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Abstract
In this expository paper we illustrate the role that the field of values (or numerical range) of
a matrix plays in connection with certain problems of numerical analysis. These include the
approximation of matrix functions and the convergence of preconditioned Krylov subspace
methods for solving large systems of equations arising from the discretization of partial
differential equations.

Keywords Field of values · Numerical linear algebra · Functions of matrices · Krylov
subspace methods

1 Introduction

The field of values, or numerical range, of a matrix (or operator in Hilbert space) is a
well-studied object in linear algebra and functional analysis [28]. Some of its fundamen-
tal properties were identified by Hausdorff and Toeplitz over a century ago [30,45]. In recent
decades, the field of values has become increasingly important in numerical analysis, in par-
ticular in certain problems of numerical linear algebra involving functions of matrices and
iterative methods for solving large systems of linear equations. In such problems one has to
deal with sequences of matrices of increasing (potentially unbounded) dimension.
For instance, the matrices may arise from the discretization of differential or integral opera-
tors, and their dimension tends to infinity as the discretization is refined; in other cases the
discretization is fixed, but the size of the computational domainmay increase without bounds.
Analyzing the behavior of algorithms for the approximation of functions of such matrices
(or, more typically, for the approximation of the action of matrix functions on vectors) as
their size increases is of central importance in numerical linear algebra.

For sequences of normalmatrices, the eigenvalues provide all the necessary information to
establish the convergence rates of approximation algorithms; indeed, the spectral theorem for
normal matrices (and bounded operators) allows one to translate the approximation problem
for functions of matrices into one for functions of a real or complex variable, and to make
use of classical results from approximation theory. For matrices that “stay close to normal”,
in a sense that can be made precise, the eigenvalues are still useful indicators of what’s going
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on as the dimension grows. If, however, the matrices are far from normal, and particularly if
the departure from normality grows as the dimension increases, then it has long been known
that the eigenvalues alone are not sufficient to capture many phenomena of interest and may
even paint a misleading picture [46].

Consider for example the following two (for simplicity, finite-dimensional) linear dynam-
ical systems, the first one discrete, the second one continuous in time:

1. xk+1 = Axk + b with k = 0, 1, . . .
2. ẋ = Ax + b with x = x(t), t ≥ 0, where x(0) = x0.

Here A ∈ C
n×n and b ∈ C

n are fixed, and x0 ∈ C
n is prescribed and arbitrary. As is

well known, the long-term behavior of both evolution processes is governed by the spectral
properties of A. Specifically:

(i) In the discrete time case, as k → ∞ the iterates xk converge, for any choice of x0, to the
unique solution of x = Ax + b if and only if the eigenvalues of A satisfy |λi (A)| < 1
for all i = 1, . . . , n.

(ii) In the continuous time case, as t → ∞, x(t) converges, for any choice of x0, to the
steady state x∗ (solution of Ax+b = 0) if and only if�(λi (A)) < 0 for all i = 1, . . . , n.

In practice, we are interested in the rate of convergence. In the first case, the asymptotic
rate of convergence is dictated by the spectral radius of A:

ρ(A) := max
i

{ |λi (A)| ; λi (A) is an eigenvalue of A }.
In the second case, by the spectral abscissa of A:

α(A) := max
i

{ �(λi (A)) ; λi (A) is an eigenvalue of A }.
If A is normal (i.e., unitarily diagonalizable), then ρ(A) and α(A) completely describe

the evolution of xk and x(t), not just asymptotically, but for all k = 0, 1, . . . and t ≥ 0,
respectively. Indeed, if we denote by ‖ · ‖ the operator norm induced by the Euclidean norm
on Cn , we have, by unitary invariance of ‖ · ‖, ‖A‖ = ρ(A), and therefore if A is normal and
ρ(A) < 1 we have that

‖Ak‖ = ‖A‖k = ρ(A)k → 0 monotonically as k → ∞.

Likewise, if A is normal and α(A) < 0 we have that

‖et A‖ = etα(A) → 0 monotonically as t → ∞.

Hence, in both cases the dynamics is governed at all times by the (extreme) eigenvalues,
when A is normal. What happens, however, when A is non-normal? In particular, highly
non-normal?

Suppose for the time being that A is diagonalizable: A = XDX−1 with D diagonal, for
some nonsingular X ∈ C

n×n . Then

‖Ak‖ = ‖XDk X−1‖ ≤ κ(X)ρ(A)k, (1)

where κ(X) = inf ‖X‖‖X−1‖, where the infimum is taken over all nonsingular matrices X
that diagonalize A; note that κ(X) ≥ 1, and that κ(X) = 1 when A is normal. This quantity
is known as the spectral condition number of the eigenbasis of A.

Similarly, in the continuous time case we have

‖et A‖ = ‖Xet D X−1‖ ≤ κ(X) etα(A). (2)
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Some uses of the field of values in numerical analysis 161

In numerical analysis one often deals not with a single problem of fixed size, but with
sequences of problems of increasing size, usually due to some discretization parameter going
to zero. It is easy to find examples of sequences of matrices of increasing size, of interest
in applications, for which the condition number of the eigenbasis grows without bounds,
even though their spectral radius or the spectral abscissa remain bounded away from their
critical values, 1 and 0 (such an example is described in Sect. 5, see (11)). It is clear that in
such cases the bounds (1)–(2) are virtually useless when trying to establish the actual rate of
convergence: although the right-hand sides of both (1) and (2) eventually approach zero, if
κ(X) is very large then we cannot infer anything on the transient behavior of the quantities
on the left-hand side. If A is not diagonalizable, the situation is even worse. Some asymptotic
estimates involving the size of the largest Jordan block in the Jordan canonical form of A
are known [47, Theorem 3.1], but they are of limited practical use; see also the discussion in
[46, Chapter 16].

