days post infection. This differential expression
has been linked to an increased metabolic activity of infected
cells that could contribute to the establishment of latency and/
or to transformation [50, 51]. Like Meq, pp38 is also involved
in the inhibition of apoptosis in MDV-infected and -
transformed cells [51-53]. For pp38, it remains unclear if this
is due to a direct block of apoptosis or the inhibition of a
cytotoxic T cell response [52]. In contrast, there is evidence
that full-length pp38 can induce apoptosis via the oxidative
phosphorylation pathway [51, 54], a phenomenon that was
not observed for the two splice variants Spl A and Spl B [51].

MDV MicroRNAs

A number of MDV-encoded microRNAs (miRNAs) have been
discovered that are classified into three distinct miRNA clusters
(Fig. 1). These clusters encode 14 precursor sequences and 26
mature miRNAs that are highly conserved between virus iso-
lates [55]. They play an important role in MDV-induced path-
ogenesis and tumorigenesis [55]. The first cluster, termed the
Meq-cluster, is located upstream of the meg oncogene and con-
tains six pre-miRNAs (Fig. 1) [56, 57]. Deletion of this cluster
severely impaired disease and tumor development, indicating
that some miRNAs in this cluster play an important role in
MDV-induced pathogenesis and tumorigenesis [58, 59]. The
most highly expressed member of the Meq-cluster is mdvl1-
miR-M4-5p, a functional orthologue of the cellular gga-miR-
155 [60]. gga-miR-155 is highly conserved from humans to
chickens [61¢] and is involved in virus-induced cancers such
as Epstein-Barr virus-induced lymphomas in humans [62].
Similarly, miR-M4-5p of MDYV plays a crucial role in MDV-
lymphomagenesis as reviewed by Zhuang and colleagues [58,
59, 61¢¢]. The mid-cluster is located downstream of meg and
includes three pre-miRNAs (Fig. 1) [63]. This cluster is dis-
pensable for MDV replication; however, deletion of one of
the mid-cluster miRNAs, miR-M31, also leads to a decrease
in MD incidence and tumorigenesis [64]. The last cluster is
termed LAT-cluster as it is present within the latency-
associated transcripts (LAT) and consists of five pre-miRNAs
(Fig. 1) [56, 57]. The LAT-cluster encodes for at least one IE
gene-specific miRNA, miR-M7-5p, that may contribute to the
establishment and maintenance of latency [65].

Viral Telomerase RNA

Telomerase is a large ribonucleoprotein complex that is in-
volved in the maintenance of telomeres at the end of eukaryotic
chromosomes [66]. The telomerase complex contains two ma-
jor components, the catalytic subunit telomerase reverse tran-
scriptase (TERT) and a telomerase RNA (TR or TERC), which
provides the template for the extension of the telomeres.
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Fig. 1 Overview of the MDV genome. Schematic representation of the
MDYV genome with a focus on the viral factors involved in pathogenesis
and tumorigenesis. The two unique regions, unique long (U ) and short
(Ug) are flanked by terminal (TR and TRg) and internal (IR and IRg)
inverted repeat regions. The unique regions mainly harbor genes that are
conserved among alphaherpesviruses and are involved in DNA
replication and production of progeny virus. The repeat regions contain
MDV-specific genes encoding for proteins or RNA that are important for

Beyond that, the complex contains a number of species-specific
telomerase-associated proteins that regulate telomerase activity
and biogenesis [67, 68]. MDV encodes a viral TR (vVTR) ho-
mologue that is crucial for efficient MDV-induced lymphoma
formation [69]. VTR has an 88% sequence identity to the cel-
lular TR in chickens (chTR) [70] and is the most abundant viral
transcript detected in MDV-induced tumor cells [69]. Chbab
and colleagues demonstrated that these high expression levels
are crucial for MDV-induced tumor formation [71].

