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Abstract
We present some results about the irreducible representations appearing in the exterior alge-
bra �g, where g is a simple Lie algebra over C. For Lie algebras of type B, C or D we
prove that certain irreducible representations, associated to weights characterized in a com-
binatorial way, appear as irreducible components of �g. Moreover, we propose an analogue
of a conjecture of Kostant, about irreducibles appearing in the exterior algebra of the little
adjoint representation. Finally, we give some closed expressions, in type B, C and D, for
generalized exponents of small representations that are fundamental representations and we
propose a generalization of some results of De Concini, Möseneder Frajria, Procesi and Papi
about the module of special covariants of adjoint and little adjoint type.

Keywords Simple Lie algebras · Kostant conjecture · Exterior algebra · Small
representations · Generalized exponents

1 Introduction

Let g be a simple Lie algebra over C of rank rk g. Fix a Cartan subalgebra h and let � be the
associated root system with Weyl group W . We choose a set of positive roots �+ and let �
be the associated simple system. Let ρ be the corresponding Weyl vector and θ the highest
root with respect to the standard partial order≤ on�+. If g is not simply laced, θs is the short
dominant root. We denote by � and �+ the set of weights and the set of dominant weights
respectively, moreover we denote by ωi the i-th fundamental weight. Throughout the paper,
Vλ will be the irreducible finite dimensional representation of g of highest weight λ ∈ �+
and we denote by V 0

λ the corresponding W -representation on the zero weight space of Vλ.
Finally, e1 ≤ · · · ≤ en will be the exponents of g.

The adjoint action of g on itself induces an action of g on S(g) and �g, the symmetric
and exterior algebras over g respectively, preserving the natural gradings. Two celebrated
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results give an explicit description of the ring of invariants in S(g) and �g with respect to
this action.

Theorem (Chevalley, Shephard and Todd) Let g be a complex semisimple Lie algebra of rank
n and h a fixed Cartan subalgebra. Up to identify g with g∗ and h with h∗ via Killing form,
the restriction of polynomial functions induces an algebra isomorphism between the rigs of
invariants

S(g)g � S(h)W .

In particular, S(g)g is a polynomial algebra with generators of degrees e1 + 1, . . . , en + 1.

Theorem (Hopf, Koszul and Samelson) Let g be a complex semisimple Lie algebra of rank
n. Then

(�g)g = �(P1, . . . , Pn),

where the degree of a generator Pi of the algebra of the invariants is equal to 2ei − 1.

If M = ⊕Mi is a graded g-module, we denote by

P(Vλ, M, t) =
∑

i

dimHomg(Vλ, Mi )t
i

the generating function for graded multiplicities of the irreducible representation Vλ in M .
As an immediate consequence of the above theorems, it is possible to obtain the following
formulae that encode the graded structure of rings of invariants:

P(V0,�g, t) =
n∏

i=1

(1 + t2ei+1), P(V0, S(g), t) =
n∏

i=1

(1 − tei+1)−1.

Aiming to generalize the above results, some questions about irreducile representations in
S(g) and �g naturally arise:

Q1: Is it possible to determine the irreducible representations appearing in S(g) and in �g?
Q2: If Vλ is a subrepresentation of S(g) or of �g, is it possible to determine the degrees in

which Vλ appears?
Q3: Denoting by�ig (resp. Si (g)) the submodule of homogeneous elements of degree i in�g

(resp. S(g)), is it possible to determine the multiplicity of Vλ in �ig (resp. Si (g))?

These questions inspired a great amount of claims and conjectures; many of them are still
open or have only implicit answers.

For what concerns the irreducibles appearing in the symmetric algebra, the problem was
extensively studied by Kostant in [27]. More precisely, Kostant proved the isomorphism

S(g) � S(g)g ⊗ H,

whereH is the ring of g-harmonic polynomials, i.e. the ring of polynomials over g annihilated
by g-invariant differential operators of positive degreee with constant coefficients. Studying
the graded multiplicities of Vλ in S(g) can be then reduced to determining the multiplicity of
Vλ in each homogeneous componentHi ofH. Kostant proved that the multiplicity of Vλ inH
equals the dimension of V 0

λ and that the degrees i such that Vλ appears inHi are related to the
eigenvalues of the action of the Coxeter-Killing transformation on theW -representation V 0

λ .
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These integers are called the Generalized Exponents associated to Vλ and are extensively
studied in the literature because of their nice combinatorial properties. We summarize some
remarkable results about generalized exponents in Sect. 4.

On the other hand, despite its finite dimensionality, determining the irreducible compo-
nents appearing in �g seems to be quite difficult. A complete description of irreducible
representations in the exterior algebra is known only in type A, by some general arguments
due to Berenstein and Zelevinsky, and for exceptional algebras of type F4 and G2, by direct
computations. For other cases an open conjecture has been formulated by Kostant, describ-
ing the Vλ appearing in �g as the irreducibles indexed by λ smaller or equal to 2ρ in the
dominance order on weights, i.e. the ordering defined by the relation μ ≤ λ if and only if
λ − μ is a sum of positive roots. To introduce the reader to this fascinating subject and to
provide a framework for the new results contained in this article, we present in Sect. 2 a brief
survey of some known results on this topic.

The remaining part of the paper is devoted to present our results.
In Sect. 3 we recall some results of Berenstein and Zelevinsky about multiplicities in

tensor product decomposition. These techniques are used in [4] to prove Kostant Conjecture
in type A. We use these tools to prove that large families of irreducible representations appear
as irreducible representations in �g, for g of type B, C and D. More precisely we introduce
the Coordinatewise Ordering (Definition 3.3) on the set of dominant weights, prescribing
that μ is coordinatewise smaller than λ (for short μ � λ) if certain combinatorial conditions
are satisfied. We use this ordering to describe a suitable subset of the set of dominant weights
smaller than 2ρ in the dominance order. We prove that irreducible representations associated
to weights in this subset appear in�g. Themain result of the section is the following theorem:

Theorem Let g be a simple Lie algebra over C of type B, C or D and let λ be a dominant
weight for g. If λ ≤ 2ρ and λ � 2ρ, then Vλ appears as irreducible component in �g.

Section5 is devoted to compute explicit formulae for polynomials of generalized exponents,
using the techniques summarized in Sect. 4. In particular, denoting by Eλ(t) the generating
polynomial of generalized exponents associated to Vλ, i.e. the Poincarè polynomial of graded
multiplicities of Vλ intoH, in Sect. 5 we observe that the following formula can be obtained
in type Cn as a consequence of results contained in [16]

Eω2k (t) = t2k(n − 2k + 1)t2
(n − k + 1)t2

(
n

k

)

t2
,

where (n)t denotes the t-analogue of n and
(n
k

)
t is the t-binomial. Moreover, denoting by �a	

the integer part of a, we prove that the following formulae hold in type Bn

Eω2k (t) = tk
(
n

k

)

t2
,

Eω2k+1(t) = tn−k
(
n

k

)

t2
,

E2ωn (t) = tn−� n
2 	
(

n

� n
2 	
)

t2
,

and in type Dn

Eω2k (t) = tk
(tn−2k + 1)

(tn + 1)

(
n

k

)

t2
,
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Eωn−1+ωn (t) = t� n
2 	(t + 1)

(tn + 1)

(
n

� n
2 	
)

t2
,

E2ωn−1(t) = E2ωn (t) = t
n
2

(tn + 1)

(
n
n
2

)

t2
,

where the formula for Eωn−1+ωn (t) holds for n odd and the formulae for E2ωn−1(t) and
E2ωn (t) must be considered only if n is even. Finally, some open question and conjectures
are proposed at the end of Sects. 3 and 5.

2 Irreducible representations in the exterior algebra

As mentioned in the introduction, an uniform description of irreducible representations
appearing in the exterior algebra �g, with g a simple Lie algebra over C, has been proposed
by Kostant:

Conjecture 2.1 (Kostant, c.f.r. [5], Introduction) The representation Vλ appears in the
decomposition of �g if and only if λ ≤ 2ρ in the dominance order.

Currently a proof of this conjecture is known only in type A, by the combinatorial con-
struction given in [5], and in the exceptional cases G2 and F4 by explicit computations, as
reported in [12]. Moreover, we mention that in [12] the authors exhibit a possible uniform
proof of the Kostant Conjecture for algebras of types ADE , assuming that 1 is a saturation
factor for any simply laced algebra. It is not clear if similar techniques could be used to
prove the Conjecture in the remaining cases. Moreover, a priori it should be possible to
verify Kostant Conjecture in type E by direct computations, but it seems to be an unfruitful
approach. Nevertheless, a uniform proof of Conjecture 2.1 is desirable, but a concrete strategy
is far to be clear. In addition to that, if Vλ appears in �g studying its graded multiplicities
seems to be also very complex.We collect here some partial related results. Firstly, a uniform
bound for multiplicity of Vλ is known.

Theorem 2.1 (Reeder, [36], Sect. 4)

dim Homg(Vλ,�g) ≤ 2rkg dim V 0
λ . (2.1)

Moreover, Reeder investigated when the equality holds.

Definition 2.2 (c.f.r [36], Definition 2.2) An irreducible representation Vλ is small if λ is in
the root lattice and if 2α � λ for every dominant root α.

Theorem 2.2 (Reeder, [36], Sect. 4)Equality in Formula (2.1) holds if and only if Vλ is small.

Observe in particular that the adjoint and the little adjoint representations are special cases
of small representations. Some explicit formulae for polynomials of graded multiplicities are
proved by Bazlov.

Theorem 2.3 (Bazlov, [3], Sect. 5.2) The following formula for graded multiplicities of
adjoint representation in �g holds:

P(g,�g, q) = (1 + q−1)

n−1∏

i=1

(q2ei+1 + 1)
n∑

i=1

q2ei .
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Moreover, for certain weights close to 2ρ, an explicit formula can be found in [36].

Theorem 2.4 (Reeder, [36], Proposition 6.3) Let I ⊆ �. Consider δI = ∑
α∈I α and denote

by c(I ) the number of connected component of the Dynkin subdiagram generated by I . Then

P(V2ρ−δI ,�g, t) = t |�+|−|I |(t + 1)n−c(I )(t2 + 1)|I |−c(I )(t3 + 1)c(I ).

Similarly, closed formulae can be obtained for small representations as a consequence of a
conjecture formulated by Reeder in [36] and proved in [16] and [17]. This conjecture was
inspired by two remarkable results:

Theorem 2.3 (Broer [10], Theorem 1) The homomorphism induced by the Chevalley
restriction theorem

Homg(Vλ, S(g)) → HomW (V 0
λ , S(h))

is a graded isomorphism of S(g)g � S(h)W -modules if and only if Vλ is small.

