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Abstract Candida species are an increasing cause of invasive
candidiasis (IC), resulting in significant mortality and morbid-
ity. Although Candida albicans remains the predominant
etiologic agent of invasive fungal infections in hospital set-
tings, the incidence of new infections from non-albicans
Candida species is steadily increasing, and important geo-
graphical differences in species distribution and patterns of
in vitro antifungal susceptibilities have been reported. In this
article, we review the recent epidemiology of Candida inva-
sive infections, and discuss trends in incidence, mortality,
species distribution, and antifungal resistance, emphasizing
the particular situation of C. glabrata. We also address the
techniques available for diagnosis of IC, the classic culture
techniques and the non-culture based methods, including the
recent recommendation of the European Fungal Infection
Study Group (EFISG) of the European Society of Clinical
Microbiology and Infectious Diseases (ESCMID) about dif-
ferent techniques and procedures to detect IC, considering
specificities with C. glabrata detection.
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Introduction

Fungi have emerged as a major cause of human infection, with
yeasts belonging to the genus Candida being the major

opportunistic fungal pathogens. Before the 1970s, fungal in-
fections were easily curable and mainly superficial; however,
with the later increase in number of immunocompromised
patients, the number of serious life-threatening fungal infec-
tions increased significantly. Several factors have contributed
to this increase, but paradoxically, medical progress and the
use of new therapies developed to provide a longer and better
life has had a significant impact on the increase of the number
of patients susceptible to fungal infections [1]. Numerous risk
factors have been associated with serious life-threatening
Candida infections, candidemia, and invasive candidiasis
(IC), including exposure to broad-spectrum antimicrobial
agents, cancer chemotherapy, neutropenia, prior surgery (es-
pecially gastrointestinal), indwelling vascular catheter, total
parenteral nutrition, and extremes of age.

Although the list of opportunistic fungi causing invasive
infections has been increasing every year, Candida species
remains the most important cause of opportunistic mycoses
worldwide. Nowadays, approximately half of the cases of
candidoses are caused by non-albicans species, C. glabrata,
C. parapsilosis,C. tropicalis,C. krusei,C. guilliermondii, and
C. dubliniensis. These species are emerging as both colonizers
and pathogens able to cause superficial and systemic infec-
tions [2]. Some of these species, such as C. glabrata and
C. krusei, are more resistant to antifungal agents [3], while
others, like C. dubliniensis, rapidly develop fluconazole resis-
tance during clinical therapy [4]. Regardless of the growing
understanding of the epidemiology of opportunistic fungal
infections, the ability to prevent and treat Candida infections
still has serious deficiencies [5, 6].

In this article, we review the recent epidemiology of
Candida invasive infections, and discuss trends in incidence,
mortality, species distribution, and antifungal resistance, em-
phasizing the particular situation of C. glabrata. We also
address the techniques available for diagnosis of IC, the
classic culture techniques and the non-culture based methods,
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including the latest recommendation of the European Fungal
Infection Study Group (EFISG) of the European Society of
Clinical Microbiology and Infectious Diseases (ESCMID)
about different techniques and procedures to detect IC, con-
sidering specificities with C. glabrata detection.

