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Abstract Invasive fungal infections remain a major source of
global morbidity and mortality, especially among patients
with underlying immune suppression. Successful patient man-
agement requires antifungal therapy. Yet, treatment choices
are restricted due to limited classes of antifungal agents and
the emergence of antifungal drug resistance. In some settings,
the evolution of multidrug-resistant strains insensitive to sev-
eral classes of antifungal agents is a major concern. The resis-
tance mechanisms responsible for acquired resistance are well
characterized and include changes in drug target affinity and
abundance, and reduction in the intracellular level of drug by
biofilms and efflux pumps. The development of high-level
and multidrug resistance occurs through a stepwise evolution
of diverse mechanisms. The genetic factors that influence
these mechanisms are emerging and they form a complex
symphony of cellular interactions that enable the cell to
adapt and/or overcome drug-induced stress. Drivers of resis-
tance involve a complex blend of host and microbial factors.
Understanding these mechanisms will facilitate development
of better diagnostics and therapeutic strategies to overcome
and prevent antifungal resistance.
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Introduction

Serious fungal infections afflict millions of patients annually
resulting in more than 1,350,000 deaths [1]. The most serious
fungal infections occur as a consequence of other serious
health problems such as asthma, AIDS, cancer, and organ
transplantation, and they all require antifungal therapy for a
successful outcome. Failure to treat effectively either because
of diagnostic delays or missed diagnosis often leads to death
or serious illness. This recognition has resulted in a significant
increase in antifungal agents use for the treatment and preven-
tion of fungal infections. Yet, therapeutic options are limited,
as the most widely used antifungal drugs comprise only a
few chemical classes including azoles (fluconazole,
voriconazole, posaconazole, and isavuconazole) and poly-
enes (amphotericin B), which modify the cell membrane,
nucleic acids and protein flucytosine (5-fluorocytosine), and
the cell wall echinocandins (caspofungin, anidulafungin, and
micafungin). Predictably, resistant strains emerge during ther-
apy, and it is a confounding factor for successful clinical out-
come as it eliminates important antifungal classes leaving re-
stricted treatment options. Resistance may result from selec-
tion of inherently less susceptible strains or from emergence of
acquired drug resistance during therapy in otherwise suscep-
tible strains. It is the latter that is the principal subject of
this review, although many acquired mechanisms also ac-
count for naturally occurring reduced susceptibility of some
species. A greater understanding of factors promoting
mechanism-specific resistance is important to help over-
come resistance emergence.

Epidemiology and Emergence of Multidrug
Resistance
Inherent Resistance Selection

Resistance to antifungal agents remains relatively uncommon,
as the vast majority of fungi retain susceptibility to commonly
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used antifungal agents. In some cases, prominent resistance
results from selection of less susceptible species. The azole
antifungal agents are the most prominent example of drug
selection for less susceptible species [2]. Numerous global
epidemiological studies have documented the impact of wide-
spread triazole use on the distribution and shift of Candida
species toward less susceptible strains like Candida glabrata
and Candida krusei. In many regions where azole use (e.g.,
fluconazole) is prevalent, there has been a shift away from
Candida albicans as the predominant cause of invasive infec-
tions toward less susceptible non-C. albicans species [3].
C. glabrata has inherent reduced susceptibility to fluconazole
and it is the species whose incidence has increased the most to
account for a decrease in the prevalence of C. albicans [3, 4].
Similarly, fluconazole use is linked to emergence of the highly
resistant C. krusei [5] and Candida guilliermondii [6]. In
many cases, inherent resistance in Candida species to flucon-
azole also carries with resistance to more highly active
triazoles like voriconazole. This is not true for Aspergillus
and other molds that are resistant to fluconazole but suscepti-
ble to more highly active triazoles. Yet, breakthrough infec-
tions against highly active triazole drugs have been reported
for Aspergillus ustus [7] and Aspergillus fumigatus-like
species Aspergillus lentulus, which show pleiotropic resis-
tance to multiple antifungal drugs [8, 9]. Sometimes, a
susceptible species develops a prevalent variant that is
the source of resistant infections. In the bacterial world,
the regional and global spread of drug-resistant strains
from a common progenitor is commonly observed. Such
transmission is not typically observed for fungal drug re-
sistance. A notable exception occurred with the recent
emergence of a multidrug-resistant variant of 4. fumigatus in
the Netherlands [10, 11]. This highly azole-resistant strain
variant was selected in the environment as a consequence of
the prevalent use of agricultural azoles. The resistance mech-
anism unique to these isolates will be discussed later, but such
resistant strains are spreading through Europe and into parts of
Asia [12].