Theorem 2.4 (Chevalley, Eilenberg [11], Reeder [35]) Let G be a compact Lie group, T ⊂ G
a maximal torus and W its Weyl group. Let g be the complexified Lie algebra of G and h

the Cartan subalgebra of g associated to T . The Weyl map ψ : G/T × T → G induces in
cohomology the following graded isomorphism:

(�g)g � H∗(G) � (
H∗(G/T ) ⊗ H∗(T )

)W � (H(2) ⊗ �h
)W

.

where H(2) denotes the graded ring of W-harmonic polynomials over h, with a grading
obtained by doubling the natural one.

Theorems 2.3 and 2.4 suggest that gradedmultiplicities of a small representation Vλ in�g are
linked to multiplicities of the W -representation V 0

λ in the bigraded ring �h ⊗ H(2). Reeder
conjectured that, if Vλ be a small representation, the following equality holds:

dim Homg(Vλ,�
ig) =

∑

k+h=i

dimHomW (V 0
λ ,Hh

(2) ⊗ �kh) (2.2)

Small representations for algebras of type An−1 are of the form Vλ where λ is a partition of n.
Reeder’s conjecture is implicitly proved in literature for algebras of type A by comparing the
results contained in [25] and [32] with the following formula proved by Stembridge:

Theorem 2.5 (Stembridge, [40], Corollary 6.2) Let λ be a partition of n and  the associated
Young tableaux, displayed in the English way.

P(Vλ,�g, q) =
∏n

i=1(1 − q2i )

(1 + q)

∏

(i j)∈

(
q2 j−2 + q2i−1

)
(
1 − q2h(i j)

)

where h(i j) denotes the hook length of the box (i j) ∈ .

For other simple Lie algebras the conjecture is proved in [16] and [17] using a case
by case strategy. The problem of finding a uniform approach to prove Eq. (2.2) for small
representations is still open and very interesting. In this spirit, an enhanced version ofReeder’s
conjecture has been recently proposed in [14], Sect. 7.

Finally, we remark that the module of special coinvariants Homg(g,�g) has a richer
geometric structure, as proved in [15]:
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Theorem 2.6 (De Concini, Papi, Procesi, [15], Theorem 1.1) The module Homg(g,�g) is
a finitely generated free module over �(P1, . . . , Pn−1) with generators in degree 2ei and
2ei − 1.

An analogous result it is proved in [13], when g is not simply laced, for the module
Homg(Vθs ,�g). An extension of these theorems to certain small representations is proposed
in Sect. 5.6.

3 Berenstein and Zelevinsky polytopes

Themore efficient way to approach the Kostant Conjecture seems to be by facing the problem
using tensor product decomposition techniques. In fact, using the Weyl Character Formula,
in [26] Kostant proved the following isomorphism:

�g � (
Vρ ⊗ Vρ

)⊕2rkg

Kostant’s Conjecture can be consequently reformulated in the following terms (c.f.r. [12],
Remark 4):

Conjecture 3.1 (Kostant) The representation Vλ appears in the decomposition of Vρ ⊗ Vρ if
and only if λ ≤ 2ρ in the dominance order.

The conjecture in type A is proved byBerenstein and Zelevinsky in [5] as a consequence of
a more general combinatorial construction, used to find the tensor product decomposition of
two irreducible finite dimensional representations ofgln(C).More in detail, they prove that for
any triple of dominant weights (λ, μ, ν), the irreducible representation Vν is a component of
Vλ⊗Vμ if and only if there exists an integral point in a suitable polytope P(λ, μ, ν) depending
on the expansion of λ and μ in terms of the fundamental weights. As an application of their
results, Berenstein and Zelevinsky prove that for every μ ≤ 2ρ the polytopes of the form
P(ρ, ρ, μ) have at least one integral point. Moreover in [4] it is conjectured that a similar
description of tensor multiplicities in terms of integral points of certain polytopes holds for
every classical Lie algebra. The statement of the conjecture is recalled in Sect. 3.2, it is proved
by Berenstein and Zelevinsky as a consequence of results contained in [6].

3.1 Orderings on dominant weights

We recall now how roots systems of type Bn , Cn and Dn can be realized in an n-dimensional
euclidean vector space E with basis {ε1, . . . , εn}. We follow the constructions exposed in [9]
and [18].

Root System of Type Bn :

� = {±εi ± ε j }i< j ∪ {±ε1, . . . ,±εn},
� = {ε1 − ε2, . . . , εn−1 − εn, εn},

�+ = {εi ± ε j }i< j ∪ {ε1, . . . , εn} W = Sn � (Z/2Z)n ,

ωi = ε1 + · · · + εi ωn = ε1 + · · · + εn

2
,

ρ = (2n − 1)ε1 + (2n − 3)ε2 + · · · + 3εn−1 + εn

2
.
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Root System of Type Cn :

� = {±εi ± ε j }i< j ∪ {±2ε1, . . . ,±2εn},
� = {ε1 − ε2, . . . , εn−1 − εn, 2εn},

�+ = {εi ± ε j }i< j ∪ {2ε1, . . . , 2εn} W = Sn � (Z/2Z)n ,

ωi = ε1 + · · · + εi ,

ρ = nε1 + (n − 1)ε2 + · · · + 2εn−1 + εn .

Root System of Type Dn :

� = {±εi ± ε j }i< j � = {ε1 − ε2, . . . , εn−1 − εn, εn−1 + εn},
�+ = {εi ± ε j }i< j W = Sn � (Z/2Z)n−1,

ωi = ε1 + · · · + εi ωn−1 = ε1 + · · · − εn

2
ωn = ε1 + · · · + εn

2
,

ρ = (n − 1)ε1 + (n − 2)ε2 + · · · + εn−1.

The set of dominant weights is partially ordered by the dominance order, i.e. λ ≥ μ if λ − μ

is a sum of positive roots. Moreover, every dominant weight λ can be written as a sum
λ1ε1 + . . . λnεn where λi ∈ 1

2Z for all i . The condition λ ≥ μ in the dominance order can
be restated as follows:

Remark 3.2 Let λ = λ1ε1+· · ·+λnεn andμ = μ1ε1+· · ·+μnεn be two dominant weights
for a simple Lie algebra of type Bn , Cn or Dn . Then λ ≥ μ if and only if the following
conditions hold:

(1)
∑k

i=1(λi − μi ) ≥ 0 for all 1 ≤ k ≤ n, in type B;
(2)

∑k
i=1(λi − μi ) ≥ 0 for all 1 ≤ k ≤ n and

∑n
i=1(λi − μi ) is an even integer, in type C

and D.

We introduce now a different ordering on the set of weight.

Definition 3.3 (Coordinatewise order on weights) Let λ = λ1ε1 + · · · + λnεn and μ =
μ1ε1 +· · ·+μnεn be two dominant weights for a simple Lie algebra g of type Bn ,Cn or Dn .
We say that μ is smaller than λ with respect to the relation � if and only if λi − μi ≥ 0 and
|λi | ≥ |μi | for all i . In this case we write μ � λ and we say that μ is smaller than λ with
respect to the coordinatewise order.

Remark 3.4 Observe that the coordinatewise ordering is different from the dominance order-
ing. As an example, in type C the weight ω2 is the only non zero dominant weight smaller
than 2ω1 with respect to the dominance order, but ω2 �� 2ω1. On the other side in type C we
have that ω1 � ω2, although ω2 is a minimal element between non zero dominant weights
with respect to dominance order.

The next two sections are devoted to prove the following theorem:

Theorem 3.1 Let g be a simple Lie algebra over C of type B, C or D and let λ be a dominant
weight for g. If λ ≤ 2ρ and λ � 2ρ, then Vλ appears as irreducible component in �g.
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Example 3.5 In this example we compare the set of weights considered in the assert of
Theorem 3.1 with the ones appearing in Theorems 2.1 and 2.4. In particular we focus on the
case of simple Lie algebra C3. In type C3 there are 35 dominant weights smaller or equal to
2ρ with respect to dominance order. Between these weights, there are 30 dominant weights
μ such that μ � 2ρ. All small weights appear in this set, but they are considerably fewer
(more precisely, in type C3 there are 4 small weights, c.f.r. Table 4). Moreover, in type C3

there are 7 dominant weights of the form 2ρ − δI with I ⊂ �. Between them only 4 weights
are not smaller than 2ρ with respect to the coordinatewise order.

3.2 g-partitions and Berenstein–Zelevinsky polytopes

Let m be a weight in the root lattice for the Lie algebra so2n+1C, it can be described by a
vector of non negative integers

(m12,m
+
12, . . . ,mn−1n,m

+
n−1n,m1, . . . ,mn)

such that

m =
∑

i< j

mi j (εi − ε j ) +
∑

i< j

m+
i j (εi + ε j ) +

∑

i

miεi .

We say that the sequence of integers (m12,m
+
12, . . . ,mn−1n,m

+
n−1n,m1, . . . ,mn) is an

so2n+1-partition for m. We say that an so2n+1 partition is an so2n-partition (resp. sp2n-
partition) if mi = 0 (resp. mi is even) for every i . The inequalities that determine the
Berenstein-Zelevinsky polytope for a general tensor product Vλ ⊗ Vμ are described in [4]
in terms of the variables m12,m

+
12, . . . ,mn−1n,m

+
n−1n and m1, . . . ,mn . We recall here their

description as presented in [4].
Consider the set I = {0̄, 1, . . . , n, 1̄, . . . , n̄}, ordered by 0̄ < 1 < 1̄ < · · · < n < n̄, and

set

�i j = mi j − m+
i j , �ī j̄ = �i+1 j+1, �i j̄ = �ī j =

{
m+

i, j+1 − mi+1 j+1 if j < n,

mi − mi+1 if i = n.

where mi, j ,m
+
i, j must be considered only if i < j . Now, if j < n and t ∈ I , we consider

the linear forms (c.f.r. [4], Formulae (2.4)):
⎧
⎪⎨

⎪⎩

L t
j (m) = −∑

0̄≤s≤t �s j ,

N t,0
j (m) = � j̄ j +∑

j+1≤s≤t � j̄,s,

N t,1
j (m) = N n,0

j +∑
t≤s≤n � j,s .