Epidemiology and Mortality Rate of Invasive Candidiasis

Invasive candidiasis can be defined as a deep-seated, frequent-
ly multi-organ infection, including candidemia (the presence
of any species of the genus Candida in the blood). IC is an
important cause of morbidity and mortality associated with
increased hospital stays and high healthcare costs. Although
C. albicans is the most common cause of invasive fungal
infections in hospital settings, the incidence of new infections
from non-albicans Candida species is steadily increasing, and
important geographical differences in species distribution and
patterns of in vitro antifungal susceptibilities have been re-
ported [7, 8•]. Population-based studies indicate that the inci-
dence of disseminated candidiasis varies within different geo-
graphic areas. In the USA these values ranged from 0.28 to
0.96 episodes/1,000 admissions [9], while in Europe the inci-
dence values varied from 0.1 to 0.53 episodes/1,000 admis-
sions [1, 7, 10–13]. In Latin America the values ranged from
0.33 to 1.96 episodes/1,000 admissions [14], with Colombia
presenting the higher incidence value. Numerous factors may
contribute to these differences, and differences in the design of
the population studies may be crucial, including the type of
patients studied (neonates, children, or adults), the underlying
disease, and medical practices, especially the use of long-term
vascular catheters and antibacterial and/or antifungal usage
patterns [15, 16]. Surveillance studies have reported that dur-
ing the last decade, although the number of immunocompro-
mised patients continues to grow, the mortality associated
with IC remained relatively steady, at approximately 0.4
deaths per 100,000 population [1]. The reasons for this may
be the introduction of new antifungal agents that are more
effective and less toxic [17, 18], as well as the changes in
immunosuppressive regimens that are less aggressive to pa-
tients. Nevertheless, neither the incidence nor the mortality
associated with IC is declining, warranting continued investi-
gation and understanding of the challenge that IC presents to
healthcare systems.

Species Distribution of the Etiological Agents of Invasive
Candidiasis

More than 20 different species of Candida have been associ-
ated as etiological agents of IC, and the list of reported species
continues to grow as laboratories are encouraged to provide an
identification to the species level to guide antifungal therapy

[19]. Despite the predominance of C. albicans worldwide, a
decreasing trend in the isolation of this species is evident over
time [19]. In contrast, the rates of isolation of C. glabrata,
C. tropicalis, and C. parapsilosis are steadily increasing.
Curiously, in the last decade, the rates of isolation of other
Candida species such as C. krusei, C. guilliermondii,
C. lusitaniae, C. kefyr, C. rugosa, and C. famata did not vary
significantly [19]. All these species are emerging as both
colonizers and pathogens able to cause superficial and sys-
temic infections [20].

Comparative studies on species distribution are always
difficult to interpret due to temporal and geographic variations
as well as to differences in the characteristics of the studied
hospital. However, C. glabrata has undoubtedly emerged as
an important opportunistic fungal pathogen in the USA [3, 19,
21]. Virtually all US-based surveys show C. glabrata to rank
second to C. albicans as a cause of IC. In contrast, in Europe,
although C. glabrata has also increased as a cause of IC and
may rank second after C. albicans in some studies, it has not
increased to the extent that it has in the USA, despite an
increase in the use of fluconazole [11, 22–29]. However, most
notable is the comparatively low frequency ofC. glabrata as a
cause of IC in Latin America and Mediterranean countries, in
which C. parapsilosis is, after C. albicans, often the most
frequently recovered etiological agent of IC [15, 20, 30].
Figure 1a shows the percentage of C. glabrata isolation in
the countries were population-based studies are available.

The reasons for such dramatic variation in the frequency of
C. glabrata as a cause of IC are unclear but may include
exposure to azoles, patient age, underlying disease, geograph-
ic location, or other unknown factors [1]. It is well known that
C. glabrata rapidly acquires fluconazole resistance with azole
exposure and can up-regulate drug efflux pump genes with as
little as 4 days of in vitro fluconazole exposure [31], which is
generally associated with the increased incidence. Indeed, it
has been documented that a change in the hospital’s antifungal
prophylactic strategy correlates with the risk of C. glabrata
IC. A reduction in fluconazole treatment has been shown to
result in a decrease in the incidence of fungemia due toC. non-
albicans, including C. glabrata [32], and an increase in flu-
conazole prophylaxis correlates with a higher risk of
C. glabrata IC [15]. However, recent studies did not find a
significant association between prior exposure to fluconazole
and higher risk of subsequentC. glabrata IC [2, 33]. Instead, a
significant trend toward an increased proportion of IC due to
C. glabrata and older patients was documented [34]. Age
above 60 years not only increases risk of fungemia but also
the risk of dying from the infection (Fig. 1b). In the latter
studies, themost common predisposing factors forC. glabrata
IC were the use of broad-spectrum antibiotics, use of central
venous catheter, stay in an intensive care unit (ICU), renal
failure, and parenteral nutrition [34]. Taken together, these
findings indicate that prior exposure to fluconazole is not the
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single and most important predisposing factor for subsequent
C. glabrata IC. Patient age, exposure to specific antibacterial
agents, and severity of underlying disease are also important
risk factors promoting C. glabrata candidemia.