Informally, A is said to be highly non-normal if it is not diagonalizable or if the corre-
sponding condition number of the eigenbasis, κ(X), is very large. For matrices like these,
the onset of the asymptotic convergence regime may manifest itself only after very large
times; in other cases, the bounds (1)–(2) may be so loose as to be uninformative. Thus, the
eigenvalues give at best a partial picture of the underlying behavior.

Another limitation of spectral analysis is that the eigenvalues of a non-normal matrix can
be highly sensitive to perturbations. For instance, due to unavoidable rounding errors, finite
precision approximations of the above linear dynamical systems 1–2 are governed not by
the exact spectral radius or spectral abscissa of A but by those of a slightly perturbed matrix
Ã ≈ A. If A has highly sensitive eigenvalues, which is often the case when A is far from
normal, it may happen that ρ( Ã) > 1 or α( Ã) > 0, even though the unperturbed matrix A
amply satisfies ρ(A) < 1 or α(A) < 0, thus causing divergence or blow up of the computed
quantities.

The limitations of eigenvalue analysis become even more apparent when we consider pro-
cesses that are more complex than the convergence of simple linear (discrete or continuous)
dynamical systems. In the rest of the paper we will focus on two such problems from the
field of numerical linear algebra.

2 Two problems in numerical linear algebra

In this section, we briefly introduce two important problems in numerical linear algebra,
one concerning functions of matrices, the other one the solution of large systems of linear
equations; as we will see, while apparently rather different, the two problems are closely
related.

2.1 Decay estimates for functions of largematrices

In several applications, given a complex-valued function f defined on the spectrum of A, we
are interested in obtaining estimates, or bounds, for the entries of the matrix f (A).

Typically, f is analytic and A is banded or sparse. We say that a matrix

A = [ai j ] ∈ C
n×n

is k-banded if ai j = 0 for all i, j with |i − j | > k. For instance, a tridiagonal matrix is 1-
banded. In the following discussion, one should think of k being fixed, while the dimension
n of A grows unbounded (n → ∞).
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Fig. 1 Plot of |[eA]i j | for A tridiagonal (discrete 1D Laplacian)
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Fig. 2 Plot of |[A1/2]i j | for matrix nos4 from the SuiteSparse Collection [18] (scaled and reordered with
reverse Cuthill–McKee)

Among the various equivalent definitions of a matrix function, we can use for instance
the following one based on contour integration (and due to E. Cartan):

f (A) = 1

2π i

∫
Γ

f (z)(z I − A)−1dz,

where Γ is a contour in C, counterclockwise oriented, containing the eigenvalues of A in its
interior, and such that f is analytic inside and on Γ . We refer to [31] for details and other,
equivalent, definitions of matrix function.

It is frequently observed that while functions of banded or sparse matrices are fully popu-
lated, the magnitude of the entries in f (A) that are in some sense far from the nonzero entries
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in A are often small, and in fact they tend to decay with the distance; see Figs. 1 and 2 for
two such examples. Based on this observation, several bounds or estimates for the entries of
functions of banded or sparse matrices have been obtained. Typically, when f is analytic and
A is banded these take the form of exponential off-diagonal decay bounds:

|[ f (A)]i j | ≤ K e−α|i− j |, ∀i, j = 1, . . . , n. (3)

Note that for any fixed matrix A this inequality can always be trivially satisfied by taking
K large enough, but here we are interested in non-trivial bounds where the constants K
and α > 0 are given explicitly in terms of properties of f and A, such as the location of
the singularities of f , the spectral properties of A, and the bandwidth k. Special interest is
placed in those cases where K and α are independent of the dimension n. In this case we
speak of localization of the entries of f (A). We refer to [6] for an extensive survey of matrix
localization, and to the recent thesis [42] for further results and applications.

When A is sparse, but not necessarily banded, the bounds take the form

|[ f (A)]i j | ≤ K e−αd(i, j), ∀i, j = 1, . . . , n, (4)

where d(i, j) is now the geodesic distance between nodes i and j , i.e., the length of the
shortest path joining nodes i and j in the graph G(A) associated with A, where there is an
edge between node i and node j if and only if ai j �= 0. Note that this is a genuine distance
only if A is structurally symmetric (i.e., G(A) is undirected).

An example of such a bound is the following one from [11]: if A = XDX−1 is diagonal-
izable and sparse, then

|[ f (A)]i j | ≤ κ(X)K0︸ ︷︷ ︸
=K

e−αd(i, j), ∀i, j = 1, . . . , n. (5)

Here the positive constants K0 and α depend only on the distance between the singularities
of f (if any) and the spectrum of A and on the maximum of | f | on the boundary of a region
F ⊂ C containing the eigenvalues of A and such that f is analytic on F . Hence, (5) is not a
single bound but a family of bounds, parameterized by the choice of F . There is a trade-off
involved: taking a larger set F may lead to faster exponential decay (larger α), but K0 will
also become larger. If f is entire, the set can be chosen arbitrarily, leading to superexponential
decay estimates; that is, α > 0 can be taken arbitrarily large, but of course K0 will also grow
without bounds (except for the trivial case of constant f ), in view of Liouville’s Theorem.