(3.1)

Otherwise, if j = n, consider

L t
n (m) = −

⎡

⎣2

⎛

⎝
∑

1≤p≤t

�p n

⎞

⎠+
∑

0≤p≤t

�p n

⎤

⎦ N n,1
n (m) = mn (Type B), (3.2)

L t
n (m) = −

⎡

⎣

⎛

⎝
∑

1≤p≤t

�p n

⎞

⎠+
⎛

⎝1

2

∑

0≤p≤t

�p n

⎞

⎠

⎤

⎦N n,1
n (m) = mn/2 (Type C),(3.3)

L t
n (m) = L̂ t

n−1(m) N n,1
n (m) = m+

n−1,n (Type D), (3.4)
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Table 1 Indices contribution

Type B and C Type D

L t
j 1 ≤ j ≤ n, 0̄ ≤ t < j 1 ≤ j ≤ n − 1, 0̄ ≤ t < j

j = n, 0̄ ≤ t < n − 1

N t,0
j 1 ≤ j ≤ n − 1, j̄ ≤ t ≤ n 1 ≤ j ≤ n − 2, j̄ ≤ t ≤ n − 1

N t,1
j 1 ≤ j ≤ n − 1, j̄ < t ≤ n 1 ≤ j ≤ n − 2, j̄ < t ≤ n,

j = t = n j = t = n, j = n − 1, t = n

where L̂ t
n−1(m) is the image of L t

n−1(m) under the involution

m̂i, j =
{
mi, j if j < n
m+

i, j if j = n
m̂+

i, j =
{
m+

i, j if j < n
mi, j if j = n

Let us denote with cν
λμ the generalized Littlewood Richardson coefficient associated to the

triple of dominant weights (λ, μ, ν), i.e. the multiplicity of Vν in Vλ ⊗ Vμ. The following
theorem, crucial for our results, was conjectured in [4] and proved in [6]

Theorem 3.6 (Berestein, Zelevinsky, [4], Sect. 2) Let λ = a1ω1 + · · · + anλn and μ =
b1ω1 + · · · + bnωn be dominant weights. The irreducible components of Vλ ⊗ Vμ are in
bijection with integral points of the polytope defined by the inequalities

L t
j ≤ a j N t,0

j ≤ b j N t,1
j ≤ b j ,

where the indices considered are displayed in the Table 1.

Each integral point in the polytope corresponds to a g partition. We are going to call these
g partitions admissible for the pair (λ, μ). We say that a g partition (m12,m

+
12, . . . ,mn) is

associated to a weight ν if

ν =
∑

i< j

mi j (εi − ε j ) +
∑

i< j

m+
i j (εi + ε j ) +

∑

i

miεi

As a corollary of the Theorem 3.6, Berenstein and Zelevinsky prove that:

Theorem 3.7 (Berestein, Zelevinsky, [4], Sect. 2) The coefficient cν
λμ is equal to the number

of g-partitions admissible for the pair (λ, μ) and associated to λ + μ − ν.

We want to use the previous results to obtain informations about the decomposition into
irreducibles of Vρ ⊗ Vρ . In particular, studying the irreducible components which appear in
Vρ ⊗Vρ is consequently equivalent to describe the integral points in the polytope defined by

L t
j (m) ≤ 1, N t,0

j (m), N t,1
j (m) ≤ 1,

for t, j that range as in Table 1. From now on this section, by abuse of notation, we say
that a g partition is admissible if it is admissible for the pair (ρ, ρ). Our aim is to construct
explicitly an admissible g-partition associated to each weight λ ≤ 2ρ such that λ � 2ρ.

Firstly, we rearrange the equations defining the Berenstein and Zelevinsky polytopes in a
more explicit form. Set M(i, j) = mi j −m+

i j , N (i) = mi −mi+1, R(i, j) = m+
i, j −m+

i+1, j
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and S(i, j) = mi j+1 −mi+1 j+1 +m+
i j+1 −m+

i+1 j+1 for j ∈ {1, . . . , n} and 1 ≤ i < j , then
the linear forms in Formula (3.1) can be expressed as:

L t
j (m) =

t−1∑

i=1

(M(i, j + 1) − M(i, j)) − M(t, j) + mt j+1,

L t
j (m) =

t∑

i=1

(M(i, j + 1) − M(i, j)) + mt+1 j+1,

N t 0
i (m) = m+

i i+1 +
t−1∑

j=i+1

R(i, j + 1) + (m+
i t+1 − mi+1 t+1),

N t 0
i (m) = m+

i i+1 +
t∑

j=i+1

R(i, j + 1),

N n 0
i (m) = m+

i i+1 +
n−1∑

j=i+1

R(i, j + 1) + N (i),

N t 1
i (m) = m+

i i+1 + N (i) + M(i, t) +
t−1∑

j=i+1

R(i, j + 1) +
n−1∑

j=t

S(i, j + 1),

N t 1
i (m) = m+

i i+1 + N (i) +
t−1∑

j=i+1

R(i, j + 1) +
n−1∑

j=t

S(i, j + 1).

If j = n, the Eqs. (3.2), (3.3) and (3.4) can be rearranged in the following way:

L t
n (m) = −2

t∑

i=1

M(i, n) + mt L t
n (m) = −2

t∑

i=1

M(i, n) + mt+1 (Type B),

L t
n (m) = −

t∑

i=1

M(i, n) + mt+1/2 L t
n (m) = −

t∑

i=1

M(i, n) + mt/2 (Type C),

L t
n (m) = −

t−1∑

i=1

M(i, n) −
t∑

i=1

M(i, n − 1) + m+
t n L t

n (m) = −
t∑

i=1

(M(i, n) + M(i, n − 1)) + m+
t+1 n (Type D).

Here we adopted the convention that, if the set of indices is empty, the sum is equal to 0.

3.3 The construction

For each λ ≤ 2ρ set ci = 2|ρi | − |λi |, where by λi and ρi we denote the i-th coordinate of
λ and ρ, with respect to the basis {ε1, . . . εn}. If 0 ≤ ci for all i ≤ n, we give an explicit
construction of an admissible g-partition associated to 2ρ − λ, appearing as integral point in
the Berenstein Zelevinzky polytope associated to the tensor product Vρ ⊗Vρ . The conditions
on the ci in particular are equivalent to require that λ � 2ρ.

We have three main cases, depending on the parity of the {ci }i≤n . We will construct an
admissible g-partition m = (m12, . . . ,mn) associated to 2ρ − λ in an iterative way. We start
setting m to be the zero vector.

Case A: the ci are all even.
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Step 1 If cn = 0 set mn = 0, otherwise mn = 2 (observe that the case cn even and
greater than 0 cannot happen in type B and D because in these cases 2ρn < 2);

Step h + 1 Suppose h + 1 = n − (i − 1) + 1 and let (mi i+1,m
+
i i+1, . . . ,mi n,m

+
i n,mi ) be

the integers constructed at the h-th step. Let Ji = { jk < · · · < j1} be the set
of indices such that mi js �= 0. By convention, we set j0 = n + 1. We have the
following cases:

(1) if ci−1 = 0, set mi−1, j = m+
i−1, j = mi−1 = 0 for all j ;

(2) if ci ≥ ci−1 > 0, set mi−1 = mi , mi−1 j = mi j and m+
i−1 j = m+

i j for all j
such that n ≥ j ≥ js , where s is chosen to be equal to ci−1/2 if mi = 0, and to
ci−1/2 − 1 otherwise.
Finally set mi−1 j = m+

i−1 j = 0 for the remaining indices;

(3) if ci−1 = ci + 2, set mi−1 = mi and mi−1 j = mi j e m
+
i−1 j = m+

i j for all j > i .

Finally set mi−1 i = m+
i−1 i = 1.

Proposition 3.8 The construction exposed in Case A produces an admissible g-partition
associated to 2ρ − λ.

Proof By Theorem 3.6, we need to prove that L i
j (m),N i,0

j (m) and N i,1
j (m) are smaller

than 1. Observe that in our constructionmi �= 0 only ifmi+1 �= 0 and then N (i) ≤ 0 for all i .
Moreover, a non zeromi j is constructed (i.e in case (2) or in case (3)) if and only ifm+

i j �= 0,

and in that case we always have mi j = m+
i j . Consequently M(i, j) = 0 for every pair i, j .

Finally, if i + 1 < j , we always have that mi, j = m+
i j �= 0 only if mi+1, j = m+

i+1 j �= 0 and
then R(i, j), S(i, j) ≤ 0. Verify that the constructed g-partition is admissible is now just a
straightforward computation, recalling that by construction described in (2) and (3) we have
mi j ,m

+
i j ≤ 1 for every pair i, j and m+

i j − mi+1 j ≤ 0 for every j such that i + 1 < j . ��
Example 3.9 In this example we construct admissible sp6C-partitions associated to the
weights 2ρ − λ and 2ρ − λ′, where λ = 2ω3 and λ′ = 4ω1. We remark that, because
in type C3 we have nine positive roots, an sp6C- partition can be identified with a vector of
the form

(m12,m
+
12,m13,m

+
13,m23,m

+
23,m1,m2,m3).

Firstly we deal with the case of λ = 2ω3. We have c3 = 0, so we set m3 = 0 and the
Step 1 returns the null vector. For Step 2, we have c2 = 2 = c3 + 2 and we are in case (3).
We set m2 = m3 = 0 and m23 = m+

23 = 1 obtaining the vector (0, 0, 0, 0, 1, 1, 0, 0, 0).
Finally we have c1 = c2 + 2 and to perform Step 3 we are again in case (3), so we set
m1 = m2 = 0, m13 = m+

13 = 1 and m12 = m+
12 = 1 and the iteration produces the vector

(1, 1, 1, 1, 1, 1, 0, 0, 0).
We want now obtain an sp6C-partition associated to 2ρ − 4ω1. We have that c3 =

c1 = 2 and c2 = 4. Because c3 = 2, Step 1 of our construction produces the vector
(0, 0, 0, 0, 0, 0, 0, 0, 2). We have c2 = c3 +2 and then, to perform Step 2, we are in case (3).
We setm2 = 2 andm23 = m+

23 = 1 andwe obtain the vector (0, 0, 0, 0, 1, 1, 0, 2, 2). Finally,
because c1 = c2 − 2 > 0, at Step 3 we are in case (2). Observe that J2 = {3} and s = 0, so
we set m1 = m2 = 2 and m12 = m+

12 = m13 = m+
13 = 0, and (0, 0, 0, 0, 1, 1, 2, 2, 2) is a

sp6C-partitions associated to 2ρ − 4ω1.

Example 3.10 We construct now an admissible so7C-partition associated to theweight 2ρ−λ

where λ = 4ω1 + 2ω3. We identify an so7C- partition m with a vector of the form

(m12,m
+
12,m13,m

+
13,m23,m

+
23,m1,m2,m3).
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In B3 the weight 2ρ has coordinates (5, 3, 1) with respect to the {εi } basis, and then c3 = 0,
c2 = 2 and c1 = 0. Consequently we have that m23 = m+

23 = 1 are the only non zero
coordinates of m and then the algorithm produces the vector (0, 0, 0, 0, 1, 1, 0, 0, 0).

Case B: there exists an even number of odd ci , cn is even or cn is odd and λn �= 0.

Step 1 Let {γ1 < · · · < γ2k} be the set of indices such that ci is odd. We pair together the
j-th and the k + j-th index obtaining the set P = {(γ1, γk+1), . . . , (γk, γ2k)}.