Antifungal Susceptibility of Isolates from Invasive
Candidiasis

It is now recognized that early and appropriate antifungal
therapy has a positive effect on the outcome of patients with
IC, as well as lowering hospital resource utilization [35–37].
Thus, in vitro antifungal susceptibility testing plays an impor-
tant role in therapeutic antifungal drug selection and is also
important in epidemiologic studies to track the development
of antifungal resistance [38, 39].

One of the most desirable properties of an antifungal drug
is its ability to kill the fungus in order to allow a more rapid
and complete organ clearance during the infection. Among the
antifungal agents currently in use in clinical practice, the
echinocandins and amphotericin B (AMB) are considered to
exert a fungicidal activity [18, 40]. Detection of resistance to
AMB has been problematic due to the very narrow range of
minimal inhibitory concentrations (MICs) obtained by the
Clinical and Laboratory Standards Institute (CLSI) broth

dilution procedure and standardization of other proposed
methods [41, 42]. Several reports indicate that the E-test
provides better discrimination between AMB-susceptible
and AMB-resistant Candida isolates than does the CLSI
reference method and they suggest that MICs obtained by this
test are more predictive of treatment outcome [5, 7, 43, 44].
Antifungal surveillance programs have shown that
C. glabrata and C. krusei exhibit decreased susceptibility to
AMB (113, 120, 202, 215, 216, 323) as well as a delayed
drug-killing kinetics compared with C. albicans [6, 17, 45].
Several studies indicate that overall resistance to AMB is
uncommon [46]; however, higher MICs were observed in
sequential isolates of C. glabrata recovered from critically
ill patients [47].

The triazole antifungal agents are the most frequently used
in the treatment of IC. The broad use of fluconazole since its
introduction has raised concerns regarding the emergence of
azole resistance [5, 7, 9, 14, 19, 27, 48–50]. The detection and
tracking of azole resistance trends has been facilitated by the
availability of a standardized broth microdilution method [38,
51]. Although fluconazole resistance was detected in only a
small proportion of C. albicans (0.1 %), C. tropicalis (3.2 %),
and C. parapsilosis (5.0 %) isolates, these species were ob-
served to account for about 34 % of fluconazole-resistant
isolates [8•]. Several studies have confirmed that, over the last
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Fig. 1 Geographic variation of
Candida glabrata isolated from
invasive candidiasis and
distribution of the most frequent
Candida species according to
patient age. a Geographic
distribution of the percentage of
isolation of C. glabrata. b
Distribution of the percentage of
bloodstream isolates of
C. albicans, C. glabrata, and
C. parapsilosis found in each
patient age group; these data were
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decade, fluconazole resistance among Candida isolates has
remained infrequent worldwide, except for isolates of
C. glabrata [3, 15, 19, 52, 53, 54•, 55]. One of the largest
and representative studies, which tested more than 200,000
strains of Candida spp. isolated between June 1997 and
December 2005 from 134 different medical centers world-
wide, showed that approximately 90 % of all Candida spp.
isolates were susceptible to fluconazole, but only 68.9 % of all
C. glabrata were susceptible [19]. The resistance rates for
fluconazole among isolates ofC. glabrata varied considerably
among the various geographic regions, with the lowest rates
seen in the Asia-Pacific region and the highest in North
America [19]. Thus, given the prominence of C. glabrata as
a cause of IC in all geographic regions, its progressive world-
wide acquisition of fluconazole resistance, the well document-
ed cross-resistance between fluconazole and other triazoles
(voriconazole, posaconazole, and itraconazole), and the sus-
ceptibility of this species to azoles in the context of prior
exposure, continuous antifungal susceptibility testing and
monitoring of C. glabrata isolates is of extreme importance
and may result in lower overall treatment costs for these
patients [39].