Acquired Resistance

“Acquired” refers to acquisition (or latent induction) of a re-
sistance mechanism during therapy. It is less common but not
an inconsequential event. Growing concerns have been raised
about acquired antifungal drug resistance involving azole re-
sistance in A. fumigatus and echinocandin resistance in
Candida [13—15]. Azole resistance in A. fumigatus is wide-
spread globally with high geographic variance since the first
report of itraconazole resistance in 1997 [16]. In the
Netherlands, the prevalence of resistance increased from 2 %
in 2000 to 8 % in 2009 predominated by TR34/L98H, a resis-
tance mechanism which has been considered as environmen-
tally acquired and associated with the use of agricultural

fungicides [17]. While TR34/L98H along with the newly
emerged TR4/Y121F/T289A are spreading and widely re-
ported in many other countries [18-23], epidemiological data
in the UK demonstrated a more drastic increase of resistance
from 5 % in 2004 to 14 % in 2008 and 20 % in 2009 with more
versatile (CYP51A and non-CYP51A mediated) underlying
mechanisms, which were mainly induced by long-term azole
therapy in chronic infection patients [24, 25]. Unlike azole
resistance, the frequency of echinocandin resistance remains
relatively low (<2-3 %) with C. albicans and most other
Candida species [26-29]. However, a notable exception is
C. glabrata, where an alarming trend of rising echinocandin
resistance poses a serious clinical challenge since many iso-
lates display azole cross-resistance [30e, 31, 32]. A recent
study of C. glabrata bloodstream isolates documented the
rising rate of echinocandin resistance from 4.9 to 12.3 % in
2001-2010 [30e°]. Of note, resistance rates in C. glabrata
varies range from ~3 % to over 10 % in recent surveillance
studies, depending on the geographic region, subpopulation,
and data collecting method of the study [14, 30, 31-33]
(Fig. 1). Nevertheless, rapid acquisition of resistance during
therapy for C. glabrata infection with subsequent unfavorable
outcome is worrisome.

Mechanisms of Resistance

Prominent antifungal resistance mechanisms have been
detailed in recent years. The mechanisms generally involve
reduced drug uptake, modification of the drug target, and/or
a reduction in the cellular level of drug due to upregulation of
drug efflux transporters (pumps) and biofilms, which restrict
drug entry (Fig. 2). Fungi have evolved a number of genetic
regulatory features that induce or promote specific resistance
mechanisms.

Biofilms

Yeasts and molds readily form biofilms [34, 35], which dis-
play an organized three-dimensional structure comprised of a
dense network of cells in an exopolymeric matrix of carbohy-
drates, proteins, and nucleic acids. Drug sequestration within
the extracellular matrix is the largest determinant of the mul-
tidrug resistance phenotype of biofilms [36]. Biofilms restrict
access to echinocandin drugs and they are intrinsically resis-
tant to azoles. The mechanisms include drug sequestration and
expression of drug efflux transporters [34, 35, 37-39]. Matrix
production is highly regulated and is a key resistance factor for
Candida species [40]. Biosynthesis of 3-1,3-glucan by glucan
synthase is critical to the biofilm resistance properties.
Downstream components of the yeast PKC pathway, includ-
ing SMII, RLMI, RHOI, and FKSI, regulate (3-1,3-glucan
biosynthesis and biofilm matrix production [36, 41-43], as
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Fig. 1 Echinocandin resistance

America

in C. glabrata in Europe and
America. Resistance rate varies
among different studies.

The rate reported from
institutional studies is higher than 14
that from population-based sur-
veys, where only the initial blood
isolate is included to avoid bias- 10 -
ing the data set. Adapted from
Arendrup et al. [14]

=

) E Europe

lnstitutionalstudies
Population-based Surveys
i — /
D e T
S &, '
& ¥ >
Q,\ v
& 3
<& oéo
0@

well as other cellular components such as alcohol dehydroge-
nases Adh5, Cshl, and Ifd6 [44].

