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Abstract
We establish a priori Lipschitz estimates for equations with mixed local and nonlocal diffu-
sion, coercive gradient terms and unbounded right-hand side in Lebesgue spaces through an
integral refinement of the Bernstein method. This relies on a nonlinear, nonlocal and varia-
tional version of the Bochner identity that involves the adjoint equation of the linearization
of the initial problem.
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1 Introduction

The Bernstein method [7] is nowadays a classical technique to obtain gradient estimates for
second order elliptic equations [26]. The core idea behind this approach is extremely simple
and relies on the so called Bochner identity for the Laplacian on the Euclidean space RN

�|∇u|2 = 2|D2u|2 + 2∇u · ∇�u.

This in particular shows that if u is a solution to an elliptic/parabolic equation on some domain
of the Euclidean space, thenw = |∇u|2 is a subsolution to an elliptic/parabolic equation. As a
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consequence, the gradient bound follows from the maximum principle, whenever one knows
a priori that ∇u is bounded on the boundary of the domain, which is typically a consequence
of the existence of barrier-like functions, cf [26]. This nonvariational technique to obtain
global (and even local) bounds based on the maximum principle has been fruitfully extended
to many nonlinear PDEs, such as quasilinear elliptic equations [26], fully nonlinear second
order equations [12], semilinear equations (with superlinear gradient growth), even driven
by the p-Laplacian, see e.g. [33, 40] and the more recent work [37], integro-differential
problems, both linear and (fully) nonlinear, see [11]. This approach is also the cornerstone
to deduce quite different qualitative and quantitative properties for elliptic and parabolic
equations, such as differential Harnack estimates and Liouville theorems, see [24, 34, 35].

One of the main drawbacks of the standard Bernstein method relies on the regularity
requirements necessary to carry out the computations. Since third derivatives appear in the
Bochner identity, u needs to be smooth enough (e.g. of class C3), and hence only a priori
estimates can be derived. Then one has to find a suitable regularization/approximation of
the equation having smooth enough solutions to really obtain the regularity estimate after
passing to the limit, see e.g. [18, Remark 3], or insteadwork at the level of difference quotients
starting with suitable weak solutions, cf [16].

This difficulty was partially circumvented through the introduction of the so-called weak
Bernstein method introduced by Barles [2, 3] in the realm of fully nonlinear equations, which
consists in shifting the attention, after a change of variable, to the maximum of the function

(x, y) �−→ u(x) − u(y) − L|x − y| , (x, y) ∈ � × �,

� being the state space. The idea is to prove that if it is achieved when x = y for L large
enough, then |∇u| ≤ L . The previous idea basically corresponds to look at the equation
satisfied by |∇u|2, and the structure conditions are similar to those required to run the classical
Bernstein argument for nonlinear elliptic equations. There are, among others, three peculiar
features of thismethod: it does not require regular solutions (in particular it applies to viscosity
solutions), it does not need strong ellipticity, being applicable to problems with fractional
or degenerate diffusion [5, 13], and it allows to treat gradient terms with arbitrary growth.
Nonetheless, it still requires f ∈ W 1,∞, as in the standard Bernstein argument.

Another approach in the framework of viscosity solutions based again on a slightly dif-
ferent doubling variables method has been introduced by Ishii and Lions [31] to obtain Cα ,
0 < α ≤ 1, estimates: this method takes advantage of the ellipticity of the diffusion to control
the coercivity of the gradient term, being particularly designed for problems with first-order
terms below the natural growth and Hölder or bounded coefficients, cf Assumption (3.16)
in [31], see e.g. [4, 32] and also [22, 36, 38] for further developments. A general reference
discussing both these procedures to get gradient bounds in the context of viscosity solutions
is the paper by Barles and Souganidis [6].

Viscosity solutions’ techniques have been refined for the application to problems with
superquadratic gradient growth in [13]. Nevertheless, both these methods have a drawback in
terms of the regularity of the data. Being based on the notion of viscosity solution, they rely on
themaximumprinciple and they require at least continuous orLipschitz data.Albeit the notion
of viscosity solution admits variants that allow to encompass discontinuous Hamiltonians
with merely summable data (at least when dealing with local terms), no technique seems
available to derive gradient bounds for problems with fractional diffusion, strongly coercive
gradient terms (especially in the supernatural regime) and data in Lq .

To this aim, different methods have been explored when the equation has “ingredients”
belonging to Lebesgue spaces. Such techniques, usually named integral Bernstein methods,
are again based on delicate integral refinements of the Bochner identity and started with
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the work by Lions [34]. Equivalently, they can be formulated at the level of the variational
formulation of the equation, choosing a p-Laplacian of suitable order as a test function. These
integral approaches have been extendedmore recently in [18] (see also the references therein),
in the study of nonlinear Calderón–Zygmund estimates for elliptic problems with superlinear
gradient terms. They have been used even in connection with p-Laplacian problems without
the presence of first-order terms [14, 37]. Most of these integral techniques for nonlinear
equations with power-growth terms have in common the use of the so-called Bakry–Émery
curvature dimensional inequality [1], that in R