The echinocandin class of antifungal agents acts by
inhibiting the synthesis of the yeast cell wall 1,3-β-D-glucan
and is recommended for the treatment of IC due to its excel-
lent clinical efficacy coupled with low toxicity [18, 56, 57].
Since the introduction of fluconazole for the treatment of IC,
empirical antifungal therapy has been driven by fear of de-
creased susceptibility and cross-resistance to other azoles of
C. glabrata [58, 59]. Thus, echinocandins were recommended
as first-line therapy for the treatment of IC in patients with
prior exposure to azoles and/or infection with C. glabrata
because these new antifungals have distinct mechanisms of
action and cross-resistance between the two classes is un-
known [60]. Caspofungin was the first to be approved for
the treatment of IC and has been the more extensively used
over past years, raising concerns about the emergence of
resistance. So far, clinical experience with caspofungin in IC
has been good, with several surveys showing that resistance to
one or more echinocandins is relatively low [17, 61, 62]. Data
from global surveys demonstrate that the frequency of
echinocandin resistance among clinical isolates of
C. glabrata ranges from 1 to 3 % and is higher among isolates
from North America (3 %) than among those from Europe
(1 %), Latin America (0.0 %), or the Asia-Pacific region
(0.0 %) [8•, 25, 61, 63]. Additionally, it has been reported that
C. glabrata has the ability to mutate in vivo following
prolonged exposure to antifungal agents, acquiring sequential
resistance to the drugs (known as multidrug resistance
[MDR]) [64]. MDR, resistance to two or more classes of
antifungal agents, is a serious complication during treatment
of opportunistic fungal infections and, in past years, several
reports from medical centers provide indication of MDR

strains of C. glabrata [47, 64, 65]. These MDR C. glabrata
strains presented FKS mutations, which are known to be
responsible for the caspofungin-resistance phenotype [61].
The documentation of FKS mutations in isolates of
C. glabrata showing in vitro resistance to both azoles and
echinocandins suggests the sequential accumulation of ac-
quired resistance mechanisms that, due to the haploid nature
of the species, are dominantly expressed [54•, 66].

Diagnosis of Invasive Candidiasis

The clinical syndromes of invasive fungal infections present
different degrees of severity, and are not very different from
those caused by bacteria. To diagnose, that is to establish the
presence or absence of a disease, clinicians use tests, often as a
package or strategy, including signs and symptoms, imaging,
and biochemistry. The choice of a diagnostic test is based on
evidence regarding accuracy (sensitivity and specificity), that
is, how well the test classifies patients correctly as having or
not the disease. The underlying assumption is that obtaining a
better idea of whether a target condition is present or absent
will result in improved outcome [67]. In the case of IC, it is
widely recognized that the timing of antifungal therapy has a
major impact on the mortality, thus, prompt diagnosis is
extremely important so as to initiate antifungal therapy as
early as possible and to select the most appropriate antifungal
drug [35–37]. In addition to diagnostic tools, understanding of
the local epidemiology, patient risk factors, and resistance
profiles of Candida species is essential. The major drawbacks
in the utilization of diagnostic tools are the lack of standard-
ization and grading of the available methods. Recently, efforts
have been made to grade accuracy of the procedures, quality
of evidence, and strength of the recommendation for diagnos-
tic tests [67, 68•].

Invasive candidiasis frequently involves multi-organ infec-
tions and candidemia. Although blood cultures are negative in
about one-third of ICs [23], they are essential for the diagnosis
of candidemia. Several international guidelines regarding gen-
eral recommendations on how to take and process blood
samples, including the frequency of takes and the incubation
period, are available to ensure the optimal isolation of micro-
organisms [68•, 69–71]. When these recommendations are
followed, the sensitivity of this technique is around 50–
70 %. Reports suggest that the choice of blood culture system
may influence the recovery of C. glabrata, and that the
BACTEC™ system may be inferior to the BacT/ALERT®
system in this respect [53]. Thus, the recommendation of the
EFISG/ESCMID panel was that blood culture is an essential
investigation, meaning that it must be done whenever possi-
ble, and they recommend the use of automated validated
blood culture systems (Table 1) [68•]. Once a positive culture
is obtained, the identification to species level is mandatory,

4 Curr Clin Micro Rpt (2014) 1:1–9



because antifungal therapy can vary according to Candida
species.