Clearly, the bound (5) suffers from the same limitations as the ones for ‖Ak‖ or ‖et A‖ we
discussed earlier: the presence of κ(X)makes the bound virtually useless, unless A is normal
(κ(X) = 1), or nearly normal (κ(X) small). In particular, if κ(X) depends on n, we don’t
obtain uniform bounds in n. Of course, if A is not diagonalizable then the bounds simply do
not apply.

We shall come back to this problem in Sect. 5.

2.2 Convergence bounds for Krylov subspacemethods

The second problem concerns the characterization of the convergence of minimal residual-
type Krylov subspace methods to the solution of large-scale linear systems arising from the
discretization of certain PDEs or systems of PDEs.

These methods construct polynomial approximations of the form xk = pk(A)b to the
solution x∗ = A−1b of the system Ax = b. The polynomial pk is chosen so as to satisfy an
optimality condition [40]. When A is Hermitian there are two main approaches, both based
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on the minimization of two different norms of the residual rk = b − Axk over a suitable
subspace of dimension k at each step k = 1, 2, . . ..Without loss of generality, herewe assume
that x0 = 0. These two approaches lead to the Minimal Residual (MINRES) method and to
the Conjugate Gradient (CG) method, respectively.

The Minimal Residual method determines the vector xk which minimizes the �2-norm of
the residual ‖rk‖ = ‖b − Axk‖ over the kth Krylov subspace

Kk(A, b) := span {b, Ab, A2b, . . . , Ak−1b}.
Note that the vectors in this subspace are of the form pk−1(A)b, where pk is a polynomial of
degree k, and that the Krylov subspaces form a nested sequence, Kk(A, b) ⊆ Kk+1(A, b).
Therefore, the sequence of residual norms ‖rk‖ is non-increasing.

On the other hand, if A is positive definite the Conjugate Gradient method minimizes

‖b − Axk‖A−1 =
√

(b − Axk)∗A−1(b − Axk) = ‖A−1b − xk‖A

over the same subspace. Again, the convergence is monotonic in this norm.
For both of these methods, the eigenvalues of A are descriptive of the convergence behav-

ior. Indeed, for MINRES we have the following bound:

‖rk‖ ≤ min
p∈Πk

max
λ∈Λ(A)

|p(λ)| ‖r0‖ , (6)

where Πk denotes the set of all polynomials of degree ≤ k that satisfy p(0) = 1.
For CG we have the analogous bound in the appropriate norm:

‖rk‖A−1 ≤ min
p∈Πk

max
λ∈Λ(A)

|p(λ)| ‖r0‖A−1 . (7)

We note that both bounds (6) and (7) are sharp; see, e.g., [26, Chapter 3], or [34, Theorems
5.6.6 and 5.7.4]. Hence, for bothMINRES and CG the convergence will be fast if there exists
a polynomial of low degree (having the value one at zero) that takes small values on the
eigenvalues of A, and this depends only on the distribution of the eigenvalues of A.

For a general matrix A, GMRES (Generalized Minimum Residual method, [40]) mini-
mizes the �2-norm of the residual over the Krylov subspace method Kk(A, b) at each step.
If A is diagonalizable, A = XDX−1, then the residual norm at step k satisfies

‖rk‖ = min
p∈Πk

‖p(A)r0‖ ≤ min
p∈Πk

‖Xp(D)X−1‖‖r0‖,

leading again to a crude bound of the form

‖rk‖
‖r0‖ ≤ κ(X) min

p∈Πk
max

λ∈Λ(A)
|p(λ)|. (8)

If A is normal, κ(X) = 1 andwe recover the bound forMINRES. If κ(X) is large, however,
the right-hand side of (8) may provide no information; in particular, if the right-hand side is
> 1 the bound doesn’t even capture the non-increasing behavior of the residual norms ‖rk‖.

Furthermore, it has been shown by Greenbaum et al. [27] that, given any set of n not
necessarily distinct complex numbers λ1, . . . , λn (for instance, all equal to 1) and any nonin-
creasing sequence of n nonnegative values ρ0, . . . , ρn−1, it is possible to construct a matrix
A ∈ C

n×n and a right-hand side b ∈ C
n such that A has the λi as its eigenvalues and

GMRES with initial guess x0 = 0 produces a sequence of residuals {rk} with ‖rk‖ = ρk for
k = 0, 1, . . . , n − 1.

In other words: any non-increasing convergence curve is possible for GMRES, and the
eigenvalues of A, in general, do not contain enough information to describe the convergence
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behavior. It follows that when A is far from normal, other tools must be sought. While it is
unlikely that we will ever find a fully satisfactory answer to the problem of characterizing the
convergence of GMRES in general (see [23]), in Sect. 6.1 we will see that in certain special
cases it is possible to give reasonably satisfactory convergence bounds.

3 What else is there besides the spectrum?

As we have seen, when A is non-normal, eigenvalue information alone is not enough to
analyze various fundamental problems in numerical linear algebra, and in some cases it can
even be misleading. Moreover, when A is non-normal (for example, A is defective or close to
a defective matrix) the spectrum lacks robustness in the presence of perturbations in the data,
which are unavoidable in finite precision computations. It is also desirable to find approaches
that do not assume the diagonalizability of A.