N reads as

|D2u|2 ≥ 1

N
(�u)2, (1)

and it is a consequence of the Cauchy–Schwarz inequality, cf [24, Definition 20.7]. This
inequality is, among others, a powerful tool to obtain logarithmic gradient estimates for
positive harmonic functions, and hence the Harnack inequality. In the nonlinear setting, it is
crucial to handle nonlinearitieswith superlinear gradient growth, at least for elliptic problems.
Indeed, if u solves −�u + |∇u|γ = f (x), γ > 1, then (1) combined with the algebraic

inequality (a − b)2 ≥ a2
2 − 2b2, a, b ∈ R, imply

|D2u|2 ≥ |∇u|2γ
2N

− 2

N
f 2,

which allows to gain an additional degree of coercivity respect to |∇u|2 through the term
|∇u|2γ and conclude the gradient bound. This crucial and deep step has (once more) a
drawback: it does not apply neither to equations involving fractional operators (even in the
stationary case) nor to evolution equations with time-dependent source terms belonging to
Lebesgue spaces. Indeed, as for the latter, if u solves ∂t u − �u + |∇u|γ = f (x, t), then (1)
implies the presence of a term involving a time-derivative term that can be absorbed only
when one knows a priori that ∂t u ≥ −C . For instance, this is the case when f = f (x) or
even when ∂t f (x, t) is essentially bounded or at least belongs to some Lebesgue space.

The case of the presence of a fractional diffusion is evenworse. In this setting the fractional
Bochner identity, cf [20, equation (2.10)], replaces |D2u|2 with the nonlocal term

∫ |∇u(x, t) − ∇u(x + y, t)|2
|y|N+2s dy,

which however does not allow to deduce a fractional version of (1). Actually, whether an
inequality like (1) (for a possibly different constant) holds for the fractional Laplacian was
raised in [24, equation (20.14)], and recently answered negatively in [41], showing thus that
some new technique with respect to the “classical” integral Bernstein approach is needed to
obtain gradient bounds for fractional equations with merely integrable data.

The aim of this note is thus to propose a new Bernstein-type argument to prove Lipschitz
estimates that avoids the use of (1), namely the gain of (additional) coercivity by plugging the
equation, to deduce gradient bounds in the aforementioned “negative” situations, i.e. when the
equation is parabolic and/or it presents a nonlocal diffusive term with also unbounded terms
in Lebesgue spaces. This would imply existence and uniqueness of solutions as a byproduct
through the contraction mapping principle combined with a continuation argument, see [15].

We will focus on the Cauchy problem (for simplicity posed on the N -dimensional flat
torus) {

∂t u + Lu + H(x,∇u) = f (x, t) in QT := T
N × (0, T ),

u(x, 0) = u0(x) in T
N ,

(2)
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where L is a diffusion operator defined by

L := −ε� + μ(−�)s

when ε, μ > 0. Such mixed diffusive operators have received an increasing attention during
the last years, see e.g. the series of works by Biagi–Dipierro–Valdinoci–Vecchi [8, 9] and the
recent one by De Filippis–Mingione [21]. The achievement of L∞ gradient bounds will rely
heavily on the analysis of the regularity of solutions to the dual equation of the linearization
of (2), and it is largely inspired by a method introduced by Evans [23] to study gradient shock
structures of first-order Hamilton–Jacobi equations with non-convex Hamiltonians. Here, we
consider {

−∂tρ + L∗ρ − div(Hp(x,∇u)ρ) = 0 in Qτ := T
N × (0, τ ),

ρ(x, τ ) = ρτ (x) in T
N ,

(3)

where Hp stands for the derivative of H with respect to the second entry and

L∗ := −ε� + μ(−�)s .

We emphasize that such an approach has been recently implemented for viscous Hamilton–
Jacobi equations with coercive gradient terms in [16], from which we borrow most of the
ideas used in this note. In particular, we exploit the regularizing effect of both the local and the
first-order term, and hence the method can be considered of nonperturbative type, whilst the
nonlocal one acts only as a perturbation. The main idea to derive the gradient bound will be
based on a variational nonlocal version of a (nonlinear) Bochner identity. Indeed, if u solves
(2), straightforward computations lead to the following identity satisfied by w = 1

2 |∇u|2:

∂tw(x, t) + Lw + ε|D2u(x, t)|2 + μ

2

∫
TN

|∇u(x, t) − ∇u(x + y, t)|2K (y) dy

+Hp(x,∇u(x, t)) · ∇w(x, t)

+Hx (x,∇u(x, t)) · ∇u(x, t) = ∇ f (x, t) · ∇u(x, t),

where K is the kernel of the fractional Laplacian on the torus, cf [39]. Then, the central point
is to test the previous identity for w against the function ρ solving the dual problem (3), see
Lemma6.1, and handle all the integral terms through a delicate interplay between integrability
estimates for transport equations, Sobolev and Young’s inequalities. Similar duality methods
were previously used in various contexts for local problems, see e.g. [29, 42], and even to
deduce semiconcavity and Lipschitz bounds for equations with mixed diffusion and regular
data in [15] in the context of parabolic fractional Mean Field Games. This procedure applies,
with suitable modifications, even to stationary problems of the form

Lu + u + H(x,∇u) = f (x) in T
N

through the study of the regularity properties of its dual counterpart

L∗ρ + ρ − div(Hp(x,∇u)ρ) = 0 in T
N ,

see e.g. [27]. Moreover, the technique of the present paper applies with few modifications to
problems driven by the more general local-nonlocal operator

LA,b,c,su = −Tr(A(x, t)D2u) + b(x, t) · Du + c(x, t)u + (−�)su,

under suitable regularity assumptions on the coefficients, and even to equations with more
general integro-differential operators for which a duality theory holds, cf [25]. We emphasize
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once more that, though one expects the same results of the case of a local diffusion, being
the dominating part of the diffusive term, obtaining a gradient estimate through the standard
methods, such as the Bernstein one, is by nomeans immediate even for the stationary problem
involving the mixed operator.