Step 2 Construct the weight λ′ starting from λ using the pairs in P: if (γ j , γ j+k) ∈ P , set
λ′

γ j
= λγ j + 1 and λ′

γ j+k
= λγ j+k − 1, otherwise λ′

γ j
= λγ j .

Step 3 Observe that λ′ is again a dominant weight smaller than 2ρ and the set {c′
i = 2|ρi |−

|λ′
i |} is composed only by non negative even integers. Using Case A, construct an

admissible g-partition m′ = (m′
i j , m

′+
i j , m′

i ) associated to 2ρ − λ′.
Step 4 If (γ j , γ j+k) is a pair in P , we set mγ jγ j+k = m′

γ jγ j+k
+ 1, otherwise mγ jγ j+k =

m′
γ jγ j+k

.

Remark 3.11 A g-partition constructed in Case B has the following properties:

(1) mi j > 1 only if (i, j) is in P;
(2) m+

i j is different from 0 only if mi j �= 0. Moreover we have mi j ≤ 2 and m+
i j ≤ 1. In

particular mi j > m+
i j if and only if (i, j) = (γh, γh+k) ∈ P . Analogously, M(i, j) �= 0

if and only if i = γh and j = γh+k , in that case we have M(i, j) = 1;
(3) m+

i j �= 0 only if m+
i+1 j �= 0 or if j = i + 1. Consequently the quantities R(i, j) =

m+
i j − m+

i+1 j and m
+
i j − mi+1 j are smaller or equal to zero if j > i + 1;

(4) mi �= 0 only if mi+1 �= 0. This implies mi − mi+1 ≤ 0 for all i . Moreover observe that
for every i we have

mi =

⎧
⎪⎨

⎪⎩

≤ 1 in type B,

0 in type D,

≤ 2 in type C .

(5) Because of (2), we have that S(i, j) = mi j +m+
i j − (mi+1 j +m+

i+1 j ) is always smaller

or equal to zero, except if (i, j) = (γh, γk+h) ∈ P . In this case we have mi j + m+
i j −

(mi+1 j + m+
i+1 j ) = 1.

Proposition 3.12 The construction exposed in Case B produces an admissible g-partition
associated to 2ρ − λ.

Proof First of all observe that (3) and (4) in Remark 3.11 imply immediately that N t 0
i (m),

N t 0
i (m) and N n 0

i (m) are all smaller or equal than 1. We want now find an upper bound

to N t 1
i (m) and N t 1

i (m). We have to discuss some cases, depending on the parity of ci
and ci+1. Set P− := {γ1, . . . , γk} and P+ := {γk+1 . . . γ2k}.

If ci is even By construction in Case A we have that mi j+1 +m+
i j+1 = m′

i j+1 +m′+
i j+1 ≤

m′
i+1 j+1+m′+

i+1 j+1 for j �= i and then S(i, j+1) = mi j+1+m+
i j+1−(mi+1 j+1+m+

i+1 j+1)

is non positive for every j > i + 1. Moreover M(i, j) = 0 for all j and N (i) ≤ 0. It is
immediate to check that N t 1

i (m) ≤ 1 and N t 1
i (m) ≤ 1;

If ci is odd and i ∈ P+, by (5) of Remark 3.11 we have that S(i, j) ≤ 0 and M(i, j) = 0
for every j . The inequalities for N t 1

i (m) and N t 1
i (m) are then easily verified;
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If ci and ci+1 are both odd and i, i+1 ∈ P−, suppose i = γh (and then i+1 = γk+h+1).
We have S(i, γk+h) = 1 and S(i, γk+h+1) < 0. It follows that for every s > i + 1

n−1∑

j=s

[
mi j+1 + m+

i j+1 − (mi+1 j+1 + m+
i+1 j+1)

]
≤ 0. (3.5)

An immediate consequence of above inequality and of (3) and (4) of Remark 3.11 is that
N t 1

1 (m) − m+
i i+1 ≤ 0. Because of (2) of Remark 3.11 we have m+

i i+1 ≤ 1 and then

N t 1
1 (m) ≤ 1. Observe now that if s ≥ γk+h inequality in (3.5) is strict. Moreover M(i, j) =

1 only if j = γk+h and we obtain consequently that N t 1
i (m) ≤ 1 for every t in Table 1.

If ci and ci+1 are both odd, i ∈ P− and i + 1 ∈ P+, observe that c′
i ≤ c′

i+1 by Step 2
of the construction in Case B and this implies that m+

i i+1 = m′+
i i+1 = 0. Because i ∈ P−, we

can suppose i = γh and we recall that M(i, j) > 0 if and only if j = γk+h . Moreover we
have

n−1∑

j=s

S(i, j + 1) =
{

≤ 1 if s < γk+h

≤ 0 otherwise.

Observe now that M(i, j) > 0 (in particular it is equal to 1) only if
∑n−1

j=s S(i, j + 1) ≤ 0

and the inequalities N t 1
i (m) ≤ 1 and N t 1

i (m) ≤ 1 are verified;
Finally, if ci is odd, i = γh ∈ P− and ci+1 is even, we observe again that because of

Step 2 of our construction in Case B, we have c′
i ≤ c′

i+1 and then mii+1 = m+
i i+1 = 0. As in

the previous case we have

n−1∑

j=s

S(i, j + 1) =
{

≤ 1 if s < γk+h

≤ 0 otherwise.

and M(i, j) = 1 only if
∑n−1

j=s S(i, j + 1) ≤ 0. Check thatN t 1
i (m) ≤ 1 andN t 1

i (m) ≤ 1
in now completely straightforward.

It remains to prove that the conditions ofTheorem3.6 holds for the operatorsL s
j (m). Some

of these inequalities are trivial by the construction ofm, in particularL t
n (m),L t

n (m) ≤ 1; in
factmi ≤ 1 in type B and D,mi/2 ≤ 1 in typeC and in our constructionwe haveM(i, j) ≥ 0

and m+
i j ≤ 1 for every i, j . Furthermore observe that L s

j (m) = L s−1
j (m) − M(s, j) and,

again because M(i, j) are always non negative, we reduce to prove that L s−1
j (m) ≤ 1. We

recall that

L t
j (m) =

t∑

i=1

(M(i, j + 1) − M(i, j)) + mt+1 j+1.

We have four cases:
If both j and j+1arenot in P+ by (2) ofRemark 3.11wehaveM(i, j) = M(i, j+1) = 0

for all h and for all j . Moreover mt+1 j+1 is smaller than 1 because j + 1 /∈ P+ and the
inequality L t

j (m) ≤ 1 is verified.
If j = γk+h ∈ P+ and j + 1 /∈ P+, we have M(i, j + 1) = 0 for all

i and M(i, j) = 0 if and only if i �= γh . Otherwise we have M(γh, γk+h) =
1. This implies that

∑t
i=1 (M(i, j + 1) − M(i, j)) = −1 if t ≥ γh . Otherwise∑t

i=1 (M(i, j + 1) − M(i, j)) = 0. Moreover we have mt+1 j+1 ≤ 1 because j + 1 /∈ P+k .
These conditions immediately imply L t

j (m) ≤ 1.
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If j /∈ P+ and j + 1 = γk+h ∈ P+, we firstly remark that by construction we have
c′
j < c′

j+1 + 2 and then m′
j j+1 = 0 by construction in Case A. Thus m j j+1 = 1 if j = γh

and zero otherwise. In general, m′
j j+1 = 0 implies m′

i j+1 = 0 for every i ≤ j and then
mt+1 j+1 = 1 if t = γh − 1 and zero otherwise. Moreover observe that M(i, j + 1) > 0
(and in particular, it is equal to 1) only if i = γh . Now we can evaluate the expression∑t

i=1 (M(i, j + 1) − M(i, j)). By our previous observations about the M(i, j + 1) and by
(2) of Remark 3.11, it is equal to 0 if t < γh and equal to 1 if t ≥ γh . As observed before, in
the last case we have mt+1 j+1 = 0 and it follows easily that L t

j (m) ≤ 1 holds.
If j and j + 1 are both in P+, we can suppose j = γk+h and then j + 1 = γk+h+1.

We consequently have M(i, j) �= 0 if and only if i = γh and that M(i, j + 1) �= 0 if
and only if i = γh+1. We then obtain that

∑t
i=1 (M(i, j + 1) − M(i, j)) is equal to −1 if

γh ≤ t < γh+1 and 0 otherwise. If mt+1 j+1 ≤ 1 the inequality L t
j (m) ≤ 1 is verified.

Otherwise, we remark that mt+1 j+1 = 2 only if t + 1 = γh+1, i.e if γh ≤ t < γh+1, but
this is exactly the case of

∑t
i=1 (M(i, j + 1) − M(i, j)) = −1, and again the inequality is

checked. ��
Example 3.13 In this example we want to construct an admissible sp8C-partition associated
to the weight 2ρ −λ, where λ = ω4. We recall that ω4 has coordinates (1, 1, 1, 1) in the {εi }
basis so we have c4 = 1, c3 = 3, c2 = 5, c1 = 7. The set of odd indices is {1, 2, 3, 4} and
P = {(1, 3), (2, 4)}. The weight λ′ is then (2, 2, 0, 0) (i.e. 2ω2) and by construction in case A
we have that the non zero coordinates ofm′ arem′

4 = m′
3 = m′

2 = m′
1 = 2,m′

34 = m′+
34 = 1,

m′
24 = m′+

24 = 1 and m′
12 = m′+

12 = m′
14 = m′+

14 = 1. By our construction in case B, we
have that the sp8C-partitions m associated to the weight 2ρ − ω4 has the following non
zero coordinates: m4 = m3 = m2 = m1 = 2, m34 = m+

34 = 1, m24 = 2,m+
24 = 1 and

m12 = m+
12 = m13 = m14 = m+

14 = 1.

Remark 3.14 Because of the parity constraint in the dominance order relations in type C and
D (c.f.r. Remark 3.2), Case A and B cover all the weights appearing in the statement of
Theorem 3.1 for symplectic and even orthogonal algebras.

Because of previous Remark, in the remaining cases we deal only with algebras of type
B. In particular, observe that in type B the condition cn �= 0 is equivalent to assume that cn
is odd and in particular cn = 1. Moreover cn �= 0 if and only if λn = 0.

Case C: λn = 0 and cn is odd or there exists an odd number of odd ci and λn �= 0. Let
I = {γ1 · · · < γk} be the set of indices such that ci is odd.