Among the sets associated to an operator A that have been proposed as substitutes for the
spectrum Λ(A), we mention the following:

1. The pseudospectrum Λε(A);
2. The field of values W(A);
3. Various spectral sets, intermediate between Λ(A) and W(A).

These sets allow us to do away with the diagonalizability assumption and lead to bounds
that do not depend on κ(X). After a brief discussion of the pseudospectrum, wewill focus our
attention on the field of values; other spectral sets are mentioned in passing in the conclusion
section.

3.1 The pseudospectrum

Let A ∈ C
n×n and let ε > 0. The ε-pseudospectrum of A is the set

Λε(A) = {z ∈ C ; ‖(z I − A)−1‖ > ε−1}.
It can be equivalently defined as the set of all z ∈ C such that there exists a matrix

ΔA ∈ C
n×n with ‖ΔA‖ < ε and z ∈ Λ(A+ ΔA). In other words, the ε-pseudospectrum of

A is the set of all complex numbers that are eigenvalues of ε-perturbations of A [46].
When A is normal, the ε-pseudospectrum of A is just

Λε(A) = Λ(A) + Δε, where Δε = {z ∈ C ; |z| < ε},
where, as usual, the sum of sets is defined elementwise (Minkowski addition). However,
when A is far from normal, Λε(A) can be much larger than Λ(A) even for very small values
of ε.

Consider now the problem of bounding the approximation error

‖ f (A) − q(A)‖
where q(z) is a polynomial approximation of f (z) on some region of C containing the
eigenvalues of A. Note that both of our problems, obtaining bounds for the entries of f (A)

and bounding the error in the approximate solution of Ax = b by Krylov subspace methods
can be reduced to this one; in the latter case, we take f (z) = z−1.

Recalling that

f (A) − q(A) = 1

2π i

∫
Γ

( f (z) − q(z))(z I − A)−1dz,

123



166 M. Benzi

and letting

δ = sup
z∈Γ

| f (z) − q(z)|,

L = 1

2π
× (arclength ofΓ ),

R = sup
z∈Γ

‖(z I − A)−1‖,

σmin = R−1 = inf
z∈Γ

σn(z I − A),

where σn(z I − A) denotes the smallest singular value of z I − A, we obtain the bound

‖ f (A) − q(A)‖ ≤ L R δ = L

σmin
δ.

In particular, if Γ is the boundary of the pseudospectrum Λε(A), then σmin = ε and we get

‖ f (A) − q(A)‖ ≤ L

ε
δ. (9)

When A is normal, one can shrink the contours so that L/ε is arbitrarily close to 1, and
thus the approximation error is given, in the limit as ε → 0, by

δ = max
λ∈Λ(A)

| f (λ) − q(λ)|,

and we recover the fact that the eigenvalues suffice to fully describe the quality of the approx-
imation.

If A is non-normal, however, we have to choose the contours (and thus ε) so as to balance
the size of L with that of R = σ−1

min, which can be difficult. Nevertheless, there are cases
where (9) can be used to obtain uniform error bounds, not containing the factor κ(X), and
thus applicable even if A is not diagonalizable.

Unfortunately, the need to choose a suitable value of ε and the fact that the geometry of the
pseudospectra can be rather complicated make the use of this tool quite difficult in practice.
Examples of successful uses of the pseudospectrum in a variety of problems in pure and
applied mathematics, together with a discussion of its advantages and disadvantages, can be
found in the (now classic) book [46]. We do not consider the pseudospectrum further, and
move instead to the second alternative.

4 The field of values and some of its properties

If A is a bounded linear operator on a complex Hilbert space H, the field of values (or
numerical range) of A is the subset of C defined by

W(A) = {z = 〈Ax, x〉 ; 〈x, x〉 = 1}.
In other terms,W(A) is the range of the quadratic form q(x) = 〈Ax, x〉 as x varies over the
unit sphere inH. Depending on the problem, onemay consider the field of values with respect
to different inner products. When not explicitly indicated otherwise, we assuneH = C

n and
the inner product will be the standard one.

Here are some properties of the field of values of a matrix A ∈ C
n×n :

1. Spectral containment: Λ(A) ⊂ W(A).
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Fig. 3 The boundary of the field of values and the eigenvalues (small circles) of a random 10 × 10 matrix

2. ‖A‖ ≤ 2r(A), where r(A) := max{|z| ; z ∈ W(A)} is the numerical radius of A.
3. W(A) ⊆ D(0, ‖A‖), the disk centered at 0 with radius R = ‖A‖.
4. Subadditivity: W(A + B) ⊆ W(A) + W(B).
5. Translations: W(A + α I ) = W(A) + α, for α ∈ C.
6. Scalings: W(αA) = αW(A), for α ∈ C.
7. W(A) is compact.
8. Submatrix inclusion: W(Ak) ⊆ W(A) for any principal submatrix Ak .
9. Unitary invariance: W(U AU∗) = W(A), for any unitary matrix U .
10. Normal matrices: if A is normal, then W(A) = co(Λ(A)) (the convex hull of Λ(A)).
11. Projection: �(W(A)) = W( 12 (A + A∗)) (a real interval).
12. Hausdorff–Toeplitz Theorem: W(A) is convex.

Several of this properties, but not all, retain meaning and remain true in infinite dimension.
In particular, while the field of values of a bounded operator on an infinite-dimensionalHilbert
space is bounded and convex, it may not be closed. We refer to [32] for detailed expositions
of the properties of the field of values of n × n matrices, and to [28] for the operator case.