We mention that refinements of the Bernstein technique in the nonlocal setting have been
proposed quite recently in the manuscript [11], which develops the Bernstein method for
integro-differential equations (even fully nonlinear) without lower-order terms, and also in
[19, 20] to study gradient bounds for solutions to some different nonlocal models. A recent
study that provides oscillation estimates through viscosity solutions’ methods can be found
in [36]. Nonetheless, we believe that such formulations do not allow to treat problems with
power-growth nonlinearities and Lq data as those appearing in the PDEs of the present paper,
being of nonvariational nature. We also mention the possible application of our techniques to
study regularity properties for some nonlocal problems, where a gradient nonlinearity with
polynomial growth appears, such as those arising in combustion theory [30] driven by the
operator −� − (−�)s , that will be the matter of future research.

Plan of the paper. Section 2 is devoted to state the assumptions and the main results of the
paper. Section 3 provides some preliminary algebraic identities to implement the Bernstein
argument. Section 4 concerns regularity properties of transport diffusion equations with
general velocity field b driven by the mixed operator −� + (−�)s . Section 5 contains some
estimates for solutions to (4) via the results in Sect. 4. Section 6 is devoted to the proof of
the main result.

2 Main result

Throughout this manuscript, the state space will be T
N , the N -dimensional flat torus. We

denote by L p(TN ) the space of all measurable and periodic functions on R
N belonging to

L p
loc(R

N ), endowed with the norm ‖ · ‖p = ‖ · ‖L p((0,1)N ). For positive μ ∈ R,Wμ,p(TN ) is
the standard fractional Sobolev space of functions on the flat torus, while Hμ

p (TN ) denotes

the Bessel potential space, i.e. the space of distributions u such that (I − �)
μ
2 u ∈ L p(TN ).

For any time interval (0, t) ⊆ R, let Qt := T
N × (0, t). For any p ≥ 1, we denote by

W 2,1
p (Qt ) the space of functions u such that ∂rt D

β
x u ∈ L p(Q) for all multi-indices β and r

such that |β| + 2r ≤ 2, endowed with the norm

‖u‖W 2,1
p (Qt )

=
⎛
⎝

∫∫
Qt

∑
|β|+2r≤2

|∂rt Dβ
x u|pdxdt

⎞
⎠

1
p

.

Similarly, the space W 1,0
p (Qt ) is equipped with the norm

‖u‖W 1,0
p (Qt )

:= ‖u‖L p(Qt ) +
∑
|β|=1

‖Dβ
x u‖L p(Qt ) .

We define the spaceH1
p(Qt ) as the space of functions u ∈ W 1,0

p (Qt ) with ∂t u ∈ (W 1,0
p′ (Q))′

and norm

‖u‖H1
p(Qt )

:= ‖u‖W 1,0
p (Qt )

+ ‖∂t u‖
(W 1,0

p′ (Qt ))′ .
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We consider the following Cauchy problem{
∂t u + Lu + H(x,∇u) = f (x, t) in QT ,

u(x, 0) = u0(x) in T
N .

(4)

Here, without loss of generality, we suppose ε, μ = 1 and consider the diffusion operator

L := −� + (−�)s,

s ∈ (0, 1).

We will also denote by Hx and Hp the derivatives of H with respect to the first and second
entry respectively. Moreover, we assume that H ∈ C1(TN × R

N ) is convex and satisfies

there exist constants γ > 1 andCH > 0 such that

C−1
H |p|γ − CH ≤ H(x, p) ≤ CH (|p|γ + 1),

Hp(x, p) · p − H(x, p) ≥ C−1
H |p|γ − CH ,

|Hx (x, p)| ≤ CH (|p|γ + 1),

C−1
H |p|γ−1 − CH ≤ |Hp(x, p)| ≤ CH |p|γ−1 + CH ,

(H)

and f will be some source term controlled in some space-time Lebesgue class Lq(QT ), for
some suitable q > 1. Our main result shows the preservation of the Lipschitz regularity in
the equation via a quantitative bound.

Theorem 2.1 Suppose that

(i) s ∈ (0, 1);
(ii) H ∈ C1(TN × R

N ) and satisfies (H);
(iii) f ∈ C1(QT );
(iv) u0 ∈ W 1,∞(TN ).

Let

q >

{
N + 2 if 1 < γ ≤ 3
(N+2)(γ−1)

2 if γ > 3.
(5)

Then, there exists a constant C depending on q, N , T , s, γ,CH , ‖u0‖W 1,∞(TN ), ‖ f ‖Lq (QT )

such that every smooth solution to (4) satisfies

‖u(·, t)‖W 1,∞(TN ) ≤ C, t ∈ [0, T ].
Let us stress that, though we require f ∈ C1(QT ), the gradient bound depends only on

the summability of f ∈ Lq
x,t , so it can be regarded as an a priori estimate. In particular, one

can avoid to impose f ∈ C1(QT ) implementing a scheme for strong solutions belonging to
W 2,1

q (QT ) = {∂t u, u,∇u, D2u ∈ Lq(QT )}: this can be done using a test function argument
as detailed in Remark 6.2, cf [18], or using a procedure through difference quotients [16],
which in a sense avoids the differentiation of the equation. It is worth remarking that when the
source term is essentially bounded, i.e. f ∈ L∞(QT ), the condition on the summability (5)
holds, and the results appear to be new even in this framework. Indeed, as already discussed,
Lipschitz bounds from the theory of viscosity solutions require the right-hand side of the
equation to be at least continuous and time-independent or evenmore regular (e.g. Lipschitz),
so that an estimate on ∂t u readily follows by the maximum principle. We finally emphasize
that a regularity estimate starting from a continuous initial datum and suitable weak solutions
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can be obtained working at the level of difference quotients, as already done first in [16] for
Lipschitz regularity and then in [17, 28] for Hölder regularization properties.