Drug Target Modification

Genetic modification of the drug target resulting in reduced
affinity for drug is one of the most prominent mechanisms for
antifungal resistance. For echinocandin drugs, target site mod-
ification is sufficient to confer resistance, as other mechanisms
(e.g., drug pumps) are not associated with clinical resistance
[45]. Echinocandins inhibit glucan synthase, which blocks the
biosynthesis of the critical cell wall polymer (1,3)-3-D-glucan.
A limited number of mutations in two highly conserved hot-
spot regions of the FKS genes encoding glucan synthase con-
fer resistance (Table 1). The most prominent mutations in
C. albicans associated with clinical failures encode amino
acid substitutions at Fks/ positions Phe641 and Ser645 [46].
These target site modifications decrease the sensitivity of en-
zyme for drug by as much as several thousand fold [47e, 48,
49] resulting in strains that respond poorly in pharmacody-
namic models [50, 51]. Related FKS/ mutations have been
found in other Candida species. Only in C. glabrata, con-
served hot-spot mutations are found in both FKSI (Phe625,
Ser629) and FKS2 (Phe659, Ser663) with the latter occurring
with twice the frequency [48].

Azoles inhibit lanosterol 14x-demethylase, which is
encoded by ERG11 (CYP51A in Aspergillus). Triazole anti-
fungal agents differ in affinities for their drug target, which in
turn influences their spectrum of activity. Fluconazole shows
the weakest interaction and displays the narrowest spectrum,
as it is active against yeasts but not molds. As such, it pro-
motes the broadest resistance. In a recent study of 63

@ Springer

fluconazole-resistant clinical isolates, 55 isolates carried at
least one mutation in ERG11, representing 26 distinct amino
acid substitutions [52]. In contrast, highly active triazoles
(e.g., voriconazole, posaconazole) interact more strongly with
the drug target, show broader activity against yeasts and
molds, and reveal a narrower spectrum of resistance muta-
tions. To date, more than 70 amino acid substitutions have
been described in Ergll (or Cyp51A) from azole-resistant
clinical isolates of C. albicans [53-58], A. fumigatus [24, 59,
60], and Cryptococcus neoformans [61, 62]. Within the azole
family, chemical diversity around a core unit facilitates differ-
ential susceptibility and also resistance cross-reactivity. For
example, some mutations in ERG/! result in fluconazole re-
sistance only, others confer resistance to voriconazole but not
posaconazole, and some display pan-resistance.
Computational modeling using high-resolution structures as
a template helps explain the impact of specific amino acid
substitutions on drug-target interactions [63]. Recently, such
modeling studies were greatly enhanced by the elucidation of
a high-resolution Ergl!1 structure from baker’s yeast [64e¢].
Drugs like posaconazole fill the structural space occupied by
the substrate lanosterol, where they make a coordination bond
with the heme iron extending from the active site to beyond
the mouth of the entry channel (Fig. 3). A majority of muta-
tions cluster in three main regions [65] with most substitutions
altering the juxtaposition of drug with the heme cofactor. The
structure of the active site and substrate channel helps account
for the susceptibility observed for some prominent resistant
mutants [64ee, 66].

Finally, in Aspergillus, mutations in Cyp51A are sufficient
to induce resistance to some or all highly active triazole drugs,
while in C. glabrata, target site mutations in CEGERG11 do not
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Fig. 2 Exposure to azole drugs triggers fungal stress responses that
promote fungal adaptation and drug tolerance and, ultimately,
emergence of stable genetic alterations that confer drug resistance. The
HSP90 protein chaperone and its client, protein phosphatase calcineurin,
are key stress signal transduction molecules that both upregulate
pathways leading to drug tolerance and promote genome instability,
increasing the likelihood of generating drug-resistant strains. Fungal
biofilms, which readily form in vivo, are intrinsically resistant to azoles
due to drug sequestration within the extracellular matrix and expression
of drug eftlux transporters

contribute to clinical resistance. In some organisms, mutations
in Ergll are but a first step toward higher-level resistance
involving other resistance mechanisms such as target upregu-
lation or overexpression of drug pumps.