We also note that properties 3 and 4 together show that the field of values is stable under
perturbations, in the sense that the field of values of a slightly perturbed matrix is a slight
perturbation of the field of values of the original matrix.

In Fig. 3 we show the boundary of the field of values and the eigenvalues of a 10 × 10
matrix with randomly distributed entries in (0, 1).

5 Functions of large, sparse matrices

Bounds on the entries of f (A) for A banded, or sparse, can be obtained from bounds on the
polynomial approximation error

‖ f − pN‖∞,K = max
z∈K | f (z) − pN (z)|, N = 0, 1, , . . . ,

on a suitable compact set K ⊂ C. Here we assume that Λ(A) ⊂ K and that f is analytic on
an open set containing K.
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Indeed, suppose A is k-banded and let pN be the best approximation polynomial of degree
N . Using the fact that pN (A) is kN -banded, it is possible to write

|[ f (A)]i j | = |[ f (A)]i j − [pN (A)]i j | ≤ ‖ f (A) − pN (A)‖
for all i, j such that |i − j | > kN . Assume for a moment that there exist constants C0 > 0,
α > 0 such that

‖ f (A) − pN (A)‖ ≤ C0 e
−α(N+1) , N = 0, 1, . . . (10)

For i �= j we can write |i − j | = kN + �, � = 1, 2, . . . , k. Observing that |i − j | > kN
implies N + 1 <

|i− j |
k + 1, we can write for all i �= j

|[ f (A)]i j | ≤ C0 e
−α

( |i− j |
k +1

)
= C e−α′|i− j |,

where C = C0e−α , α′ = α/k, i.e., an exponential off-diagonal decay bound.
Hence, we need to find a suitable set K such that (10) holds, and obtain explicit expres-

sions for the constants C0 and α. In particular, we seek bounds not containing the condition
number of the eigenvector matrix; indeed, we do not want to assume that A is diagonalizable.
Moreover, as already mentioned, we are especially interested in bounds that are independent
of the dimension n, when possible.

For A Hermitian (more generally, normal), such bounds have been given in [8,11,12].
In these papers the solution is obtained through Bernstein’s Theorem combined with the
Spectral Theorem. Bernstein’s Theorem states that if K ⊂ C is a continuum (a nonempty,
compact, connected set not reduced to a point) and f is analytic on an open subset Ω with
K ⊂ Ω , then f can be approximated uniformly onK by a sequence of polynomials pN such
that the approximation error ‖ f − pN‖∞,K decays at least exponentially in the degree, N
(and viceversa). As it turns out, the pN can be taken to be Faber polynomials.

The Spectral Theorem for normal matrices allows one to translate this result into the
corresponding exponential decay bound for [ f (A)]i j via the inequalities

|[ f (A)]i j | ≤ ‖ f (A) − pN (A)‖ ≤ ‖ f − pN‖∞,K ≤ C0 e
−α(N+1) ≤ C e−α′|i− j |,

with C and α′ as described above. Both C0 and α (and thus C and α′) depend on the choice
of K; taking a larger K makes both C and α′ larger, as already mentioned; hence, there is a
trade-off.

These results have been extended to the non-normal case by the author and Boito in [7]
and, more recently, by Pozza and Simoncini in [39]. Specifically, if A is a banded normal
matrix and f is analytic in the interior of W(A) and bounded on the boundary ∂W(A),
then an exponential off-diagonal decay bound can be established for the entries of f (A). A
similar bound holds for sparsematriceswith the geodesic distance on the graph of A replacing
the distance from the main diagonal. Moreover, these results hold not just for functions of
matrices over the complex field, but more generally for functions of matrices with entries in
any complex C∗-algebra.

The proof given in [7] was obtained combining Bernstein’s Theorem and the following
deep theorem of Crouzeix’s:

Theorem 1 [15] Let A ∈ C
n×n and let f be analytic in the interior of W(A) and bounded

on its boundary. There exists a universal constant Q such that

‖ f (A)‖ ≤ Q sup
z∈W(A)

| f (z)|.

123



Some uses of the field of values in numerical analysis 169

The constant Q satisfies 2 ≤ Q ≤ 11.08 and it is conjectured that Q = 2. Moreover, the
same result applies to analytic functions of bounded linear operators on a complex Hilbert
space H.

Recently, the upper bound on Q has been lowered to 1 + √
2 in [17]. Whether Q = 2

remains an open question. The bounds in [7] contain the constant Q, which can be taken to
be equal to 1 + √

2.
The results of Pozza and Simoncini do not make use of Crouzeix’s Theorem but instead

rely on a result of Beckermann [4]. In both approaches, a key role in the analysis is played by
Faber polynomials, which are briefly introduced next. Formore details we refer to [21,36,44].

Recall that a continuum is any compact, connected set not reduced to a point. If K is
a continuum with connected complement, the Riemann Mapping Theorem guarantees the
existence of a functionφ thatmaps the exterior ofK conformally onto the set {z ∈ C ; |z| > 1}
and such that

φ(∞) = ∞, lim
z→∞

φ(z)

z
= ρ > 0.

Such φ has the Laurent expansion

φ(z) = ρ z + a0 + a1
z

+ a2
z2

+ · · ·
Furthermore, for every N > 0 we have

[φ(z)]N = ρN

[
zN + α

(N )
N−1z

N−1 + · · · + α
(N )
0 + α

(N )
1

z
+ · · ·

]
.