We conclude by saying that this nonlinear duality method readily leads to a new proof of
the gradient bound for strong solutions to an equation without the local diffusion term (i.e.
with ε = 0)when one imposes f ∈ L∞(0, T ;W 1,∞(TN )), which is a classical assumption in
the theory of viscosity solutions. This provides an alternative method of proof of the gradient
bounds in [5, Section 3] (although in a stronger framework than the viscosity one and for
viscous problems). Still, even when f ∈ Lq(0, T ;W 1,q(TN )) the results would be new,
as the assumptions on the right-hand side can be considered as intermediate between those
typically assumed to implement the weak Bernstein argument and the Ishii-Lions method,
see Remark 6.3.

3 Preliminary results

For s ∈ (0, 1) and u ∈ C∞(TN ) we recall that the following pointwise identity holds (cf
[39])

(−�)su = P.V.
∫
TN

(u(x) − u(x + y))K (y) dy,

where

K (y) = cN ,s

∑
k∈ZN

1

|x − 2πk|N+2s , x ∈ T
N , x = 0

and cN ,s is a normalizing positive constant depending on N , s, see [39] for the definition.
The main result needed to implement our Bernstein-type estimate is the following:

Proposition 3.1 If u is a smooth solution to (4), then the evolution of w = 1
2 |∇u(x, t)|2 is

described by the equation

∂tw(x, t) − �w + (−�)sw + |D2u(x, t)|2

+1

2

∫
�

|∇u(x, t) − ∇u(x + y, t)|2K (y) dy

+Hp(x,∇u(x, t)) · ∇w(x, t) + Hx (x,∇u(x, t)) · ∇u(x, t)

= ∇ f (x, t) · ∇u(x, t) in � × (0, T ) (6)

equipped with the initial condition w(x, 0) = 1
2 |∇u(x, 0)|2, where � = T

N or RN and

|D2u(x, t)|2 = ∑N
i, j=1(∂xi x j u)2.

Before proving this, we need the following Bochner (pointwise) identity for the mixed
local-nonlocal operator −� + (−�)s . This extends an identity already pointed out in [20,
equation (2.10)].

Lemma 3.2 Let w(x, t) = 1
2 |∇u(x, t)|2. Then w satisfies the identity

�w(x, t) − (−�)sw(x, t) = ∇u(x, t) · ∇(�u(x, t)) + ∇u(x, t) · ∇(−(−�)su(x, t))

+|D2u(x, t)|2+ 1

2

∫
�

|∇u(x, t)−∇u(x+y, t)|2K (y) dy,

(7)

where � = T
N or RN .
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Proof Standard algebraic computations give

∂x j w =
N∑
i=1

∂xi u∂xi x j u ; ∂x j x j w =
N∑
i=1

[(∂xi x j u)2 + ∂xi u∂xi x j x j u],

so, summing over j we have

�w(x, t) = |D2u(x, t)|2 + ∇u(x, t) · ∇�u(x, t).

Moreover, from [19, Proposition 2.1] or [24, Lemma 20.2] for a sufficiently smooth function
v, we have

1

2
�s(v2(x, t)) = v(x, t)�sv(x, t) + 1

2

∫
�

(v(x, t) − v(x + y, t))2K (y) dy.

Applying the above identity to any directional derivative v = ∂eu, we get the conclusion
after summing the obtained expressions.

Proof of Proposition 3.1 It is enough to differentiate (4) with respect to x j , multiply the result-
ing equation by ∂x j u, taking the sums for j = 1, ..., N and finally use (7).

We end this section with a maximal Lq -regularity property for the heat equation with
mixed diffusion.

Lemma 3.3 Let q > 1, V ∈ Lq(QT ) and w0 ∈ W 2− 2
q ,q

(QT ). Then, there exists a unique
strong solution w ∈ W 2,1

q (QT ) of the evolution problem
{

∂tw − �w + (−�)sw = V (x, t) in QT := T
N × (0, T ),

w(x, 0) = w0(x) in T
N .

Moreover, the following estimate holds

‖w‖W 2,1
q (QT )

≤ C(‖V ‖Lq (QT ) + ‖w0‖
W

2− 2
q ,q

(QT )
),

where C depends on s, T , q, N and remains bounded for bounded values of T .

Proof We use a contraction mapping argument on the space C := {u ∈ W 2,1
q (QT ) : u(0) =

u0}, following [25, Theorem 3.7]. For fixed z ∈ W 2,1
q (QT ), we consider the map � that

sends z into the solution of the problem{
∂tw − �w = V (x, t) − (−�)s z in QT := T

N × (0, T ),

w(x, 0) = w0(x) in T
N .

Applying interpolation inequalities, see e.g. [15, Lemma 2.4], we have for δ > 0

‖(−�)s z‖Lq (QT ) ≤ δ‖z‖W 2,1
q (QT )

+ C(δ)‖z‖Lq (QT ),

where C(δ) grows as δ → 0. We now write

z(·, s) = w0(·) +
∫ s

0
∂t z(·, ω) dω

and get by the Hölder’s inequality

‖z‖Lq (QT ) ≤ τ
1
q ‖w0‖Lq (TN ) + τ‖∂t z‖Lq (QT ).
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Applying maximal Lq -regularity for the heat equation with frozen right-hand side we get

‖w‖W 2,1
q (QT )

≤ C(‖V ‖Lq (QT ) + ‖(−�)s z‖Lq (QT ) + ‖w0‖
W

2− 2
q ,q

(QT )
),

and then one finds that � is a contraction on C, as done in [25], by taking first δ small and
then T ≤ T0 small enough. Applying the same procedure a finite number of steps, one proves
the result for any fixed T .