Classical diagnostic methods such as direct microscopy,
histopathology, and culture present a limited sensitivity to
detect IC, and their usefulness depends on the possibility of
obtaining deep tissue samples, which in many cases is not
possible due to the patient’s condition. However, when possi-
ble, a tissue sample should be taken, since knowing the
infective species is essential for a correct therapeutic ap-
proach. The tissue samples collected aseptically should be
processed promptly and used for both histopathology (rapidly
placed in fixative) and culture (not placed in histopathology
fixatives) if possible. Microscopic visualization of fungal
elements in fixed tissue, after periodic acid–Schiff (PAS) or
silver staining, is the basis for the diagnosis of IC. Candida
spp. are yeasts that can produce pseudohyphae. Thus, this
structure may help in differentiation from other yeasts
and molds that produce only true hyphae in tissue;
however, C. glabrata does not produce pseudohyphae.
Microscopic examination of fixed tissues requires exper-
tise, for interpretation and morphology cannot be used
for definitive identification [72].

To avoid multiplication of organisms, samples intended for
culture should be processed as soon as possible and inoculated
in fungal-selective agar media such as Mycosel (BBL) and
Mycobiotic (Difco) for 5–14 days. Yeast isolation from nor-
mally sterile tissues or fluids is usually indicative of deep-
seated infection, but negative cultures do not excludeCandida
infection [68•]. Identification of the isolate to species level is
always necessary. Although the application of these tech-
niques has shown positive results in some studies, very few

clinically validated immunohistochemistry commercial kits
are available: only the species-specific Rabbit anti
C. albicans, type A:Biotin (Serotec) for detection of fungal
infections. The EFISG/ESCMID panel recommends that di-
rect microscopy and histopathology is an essential investiga-
tion, and must be carried out if possible (Table 1).

Alternative diagnostic procedures, also known as non-
culture-based methods, are increasingly used in the manage-
ment of patients at risk of IC to improve and anticipate
detection of candidemia. These methods are based on the
detection and quantification of fungal biomarkers and metab-
olites from serum of patients. The major serological tests for
Candida infections include measurement of serum mannan
(Mn) and anti-Mn antibodies or β-1,3-D-glucan.

Mannan is a component of the Candida cell wall, account-
ing for up to 7 % of the cell wall dry weight, and is one of the
mainCandidaAgs that circulate in blood during infection [73].
Initial observations showing that mannanemia was preferen-
tially observed in the absence of anti-Mn antibodies and that,
vice versa, high levels of anti-Mn antibodies were generally
not associated with mannanemia led to the idea that the com-
bined detection of mannanemia and anti-Mn antibodies would
be a useful diagnostic procedure [74]. Enzyme-linked immu-
nosorbent assays (ELISAs) quantifying Mn and anti-Mn anti-
bodies are marketed as Platelia Candida Antigen Plus and
Platelia Candida Antibody Plus (Bio-Rad Laboratories).
Several studies have confirmed the high efficacy of the diag-
nosis of candidemia, with sensitivities around 80 % and spec-
ificity of 85 % [71]. The sensitivity of both Mn and anti-Mn
varied for different Candida species, and was the highest for
C. albicans, followed by C. glabrata and C. tropicalis [75].