Decreased Intracellular Drug Levels

As drugs need to reach their cellular targets to be effective,
certain antifungals use permeases for cell entry including 5-

fluorocytosine, which uses FCAI, FCY2, FCY22, and FCY23
to enter C. albicans cells [50]. Fluconazole is believed to enter
cells by an uncharacterized energy-independent facilitated dif-
fusion mechanisms [67]. Modification of these uptake sys-
tems would confer drug resistance. Among the most common
mechanisms for reducing cellular drug levels, energy-
dependent drug efflux transporters recognize and extrude di-
verse chemical classes. Two different drug efflux systems
modulate azole resistance, the ATP-binding cassette (ABC)
superfamily and the major facilitator superfamily (MFS).
The ATP-dependent transporters (ABC) are comprised of
two transmembrane and two cytoplasmic nucleotide-binding
domains, which catalyze ATP hydrolysis. Fungal genomes
encode numerous ABC transporters, as they are presumed to
purge the cell of toxic compounds and metabolites.
C. albicans is predicted to contain 28 ABC proteins [68],
C. glabrata has 18, and A. fumigatus and C. neoformans have
many more [69]. Despite their prevalence, only a few contrib-
ute to antifungal resistance. The PDR class comprises the
major transporters involved in azole resistance including
C. albicans CDR1 and CDR?2 [70]; CgCdrl, CgCdr2, and
CgSnq2 in C. glabrata; and Afrl in C. neoformans [71]. In
A. fumigatus, ABC transporter genes are upregulated in re-
sponse to azole exposure (AfuMDRI (CDRIB), AfuMDR2,
abcA-E) [72, 73] and in resistant clinical isolates [74—76].
MFS transporters have multiple (12 or 14) transmembrane
domains and use proton-motive force to drive drug efflux.
The C. albicans genome predicts 95 MFES transporters in 17
families [77] but only one transporter gene, MDR1, is associ-
ated azole resistance [78-80]. In 4. fumigatus, AfuMDR3 is
upregulated in some itraconazole-resistant mutants [75]. It is
unclear in Aspergillus whether induction of an ABC or MFS
transporter is sufficient for resistance.

Regulation of Drug Transporters

Transcriptional regulation of ABC and MFS multidrug trans-
porters is complex, involving cis- and trans-regulatory ele-
ments. Cis-acting elements regulate CDRI, CDR2, and
MDRI in C. albicans, with the promoters of CDRI and
CDR?2 containing common Drug Responsive Element
(DRE) sequences that are required for transcriptional upregu-
lation [81]. MDRI cis-acting elements have complex arrange-
ments that differ depending on the inducer [82]. In
C. glabrata, pleiotropic DREs are present in CgCDRI,
CgCDR2, and CgSNQ?2 [83, 84], and help confer high level
CDRI1 expression [85]. The first major frans-acting transcrip-
tion element regulating efflux is C. albicans Transcriptional
Activator of CDR (74C1), amember of the Zn,Cysg transcrip-
tion factor family. Gain-of-function (GOF) mutations in 7AC1
[86e, 87] are responsible for the upregulation of CDRI and
CDR?2 in azole-resistant isolates [88—90]. Tacl binds to the
DRE of CDRI and CDR2, likely via a consensus-binding
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Table 1  Overview of Fks hot spot sequences and amino acid sequence positions resulting in echinocandin resistance
Fks1p Fks2p

Species Hot spot 1 Hot spot 2 Hot spot 1 Hot spot 2

C. albicans 641  FLTLSLrRDP 1357 DWIRRYTL

C. dubliniensis 641  pLTLSLRpp 1357 DWIRRYTL

C. glabrata 625 FLILSLrpp 1340 DWVRRYTL 659 FLILSLRDP 1374  pWIRRYTL

C. kefyr 54*  FrTLRLRDp 769* DWVRRYTL

C. krusei 655  FrLILsIrRDp 1364 DWIRRYTL

C. lusitaniae 634* rFrLTLSLRDP ¥ DWIRRYTL

C. tropicalis 76  FLTLSLrpp 792 DWIRRYTL

C. parapsilosis 652 FLTLSLRDA 1369 DWIRRYTL

First amino acid number is shown for each hot-spot sequence
Amino acids in bold large red letters signify most prominent resistance
Amino acids in red-brown indicate weaker resistance