4 A priori estimates for general transport equations withmixed local
and nonlocal diffusion

In this section we focus on the following backward problem driven by a general vector field
b = b(x, t) {

−∂tρ − �ρ + (−�)sρ + div(b(x, t)ρ) = 0 in Qτ ,

ρ(x, τ ) = ρτ (x) in T
N .

(8)

We will also assume that ρτ ∈ C∞(TN ), ρτ ≥ 0 and ‖ρτ‖L1(TN ) = 1. We mainly describe
the a priori estimates needed to run our Bernstein argument, without discussing the existence
and uniqueness of (weak) solutions to such problem, which however is well-known due to
the presence of the heat operator, even when b belongs to the Aronson-Serrin interpolated
condition b ∈ Lr

t (L
z
x ),

N
2r + 1

z ≤ 1
2 , see e.g. [25, Remark 3.7]. Thus, from now on, we will

consider classical solutions, even though the argument can be made rigorous for weak energy
solutions [16].

The next is a maximal regularity estimate for solutions to (8) in Lebesgue spaces obtained
in terms of terminal data belonging to L1(TN ).

Proposition 4.1 Let ρ be the nonnegative solution to (8) and let

1 < q ′ <
N + 2

N + 1
.

Then there exists C > 0 depending on σ ′, N , s, T such that

‖ρ‖H1
q′ (Qτ ) ≤ C(‖bρ‖Lq′

(Qτ )
+ ‖ρ‖Lq′

(Qτ )
+ ‖ρτ‖L1(TN )) .

Proof The proof can be done following either the duality arguments in [16, Proposition 2.4]
or regarding the problem (8) as{

∂tρ − �ρ + (−�)sρ = −div(b(x, t)ρ) in Qτ := T
N × (0, τ ),

ρ(x, τ ) = ρτ (x) in T
N ,

and then using maximal regularity properties for the linear evolution equation ∂tρ − �ρ +
(−�)sρ = V (x, t) ∈ Lq

x,t as in [28], together with the embeddings of (trace) fractional
Sobolev spaces. Maximal regularity for the heat equation with mixed diffusion in Lebesgue
spaces holds by Lemma 3.3.

As a consequence, we have the following

Corollary 4.2 Let ρ be the nonnegative solution to (8) and let

1 < q ′ <
N + 2

N + 1
.
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Then there exists C > 0 depending on σ ′, N , s, T such that

‖ρ‖H1
q′ (Qτ ) ≤ C

(∫∫
Qτ

|b|m′
ρ dxdt + 1

)
.

where

m′ = 1 + N + 2

q
.

Proof The proof is a consequence of the application of the Young’s inequality in the estimate
of Proposition 4.1, and it is essentially the same of [16, Proposition 2.5], so we omit it. ��

5 A priori estimates for the Hamilton–Jacobi equation by duality and
some consequences

The main goal of this section is to analyze the following transport equation{
∂tρ − �ρ + (−�)sρ − div(Hp(x,∇u(x, t))ρ) = 0 in Qτ := T

N × (0, τ ),

ρ(x, τ ) = ρτ (x) in T
N ,

(9)

for τ ∈ (0, T ), ρτ ∈ C∞(TN ), ρτ ≥ 0 and ‖ρτ‖L1(TN ) = 1. Note that by the standing
assumptions, ρ is a.e. nonnegative on the cylinder. Notice also that it is the adjoint equation
of the linearization of (4). From now on, we denote by L : TN × R

N → R the Legendre
transform of H with respect to the second entry, i.e.

L(x, ν) = sup
p∈RN

{p · ν − H(x, p)}.

By the convexity of H(x, ·) it follows that
H(x, p) = sup

ν∈RN
{p · ν − L(x, ν)}

and

H(x, p) = p · ν − L(x, ν) ⇐⇒ ν = Hp(x, p).

We further recall the following properties of the Lagrangian function L valid for all ν ∈ R
N :

C−1
L |ν|γ ′ − CL ≤ |L(x, ν)| ≤ CL |ν|γ ′

. (L1)

Theorem 5.1 Let u, ρ be classical solutions to (4) and (9) respectively, and assume

q > max

{
(N + 2)(γ − 1)

2
, N + 2

}
. (10)

Then, there exists C > 0 and θ ∈ (0, 1) such that

‖ρ‖H1
q′ (Qτ ) ≤ C

(
‖∇u‖1−θ

L∞(Qτ ) + 1
)

,

where C depends on CH , s, q, d, T , ‖u0‖C(TN ), ‖ f ‖Lq (QT ).

Parabolic Sobolev embeddings ofH1
q(QT ) into Ls(QT ) for s > 1 satisfying 1

s = 1
q ′ − 1

N+2
(cf. [16, Appendix A]) imply the following result:
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Corollary 5.2 Under the assumptions of Theorem 5.1, there exists a constant C > 0 inde-
pendent of u such that

‖ρ‖L p′ (Qτ )
≤ C(

(
‖∇u‖1−θ

L∞(Qτ ) + 1
)

, p >
(N + 2)(γ − 1)

γ + 1
.

The proof of Theorem 5.1 follows the main line of [16, Section 3.1]. We first recall the
following crucial representation formula, that easily follows by multiplying (4) by −ρ and
(9) by u:

Proposition 5.3 Let u be a solution to (4) and ρ be a solution to (9). Then the following
identity holds∫

TN
u(x, τ )ρτ (x) dx =

∫
TN

u0(x)ρ(x, 0) dx

+
∫∫

Qτ

L(x, Hp(x,∇u(x, t))ρ dxdt +
∫∫

Qτ

f ρ dxdt .