The polynomial parts,

FN (z) = ρN
[
zN + α

(N )
N−1z

N−1 + · · · + α
(N )
0

]
,

are called the Faber polynomials generated by the continuumK. The constant ρ is called the
logarithmic capacity of K.

Let K ⊂ C be a continuum. As shown by Faber [24], every analytic function f defined
on K can be expanded in the series

f (z) =
∞∑
N=0

fN FN (z)

(uniformly convergent on K), where the coefficients are given by

fN = 1

2π i

∫
|z|=τ

f (φ−1(z))

zN+1 dz.

Here τ > 1 is chosen such that f is analytic on the complement of the set {φ−1(z) ; |z| > τ }
and φ maps the exterior of K conformally onto the set {z ∈ C ; |z| > 1}.

If A ∈ C
n×n has spectrum contained in K, then

f (A) =
∞∑
N=0

fN FN (A).

Moreover, we have the following important result by Beckermann [4], the proof of which
employs ideas from potential theory.
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Theorem 2 [4] Let K ⊂ C be convex and compact. If A ∈ C
n×n is such that

W(A) ⊆ K,

then the Faber polynomials generated by K satisfy ‖FN (A)‖ ≤ 2, for all N . The constant 2
is optimal.

Using this theorem, Pozza and Simoncini [39] obtained the following off-diagonal decay
bound. We include the short and elegant proof for completeness.

Theorem 3 [39] Let A ∈ C
n×n be k-banded and such thatW(A) ⊆ K, withK compact and

convex. With φ and τ > 1 defined as before, we have

|[ f (A)]i j | ≤ 2
τ

τ − 1
max|z|=τ

| f (φ−1(z))|
(
1

τ

)ξ

,

where

ξ = �|i − j |/k�.
Proof Since [AN ]i j = 0 for N < ξ , we have

|[ f (A)]i j | =
∣∣∣∣∣

∞∑
N=0

fN [FN (A)]i j
∣∣∣∣∣ =

∣∣∣∣∣∣
∞∑

N=ξ

fN [FN (A)]i j
∣∣∣∣∣∣ ≤ 2

∞∑
N=ξ

| fN |

by Beckermann’s Theorem. Using

fN = 1

2π i

∫
|z|=τ

f (φ−1(z))

zN+1 dz

we easily obtain

| fN | ≤
(
1

τ

)N

max|z|=τ
| f (φ−1(z))|,

hence

|[ f (A)]i j | ≤ 2 max|z|=τ
| f (φ−1(z))

∣∣ ∞∑
N=ξ

(
1

τ

)N

= 2
τ

τ − 1
max|z|=τ

∣∣ f (φ−1(z))|
(
1

τ

)ξ

.

��
A more precise statement is possible to account for matrices with lower bandwidth β and
upper bandwidth γ with β �= γ , see [39]. Moreover, the result can be extended to more
general sparse matrices. Note, again, the trade-off involved in the choice of τ . If f is entire,
τ can be arbitrarily large and the decay is superexponential.

When explicitly computing the bound, one can take K = W(A), if the latter is known.
For certain classes of matrices, W(A) itself is not known, but it is known to be bounded by
some simple compact convex set, like an ellipse or a disk, which can be easily estimated. In
some cases the corresponding bounds can be dramatically better than those containing the
condition number of the eigenvector matrix. This is the case of families of n × n matrices
such that κ(X) grows unboundedly with the dimension n, while the field of values remains
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Fig. 4 Decay of the entries in the first row of the exponential of a non-normal tridiagonal matrix (black),
together with the bounds depending on the eigenvectors (blue) and the field of values (red) (color figure
online)

uniformly bounded. Consider for example the infinite tridiagonal Toeplitz matrix generated
by the symbol ϕ(z) = 2z−1 + 1 + 3z, |z| = 1:

A =

⎡
⎢⎢⎢⎣

1 3
−2 1 3

−2 1 3
. . .

. . .
. . .

⎤
⎥⎥⎥⎦ (11)

The matrix represents a bounded linear operator on �2(N). Let An denote the finite section
of A of dimension n, i.e., the n×n matrix formed by the first n rows and columns of A. Then
all the fields of values W(An) are regions whose boundaries are ellipses, see [19, Corollary
4]. As n → ∞, these ellipses converge to an ellipse which contains all the W(An) and is
the boundary of W(A), therefore the fields of values of An are all uniformly bounded in n.
In contrast, the condition number of the eigenbasis κ(Xn) grows exponentially with n. Note
that the infinite matrix (11) has no point spectrum, hence no eigenvectors in �2(N).

In Fig. 4, we illustrate the decay behavior of the order of magnitude of the entries in the
first row of f (An) = eAn for n = 100 (black plot), together with the bounds obtained using
the field of values (red) and the one containing κ(X) (blue). Note the logarithmic scale on
the vertical axis. This example shows that the eigenbasis-dependent bounds can overestimate
the magnitude of the entries by many orders of magnitude, while the bounds based on the
field of values can result in much more accurate estimates, especially at short distance from
the main diagonal. For this matrix, the eigenbasis condition number is κ(X) ≈ 5.26 · 108.
Taking larger values of n will make the eigenbasis-dependent bound much worse, while the
field of values-dependent bound remains unchanged. This example can be easily generalized
and extended.