Amino acid in blue is a naturally occurring polymorphism with weak resistance

Amino acids in bold indicate strong resistance

Amino acids in green indicate silent mutation, acquired or naturally occurring

Amino acids in brown indicate naturally occurring mutation of unknown impact

*Indicates amino acid position based on partial sequence, sequencing of entire gene is required

**denotes separated sequences of HS1 and HS2, thus annotation of HS2 is nonsense

motif. Similarly, another CDR/ regulator MRR? is required
for the basal expression of CDRI [91]. In C. glabrata, drug
pump overexpression is the major mechanism responsible for
azole resistance, and transcriptional activator CgPdrl reg-
ulates expression of CgCDRI and CgCDR?2 [92]. CgPdrl
binds to the PDRE consensus in CgCDR1 [85] and GOF
mutations hyper-activate CgPdrl upregulating ABC trans-
porters [92-96]. Nearly 60 GOF mutations have been

identified in CgPDRI alleles from clinical azole-resistant
isolates [94]. In C. albicans, the Zn,Cysg transcription
factor Multidrug Resistance Regulator 1 (Mrrl) regulates
MES transporter gene MDR/ [97] and at least 15 different
MRR1 GOF mutations are known [88, 98] to cause con-
stitutive upregulation of MDRI [99]. Other positive regu-
lators of MDR in C. albicans include Capl [100, 101] and
Mcml [102, 103].

Fig. 3 Binding of lanosterol and itraconazole within active site heme
region Ergll from S. cerevisiae. a Lanosterol binding and coordination
with heme shown with electron density profile. b Itraconazole binding to
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same region shown with electron density. ¢ Bound itraconazole and
amino acids commonly mutations to confer resistance. Adapted from
Monk et al. [64¢¢]
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Chromosomal Anomalies

It is now recognized that azole resistance in C. albicans and
other Candida species is associated with a variety of large-
scale genomic alterations, including loss of heterozygosity
(LOH) involving specific genomic regions, increased chromo-
somal copy number, and aneuploidies. LOH is associated with
resistance factors ERGI1I, TACI, and MRRI. It has been
shown that mutations in these genes arise in a heterozygous
state and are converted to homozygous form by LOH [104,
105]. Isochromosome formation is a separate and more pro-
nounced genomic change. It increases gene copy numbers,
and hence gene expression of azole resistance genes and
Ergll, the azole target. [Isochromosome formation on the left
arm of chromosome 5i(5L) increases the copy number of
ERGI1 and TACI [106]. Similarly, the isochromosome variant
3i(3R) on the right arm of chromosome 3 contains CDR/ and
MRRI1 [107]. An examination of 57 clinical C. albicans
strains, disomic or monosomic for Ch5, found that the mono-
somy of Ch5 caused elevated levels of cell wall chitin and
repressed levels of 1,3-beta-glucan, as well as diminished
membrane ergosterol. This resulted in decreased susceptibility
to caspofungin and increased susceptibility to fluconazole
and amphotericin B [108]. Chromosomal alterations
resulting in resistance are also observed with C. glabrata
[109]. In C. neoformans, azole resistance is associated
with disomies of chromosomes 1 and 4, which contain
ERGI1I and ABC transporter AFRI [110]. Hetero-resis-
tance, observed in C. albicans [111], relates to sub-
populations within the same clone that vary in resistance
based on the frequent loss and gain of chromosomes in
response to selection in C. neoformans [112]. C. neoformans
is heteroresistant to azoles due to transient duplications of
whole chromosomes that carry the genes for azole resis-
tance [110]. Chromosome 1, which harbors ERGII and
AFRI, encoding the azole target and an ABC transporter,
respectively, is the first one to be duplicated resulting in
elevated MICs; further increases in MIC result from the
duplication of Chr4.