With the aid of Proposition 5.3we first prove the following sup-norm estimate for solutions
to (4). This slightly extends [16, Proposition 3.7] and [28, Theorem 2.3] to problems with
mixed diffusion.

Proposition 5.4 Let f ∈ Lq(QT ), q > N+2
2 . Any solution to (4) satisfies

‖u(·, t)‖C(TN ) ≤ C, t ∈ [0, T ],
where C depends on T , N , q, s, ‖ f ‖Lq (QT ).

Proof We first prove that

u(x, τ ) ≤ ‖u0‖C(TN ) + C‖ f ‖Lq (TN ), τ ∈ (0, T ), x ∈ T
N . (11)

Consider the strong nonnegative solution of the following problem
{

∂tμ − �μ + (−�)sμ = 0 in Qτ ,

μ(x, τ ) = μτ (x) in T
N .

where μτ ∈ C∞, μτ ≥ 0 and ‖μτ‖1 = 1. By Corollary 4.2 with b ≡ 0 and Sobolev
embeddings, we have ‖μ‖Lq′ ≤ C , q ′ < N+2

N . Using μ as a test function in (4), one obtains
∫
TN

u(x, τ )μτ (x) dx =
∫
TN

u0(x)μ(x, 0) dx

−
∫∫

Qτ

H(x,∇u(x, t))μ dxdt +
∫∫

Qτ

f μ dxdt .

Then, the upper bound on u follows by duality using the Hölder’s inequality on the first and
third integral, the fact that ‖μ(t)‖1 = 1 for all t ∈ (0, τ ) and also that H , μ ≥ 0. The bound
from below can be obtained in the same manner testing (4) against the solution of (9), as in
[16, Proposition 3.7], and it is based on the representation formula in Proposition 5.3.

This bound directly leads to the following integrability estimate on the velocity field b of
(9) with respect to ρ computed along the solution of the equation (4). Its proof follows that
of Proposition 3.2 in [16].
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Proposition 5.5 Let u be a solution to (4) and ρ be a solution to (9). Then, there exists a

constant C > 0 depending on q, N , T , s,CH , ‖ f ‖Lr (QT ), r > max
{
N+2
2 ,

(N+2)(γ−1)
γ

}
such that ∫∫

Qτ

|∇u(x, t)|kρ dxdt ≤ C, 1 ≤ k ≤ γ.

Remark 5.6 Similar estimates as those in Proposition 5.5 can be found in [16, 17, 27, 28].

Proof We rewrite the identity in Proposition 5.3 as∫∫
Qτ

L(x, Hp(x,∇u(x, t))ρ dxdt =
∫
TN

u(x, τ )ρτ (x) dx −
∫
TN

u0(x)ρ(x, 0) dx

−
∫∫

Qτ

f ρ dxdt .

We pick r > 1 such that

(N + 2)(γ − 1)

γ
< r < N + 2 < q.

We use (L1), the Hölder’s inequality and the upper bound in (11) to find

C−1
L

∫∫
Qτ

|Hp(x,∇u(x, t)|γ ′
ρ dxdt ≤ 2‖u‖C(QT ) + ‖ f ‖Lr (QT )‖ρ‖Lr ′ (QT )

≤ 2(‖u0‖∞ + ‖ f ‖Lq (Qτ )) + ‖ f ‖Lr (Qτ )‖ρ‖Lr ′ (Qτ )
.

Let q̄ be such that

r ′ = (N + 2)q̄ ′

N + 2 − q̄ ′ .

By the embeddingH1
q̄ ′(Qτ ) ↪→ Lr ′

(Qτ ) and choosing r > N+2
2 we have q̄ ′ < N+2

N+1 . We are
thus in position to apply Corollary 4.2 and obtain

‖ρ‖Lr ′ (Qτ )
≤ C(‖ρ‖H1

q̄′ (Qτ ) + 1) ≤ C̃

(∫∫
Qτ

|Hp(x,∇u)|m′
ρ dxdt + 1

)
,

where

m′ = 1 + N + 2

q̄
.

We thus end up with

C−1
L

∫∫
Qτ

|Hp(x,∇u(x, t)|γ ′
ρ dxdt ≤ 2(‖u0‖∞ + ‖ f ‖Lq (Qτ ))

+C̃‖ f ‖Lr (Qτ )

(∫∫
Qτ

|Hp(x,∇u)|m′
ρ dxdt + 1

)
.

The last integral can be absorbed on the left-hand side by the weighted Young’s inequality
since

m′ = 1 + N + 2

q̄
= N + 2

r
< γ ′,

so that we conclude the estimate.
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We are now ready for the proof of the main result of this section.

Proof of Theorem 5.1 Since q in (10) always satisfies q ′ < N+2
N+1 , we can apply Corollary 4.2

combined with the hypotheses (H) to conclude

‖ρ‖H1
q̃′ (Qτ ) ≤ C1

(∫∫
Qτ

|Hp(x,∇u(x, t))|m′
ρ dxdt + 1

)

≤ C2

(∫∫
Qτ

|∇u|(γ−1)m′
ρ dxdt + 1

)

≤ C3

(
‖∇u‖1−θ

L∞(Qτ )

∫∫
Qτ

|∇u|(γ−1)m′−1+θρ dxdt + 1

)
,

where

m′ = 1 + N + 2

q
.