Step 1 Construct theweightλ′ settingλ′
i = λi+1 if i ∈ I andλ′

i = λi otherwise.Observe that
λ′ is a dominantweight and it is again smaller than 2ρ and that the set {c′

i = 2|ρi |−|λ′
i |}

is composed only by non negative even integers.
Step 2 Using Case A, construct an admissible g-partition m′ = (m′

i j , m
′+
i j , m′

i ) associated
to 2ρ − λ′. Observe that λ′

n �= 0, then c′
n = 0 and by construction in Case A we have

m′
j = 0 for every j .

Step 3 Set mi j = m′
i j and m+

i j = m′+
i j for every pair of indices i, j . Moreover set mi = 1 if

i ∈ I and mi = m′
i = 0 otherwise.

Proposition 3.15 The construction exposed in Case C produces an admissible g-partition
associated to 2ρ − λ.

Proof Letm be an admissible g-partition associated to 2ρ −λ constructed using the iterative
process exposed in Case C. By our construction, L t

j (m) = L t
j (m

′) and L t
j (m) = L t

j (m
′)
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for every t and for every j �= n. Moreover N t 0
i (m) = N t 0

i (m′) for every t �= n. Observe
that mi ≤ 1 for every i and M(i, j) = mi j +m+

i j = m′
i j +m′+

i j = 0 for every pair of indices

i, j because of construction in Case A. This implies that L t
n (m),L t

n (m) ≤ 1. Observe now
that, by Step 3 of construction in case C we have

N n 0
i (m) − m+

i i+1 − mi + mi+1 = N n 0
i (m′) − m′+

i i+1 − m′
i + m′

i+1

N t 1
i (m) − m+

i i+1 − mi + mi+1 = N t 1
i (m′) − m′+

i i+1 − m′
i + m′

i+1

In particular, by construction of m′ both expressions N n 0
i (m′) − m′+

i i+1 − m′
i + m′

i+1
and N t 1

i (m′) − m′+
i i+1 − m′

i + m′
i+1 are smaller or equal than 0. To prove that

N n 0
i (m),N t 1

i (m) ≤ 1 it is enough to show that m+
i i+1 + mi − mi+1 ≤ 1 for every i .

We remark that in our construction m+
i i+1 is always smaller than 1 and mi �= 0 if and only if

i ∈ I . Now, if ci is even, the inequality m
+
i i+1 +mi −mi+1 ≤ 1 comes directly from the fact

thatmi ≤ mi+1. If i and i+1 are both odd, thenmi = mi+1 = 1 andm+
i i+1+mi −mi+1 ≤ 1

is satisfied. Finally, if ci is odd and ci+1 is even, observe that ci ≤ ci+1+1 by parity constraint
and then c′

i ≤ c′
i+1 by Step 1 of construction in case C. This implies, by construction ofm′ and

by Step 3 in case C, thatm+
i i+1 = m′+

i i+1 = 0 and again we obtainedm+
i i+1 +mi −mi+1 ≤ 1.

Remark 3.16 In type Bn , the construction of admissible g partitions exposed in Case C works
also in Case B. We privileged the procedure exposed in Case B to underline the uniform
construction in all the classical cases.

Example 3.17 In this example we construct an admissible so7C-partition associated to the
weight 2ρ − λ where λ = 4ω1. We have c3 = 1, c2 = 3 and c1 = 1. The weight λ′
constructed as in Step 1 of case C has coordinates (5, 1, 1) (i.e. λ′ = 4ω1 + 2ω3). We have
just constructed in Example 3.10 an so7C-partitionm′ associated to 2ρ −λ′. In particular we
obtained m′ = (0, 0, 0, 0, 1, 1, 0, 0, 0). By Step 3 of construction in case C, we then obtain
that m = (0, 0, 0, 0, 1, 1, 1, 1, 1) is an so7C-partition associated to 2ρ − 4ω1.

3.4 A conjecture about exterior algebra3V�s

If g is not simply laced, we propose here an analogous ofKostant Conjecture about irreducible
representations appearing in the exterior algebra over the little adjoint representation. We are
motivated by two recent works that highlight some interesting aspects of the structure of�Vθs

as g-representation. The first one is an article of I. Ademehin [1], dealing with the graded
multiplicities of trivial and little adjoint representation in �Vθs . The results contained in [1]
are in some sense very similar to the classical ones about exterior algebra over g and we think
that a further investigation about the structure of �Vθs could lead to some very interesting
results. Our second motivating paper is an article of Panyushev [34], where the following
theorem is proved in the more generic context of orthogonal isotropy representations.

Theorem 3.18 (Panyushev [34], Theorem 2.9) Let g be a non simply laced algebra of type
B, C and F4. Let θs be the short dominant root of g, then

�Vθs � 2|�s | (Vρs ⊗ Vρs

)

where �s is the set of short simple roots and ρs is half the sum of positive short roots.

Analogously to the case exterior algebra over adjoint representation, we formulate the
following conjecture:
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Conjecture 3.19 Let g be a non simply laced simple Lie algebra. Vλ is an irreducible
component of �Vθs if and only if λ ≤ 2ρs .

By Theorem 3.18, Conjecture 3.19 can be restated as

Conjecture 3.20 Let g be a non simply laced simple Lie algebra. Vλ is an irreducible
component of Vρs ⊗ Vρs if and only if λ ≤ 2ρs .

The Conjecture 3.20 can be easily proved for case Bn using elementary representation
theory. We checked the conjecture also using Berenstein and Zelevinsky polytope associated
to Vρs ⊗Vρs . Moreover, we proved it for exceptional cases F4 andG2 by direct computations.
The conjecture remains open only in typeC , where it seems that combinatorics of short roots
and weights is linked to the Kostant conjecture in type D.

4 Generalized exponents andMacdonald kernels

We give here an overview of theory of generalized exponents for representations of Lie
algebras, following the results exposed in [27].

Theorem 4.1 (Kostant [27], Theorem 0.11) The module Homg (Vλ, S(g)) is a free S(g)g-
module of dimension dim V 0

λ .

Let n be the dimension of V 0
λ and let f1, . . . , fn be any set of homogeneous generators of

Homg (Vλ, S(g)) as S(g)g-module. Up to relabeling the polynomials fi , it is possible to
suppose that deg fi ≤ deg fi+1 for every i . Set mi (λ) = deg fi .

Definition 4.2 (c.f.r [10], Introduction) The integers m1(λ), . . . ,mn(λ) are the generalized
exponents of the representation Vλ.

Generalized exponents have also an interpretation in therms of W -representation on the
zero weight space V 0

λ . Let c ∈ W be a Coxeter - Killing transformation, i.e. c = sα1 . . . sαn
where sαi is the simple reflection associated to the i-th simple root. The action of g on Vλ

induces a representation ρλ : W → End(V 0
λ ). The element ρλ(c) acts diagonally on V 0

λ with

eigenvalues γ j = exp
2iπm j (λ)

h , where h is the Coxeter number.

Example 4.3 Consider g acting on itself by the adjoint action. Such an action induces the
reflection representation of W on h. The generalized exponents for this representation
coincides with the classical exponents of g.

Example 4.4 Let g be a not simply laced simple Lie algebra and consider its little adjoint
representation Vθs .The generalized exponents associated to Vθs are the short exponents of g.

Consider now the generating polynomial of generalized exponents defined by the formula

Eλ(t) =
dim V 0

λ∑

i=1

tmi (λ).

Theorem 4.1 translates naturally into the following remarkable factorization of generating
series of graded multiplicities:

P(Vλ, S(g), t) = Eλ(t)
n∏

i=1

(1 − tei+1)−1.
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Determining the graded multiplicities in the symmetric algebra is then deeply linked to
determining the generalized exponents of Vλ. In particular the problem of finding explicit
formulae for the polynomials Eλ(t) turns out to be very interesting both from a combinatorial
and from a representation theoretic point of view. For Lie algebras of type A a combinatorial
description of generalized exponents is given in [29, 30]. For other classical algebras, the
combinatorics of generalized exponents is less explicit, and closed formulae are available
only in special cases (see [21–24, 31, 38]).

Remark 4.5 Values of classical exponents, and of short exponents in the case of non simply
laced algebras, are well known (see [42], Table 4.1). Explicit formulae for Eθ (t) and Eθs (t)
can be consequently computed in the classical cases:

Eθ (t) = (n + 1)t Type An (4.1)

Eθ (t) = t (n)t2 Eθs (t) = tn Type Bn (4.2)

Eθ (t) = t (n)t2 Eθs (t) = t2 (n − 1)t2 Type Cn (4.3)

Eθ (t) = (n)t2
t(tn−2 + 1)

(tn + 1)
Type Dn (4.4)

4.1 Macdonald kernels

We recall now some tools, introduced by Stembridge in [42], useful to produce effective
computations.

Definition 4.6 (c.f.r. [42], Sect. 1.1) Let Z〈�〉 := Z{eλ, λ ∈ �} denote the group ring
generated by �. The Macdonald Kernel of g is the formal series �(q, t) ∈ Z〈�〉 [[q, t]]
defined by the formula

�(q, t) :=
∏

i≥0

(
1 − qi+1

1 − tqi

)rkg

·
∏

i≥0

∏

α∈�

1 − qi+1eα

1 − tqi eα
.

The Macdonald kernels specialize to the graded character of exterior algebra of adjoint
representation, when evaluated at (q, t) = (−q, q2), and to the graded character of the
symmetric algebra over g when evaluated at (q, t) = (0, t) (c.f.r. [42], Sect. 1.2). Observe
now that �(q, t) is W -invariant; this implies that it can be expanded in terms of characters
of irreducible representations, obtaining an expression of the form

�(q, t) =
∑

μ∈�+
Cμ(q, t)χ(μ),

for certain formal series Cμ(q, t), indexed by dominant weights of g. In particular, when
specialized at (q, t) = (−q, q2) and at (q, t) = (0, t), the formal series Cμ(q, t) gives the
graded multiplicities of the representation Vμ in the exterior algebra and in the symmetric
algebra respectively.

Remark 4.7 ByTheorem 4.1, the polynomial Eλ(t) can be computed by determining the ratio
Cλ(q, t)/C0(q, t) and evaluating it at (0, t).

In [42] Stembridge proves that the formal series Cμ(q, t) satisfy some recurrences, reduc-
ing the problem of their explicit computation to solving a linear system of equations with
coefficients in C[q±1, t±1].
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Table 2 Weights of small representation for type B,C and D

Type B Type C Type D, n even Type D, n odd

ωi , i < n ω2k ω2k ω2k

2ωn ω1 + ω2k+1 2ωn−1, 2ωn ωn−1 + ωn

ω1 + ω2i+1 ω1 + ω2i+1

ω1 + ωn−1 + ωn ω1 + 2ωn−1, ω1 + 2ωn−1

We recall that it is possible to extend the definition of Cμ(q, t) to any weight μ by setting

Cμ(q, t) =
{
0 if μ + ρ is not regular,
(−1)l(σ )Cλ(q, t) if σ(μ + ρ) = λ + ρ , λ ∈ �+, σ ∈ W .