Finally, we mention that while we have focused here on the derivation of bounds for the
entries of f (A), nearly identical considerations apply to the problem of polynomial (and
also rational) approximations for computing the action of a function of a matrix on a vector,
v = f (A)b; see, for instance, [5,48].
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6 Convergence of Krylovmethods for saddle point problems

In this section we review some convergence bounds for GMRES based on the field of val-
ues, and show how they lead to mesh-independent estimates of the rate of convergence of
preconditioned GMRES applied to saddle point problems.

6.1 Field of values bounds for GMRES

The Generalized Minimal Residual (GMRES) method [40,41] is the most widely used algo-
rithm for the solution of large, sparse, nonsymmetric systems of linear equations Ax = b.
Starting from an initial guess x0, GMRES constructs approximations xk to the solution
x∗ = A−1b (k = 0, 1, . . .) such that the kth residual vector rk = b − Axk satisfies

‖rk‖
‖r0‖ = min

{ ‖p(A)r0‖
|p(0)|‖r0‖ ; p ∈ C[x], deg(p) ≤ k

}
,

where deg(p) is the degree of the polynomial p. Using ‖p(A)r0‖ ≤ ‖p(A)‖‖r0‖, we easily
obtain the bound

‖rk‖
‖r0‖ ≤ min

{‖p(A)‖
|p(0)| ; p ∈ C[x], deg(p) ≤ k

}
,

which no longer depends on b or r0.
Over the years, there have been many attempts to derive descriptive error bounds for

GMRES analogous to those available for MINRES or CG. This is a difficult task, see for
example [23]. Results are known for matrices A such that A + A∗ is positive definite, see
[20] (see also [40]). More generally, if 0 /∈ W(A), there are field of values-based bounds due
to Eiermann [19] and to Beckermann [4], among others. The latter one is given next.

Theorem 4 [4] Let A ∈ C
n×n and letK ⊂ C be convex, compact, and such thatW(A) ⊆ K

and 0 /∈ K. Let φ be the map in the statement of Theorem 3. Then the GMRES residuals
satisfy

‖rk‖
‖r0‖ ≤

(
2

1 − γ k+1
K

)
γ k
K, k = 0, 1, . . . ,

where γK = 1
|φ(0)| < 1.

Suppose now that we have a family of linear systems, Aνxν = bν , depending on a
parameter ν. Here ν could be a physical parameter, such as the viscosity in a discretized
convection-diffusion equation, or the dimension of the linear system, corresponding to finer
and finer discretizations of some differential or integral operator. Of particular interest is the
case where ν = O(h), where h is a discretization parameter. We have the following simple
consequence of Beckermann’s result:

Corollary 1 Let K ⊂ C be convex, compact, and such that
⋃
ν

W(Aν) ⊆ K, 0 /∈ K.

Then GMRES converges to the solution of each of the linear systems Aνxν = bν in a number
of steps that is bounded uniformly in ν.
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In practice, this result will be applied not to the original linear system Aνxν = bν but to a
preconditioned version. Indeed, apart from very special situations, preconditioning is usually
necessary to achieve ν-independent convergence. We turn to preconditioning next.

6.2 Field of values equivalence

We begin by reviewing the notion of spectral equivalence for families of Hermitian positive
definite (HPD) matrices [3]. Recall that two families of HPDmatrices {Ah} and {Bh} are said
to be spectrally equivalent if there exist h-independent constants α and β with

0 < α ≤ λi (B
−1
h Ah) ≤ β, ∀i .

Equivalently, {Ah} and {Bh} are spectrally equivalent if the spectral condition number
κ(B−1

h Ah) is uniformly bounded with respect to h.
Yet another equivalent condition is that the generalized Rayleigh quotients associated with

Ah and Bh are uniformly bounded:

0 < α ≤ 〈Ahx, x〉
〈Bhx, x〉 ≤ β, ∀x �= 0.

Note that this is an equivalence relation between families of matrices.
If the discretization of (say) an elliptic PDE leads to a sequence of linear systems

Ahuh = bh , a family of spectrally equivalent preconditioners {Bh} guarantees that the Pre-
conditioned Conjugate Gradient (PCG) method will converge in a number of steps that is
uniformly bounded with respect to the parameter h . If h denotes some measure of the mesh
size (discretization parameter), the resulting PCG iteration exhibits mesh-independent con-
vergence. If, in addition, the cost of applying the preconditioner Bh is linear in the number
of degrees of freedom, we say that the preconditioner is optimal with respect to the mesh
size h. In general, of course, the actual performance of the preconditioner can be affected by
other factors, such as physical parameters. Good general references for the PCG method for
the solution of discretized PDEs include [3,22,38].

When the preconditioned system is not symmetrizablewith positive eigenvalues, for exam-
ple because the preconditioner is indefinite or non-symmetric, then spectral equivalence is
no longer the appropriate tool to analyze the convergence of preconditioned Krylov methods,
and PCG cannot be applied. In this case, the more general concept of field of values equiva-
lence, first proposed by G. Starke [43], can in some cases provide the theoretical framework
needed to establish mesh-independent convergence for certain preconditioners for Krylov
methods like GMRES. Examples include preconditioners for convection-diffusion equations
[43], block preconditioners for the Stokes system and other problems of saddle point type
[14,22,33,35], preconditioners for the incompressible linearized Navier–Stokes equations
[10] and for Rayleigh–Bénard convection [2]. Field of values equivalence has also been
applied to the analysis of preconditioned iterative solvers applied to discretizations of the
Helmholtz equation; see, e.g., [25,29]. Finally, we refer to [37] for recent work on the use of
the field of values to study the convergence of a class of two-grid iterative methods.