Table 1 Summary of the recommendations and level of evidence assigned by the EFISG/ESCMID panel for the diagnostic tests used for invasive
candidiasis and candidemia. Adapted from Cuenca-Estrella et al. [68•]

Specimen Test Recommendation Level of evidencea Specificities for Candida glabrata detectionb

Blood Blood culture Essential investigation NA BacT/ALERT system is better for C. glabata isolation

Tissue Direct microscopy and histopathology Essential investigation NA C. glabrata does not filament

Culture Essential investigation NA —

Immuno-histochemistry No recommendation No data —

Tissue PCR No recommendation No data —

Serum Mannan/anti-mannan No recommendationc No data —
Recommendedd II

β-1,3-D-glucan Recommended II Pre-treatment with echinocandins reduces accuracy

SeptiFast system No recommendation No data —

In-house PCR No recommendation No data —

IC invasive candidiasis, NA not applicable, PCR polymerase chain reaction
a II indicates evidence from (1) at least one well designed prospective single-center cross-sectional or cohort study, or (2) a properly designed
retrospective multicenter cross-sectional or cohort study, or (3) from case-control studies
b — indicates no specificity
c Based on the lack of studies for IC
d Recommendation exclusively for candidemia
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This method can help detect candidemia earlier than can blood
cultures and shows a high negative predictive value (>85 %),
useful in the ruling out of infection. Thus, the EFISG/ESCMID
group considered this method to be recommended for the
diagnosis of candidemia, meaning that this technique is accu-
rate in 50–70 % of cases, and suggested its incorporation in a
diagnosis strategy [68•]. However, very few studies are avail-
able regarding detection of IC by quantification of Mn/anti-
Mn; thus, the EFISG/ESCMID panel could not recommend
this test for detection of IC (Table 1).

The β-1,3-D-glucan is also a component of the cell wall of
most fungi except Zygomycetes and Cryptococcus, and con-
stitutes approximately 40 % of the Candida cell wall dry
weight [73]. The β-1,3-D-glucan detection is thus considered
a panfungal diagnostic method and was included in the
European Organization for Research and Treatment of
Cancer/Mycosis Study Group (EORTC/MSG) diagnostic
criteria for invasive fungal infections in 2008, for all types
of patients [76]. Several assays are commercially available for
diagnostic use: Fungitell (Associates of Cape Cod, Inc., East
Falmouth, MA, USA), Fungitec-G (Seikagaku, Kogyo,
Tokyo, Japan), Wako (Wako Pure Chemical Industries, Ltd.,
Tokyo, Japan), and Maruha (Maruha-Nichiro, Foods Inc.,
Tokyo, Japan). The kits differ in the source of the substrate
used for the chromogenic reaction, that is, the amoebocyte
lysate from the horseshoe crab, Limulus polyphemus (USA) or
Tachypleus tridentatus (Japan). The Fungitell assay has been
approved by the US FDA and is available in the USA and
Europe, and the other tests are available in Japan. Several
studies have been performed to assess the sensibility and
specificity of this method using data from cross-sectional,
cohort, and case–control studies on the diagnosis of
candidemia. The sensitivity of glucan detection was >65 %
in most studies, with a cut-off value of 80 pg/mL, with
specificity rates >80 % [68•, 71]. β-1,3-D-glucan assay was
revealed to be of great utility in adult patients without hema-
tological diseases, such as surgical or medical ICU patients; a
single positive assay at the onset of sepsis was found to help
discriminate patients at high risk of invasive fungal infection,
with a negative predictive value of nearly 99 % [77].

The non-culture-based serological methods present several
common limitations, of which the most important is the lack
of ability to discriminate between infection and colonization.
In fact, some patients who were positive for IC by ELISA had
high levels of Candida colonization (Candida was present in
central line tips, wound swabs, non-directed bronchial lavage
fluid, urine, and skin swabs) [78]. Additionally, it is known
that inhibition of the enzymes responsible for the cell wall
1,3-β-D-glucan by echinocandins reduces the amount of the
component in the cell wall [79], which poses an additional
challenge regarding β-1,3-D-glucan test, particularly prob-
lematic in IC infections due to C. glabrata. In this view,
attention should be paid to the potential causes of false-

negative results (due to antifungal prophylaxis or therapy
[particularly echinocandins], or Zygomycetes and
Cryptococcus infections) and false-positive results (due to
blood transfusions or blood-derived products, hemodialysis/
hemofiltration, beta-lactam antibiotics, immunoglobulins
(Igs), cellulose dressings, contamination of specimens at the
bedside or during pre- or analytical processing by organic
dusts or wastes, and bacterial infections) [71, 80]. The
EFISG/ESCMID group considered this method as recom-
mended for the diagnosis of candidemia and suggested its
incorporation in diagnosis strategy (Table 1) [68•].