For short, if there exists σ such that σ(μ+ρ) = λ+ρ, with λ ∈ �+, we say that the weightμ
is conjugated to λ by σ . Moreover, if μ is conjugated to λ by σ , we say that (−1)l(σ )Cλ(q, t)
is the reduced form of Cμ(q, t). Sometimes a precise information about the sign of σ is not
needed in our reasoning; in this case we shortly say that μ is conjugated to λ.

Theorem 4.8 (Minuscule Recurrence, [42], Formula (5.14)) Fix a dominant weight λ and let
ω be aminuscule coweight (i.e. (ω, α) ∈ {0,±1} for every positive root α), then the following
relation holds:

k∑

i=1

Cwiλ(q, t)

⎛

⎝
∑

ψ∈Oω

(
t−(ρ,wiψ) − q(λ,ω)t (ρ,wiψ)

)
⎞

⎠ = 0. (4.5)

where, denoting by Wλ the stabilizer of λ in W, the w1, . . . , wk are minimal coset
representatives of W/Wλ and Oω is the orbit Wλ · ω.

Remark 4.9 Observe that if λ and μ are dominant weights and wλ is conjugated to μ, then
μ < λ. As a consequence, if we write the Cwiλ(q, t) appearing in Formula (4.5) in their
reduced form, in the minuscule recurrence there appear only Cμ(q, t) with μ dominant and
smaller than λ.

5 Small representations

The aim of this section is to present closed formulae for generalized exponents of certain
small representations in type B, C and D. In Table 2 we list the weights of non trivial small
representations in these three cases. More precisely, in Theorems 5.1, 5.2 and i5.3 we provide
closed expressions for the polynomials of generalized exponents for small representations
that are indexed by fundamental weights.

Theorem 5.1 Let λ be a small weight of the form λ = ω2k for the simple Lie algebra of
type Cn. Then:

Eλ(t) = t2k(n − 2k + 1)t2
(n − k + 1)t2

(
n

k

)

t2
. (5.1)
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Theorem 5.2 The polynomials of generalized exponents for small weight for the simple Lie
algebra of type Bn have the following closed expressions:

Eω2k (t) = tk
(
n

k

)

t2
, Eω2k+1(t) = tn−k

(
n

k

)

t2
, E2ωn (t) = tn−� n

2 	
(

n

� n
2 	
)

t2
, (5.2)

Theorem 5.3 Let λ be a small weight of the form λ = ω2k for the simple Lie algebra of
type Dn, then:

Eω2k (t) = tk
(tn−2k + 1)

(tn + 1)

(
n

k

)

t2
, (5.3)

Moreover, if n is odd, the weight ωn−1 + ωn is small and we have:

Eωn−1+ωn (t) = t� n
2 	(t + 1)

(tn + 1)

(
n

� n
2 	
)

t2
, (5.4)

Finally, if n is even, 2ωn−1 and 2ωn are small and the following formulae hold:

E2ωn−1(t) = E2ωn (t) = t
n
2

(tn + 1)

(
n
n
2

)

t2
, (5.5)

The proof of above theorems use and iterative reasoning, based on the fact that if λ is small
and λ′ < λ, then λ′ is small. In particular, a minimal non zero small weight is a dominant
root. The following remark provides the base step for our computations.

Remark 5.4 The following formulae are proved in [42], Theorem 4.1:

Cθ (q, t) = t − q

t − qth
Eθ (t)C0(q, t), Cθs (q, t) = t − q

t − qth
Eθs (t)C0(q, t) (5.6)

5.1 Proof of formulae in type C

In this section we give a proof of Theorem 5.1. Observe that such a theorem hold true if k = 1
because of Remark 4.5. In [16], Theorem 5.5, the following iterative formula for Cλ(q, t) is
achieved for weights of the form λ = ω2k :

Cω2(k+1) (q, t) = (t2(n−2k−1) − 1)(t2(n−k+1) − 1)(1 − qt2k−1)t2

(t2(n−2k+1) − 1)(t2(k+1) − 1)(1 − qt2(n−k)−1)
Cω2k (q, t). (5.7)

By Remark 4.7, evaluating Eq. (5.7) at q = 0 we obtain a recursive relation between
Eω2(k+1) (t) and Eω2k (t). Using Remark 5.4 for the base step, we obtain by induction that

Eω2(k+1) (t) = t2(t2(n−2k−1) − 1)(t2(n−k+1) − 1)

(t2(n−2k+1) − 1)(t2(k+1) − 1)
Eω2k (t)

= t2(t2(n−2k−1) − 1)(t2(n−k+1) − 1)

(t2(n−2k+1) − 1)(t2(k+1) − 1)

t2k(n − 2k + 1)t2
(n − k + 1)t2

(
n
k

)

t2

= t2(k+1)(n − 2k − 1)t2
(n − k)t2

(
n

k + 1

)

t2

and Eq. (5.1) is proved. We remark that similar but more complicated formulae can be
obtained for the other small weights in type C by making explicit the coefficients of the
equations in [16], Sect. 5.3.
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5.2 Proof of formulae in Type B

In type Bn the unique minuscule coweight is ε1. In Formula (4.5) we choose ω = ε1 and
λ = ωk with k < n or λ = 2ωn . The stabilizerWωi is isomorphic to Si ×Bn−i andWωi (ε1) =
{ε1, . . . , εi }. Analogously, W2ωn is isomorphic to Sn and W2ωn (ε1) = {ε1, . . . , εn}. Writing
all the Cμ(q, t) in their reduced form the recurrence can be rewritten as

∑

μ≤λ

�λ,n
μ (q, t)Cμ(q, t) = 0, (5.8)

for certain coefficients �λ,n
μ (q, t). We will refer to this form of the Formula (4.5) as the

reduced recurrence for Cλ(q, t). We recall that if λ is a small, then a dominant weight μ

smaller than λ in the dominance order is again small. In particular the weights smaller than
ωk are of the form ωh with h < k. From now, we denote by Ch the formal series Cωh (q, t)
and by�

k,n
h its coefficient�λ,n

μ (q, t) in the recurrence for λ = ωk . Moreover, if λ = 2ωn , we
use the notation Cn for C2ωn (q, t) and the coefficient of Ch(q, t) in the relative recurrence
will be �

n,n
h . Reasoning as in [16] and aiming to simplify recurrence (5.8), we want now

expand recursively the coefficients �
k,n
h .

Remark 5.5 Using explicit realization of fundamental weights and of ρ as presented in
Sect. 3.1, it is possible to check that a weight of the form wωk in Bn , with w ∈ W , is conju-
gated to ωh only if wωk = ε1 + · · · + εh + ν, where ν has the first h coordinates equal to 0
when written in the {εi } basis. In our realization, the root system Bn−h can be identified as the
root subsystem of Bn given by vectors of the form {±εi ± ε j }i< j≤n−h ∪{±ε1, . . . ,±εn−h}.
This identification corresponds to the immersion of Bn−h into Bn induced by the immersion
of the associated Dynkin diagrams. Under this identification ν can be thought of as weight
of the form w′ωk−h conjugated to 0 in Bn−h .

Example 5.6 Consider the weight ω4 in B6 and let ε3 the element of W that acts as the sign
change on the 3-rd coordinate. Then ε3ω4 = ω2 + ν there ν = −ε3 + ε4. Observe that ν +ρ

has coordinates ( 112 , 9
2 ,

5
2 ,

7
2 ,

3
2 ,

1
2 ) in terms of the {εi } basis. In particular s3(ν +ρ) = ρ and

ν is conjugated to zero.

Remark 5.7 It is immediate to check that wλ is conjugated to λ if and only if w ∈ Wλ. In
particular this implies that, if λ = ε1 + · · · + εk , then

�
k,n
k =

k∑

i=1

1 − qt2n−2 j+1

t
2n−2 j+1

2

= (1 − qt2n−k)(tk − 1)

t
2n−1
2 (t − 1)

The following Lemma, proved in [16], characterize the set �k,n
0 of weights of the form wωk

conjugated to 0 in Bn . In particular, it is possible to describe explicitly the coordinates of a
weight in �

k,n
0 with respect to the basis {ε1, . . . , εn}.

Lemma 5.8 ([16], Lemma 4.1) Let w ∈ W be such that wωk ∈ �
k,n
0 , then:

• if k is even,wωk has all the coordinates equal to zero except for k/2 pairs of consecutive
coordinates of the form (−1, 1) and it is conjugated to 0 by σ ∈ W of length k/2.

• if k is odd thenwωk has all the coordinates equal to zero, except for a choice of (k−1)/2
pairs of coordinates equal to (−1, 1) and for the last one that must be equal to −1. In
this case wωk is conjugated to 0 by by σ ∈ W of length (k − 1)/2 + 1.
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The cardinality of �
k,n
0 can be explicitly computed as a consequence of Lemma 5.8:

|�k,n
0 | =

⎧
⎪⎨

⎪⎩

(n− k
2

k
2

)
if k is even,

(n− k−1
2 −1

k−1
2

)
if k is odd.

Set

p(n, q, t) = t
2n−1
2 − qt−

2n−1
2 + t−

2n−3
2 − qt

2n−3
2 = (t − q)(1 + t2n−2)

t
2n−1
2

.

Lemma 5.9 The following relations between the coefficients �
k,n
h hold for h < k:

�
k,n
h = (−1)s�h,n

h

(
n − k + s

s

)
+ �

k−h,n−h
0 if k − h = 2s, (5.9)

�
k,n
h = (−1)s+1�

h,n
h

(
n − k + s

s

)
+ �

k−h,n−h
0 if k − h = 2s + 1 (5.10)

�
2s,n
0 = (−1)s p(n, q, t)

(
n − s − 1

s − 1

)
− �

2s−2,n−2
0 + �

2s,n−1
0 , (5.11)

�
2s+1,n
0 = (−1)s+1 p(n, q, t)

(
n − s − 2

s − 1

)
− �

2s−1,n−2
0 + �

2s+1,n−1
0 , (5.12)

Proof Equations (5.9) and (5.10) are direct consequences of Remark 5.5, where it is observed
that a weightwωk gives a contribution to�

k,n
h if it is of the form ε1+· · ·+εh+ν, where ν can

be thought as weight w′ωk−h conjugated to 0 in Bn−h . Moreover, Eqs. (5.11) and (5.12) can
be obtained observing that a weight ν = wωk contributing to�

k,n
0 is of the form−ε1+ε2+ν′

with ν′ conjugated to 0 in Bn−2 or of the form ν = (0, ν2, . . . , νn) in {εi }-expansion, where
ν′ = (ν2, . . . , νn) is a weight conjugated to 0 in Bn−1.