We now choose θ > 0 small enough so that

k = (γ − 1)m′ − 1 + θ ≤ γ.

Note that this can be done by the initial choice of q . Thus, we use Proposition 5.5 and conclude
the estimate.

6 Proof of themain result and further comments

We start with the following refined variational Bochner identity that will allow us to exploit
the information f ∈ Lq

x,t :

Lemma 6.1 Let u be a classical solution to (4) and ρ be a solution to (9). Then, the following
identity holds

∫
TN

w(x, τ )ρτ (x) dx +
∫∫

Qτ

|D2u(x, t)|2ρ dxdt +
∫∫

Qτ

I[∇u](x, t)ρ dxdt

= −
∫∫

Qτ

Hx (x,∇u(x, t)) · ∇u(x, t)ρ dxdt

−
∫∫

Qτ

f (x, t)div(∇u(x, t)ρ) dxdt +
∫
TN

w(x, 0)ρ(x, 0) dx, (12)

where I[∇u](x, t) = 1
2

∫
TN |∇u(x, t) − ∇u(x + y, t)|2K (y) dy.

Proof It is sufficient to multiply (6) by the adjoint variable ρ solving (9), integrate over the
cylinder Qτ and finally integrate by parts the terms involving the time derivative and the one
involving the source term f (x, t) of the equation.

We are now ready for the proof of the main result

Proof of Theorem 2.1 We start with (12), observing that the third term on the left-hand side
is nonnegative since ρ and the nonlocal term I[∇u] are nonnegative, cf [24, Remark 20.3].
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Thus, we end up with the inequality

∫
TN

w(x, τ )ρτ (x) dx +
∫∫

Qτ

|D2u(x, t)|2ρ dxdt

≤ −
∫∫

Qτ

Hx (x,∇u(x, t)) · ∇u(x, t)ρ dxdt

−
∫∫

Qτ

f (x, t)div(∇u(x, t)ρ) dxdt +
∫
TN

w(x, 0)ρ(x, 0) dx .

First, we observe that the chain rule applied to the second term of the right-hand side leads
to

−
∫∫

Qτ

f div(∇uρ) dxdt = −
∫∫

Qτ

f �uρ dxdt −
∫∫

Qτ

f ∇u · ∇ρ dxdt .

We are now left to estimate all the terms appearing on the right-hand side. We start with the
one involving Hx . Using (H), Proposition 5.5 with k = γ and the Young’s inequality we
conclude

∫∫
Qτ

|Hx (x,∇u(x, t))||∇u(x, t)|ρ dxdt ≤ CH‖∇u‖L∞(Qτ )

∫∫
Qτ

|∇u|γ ρ dxdt + CH τ

≤ C1 + 1

8
‖∇u‖2L∞(Qτ ).

We now estimate the terms involving the source of the equation.We use the Cauchy–Schwarz
inequality (1), the Young’s inequality together with the Hölder’s inequality with an exponent
p̃ > 1 to be later determined to find that

∫∫
Qτ

| f ||�u|ρ dxdt ≤ √
N

∫∫
Qτ

| f ||D2u|ρ dxdt ≤ 1

2

∫∫
Qτ

|D2u|2ρ dxdt

+N

2

∫∫
Qτ

f 2ρ dxdt

≤ 1

2

∫∫
Qτ

|D2u|2ρ dxdt + N

2
‖ f ‖2

L2 p̃(Qτ )
‖ρ‖L p̃′ (Qτ )

.

The last term can be bounded by ‖ f ‖Lq (Qτ ) through Theorem 5.1 by choosing p̃ satisfying

2(N + 2)(γ − 1)

γ + 1
< 2 p̃ ≤ q.

This can always be done in view of (5). Therefore, we have by Corollary 5.2 and the Young’s
inequality

∫∫
Qτ

| f ||�u|ρ dxdt ≤ N

2
‖ f ‖2Lq (Qτ )(‖∇u‖1−θ

L∞(Qτ ) + 1) + 1

2

∫∫
Qτ

|D2u|2ρ dxdt

≤ C2 + 1

8
‖∇u‖2L∞(Qτ ) + 1

2

∫∫
Qτ

|D2u|2ρ dxdt .
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Using the Hölder’s inequality, Theorem 5.1, and the weighted Young’s inequality we deduce
∫∫

Qτ

| f ||∇u||∇ρ| dxdt ≤ ‖∇u‖L∞(Qτ )‖ f ‖Lq (QT )‖∇ρ‖Lq′
(QT )

≤ ‖∇u‖L∞(Qτ )‖ f ‖Lq (QT )‖ρ‖H1
q′ (QT )

≤ C3‖∇u‖L∞(Qτ )‖ f ‖Lq (QT )

(
‖∇u‖1−θ

L∞(Qτ ) + 1
)

≤ 1

8
‖∇u‖2L∞(Qτ ) + C4.

Finally, using the conservation of the L1 norm for the transport-diffusion equation we have
‖ρ(x, 0)‖L1(TN ) = 1, and we conclude

∫
TN

w(x, 0)ρ(x, 0) dx ≤ 1

2
‖∇u0‖2L∞(TN )

.

Plugging all the estimates in the first inequality we have
∫
TN

1

2
|∇u(x, τ )|2ρτ (x) dx +

∫∫
Qτ

|D2u(x, t)|2ρ dxdt ≤ C5 + 1

2
‖∇u0‖L∞(TN )

+3

8
‖∇u‖2L∞(Qτ ) + 1

2

∫∫
Qτ

|D2u|2ρ dxdt,

where C5 = max{C1,C2,C4} depends on N ,CH , q, T , s, ‖ f ‖q . The last inequality holds
for all smooth ρτ ≥ 0 such that ‖ρτ‖1 = 1, which gives by duality

1

2
‖∇u(·, τ )‖2L∞(TN )

≤ C5 + 1

2
‖∇u0‖2L∞(TN )

+ 3

8
‖∇u‖2L∞(Qτ ).