VTR is incorporated into the telomerase complex and en-
hances its activity when compared to chTR [72]. To investi-
gate whether the tumor-promoting functions of vIR are de-
pendent on its role in telomerase activity, Kaufer and col-
leagues generated recombinant viruses with a mutation in
vTR that abrogated incorporation into the telomerase complex
[73]. Intriguingly, lymphoma formation was not altered in the
absence of the vTR-induced telomerase activity and only the
onset of disease was slightly delayed [73]. Furthermore, tumor
dissemination was also comparable to wild-type virus [73],
suggesting that the tumor-promoting functions of vIR are
independent of its role in the telomerase complex [73]. We
recently demonstrated that another viral RNA, the Epstein-

'miRNA ' TMR

pathogenesis, cellular tropism, tumorigenesis, and latency. The viral
telomeric repeats (TMR) are crucial for integration of the virus genome
into host telomeres and are highlighted with arrows. The position of the
following genes is shown in the IRy and IRg: latency-associated
transcripts (LAT), phosphoprotein 14 (pp14) and 38 (pp38), major
oncogene meq, RLORF4 and 5a, viral chemokine vIL-8, viral
telomerase RNA (vTR), miRNAs, and TMR

Barr virus-encoded RNA-2 (EBER-2), can complement the
loss of vTR in MDV-induced tumor formation [74], suggest-
ing conserved mechanism(s) between these viral RNAs.
Further investigations are needed to decipher the mechanism
of vIR in MDV-induced transformation.

MDYV Telomeric Repeats

MDV establishes latency in CD4+ T cells and integrates its
genome into the telomeres of their chromosomes [10, 11].
Interestingly, the integrated virus genome is usually detected
in multiple chromosomes of latently infected and tumor cells
[11]. Integration is facilitated by telomeric repeat (TMR) arrays
present within the a-like sequences at both ends of the virus
genome and at the IRy -IRg junction [75, 76]. Each a-like se-
quence harbors two TMR arrays: short telomeric repeats
(sTMR) with a fixed number of 6 repeats and multiple
telomeric repeats (MTMR) with a variable number of repeats
[11, 77, 78]. Deleting or mutating the mTMR severely impaired
integration, pathogenesis, and tumor formation [11]. The sSTMR
have a dual function in the MDYV life cycle. On the one hand,
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the sSTMR play a key role in the integration of MDYV, as muta-
tion of the sequence reduces integration frequency and de-
creases MDV pathogenesis and tumor formation. One the other
hand, the sSTMR serve as essential spacers between the packag-
ing signal pac-1 and the DR-1 cleavage sites, as its deletion
completely abrogates MDV replication [77]. Truncation analy-
ses revealed that the exact length of the STMR is crucial for
virus replication [77]. Intriguingly, several other herpesviruses
harbor TMR arrays at the ends of their genomes [79], which
also contribute to the integration of the respective virus into host
telomeres [78, 80]. While our understanding of the role of the
TMR arrays has tremendously increased over the last years, it
remains completely unknown which viral and/or cellular pro-
teins facilitate this integration into host telomeres.

Conclusions

Most of the genes encoded in the MDV genome have homo-
logues in other alphaherpesviruses. They play important roles
in DNA replication, particle formation, egress, and many oth-
er processes essential for the virus lifecycle. In addition, MDV
encodes several virus-specific genes that are not primarily
involved in replication but play a key role in viral pathogen-
esis. The best characterized gene by far is the major oncogene
meq that is crucial for tumor formation as it regulates gene
expression and blocks apoptosis [81]. The viral chemokine
vIL-8 ensures that the target cells are recruited to the site of
infection, a prerequisite for the success of this highly cell-
associated pathogen. RLORF4 and the two phosphoproteins
pp14 and pp38 also drive MDV pathogenesis; however, more
work needs to be done to understand how these proteins con-
tribute to this process. In addition to these proteins, MDV also
encodes several RNAs that are crucial for MDV pathogenesis
such as vTR and the MDV-encoded miRNAs. Furthermore,
the MDV genome also harbors sequence elements such as the
viral telomeric repeats that facilitate integration into host telo-
meres and maintenance of its genetic material with the host
chromosomes. This complex set of proteins, RNAs, and se-
quence elements in the virus genome contributes to MDV
pathogenesis and makes it such a successful pathogen.
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