The above relations enable to simplify considerably the computations needed to prove our
formulae. In particular they are crucial for the proof, contained in Sect. 5.3), of the following
theorem. We denote by Ri and by Rn the reduced recurrences for Cλ(q, t), with λ = ωi and
λ = 2ωn respectively.

Theorem 5.10 There exists a family of integers {Ak,n
i }i≤k such that

k∑

i=1

Ak,n
i Ri = �

k,n
k Ck + 

1,n−k+1
0 Ck−1 +

∑

i=1


2,n−k+i+1
0 Ck−2i +

∑

i=2


2,i
0 Ck−2i+1 = 0

(5.13)

where the coefficients �
k,n
k and 

i,n
0 are defined by the formulae


1,n
0 = �

1,n
0 = − (t − q)tn−1

t
2n−1
2


2,n
0 = 

2,n−1
0 − p(n, q, t) = − (t − q)(t2n−1 − 1)

t
2n−1
2 (t − 1)

Observe that specializing the Eq. (5.13) at (q, t) → (−q, q2) one obtains the equation of
[16], Proposition 4.3 used to prove Reeder’s Conjecture in type B.

Remark 5.11 Dividing Eq. (5.13) by C0(q, t) we obtain a recursive relation between the
formal seriesCμ(q, t) = Cμ(q, t)/C0(q, t).We recall thatCμ(0, t) = Eμ(t) byRemark 4.7,
and consequently the specialization at q → 0 of Eq. (5.13) leads to a recursive relation
between polynomials of generalized exponents of small representations.
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Proof (of Theorem 5.2) We denote by Eh and En the polynomials Eωh (t) and E2ωn (t)
respectively. Set

bi = −tn−i+1(t2i−1 − 1), ck = tk − 1

Because of Remark 5.11, evaluating Eq. (5.13) at q = 0 and multiplying it by t
2n−1
2 (t − 1)

it is possible to obtain the relation

ck Ek +
� k
2 	∑

i=1

bn−k+i+1Ek−2i +
� k+1

2 	∑

i=1

bi Ek−2i+1 = 0.

We want now prove our formulae by induction. The base step comes from Remark 5.4 and
by formulae contained in Remark 4.5. Consequently, for the inductive step we have to prove
that the two identities

(t2s − 1)t s
(
n

s

)

t2
= (t2s − 1)E2s

= −
s−1∑

j=0

bn−s− j+1E2 j −
s−1∑

j=0

bs− j E2 j+1

=
s−1∑

j=0

t s+ j (t2(n−s− j)+1 − 1)E2 j +
s−1∑

j=0

tn−s+ j+1(t2(s− j)+1 − 1)E2 j+1

=
s−1∑

j=0

t s+ j (t2(n−s− j)+1 − 1)t j
(
n

j

)

t2
+

s−1∑

j=0

tn−s+ j+1(t2(s− j)+1 − 1)tn− j
(
n

j

)

t2

=
s−1∑

j=0

[
t s+2 j (t2(n−s− j)+1 − 1) + t2n−s+1(t2(s− j)+1 − 1)

](n
j

)

t2

= t s
s−1∑

j=0

t2 j
(
t2(n−2 j) − 1

)(n
j

)

t2
,

(t2s+1 − 1)tn−s
(
n

s

)

t2
+ b1E2s = (t2s+1 − 1)E2s+1 + b1E2s

= −
s−1∑

j=0

bs− j+1E2 j −
s−1∑

j=0

bn−s− j E2 j+1

=
s−1∑

j=0

[
tn+s+1(t2(n−s− j)+1 − 1) + tn−s+2 j (t2(s− j)+1 − 1)

](n
j

)

t2

= tn−s
s−1∑

j=0

t2 j
(
t2(n−2 j) − 1

)(n
j

)

t2
.

hold. Observe now that

(t2s+1 − 1)tn−s
(
n

s

)

t2
+ b1E2s = (t2s+1 − 1)tn−s

(
n

s

)

t2
+ b1t

s
(
n

s

)

t2
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= [
tn−s(t2s+1 − 1) − tn+s(t − 1)

] (n
s

)

t2

= tn−s(t2s − 1)

(
n

s

)

t2
,

and proving the two identities reduces in both cases to prove that for s > 0 we have

(t s − 1)

(
n

s

)

t
=

s−1∑

j=0

t j
(
tn−2 j − 1

)(n
j

)

t
. (5.14)

Identity (5.14) can be easily shown by induction on s. The case s = 1 is trivial and

(t s+1 − 1)

(
n

s + 1

)

t
=

s∑

j=0

t j
(
tn−2 j − 1

)(n
j

)

t

= t s(tn−2s − 1)

(
n

s

)

t
+

s−1∑

j=0

t j
(
tn−2 j − 1

)(n
j

)

t

= (tn−s − 1)

(
n

s

)

t
,

The equality now holds because
(

n

s + 1

)

t
= (n − s)t

(s + 1)t

(
n

s

)

t
.

5.3 Proof of Theorem 5.10

Firstly, we define iteratively the family of integers {Ak,n
j }. Set Ak,n

k = 1, for h ∈ {1, . . . , k−1}
we define

Ak,n
h = −

k∑

j=h+1

(−1)�
j−h+1

2 	
(
n − j + � j−h

2 	
� j−h

2 	
)
Ak,n
j (5.15)

Moreover, by convention we set Ak,n
h = 0 if h > k or if h ≤ 0. Using properties of binomials

and Eq. (5.15) it is possible to prove that the integers Ak,n
h satisfy nice iterative properties:

Lemma 5.12 (1) Ak,n
h+1 = Ak−1,n−1

h ,

(2) Ak,k
h = Ak−1,k−1

h + Ak−2,k−1
h ,

(3) Ak,n
h = Ak,n−1

h + Ak−2,n−1
h , if k < n.

We consider now the expression
∑k

j=0 A
k,n
i Ri . It can be written in the form

�
k,n
k Ck +

k−1∑

h=0


k,n
h Ch = 0, (5.16)

for some coefficients 
k,n
h that we are going to determine explicitly.

Proposition 5.13 For every h such that 0 < h < k the equality 
k,n
h = 

k−h,n−h
0 holds.
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Proof By definition we have that 
k,n
h = ∑k

j=h Ak,n
j �

j,n
h . Now we use Lemma 5.9 to

expand �
j,n
h :


k,n
h =

k∑

j=h+1

Ak,n
j

[
(−1)�

j−h+1
2 	

(
n − j + � j−h

2 	
� j−h

2 	
)

�
h,n
h + �

j−h,n−h
0

]
+ Ak,n

h �
h,n
h

=
⎡

⎣
k∑

j=h

(−1)�
j−h+1

2 	
(
n − j + � j−h

2 	
� j−h

2 	
)
Ak,n
j

⎤

⎦�
h,n
h +

k∑

j=h+1

Ak,n
j �

j−h,n−h
0

using Eq. (5.15) and setting t = j − h we have

=
k−h∑

t=1

Ak,n
t+h�

t,n−h
0

and now by Lemma 5.12

=
k−h∑

t=1

Ak−h,n−h
t �

t,n−h
0 = 

k−h,n−h
0 .

��
Remark 5.14 By Eq. (5.11) we know that �2,n

0 = −p(n, q, t) + �
2,n−1
0 . Moreover, observe

that �1,n
0 = �

1,n−1
0 and A2,n

1 = A2,n−1
1 = 1. We consequently obtain


2,n
0 = �

2,n
0 + �

1,n
0 = −p(n, q, t) + �

2,n−1
0 + �

1,n−1
0 = −p(n, q, t) + 

2,n−1
0

Proposition 5.15 If k > 2, the following relations between the coefficients 
k,n
0 hold:


k,k
0 = 

k−1,k−1
0 + 

k−2,k−1
0 − 

k−2,k−2
0


k,n
0 = 

k,n−1
0 − k−2,n−2 + 

k−2,n−1
0 for k < n

Proof We consider 
k,n
0 = ∑k

j=1 A
k,n
j �

j,n
0 end expand �

j,n
0 according to Lemma 5.9. We

obtain


k,n
0 =

k∑

j=2

Ak,n
j

[
(−1)�

j+1
2 	
(
n − � j+1

2 	 − 1

� j
2 	 − 1

)
p(n, q, t) − �

j−2,n−2
0 + �

j,n−1
0

]
+ Ak,n

1 �
1,n
0

=
⎡

⎣
k∑

j=2

(−1)�
j+1
2 	
(
n − � j+1

2 	 − 1

� j
2 	 − 1

)
Ak,n
j

⎤

⎦ p(n, q, t) −
k∑

j=3

Ak,n
j �

j−2,n−2
0 +

k∑

j=1

Ak,n
j �

j,n−1
0

Observe now that Eq. (5.15) implies

k∑

j=2

(−1)�
j+1
2 	
(
n − � j+1

2 	 − 1

� j
2 	 − 1

)
Ak,n
j = 0.

Furthermore using Lemma 5.9 and setting t = j − 2 we have


k,n
0 =

k∑

j=1

Ak,n
j �

j,n−1
0 −

k∑

j=3

Ak,n
j �

j−2,n−2
0
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=
k∑

j=1

[
Ak,n−1
j + Ak−2,n−1

j

]
�

j,n−1
0 −

k−2∑

t=1

Ak,n
t+2�

t,n−2
0

=
k∑

j=1

Ak,n−1
j �

j,n−1
0 +

k−2∑

j=1

Ak−2,n−1
j �

j,n−1
0 −

k−2∑

t=1

Ak−2,n−2
t �

t,n−2
0

= 
k,n−1
0 + 

k−2,n−1
0 − 

k−2,n−2
0 .

and analogously


k,k
0 =

k∑

j=2

Ak,k
j

[
(−1)�

j+1
2 	
(
k − � j+1

2 	 − 1

� j
2 	 − 1

)
p(k, q, t) − �

j−2,k−2
0 + �

j,k−1
0

]
+ Ak,k

1 �
1,k
0

=
⎡

⎣
k∑

j=2

(−1)�
j+1
2 	
(
k − � j+1

2 	 − 1

� j
2 	 − 1

)
Ak,k
j

⎤

⎦ p(k, q, t) −
k∑

j=3

Ak,k
j �

j−2,k−2
0 +

k−1∑

j=1

Ak,k
j �

j,k−1
0

=
k−1∑

j=1

[
Ak−1,k−1
j + Ak−2,k−1

j

]
�

j,k−1
0 −

k−2∑

t=1

Ak−2,k−2
t �

j,k−2
0

= 
k−1,k−1
0 + 

k−2,k−1
0 − 

k−2,k−2
0 .

Making explicit computations for n = 2, 3, it is possible to prove that 
2,2
0 = 

3,3
0 .