Stress Responses and Drug Adaptation

Fungi are remarkably adaptive and have numerous genetic
mechanisms that help protect against cellular stresses, such
as those encountered following exposure to an antifungal
agent. These stress adaptation responses frequently result in
elevated in vitro MICs. Typically, the increased MIC is insuf-
ficient to confer clinical resistance resulting in breakthrough
infections. Rather, stress adaptation stabilizes the cell in the
presence of drug and allows it to develop more profound re-
sistance mechanisms over time that are manifested as clinical
resistance (Fig. 2). As first described for azoles, Hsp90 and

calcineurin are two key cellular regulators critical for orches-
trating cellular responses to drug-induced stress [113, 114¢].
Hsp90 is a molecular chaperone that regulates the stability and
function of diverse client proteins and controls stress re-
sponses by stabilizing the protein phosphatase calcineurin
[115]. Calcineurin-Crzl signaling influences a wide range of
cellular response functions including ion homeostasis and cell
wall biogenesis [116]. Compromising the function of Hsp90
or calcineurin can induce fungistatic drugs to become fungi-
cidal enhancing efficacy. Thus, inhibition of Hsp90 or calcine-
urin may present a strategy to enhance the efficacy of azoles
against resistant fungi [117]. Hsp90 and calcineurin-Crz1 sig-
naling also contribute to echinocandin resistance in Candida
species [118, 119]. The cell’s response to echinocandin action
is highly robust, as numerous cellular responses are linked to
maintaining cell wall integrity including PKC, calcineurin/
Crzl, and HOG [120, 121]. Other responses such as modula-
tion of sphingolipid biosynthesis result in a mixed phenotype
involving resistance to caspofungin and hypersensitivity to
micafungin [122]. Echinocandin action also results in pro-
nounced compensatory increases in chitin synthesis, to
help sustain the cell wall. Mutants with increased chitin
content are less susceptible to caspofungin [120, 121, 123]
and increased chitin biosynthesis has been partly invoked
to account for paradoxical growth at high drug levels
[124] [125]. In recent years, whole genome sequencing
of serial isolates has been used to determine genetic sig-
natures related to evolution of resistance. Whole genome
sequencing of C. glabrata isolates before and after
caspofungin treatment and breakthrough identified expect-
ed FKS mutations and HSP90 effects. In addition, it iden-
tified mutations in genes MOHI, GPHI, CDC6, and
TCB1/2; cdc6 mutations were independently shown to
have a role in echinocandin susceptibility [119]. In total,
these responses help confer drug adaption, which predis-
pose cells for higher resistance such as the formation of a
stable FKS mutation.

Genetic Plasticity as a Driver of Resistance

C. albicans can develop azole resistance by acquiring chro-
mosomal disomies or segmental chromosomal duplications
involving the chromosomes carrying azole target ERG1] and
drug efflux genes [106, 126]. Acquisition of multiple chromo-
some disomies upon azole exposure was also observed in
C. neoformans [110]. However, appearance of significant ge-
nomic alterations is not specific to azoles, but also occurs in
the presence of other types of stress. The genetic changes
underlying antifungal drug resistance do not arise in a random
manner, as they are promoted by varying stress inducers in-
cluding antifungal drugs and host immunity. For instance, in
C. albicans, elevated temperature and oxidative stress
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promote aneuploidy and chromosome arm homozygosis
[127]. In Saccharomyces cerevisiae, several different stress-
es, including oxidative, translational, and ER stress, pro-
mote chromosome loss and appearance of marked karyo-
type diversity [128]. Consistent with these observations,
passage of C. albicans through the mouse promotes ge-
nome rearrangements in the fungus even in the absence of
antifungal treatment, suggesting that this genetic instability
is due to conditions encountered within the host [129].
Furthermore, analysis of C. glabrata clinical isolates indi-
cates that this organism undergoes drastic genome rear-
rangements with multiple chromosomal translocations and
appearance of new chromosomes [130]. Clinical isolates of
C. glabrata have highly variable genomes [109, 126] sug-
gesting that this species possesses mechanisms that specif-
ically promote and/or help the cells tolerate extensive ge-
netic changes in response to stress. Several studies suggest
that an increase in the proportion of aneuploid cells hap-
pens early in response to stress [131, 132]. One factor
involved in this process is HSP90, whose inhibition strongly
reduces stress-induced aneuploidy and drug resistance in
C. albicans and S. cerevisiae [115, 128]. Formation of aneu-
ploidy is followed by smaller-scaled genetic changes, such as
insertions, deletions, and point mutations in individual
genes. What drives such changes is not well understood,
although it has been shown that aneuploidy itself can pro-
mote other types of genetic alterations, possibly because it
alters gene dosage of a subset of the genome, thus altering
complexes involved in chromosome maintenance and DNA
repair [133].