Other non-culture-based methods include the molecular
typing techniques, based on polymerase chain reaction
(PCR). The use of PCR in the detection of systemic fungal
infection has been extensively published and provides poten-
tial in terms of sensitivity and specificity. Studies comparing
PCR-based techniques with serological assays demonstrated
that patients became PCR positive a mean of 2–4 days prior to
becoming ELISA positive [78].

A range of PCR targets have been used, but the most
frequently used, due to their universal nature and large copy
number, are the ribosomal RNA (rRNA) genes (18S, 28S, and
5.8S rRNA genes). Their polymorphism has mainly been
analyzed through post-amplification methods such as restric-
tion fragment length polymorphism (RFLP), nested PCR,
single-strand confirmation polymorphism, hybridization with
specific probes or sequencing, all of which enhance specificity
in the identification of the genus or species causing infection
[81]. A systematic review assessing the diagnostic accuracy of
PCR-based methods to detect Candida spp. directly in blood
samples confirmed their high sensitivity and specificity, both
above 90%, for the diagnosis of IC [81]. In the study, all PCR-
based methods used for the identification of Candida spp. to
the genus or species level, including standard, nested, real-
time, or reverse transcriptase PCR, using single or multiplex
assays, as well as any PCR target that had been previously
published, were evaluated. A higher sensitivity was observed
with whole-blood (rather than serum) samples, the use of the
QIAamp kit for DNA extraction, the use of rRNA or P450
genes as the target for PCR. However, for diagnostic purposes,
the most promising PCR techniques are the automatic ones
that use fluorescently labeled specific probes and real-time
PCR. These techniques provide a species/genus level of iden-
tification and remove the need for post-amplification handling
and the potential for contamination. The LightCycler
SeptiFast system (Roche) is a real-time PCR-based commer-
cial kit to detect bacteria and fungi (C. albicans, C. tropicalis,
C. parapsilosis, C. krusei, C. glabrata, and Aspergillus
fumigatus) in blood samples. With the advances in PCR-
based techniques, previously unrecognized ‘cryptic’ species
have been identified and added to the list of human pathogens.
Recently, two other pathogenic species, C. nivariensis and
C. bracarensis, have been described as being closely related
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to C. glabrata [82, 83]. The true clinical relevance of possible
misidentifications are under evaluation, since both species are
rare, at around 0.2 % prevalence [84]. However, in vitro
susceptibility studies of C. bracarensis isolates were compa-
rable to those found with C. glabrata, thus, it would be
prudent to continue to monitor for these emerging pathogens.
Although some studies have reported cases of candidemia
being detected by the LightCycler SeptiFast system, the num-
ber of studies and cases are still limited, and it has been very
difficult to delineate recommendations. Thus, due to lack of
data, no recommendation was made by the EFISG/ESCMID
group regarding the SeptiFast PCR kit or other in-house PCR-
based methods for the diagnosis of IC (Table 1) [68•].

Conclusions

Invasive candidiasis is an important cause of morbidity and
mortality and is associated with increased hospital stays and
high healthcare costs. IC constitutes a challenging diagnostic
and therapeutic problem. Recently, the EFISG of the ESCMID
evaluated the accuracy, quality of evidence, and strength of
recommendation for several diagnostic tests, being now pos-
sible to recommend the best for IC and candidemia. Recent
epidemiological studies on Candida species associated with
IC have confirmed the trend for both species distribution and
antifungal resistance patterns to vary across geographic re-
gions.MDRC. glabrata isolates are more frequently observed
and constitute a serious problem, particularly for older patients
with prior exposure to azole treatment. Thus, clinical aware-
ness, knowledge of local epidemiology, and antifungal resis-
tance are important factors for an early diagnosis and effective
treatment of IC, particularly that due to C. glabrata.
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