Moreover observe that 1,n
0 = 

1,n+1
0 for every n > 1. As a consequence of Proposition 5.15

we obtain:

Corollary 5.16 The following relations hold:


k,k
0 =

{

k−2,k−1
0 if k is even,


k−1,k−1
0 if k is odd.


k,n
0 =

{

k,n−1
0 if n > k > 2 and k is odd,


k−2,n−1
0 if n > k > 2 and k is even.

Theorem 5.10 comes directly by Remark 5.14 and iterating the relations of Corollary 5.16.

5.4 Proof of formulae in type D

We denote by Ch(q, t) the formal series Cω2h (q, t). Moreover, if n = 2k + 1 (resp. n = 2k)
we denote by Ck(q, t) the formal series Cωn−1+ωn (q, t) (resp. C2ωn (q, t)). Our formulae
can be obtained dealing with the non specialized version of Eq. 4.4 of [17]. The reduced
recurrence Rk for Ck(q, t) can be written in the form

Rk =
∑

h≤k

�
k,n
h (q, t)Ch(q, t) = 0. (5.17)

for certain coefficients �
k,n
h (q, t). Reasoning as in Remark 5.7, a non specialized analogue

of Formula 4.5 in [17] can be achieved:

�
k, n
k (q, t) =

⎧
⎨

⎩

2(t2k−1)(1−qt2k−1)

t2k−1(t−1)
if n = 2k,

(t2k−1)(1−qt2(n−k)−1)

tn−1(t−1)
otherwise. .
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Set now

bk,n =

⎧
⎪⎨

⎪⎩

(t−q)(t2k−1)
tk (t−1)

if n = 2k,

(t−q)(tn−1)(tn−2k+1)
tn−k (t−1)

otherwise.

The next Proposition is a non specialized version of Proposition 4.6 of [17].

Proposition 5.17 The following recursive relation hold:

�
k,n
k (q, t)Ck(q, t) −

k∑

i=1

bi,n−2(k−i)Ck−i (q, t) = 0 (5.18)

Using Eq. (5.18) and Remark 5.4 as base step, it is possible to prove inductively Theorem 5.3.

Proof (of Theorem 5.3) As observed in Remark 5.11, the formal series Ck(q, t) =
Ck(q, t)/C0(q, t) satisfies the Recurrence (5.18). Specializing Eq. (5.18) at q = 0 and
recalling that Eω2k (t) = Ck(0, t), Formulae (5.3), (5.4) and (5.5) can be obtained recursively
proving that

(t2k − 1)

tn−1(t − 1)

tk(tn−2k + 1)

(tn + 1)

(
n

k

)

t2
= (t2k − 1)

tn−1(t − 1)
Ck(0, t)

=
k−1∑

i=1

tk+i (tn−2i − 1)(tn−2k + 1)

tn−1(t − 1)
Ci (0, t)

=
k−1∑

i=1

tk+i (tn−2i − 1)(tn−2k + 1)

tn−1(t − 1)

t i (tn−2i + 1)

(tn + 1)

(
n

i

)

t2

= tk(tn−2k + 1)

tn−1(t − 1)(tn + 1)

k−1∑

i=1

t2i (t2(n−2i) − 1)

(
n

i

)

t2
.

Again we reduced to Identity (5.14) that we just proved in Sect. 5.2. ��

5.5 Proof of Proposition 5.17

The proof is analogue to the proof of Proposition 4.6 contained in Sect. 5 of [17]. Set

r(n, q, t) = t (n−1) − qt−(n−1) + t−(n−2) − qt (n−2) = (t − q)
(
t2n−3 + 1

)

tn−1

We denote by �
λ, n
0 the set of weights of the form wλ conjugated to 0. If λ = ω2k we will

use the notation �
k, n
0 Coherently with our previous notations, if n = 2k + 1 (resp. n = 2k)

we denote by �
k, n
0 the set ow weights of the form w(ωn−1 +ωn) (resp. w(2ωn)) conjugated

to 0. We recall the following results by [17], Sect. 4.1:

Remark 5.18 ([17],Remark4.3)Theweights giving non zero contribution to�
k,n
h , k > h > 0

are of the form e1+· · ·+e2 h +ν, where ν has the first 2h coordinates equal to 0. Considering
the immersion of Dn−2h → Dn induced by the Dynkin diagrams, ν can be then identified
with a weight in �

k−h,n−2h
0 .
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Lemma 5.19 ([17], Lemma 4.5) Set λ = ω2k , 2k < n or λ = ωn−1 + ωn, n = 2k + 1 and
let w ∈ W be such that wλ is conjugated to 0. Then wλ is of one of the following form:

(1) The 2k non zero coordinates of wλ are pair of consecutive coordinates
((wλ)( j), (wλ)( j)+1) of the form (−1, 1).

(2) There are 2(k − 1) non zero coordinates that are pair of consecutive coordinates
((wλ)( j), (wλ)( j)+1) of the form (−1, 1) and the latter two are equal to −1.

In both cases there exists an element σ ∈ W of length l(σ ) = k such that σ(wλ + ρ) = ρ.

Remark 5.20 Consider μ ∈ �
k, n
0 and denote by εn the sign change on the n-th coordinate.

• If n = 2k then μ must be of the form −e1 + e2 + ν with ν ∈ �
k−1,2k−2
0 ,

• If n = 2k + 1 then μ must be of the form −e1 + e2 + ν with ν ∈ �
k−1,2k−1
0 or

μ = (0, μ2, . . . , μn) where μ′ = (μ2, . . . , μn) ∈ �
k,2k
0 or εnμ

′ ∈ �
k,2k
0 ,

• If n �= 2k, 2k + 1 then μ must be of the form −e1 + e2 + ν with ν ∈ �
k−1,n−2
0 or

μ = (0, μ2, . . . , μn) where μ′ = (μ2, . . . , μn) ∈ �
k,n−1
0 .

The above considerations lead to non specialized versions of recursive relations (4.6), (4.7),
(4.8) and (4.9) in [17]:

�
k, n
h (q, t) = (−1)k−h�

h,n
h (q, t)|�k−h,n−2h

0 | + �
k−h, n−2h
0 (q, t). (5.19)

�
k,2k
0 (q, t) = (−1)k

k∑

i=1

r(2i, q, t) = (−1)kr(2k, q, t) − �
k−1,2k−2
0 (q, t). (5.20)

�
k, 2k+1
0 (q, t) = (−1)kr(2k + 1, q)|�k−1,2k−1

0 | − �
k−1,2k−1
0 (q, t) + 2�k,2k

0 (q, t),

(5.21)

�
k, n
0 (q, t) = (−1)kr(n, q, t)|�k−1,n−2

0 | − �
k−1,n−2
0 (q, t) + �

k,n−1
0 (q, t). (5.22)

where

|�k,n
0 | =

{
1 if λ = 2ωn or if λ = 0
n
k

(n−k−1
k−1

)
if λ = ω2k and 2k < n or λ = ωn−1 + ωn and n = 2k + 1.

As in Sect. 5 of [17], define a family of integers Ak.n
h in the following way:

Ak,n
h =

⎧
⎨

⎩

0 if h > k or h ≤ 0,
1 if h = k,
−∑k

i=h+1(−1)i−h |�i−h,n−2h
0 |Ak,n

i otherwise.
(5.23)

and consider
k∑

i=1

Ak,n
i Ri = �

k,n
k (q, t)Ck(q, t) −

k−1∑

i=0


k,n
i (q, t)Ci (q, t). (5.24)

Performing the same computation as in Proposition 5.2 of [17] it is possible to prove that

k,n
h (q, t) = 

k−h,n−2 h
0 (q, t) if k > h > 0. Analogously the following relations hold:


k,2k
0 (q, t) = −

k+1∑

j=2

r( j, q, t), 
k,2k+1
0 (q, t) = 2k,2k

0 (q, t) − r(k + 2, q, t),


k,n
0 (q, t) = 

k,n−1
0 (q, t) − r(n − k + 1, q, t).

Now it is straightforward to show that 
k,n
0 (q, t) = bk,n and then 

k−h,n−2k
0 (q, t) =

bk−h,n−2h .
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5.6 Open questions about generalized exponents and small representations

Some natural questions arise as consequences of our results. Firstly, as a consequence of
Theorem 2.3, generalized exponents of small representations are related to the so called
fake degrees, i.e. degrees of generators (as S(h)W -module) of isotypic components of W -
representations in S(h). There exists an ample literature about fake degrees and many
formulae to obtain them in terms of suitable combinatorial statistics (see [33] for a com-
plete survey about the topic and [2, 7, 8, 19, 28, 37, 41] for more specific results). It could
be interesting to find a purely combinatorial proof of Formulae (5.1), (5.2), (5.3), (5.4) and
(5.5).

Moreover, a closer analysis of formulae proved in [16] and [17] for graded multiplici-
ties of small representations in the exterior algebra, underlines some similarities with the
results contained in [13] and [15]. In fact, Theorem 2.6 and its analogous version for lit-
tle adjoint representation are suggested by the following factorizations of P(g,�g, q) and
P(Vθs ,�g, q):

P(g,�g, q) = (1 + q−1)

n−1∏

i=1

(q2ei+1 + 1)Eθ (q
2) (5.25)

P(Vθs ,�g, q) = (1 + q−1)

n−1∏

i=1

(q2ei+1 + 1)Eθs (q
2) (5.26)

In particular, the authors of [13] and [15] noticed that the factor
∏n−1

i=1 (q2ei+1 + 1) is the
Poincarè polynomial of the exterior algebra over the first n − 1 generators P1, . . . , Pn−1 of
the algebra of invariants in �g. A direct computation shows that similar factorizations can
be achieved for polynomials of graded multiplicities of certain small representations. As an
example, comparing the results exposed in Theorem 5.2 with formulae proved in [16], in
type Bn the polynomials for graded multiplicities can be rearranged as

P(Vω2s ,�g, q) = (1 + q−1)

n−s∏

i=1

(1 + q2ei+1)

s−1∏

i=1

(1 + q2ei+1)Eω2s (q
2),

P(Vω2s+1 ,�g, q) = (1 + q−1)

s∏

i=1

(1 + q2ei+1)

n−s−1∏

i=1

(1 + q2ei+1)Eω2s+1(q
2).

Analogously, using Theorem 5.1, in type Cn it is possible to obtain the factorization:

P(Vω2k ,�g, q) = (1 + q−1)

n−k∏

i=1

(q2ei+1 + 1)
k−1∏

i=1

(q2ei+1 + 1)Eω2k (q
2).

Consequently, it is natural to ask if there exist examples of small representations Vλ, differ-
ent from Vθ and Vθs , such that the module Homg(Vλ,�g) has a structure of free module
over a suitable exterior algebra of invariants, with degrees prescribed by factorizations of
P(Vλ,�g, q) similar to the ones in Formulae (5.25) and (5.26).
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