The estimate then follows by passing to the supremum over τ ∈ (0, T ) on the left-hand side.

Some final remarks are in order:

Remark 6.2 The argument continues to be valid for functions u ∈ W 2,1
q instead of smooth

solutions, without need to assume f ∈ C1. This can be done using the test function ϕ =
−div(∇uρ) in the variational formulation of (4), as in [18].

Remark 6.3 When f is more regular, the proof works even when ε = 0, i.e. for the equation
driven by the sole fractional Laplacian, in the subcritical case s ∈ ( 1

2 , 1
)
and for strong

solutions belonging to the space H2s
q (QT ) = {∂t u, (I − �)su ∈ Lq(QT )}, as introduced in

[15]. The procedure simplifies since one can avoid an integration by parts in (12) and use the
identity

∫
TN

w(x, τ )ρτ (x) dx ≤
∫
TN

w(x, τ )ρτ (x) dx +
∫∫

Qτ

I[∇u](x, t)ρ dxdt

= −
∫∫

Qτ

Hx (x,∇u(x, t)) · ∇u(x, t)ρ dxdt

−
∫∫

Qτ

∇ f (x, t) · ∇u(x, t)ρ dxdt +
∫
TN

w(x, 0)ρ(x, 0) dx .

Then, if f ∈ L∞(0, T ;W 1,∞(TN )), we have
∫∫

Qτ

∇ f (x, t) · ∇u(x, t)ρ dxdt ≤ ‖ f ‖L∞
t (W 1,∞

x )
‖∇u‖L∞(Qτ )τ,
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and then it is sufficient to use the Young’s inequality. If, instead, f ∈ Lq(0, T ;W 1,q(TN ))

for q such that

q > max

{
N + 2s,

(N + 2s)(γ − 1)

2s − 1

}
,

it is enough to argue as follows:∫∫
Qτ

∇ f (x, t) · ∇u(x, t)ρ dxdt ≤ ‖∇u‖L∞(Qτ )

∫∫
Qτ

|∇ f |ρ dxdt ≤ ‖∇u‖L∞(Qτ )‖ f ‖
L p
t (W 1,p

x )
‖ρ‖L p′ (Qτ )

and use the estimate inCorollary 5.9 of [28] combinedwith theYoung’s inequality to conclude
the gradient bound. We emphasize that an assumption like f ∈ Lq(0, T ;W 1,q(TN )) lies in
between those assumed for the use of the weak Bernstein method and the ones to run the
Ishii-Lions argument. It remains an open problem whether the L∞ gradient bound holds for
f ∈ Lq

x,t and γ > 2s: by scaling, we expect this can be true provided that q > N+2s
2s−1 ,

s ∈ (1/2, 1).

Remark 6.4 Lipschitz estimates in the subquadratic case can be obtained in a slightly different
manner, combining Lemma 3.3 with Gagliardo-Nirenberg interpolation inequalities. Indeed,
regarding (4) as

∂t u − �u + (−�)su = −H(x,∇u) + f (x, t)

one has

‖u‖W 2,1
q

� ‖∇u‖γ

Lqγ + ‖ f ‖q + ‖u0‖W 2−2/q,q .

Then, Gagliardo-Nirenberg interpolation inequalities lead to

‖∇u‖γ

Lqγ ≤ C‖∇u‖γ

L2q � ‖u‖
γ
2

W 2,1
q

‖u‖
γ
2∞.

Since γ ∈ (1, 2), one can use the Young’s inequality and the sup-norm estimate in Proposi-
tion 5.4 to conclude a bound on ‖u‖W 2,1

q
for q > N+2

2 . By parabolic Sobolev embeddings it

then follows that ‖∇u‖L∞ is bounded whenever q > N + 2. The drawback of this approach
is the requirement on γ (that must be of subquadratic growth) and on the initial data, which
needs to be more regular respect to Theorem 2.1. The same idea works even for problems
driven by the sole fractional Laplacian using interpolation estimates and the L∞ bounds in
Theorem 2.3 of [28], provided that γ < 2s, s ∈ (1/2, 1). Still, the same approach of this
manuscript can be refined to obtain maximal regularity estimates via new Hölder and L p

bounds for mixed diffusion problems, see [17].

Remark 6.5 Lipschitz bounds can be produced under the weaker restriction q > N +2 when
γ > 3 for viscous problems driven by the Laplacian, see [10], but the validity of such bounds
under this weaker restriction remains an open problem even for equations driven by nonlocal
operators, as discussed in Remark 6.3. We emphasize that the assumption q > N + 2 is
sharp, at least for viscous parabolic problems, see [16, Remark 3.13].

Remark 6.6 A priori estimates proved in Theorem 2.1 can be used to proved existence and
uniqueness of strong solutions, as shown in [15, Proposition 3.11] and [16, Section 4].
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Remark 6.7 The adjoint-Bernstein method implemented in this paper can be successfully
applied even to (nonlinear) first-order terms with linear gradient growth. Indeed, in this case
the drift of the transport-diffusion equation would be bounded and the estimates in Sect. 4
can be obtained in the same manner. However, the case of sublinear, i.e. γ ≤ 1, gradient
terms can be deduced through the classical W 2,1

q regularity estimates for viscous problems,
see e.g. [25].
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