Drivers of Resistance

The development of antifungal resistance is a complex process
involving the host, drug, and microbial factors, which collec-
tively contribute to therapeutic failure. Host immune status is
important as the immune system must work in concert with
antifungal drugs to control an infection. Severe immune dys-
function results in patients less responsive to treatment since
microbial burdens are larger and the drug must combat the
infection without immune support. Surgical devices such as
indwelling catheters and artificial heart valves provide sur-
faces for infecting fungi to establish biofilms that restrict drug
access. The site of the infection contributes to clinical resis-
tance, since it may be inaccessible to drugs. Successful thera-
py requires that the drug reach its microbial target with a
suitable potency but this is often unknown. Blood levels of
drugs may not accurately predict whether a drug reaches the
primary site of infection, as it is difficult to deliver drugs at an
adequate concentration to certain infected tissues and organs.
Abdominal candidiasis is a high burden infection in which
drug access is restricted, which leads to breakthrough
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infections [134]. In some cases, drugs that are highly serum
protein bound, such as the echinocandins, have altered anti-
fungal properties whereby in vitro fungicidal drugs can act as
fungistatic agents in vivo [135]. In recent years, the role of
environment as a driver for resistance has become prominent.
As described earlier for 4. fumigatus, triazole resistance due to
two prominent modifications of Cyp51A, TR;34/L98H [10,
136—139], and TR4¢/Y121F/T289A [23] arose as a conse-
quence of azole use in the agricultural world [11]. As
Aspergillus spores emerge from the environment, this envi-
ronmentally driven resistance is spreading throughout
Europe, India, and Asia [19, 140, 141]. Finally, like all anti-
infectives, patient compliance is critical for effective treat-
ment, as poor adherence to drug regimens reduce drug effec-
tiveness, contributing to resistance. Overall, there remains a
strong relationship between drug exposure and the emergence
of resistance. The development of echinocandin resistance in
Candida species typically requires prolonged drug exposure
[142—145]. But it can also arise rapidly after the start of ther-
apy [146, 147]. Horizontal transmission of resistant strains is
not generally observed most likely because they carry a fitness
cost. With FKS mutants, decreased glucan synthase activity
results in less robust cells with modified cell walls [148, 49].
These FKS mutant strains are less virulent and compete poorly
with their wild-type counterparts [48, 149, 148]. Lastly, as
total drug exposure is a critical factor influencing resistance
emergence, prophylaxis has emerged as a concern.
Fluconazole and the echinocandins caspofungin and
micafungin are excellent prophylaxis agents against invasive
candidiasis because they have favorable pharmacokinetics
and safety profile. However, the expanding use of antifungal
prophylaxis increases patient exposure to drugs, and it is not
surprising that it promotes the emergence of resistance in cer-
tain clinical settings.

Conclusion

Overall, antifungal drug resistance due to acquired mecha-
nisms is an uncommon event, as most infecting species retain
drug susceptibility. However, acquired drug resistance can be
a critical factor in some settings with critically ill patients, and
the emergence of significant multidrug resistance involving
azoles and echinocandins in organisms such as C. glabrata
is troubling. The mechanisms conferring drug resistance are
now well defined, and ongoing studies are seeking to identify
genetic factors that can influence their emergence. Fungi have
evolved to respond to stress in a highly dynamic manner,
ranging from specific point mutations to major chromosomal
modifications that directly and indirectly influence induction
of specific resistance mechanisms. There is now a strong ap-
preciation that stress responses promote drug adaptation,
which by itself does not lead to clinical failure but can



Curr Clin Micro Rpt (2015) 2:84-95

91

ultimately lead to development of higher-level resistance and
diminished clinical response (Fig. 2). Finally, in recent years,
anatomical reservoirs that restrict drug access or promote bio-
film formation have been identified to be important contribu-
tors to resistance emergence in the clinic. As new molecular
tools have emerged, there is now an opportunity to detect drug
resistance earlier and develop therapeutic strategies to avoid or
mitigate resistance.
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