For reasons of space we can only give a very succinct overview of how field of values
equivalence may be used to obtain h-independent convergence bounds for preconditioned
GMRES applied to large linear systems in saddle point form, i.e.,

A x =
[
A BT

B 0

] [
u
p

]
=

[
f
g

]
= f .
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Such systems arise frequently from the finite element discretization of boundary value
problems for systems of PDEs. Examples includemixed formulations of the Poisson equation
[13], the Stokes equations, the Oseen problem (obtained from the Navier–Stokes equations
via Picard linearization) [22], or the coupled Stokes–Darcy system [14]. In most cases the
matrix A is symmetric positive definite and B is rectangular and has full row rank [9].

We assume that the matrix A ∈ R
n×n satisfies the following (Babuška–Brezzi) bounded-

ness and stability conditions:

sup
w∈Rn\{0}

sup
v∈Rn\{0}

wTAv
‖w‖H‖v‖H ≤ c1, (12a)

inf
w∈Rn\{0} sup

v∈Rn\{0}
wTAv

‖w‖H‖v‖H ≥ c2, (12b)

where c1 and c2 are positive constants independent of n, and the vector H -norm is defined

by ‖x‖H = (〈Hx, x〉) 1
2 , where the matrix H is symmetric positive definite (SPD). A typical

choice of H for finite element discretizations of incompressible flow problems is

H =
[
H1 0
0 H2

]
, H1 = discrete vector Laplacian, H2 = Mp,

where Mp denotes the mass matrix for the pressure space.

Definition 1 Two nonsingular matrices A,B ∈ R
n×n are said to be H -field-of-values equiv-

alent, A≈HB, if there exist constants α0 > 0 and β0 > 0 independent of n such that the
following holds for all nonzero x ∈ R

n :

α0 ≤
〈AB−1x, x

〉
H

〈x, x〉H and
∥∥AB−1

∥∥
H ≤ β0

We say in short that A and B are FoV-equivalent. Note that FoV-equivalence implies that
the eigenvalues of AB−1 are uniformly bounded: α0 ≤ |λi (AB−1)| ≤ β0. The converse,
however, is not true: FoV-equivalence is generally stronger than the condition that all the
matrices AB−1 have spectra that are uniformly bounded with respect to the dimension n. If,
however, A and B are SPD and H = In , FoV-equivalence reduces to spectral equivalence.
We also note that in the general case, FoV-equivalence is not an equivalence relation. We
refer to [33,35,43] for details.

Introducing again the subscript h to denote dependence on the discretization parameter
h (and therefore on the dimension n), we have the following: if a family of preconditioners
{Bh} is H -FoV equivalent to a family of saddle point matrices {Ah}, the H -FoVs of the
preconditioned matricesAhB−1

h lie in the right-half plane and are bounded independently of
h. As a result, Krylov subspace methods like MINRES or GMRES converge at a rate that is
h-independent. In the case of GMRES, this follows for instance from Theorem 4.

We mention that the use of the H -FoV implies that the GMRES residual convergence
should be measured either in the H -norm for left preconditioning or in the H−1-norm for
right preconditioning. In finite element computations, the natural norm is the H−1-norm,
and it can be shown that h-independent convergence in this norm of the preconditioned
Krylov method implies h-independent convergence in the standard Euclidean norm as well,
see [1,22].

Generally speaking, showing FoV-equivalence for a given family of saddle point problems
and a corresponding family of preconditioners is non-trivial.Nevertheless, it has beenpossible
to establish it in the following important cases:
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1. Block triangular preconditioners based on approximate Schur complements for the Stokes
and Oseen problems [33];

2. Block diagonal preconditioning of Darcy’s equations [35];
3. Augmented Lagrangian preconditioning of the Oseen problem [10];
4. Constraint preconditioning of the coupled Stokes–Darcy system [14];
5. Block triangular preconditioning of the Rayleigh–Bénard system [2].

We refer interested readers to the cited literature for details.

7 Conclusions

In this expository paperwe have illustrated how thefield of values has been used in the study of
some important problems in numerical analysis, from the approximation of matrix functions
to the convergence analysis of preconditionedGMRES for solving large-scale linear systems.
While we have not discussed the actual numerical computation of the field of values of a
matrix, which is a challenging task in the case of matrices of very large size, we have shown
how a priori knowledge of certain properties of the field of values may be sufficient to prove
certain useful bounds and even to obtain optimality results for a class of preconditioners
for a given problem. Briefly stated, the fields of values must remain bounded and bounded
away from any singularities of the underlying function, uniformly in the parameter of interest
(which is often, but not always, the matrix dimension n).

Of course, the field of values is no panacea, and approaches based on it will fail if it
contains any singularities of the underlying scalar function; for the convergence analysis of
GMRES the function is f (z) = z−1, and the field of values is useless if it contains the origin.
Nevertheless, in this case it may still be possible to identify a C-spectral set, i.e., a subset S
of the complex plane satisfying Λ(A) ⊂ S ⊂ W(A), not containing 0 (or, more generally,
any singularities of the function f ), and such that

‖g(A)‖ ≤ C sup
z∈S

|g(z)|

for all rational functions g bounded on S, where C is a universal constant. We refer to [16]
for some examples illustrating this technique. It is, however, too early to say if this approach
can be successfully applied to prove convergence bounds for the preconditioned GMRES
method in realistic applications.
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